88教案网

你的位置: 教案 > 高中教案 > 导航 > 力的合成与分解学案

高中力的分解教案

发表时间:2020-03-02

力的合成与分解学案。

3.4力的合成与分解学案2(粤教版必修1)
一、应用图解法分析动态问题
所谓图解法就是通过平行四边形的邻边和对角线长短的关系或变化情况,作一些较为复杂的定性分析,从图形上就可以看出结果,得出结论.
图1
例1用细绳AO、BO悬挂一重物,BO水平,O为半圆形支架的圆心,悬点A和B在支架上.悬点A固定不动,将悬点B从图1所示位置逐渐移到C点的过程中,试分析OA绳和OB绳中的拉力变化情况.

[方法归纳]
解决动态问题的一般步骤:
(1)进行受力分析
对物体进行受力分析,一般情况下物体只受三个力:一个是恒力,大小方向均不变;另外两个是变力,一个是方向不变的力,另一个是方向改变的力.在这一步骤中要明确这些力.
(2)画三力平衡图
由三力平衡知识可知,其中两个变力的合力必与恒力等大反向,因此先画出与恒力等大反向的力,再以此力为对角线,以两变力为邻边作出平行四边形.若采用力的分解法,则是将恒力按其作用效果分解,作出平行四边形.
(3)分析变化情况
分析方向变化的力在哪个空间内变化,借助平行四边形定则,判断各力变化情况.
图2
变式训练1如图2所示,一定质量的物块用两根轻绳悬在空中,其中绳OA固定不动,绳OB在竖直平面内由水平方向向上转动,则在绳OB由水平转至竖直的过程中,绳OB的张力的大小将()
A.一直变大
B.一直变小
C.先变大后变小
D.先变小后变大
二、力的正交分解法
1.概念:将物体受到的所有力沿已选定的两个相互垂直的方向分解的方法,是处理相对复杂的多力的合成与分解的常用方法.
2.目的:将力的合成化简为同向、反向或垂直方向的分力,便于运用普通代数运算公式解决矢量的运算,“分解”的目的是为了更好地“合成”.
3.适用情况:适用于计算三个或三个以上力的合成.
图3
4.步骤
(1)建立坐标系:以共点力的作用点为坐标原点,直角坐标系x轴和y轴的选择应使尽量多的力在坐标轴上.
(2)正交分解各力:将每一个不在坐标轴上的力分解到x轴和y轴上,并求出各分力的大小,如图3所示.
(3)分别求出x轴、y轴上各分力的矢量和,即:
Fx=F1x+F2x+…
Fy=F1y+F2y+…
(4)求共点力的合力:合力大小F=F2x+F2y,合力的方向与x轴的夹角为α,则tanα=FyFx,即α=arctanFyFx.
图4
例2如图4所示,在同一平面内有三个共点力,它们之间的夹角都是120°,大小分别为F1=20N,F2=30N,F3=40N,求这三个力的合力F.
图5
变式训练2如图5所示,质量为m的木块在推力F的作用下,在水平地面上做匀速运动.已知木块与地面间的动摩擦因数为μ,那么木块受到的滑动摩擦力为()
A.μmg
B.μ(mg+Fsinθ)
C.μ(mg-Fsinθ)
D.Fcosθ
三、力的分解的实际应用
图6
例3压榨机结构如图6所示,B为固定铰链,A为活动铰链,若在A处施另一水平力F,轻质活塞C就以比F大得多的力压D,若BC间距为2L,AC水平距离为h,C与左壁接触处光滑,则D所受的压力为多大?
图7
例4如图7所示,是木工用凿子工作时的截面示意图,三角形ABC为直角三角形,∠C=30°.用大小为F=100N的力垂直作用于MN,MN与AB平行.忽略凿子的重力,求这时凿子推开木料AC面和BC面的力分别为多大?

图8
变式训练3光滑小球放在两板间,如图8所示,当OA板绕O点转动使θ角变小时,两板对球的压力FA和FB的变化为()
A.FA变大,FB不变
B.FA和FB都变大
C.FA变大,FB变小
D.FA变小,FB变大
例5如图9所示,在C点系住一重物P,细绳两端A、B分别固定在墙上,使AC保持水平,BC与水平方向成30°角.已知细绳最大只能承受200N的拉力,那么C点悬挂物体的重量最
多为多少,这时细绳的哪一段即将被拉断?
图9jAb88.com

参考答案
解题方法探究
例1见解析
解析在支架上选取三个点B1、B2、B3,当悬点B分别移动到B1、B2、B3各点时,AO、BO中的拉力分别为FTA1、FTA2、FTA3、和FTB1、FTB2、FTB3,从图中可以直观地看出,FTA逐渐变小,且方向不变;而FTB先变小,后变大,且方向不断改变;当FTB与FTA垂直时,FTB最小.
变式训练1D
例2F=103N,方向与x轴负向的夹角为30°
解析以O点为坐标原点,建立直角坐标系xOy,使Ox方向沿力F1的方向,则F2与y轴正向间夹角α=30°,F3与y轴负向夹角β=30°,如图甲所示.
先把这三个力分解到x轴和y轴上,再求它们在x轴、y轴上的分力之和.
Fx=F1x+F2x+F3x
=F1-F2sinα-F3sinβ
=20N-30sin30°N-40sin30°N=-15N
Fy=F1y+F2y+F3y
=0+F2cosα-F3cosβ
=30cos30°N-40cos30°N=-53N
这样,原来的三个力就变成互相垂直的两个力,如图乙所示,最终的合力为:
F=F2x+F2y=-152+-532N=103N
设合力F与x轴负向的夹角为θ,则tanθ=FyFx=-53N-15N=33,所以θ=30°.
变式训练2BD
例3L2hF
解析水平力F有沿AB和AC两个效果,作出力F的分解图如图甲所示,F′=h2+L22hF,由于夹角θ很大,力F产生的沿AB、AC方向的效果力比力F大;而F′又产生两个作用效果,沿水平方向和竖直方向,如图乙所示.
甲乙
Fy=Lh2+L2F′=L2hF.
例41003N200N
解析弹力垂直于接触面,将力F按作用效果进行分解如图所示,由几何关系易得,推开AC面的力为F1=F/tan30°=1003N.
推开BC面的力为F2=F/sin30°=200N.
变式训练3B[利用三力平衡判断如下图所示.
当θ角变小时,FA、FB分别变为FA′、FB′,都变大.]
例5100NBC段先断
解析方法一力的合成法
根据一个物体受三个力作用处于平衡状态,则三个力的任意两个力的合力大小等于第三个力大小,方向与第三个力方向相反,在图甲中可得出F1和F2的合力F合竖直向上,大小等于F,由三角函数关系可得出F合=F1sin30°,F2=F1cos30°,且F合=F=G.

设F1达到最大值200N,可得G=100N,F2=173N.
由此可看出BC绳的张力达到最大时,AC绳的张力还没有达到最大值,在该条件下,BC段绳子即将断裂.
设F2达到最大值200N,可得G=115.5N,F1=231N200N.
由此可看出AC绳的张力达到最大时,BC绳的张力已经超过其最大能承受的力.在该条件下,BC段绳子早已断裂.
从以上分析可知,C点悬挂物体的重量最多为100N,这时细绳的BC段即将被拉断.

方法二正交分解法
如图乙所示,将拉力F1按水平方向(x轴)和竖直方向(y轴)两个方向进行正交分解.由力的平衡条件可得F1sin30°=F=G,F1cos30°=F2.
F1F2;绳BC先断,F1=200N.
可得:F2=173N,G=100N.

相关推荐

高考物理知识点:力(常见的力、力的合成与分解)


俗话说,凡事预则立,不预则废。作为高中教师就要精心准备好合适的教案。教案可以让学生们能够更好的找到学习的乐趣,减轻高中教师们在教学时的教学压力。高中教案的内容要写些什么更好呢?小编收集并整理了“高考物理知识点:力(常见的力、力的合成与分解)”,欢迎大家与身边的朋友分享吧!

高考物理知识点:力(常见的力、力的合成与分解)

1)常见的力
1.重力G=mg(方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2(k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

高一物理力的合成与分解2


俗话说,磨刀不误砍柴工。教师在教学前就要准备好教案,做好充分的准备。教案可以让学生能够在课堂积极的参与互动,帮助教师能够井然有序的进行教学。您知道教案应该要怎么下笔吗?下面是小编精心收集整理,为您带来的《高一物理力的合成与分解2》,大家不妨来参考。希望您能喜欢!

3.4力的合成和分解
教学目标:
1.理解合力、分力的概念,掌握矢量合成的平行四边形定则。
2.能够运用平行四边形定则或力三角形定则解决力的合成与分解问题。
3.进一步熟悉受力分析的基本方法,培养学生处理力学问题的基本技能。
教学重点:力的平行四边形定则
教学难点:受力分析
教学方法:讲练结合,计算机辅助教学
教学过程:
一、标量和矢量
1.将物理量区分为矢量和标量体现了用分类方法研究物理问题的思想。
2.矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则。
矢量的合成与分解都遵从平行四边形定则(可简化成三角形定则)。平行四边形定则实质上是一种等效替换的方法。一个矢量(合矢量)的作用效果和另外几个矢量(分矢量)共同作用的效果相同,就可以用这一个矢量代替那几个矢量,也可以用那几个矢量代替这一个矢量,而不改变原来的作用效果。
3.同一直线上矢量的合成可转为代数法,即规定某一方向为正方向。与正方向相同的物理量用正号代入.相反的用负号代入,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样.但不能认为是矢量,最后结果的正负也不表示方向如:功、重力势能、电势能、电势等。
二、力的合成与分解
力的合成与分解体现了用等效的方法研究物理问题。
合成与分解是为了研究问题的方便而引人的一种方法。用合力来代替几个力时必须把合力与各分力脱钩,即考虑合力则不能考虑分力,同理在力的分解时只考虑分力而不能同时考虑合力。
1.力的合成
(1)力的合成的本质就在于保证作用效果相同的前提下,用一个力的作用代替几个力的作用,这个力就是那几个力的“等效力”(合力)。力的平行四边形定则是运用“等效”观点,通过实验总结出来的共点力的合成法则,它给出了寻求这种“等效代换”所遵循的规律。
(2)平行四边形定则可简化成三角形定则。由三角形定则还可以得到一个有用的推论:如果n个力首尾相接组成一个封闭多边形,则这n个力的合力为零。
(3)共点的两个力合力的大小范围是
|F1-F2|≤F合≤F1+F2
(4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零。
【例1】物体受到互相垂直的两个力F1、F2的作用,若两力大小分别为5N、5N,求这两个力的合力.
解析:根据平行四边形定则作出平行四边形,如图所示,由于F1、F2相互垂直,所以作出的平行四边形为矩形,对角线分成的两个三角形为直角三角形,由勾股定理得:
N=10N
合力的方向与F1的夹角θ为:
θ=30°
2.力的分解
(1)力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边。
(2)两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为无数组分力,但在具体问题中,应根据力实际产生的效果来分解。
【例2】将一个力分解为两个互相垂直的力,有几种分法?
解析:有无数种分法,只要在表示这个力的有向线段的一段任意画一条直线,在有向线段的另一端向这条直线做垂线,就是一种方法。如图所示。
(3)几种有条件的力的分解?
①已知两个分力的方向,求两个分力的大小时,有唯一解。
②已知一个分力的大小和方向,求另一个分力的大小和方向时,有唯一解。
③已知两个分力的大小,求两个分力的方向时,其分解不惟一。
④已知一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一。
(4)用力的矢量三角形定则分析力最小值的规律:
①当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2取最小值的条件是两分力垂直。如图所示,F2的最小值为:F2min=Fsinα
②当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2取最小值的条件是:所求分力F2与合力F垂直,如图所示,F2的最小值为:F2min=F1sinα?
③当已知合力F的大小及一个分力F1的大小时,另一个分力F2取最小值的条件是:已知大小的分力F1与合力F同方向,F2的最小值为|F-F1|
(5)正交分解法:?
把一个力分解成两个互相垂直的分力,这种分解方法称为正交分解法。
用正交分解法求合力的步骤:
①首先建立平面直角坐标系,并确定正方向
②把各个力向x轴、y轴上投影,但应注意的是:与确定的正方向相同的力为正,与确定的正方向相反的为负,这样,就用正、负号表示了被正交分解的力的分力的方向
③求在x轴上的各分力的代数和Fx合和在y轴上的各分力的代数和Fy合
④求合力的大小
合力的方向:tanα=(α为合力F与x轴的夹角)
【例3】质量为m的木块在推力F作用下,在水平地面上做匀速运动.已知木块与地面间的动摩擦因数为,那么木块受到的滑动摩擦力为下列各值的哪个?A.mgB.(mg+Fsinθ)
C.(mg+Fsinθ)D.Fcosθ
解析:木块匀速运动时受到四个力的作用:重力mg、推力F、支持力FN、摩擦力F.沿水平方向建立x轴,将F进行正交分解如图(这样建立坐标系只需分解F),由于木块做匀速直线运动,所以,在x轴上,向左的力等于向右的力(水平方向二力平衡);在y轴上向上的力等于向下的力(竖直方向二力平衡).即
Fcosθ=F①
FN=mg+Fsinθ②
又由于F=FN③
∴F=(mg+Fsinθ)故B、D答案是正确的.
三、综合应用举例
【例4】水平横粱的一端A插在墙壁内,另一端装有一小滑轮B,一轻绳的一端C固定于墙上,另一端跨过滑轮后悬挂一质量m=10kg的重物,∠CBA=30°,如图甲所示,则滑轮受到绳子的作用力为(g=10m/s2)
A.50NB.50NC.100ND.100N
解析:取小滑轮作为研究对象,悬挂重物的绳中的弹力是T=mg=10×10N=100N,故小滑轮受绳的作用力沿BC、BD方向的大小都是100N,分析受力如图(乙)所示.∠CBD=120°,∠CBF=∠DBF,∴∠CBF=60°,⊿CBF是等边三角形.故F=100N。故选C。
【例5】已知质量为m、电荷为q的小球,在匀强电场中由静止释放后沿直线OP向斜下方运动(OP和竖直方向成θ角),那么所加匀强电场的场强E的最小值是多少?
解析:根据题意,释放后小球所受合力的方向必为OP方向。用三角形定则从右图中不难看出:重力矢量OG的大小方向确定后,合力F的方向确定(为OP方向),而电场力Eq的矢量起点必须在G点,终点必须在OP射线上。在图中画出一组可能的电场力,不难看出,只有当电场力方向与OP方向垂直时Eq才会最小,所以E也最小,有E=
【例6】A的质量是m,A、B始终相对静止,共同沿水平面向右运动。当a1=0时和a2=0.75g时,B对A的作用力FB各多大?
解析:一定要审清题:B对A的作用力FB是B对A的支持力和摩擦力的合力。而A所受重力G=mg和FB的合力是F=ma。
当a1=0时,G与FB二力平衡,所以FB大小为mg,方向竖直向上。
当a2=0.75g时,用平行四边形定则作图:先画出重力(包括大小和方向),再画出A所受合力F的大小和方向,再根据平行四边形定则画出FB。由已知可得FB的大小FB=1.25mg,方向与竖直方向成37o角斜向右上方。

《运动的合成与分解》导学案


《运动的合成与分解》导学案

【教学目标】

知识与能力:

1、在具体问题中知道什么是合运动,什么是分运动。

2、知道合运动和分运动是同时发生的,互不影响,遵循平行四边形法则

3、能够运用平行四边形法则解决有关位移、速度合成和分解的问题.

过程与方法:

1、通过运动独立性的实验探究,让学生经历分析实验,归纳总结出结论的过程,

2、通过小船过河模拟,经历从真实物理情景中获得物理概念和分析问题的方法。

情感态度与价值观:

在学习中提高自主的意识,在交流中培养合作的精神。

【教学重点】:

①通过科学探究找到合运动与分运动的具体关系。

②初步掌握运动的合成与分解的研究方法。

【教学难点】:用合成和分解的方法解决有关具体问题。

【教学用具】:多媒体课件

【教学过程】:

一、创设情景导入新课

在必修1中,我们主要学习了匀变速直线运动,除了水平方向的直线运动外,还学习了一种特殊的匀加速直线运动——自由落体运动,它的运动轨迹在竖直方向。对于上述一维运动,我们是采用建立一维坐标的方法来进行研究。现在我们观察一下,以某角度抛出的网球的运动,它是一个怎样的运动,还能用一维坐标的方法分析吗?

——建立平面直角坐标系,分解为两个彼此独立的水平方向和竖直方向的运动。

二.新课教学

现在我们通过课本中所介绍的实验装置来共同学习运动的独立性

要点(一):(实验探究)运动的独立性

学生看图后,提出如下问题

(1)实验中为什么要采用两个完全相同的弧形轨道,且两者高度AC=BD?

(2)实验现象?实验结论?

(3)你能设计一个实验说明水平方向的运动不影响竖直方向的运动吗?(学生讨论作答)

运动的独立性探究实验模拟演示

从实验可以看出:竖直方向的运动和水平方向的运动是互不影响,彼此独立的,这就是运动的独立性。

要点(二):运动的合成与分解的方法

学生思考回答①在平静的水中如果开动发动机小船将怎么运动?②如果在流水中关闭发运动机小船又将怎么运动?③如果在流水中又开动发动机情形又将怎么样呢?(假设船在静水中的速度和水流速度都是匀速的)

模拟演示:小船过河

观察小船参与的几个运动。思考几个运动的联系。船头方向与河岸不垂直时

V船
V水
V合
S船
S合
S水
船头方向与河岸垂直时

运动的合成
运动的分解
(实际的运动)
1.

合运动分运动

举例说明合运动和分运动(如有风时屋檐下的雨滴滴落,在运动的车上行走的人,吊车吊起货物等)

2.满足平行四边形定则。

3.具有独立性.等时性.等效性.

三、实例分析

一艘小船要从河岸某处出发渡到河对岸,已知河宽16m,船在静水中航行的速度为4m/s.

(1)如果小船的船头保持与河对岸垂直,求小船在静水中到达河对岸的时间是多少?

(2)如水流速度为3m/s,且小船的船头保持与河对岸垂直,则小船到达河对岸的时间是多少?船的合速度是多少?这个速度的方向怎样?船的实际位移是多少?

[讨论问题1]小船怎么运动?

[讨论问题2]小船参与几个运动,哪几个是分运动?哪个是合运动?它们的关系怎样?还有其它的方法吗?

[讨论问题3]如果小船运动到河中间时水流速度突然由0变为3m/s,是否影响小船过河的时间?如果没有它会影响小船运动的哪一些物理量?

[课后思考1]探究小船过河的可能情况有哪些?小船过河时间最短的条件是什么?

[课后思考2]探索小船过河的可能情况有哪些?船头沿着何方向开行时位移最短?

(此结论成立的条件是——当V船>V水时)

[课后思考3]如果V船V水,结果又会怎么样?

四、小结

1.物体的实际运动为合运动,组成合运动的几个运动称为分运动。

2.运动的合成与分解遵循平行四边形定则。

3.合运动与分运动之间的三个关系:独立性、等时性、等效性。

五、作业布置

课本P50第1、3题交,讨论第5题

六、板书设计:

第1节:运动的合成与分解

1、运动的独立性

2、运动的合成与分解的方法

运动的合成
运动的分解
(实际的运动)
(1)

合运动分运动

(2)满足平行四边形定则

V船
V水
V合
S船
S合
S水
(3)具有独立性.等时性.等效性.

三、例解:(1)t船==s=4s

(2)由合运动和分运动的等时性t合=t船=4s

小船合速度的大小为

V合==m/s=5m/s

小船合速度与河岸的夹角满足

tan==所以=53。

S水=v水t=34m=12m

所以合位移

S合==m=20m

高三物理知识点:力的合成与分解


高三物理知识点:力的合成与分解

力的合成与分解

1.合力与分力如果一个力作用在物体上,它产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,而那几个力叫做这个力的分力。

2.共点力的合成
⑴共点力几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。
⑵力的合成方法求几个已知力的合力叫做力的合成。
a.若和在同一条直线上
①、同向:合力方向与、的方向一致
②、反向:合力,方向与、这两个力中较大的那个力同向。
b.、互成θ角——用力的平行四边形定则平行四边形定则:两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边,作平行四边形,它的对角线就表示合力的大小及方向,这是矢量合成的普遍法则。求F、的合力公式:(为F1、F2的夹角)

注意:
(1)力的合成和分解都均遵从平行四边行法则。
(2)两个力的合力范围:F1-F2FF1+F2
(3)合力可以大于分力、也可以小于分力、也可以等于分力
(4)两个分力成直角时,用勾股定理或三角函数。

【总结】以上就是物理力的合成与分解的全部内容,小编希望同学们都能扎实的掌握学过的知识,取得好的成绩!