88教案网

你的位置: 教案 > 高中教案 > 导航 > 高二数学《解三角形的实际应用举例》教案分析

小学三角形教案

发表时间:2020-10-31

高二数学《解三角形的实际应用举例》教案分析。

为了促进学生掌握上课知识点,老师需要提前准备教案,大家在仔细规划教案课件。将教案课件的工作计划制定好,未来工作才会更有干劲!你们会写一段优秀的教案课件吗?急您所急,小编为朋友们了收集和编辑了“高二数学《解三角形的实际应用举例》教案分析”,仅供参考,欢迎大家阅读。

高二数学《解三角形的实际应用举例》教案分析

解三角形的实际应用举例(1)教学目标1、掌握正弦定理、余弦定理,并能运用它们解斜三角形。2、能够运用正弦定理、余弦定理进行三角形边与角的互化。3、培养和提高分析、解决问题的能力。教学重点难点1、正弦定理与余弦定理及其综合应用。2、利用正弦定理、余弦定理进行三角形边与角的互化。教学过程一、复习引入1、正弦定理:2、余弦定理:,二、例题讲解引例:我军有A、B两个小岛相距10海里,敌军在C岛,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,为提高炮弹命中率,须计算B岛和C岛间的距离,请你算算看。解:∴由正弦定理知海里例1.如图,自动卸货汽车采用液压机构,设计时需要计算油泵顶杆BC的长度(如图).已知车厢的最大仰角为60°,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为,AC长为1.40m,计算BC的长(保留三个有效数字).分析:这个问题就是在中,已知AB=1.95m,AC=1.4m,求BC的长,由于已知的两边和它们的夹角,所以可根据余弦定理求出BC。解:由余弦定理,得答:顶杠BC长约为1.89m.解斜三角形理论应用于实际问题应注意:1、认真分析题意,弄清已知元素和未知元素。2、要明确题目中一些名词、术语的意义。如视角,仰角,俯角,方位角等等。3、动手画出示意图,利用几何图形的性质,将已知和未知集中到一个三角形中解决。练1.如图,一艘船以32海里/时的速度向正北航行,在A处看灯塔S在船的北偏东,30分钟后航行到B处,在B处看灯塔S在船的北偏东方向上,求灯塔S和B处的距离.(保留到0.1)解:由正弦定理知海里答:灯塔S和B处的距离约为海里例2.测量高度问题如图,要测底部不能到达的烟囱的高AB,从与烟囱底部在同一水平直线上的C,D两处,测得烟囱的仰角分别是和,C、D间的距离是12m.已知测角仪器高1.5m.求烟囱的高。图中给出了怎样的一个几何图形?已知什么,求什么?分析:因为,又所以只要求出即可解:在中,,由正弦定理得:从而:因此:答:烟囱的高约为练习:在山顶铁塔上处测得地面上一点的俯角,在塔底处测得点的俯角,已知铁塔部分高米,求山高。解:在ABC中,∠ABC=30°,∠ACB=135°,∴∠CAB=180°-(∠ACB+∠ABC)=180°-(135°+30°)=15°又BC=32,由正弦定理得:课堂小结1、本节课通过举例说明了解斜三角形在实际中的一些应用。掌握利用正弦定理及余弦定理解任意三角形的方法。2、在分析问题解决问题的过程中关键要分析题意,分清已知与所求,根据题意画出示意图,并正确运用正弦定理和余弦定理解题。3、在解实际问题的过程中,贯穿了数学建模的思想.

相关推荐

解三角形及应用举例


题目第五章平面向量解三角形及应用举例
高考要求
1会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;?
2搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;?
3理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;?
4熟练掌握实际问题向解斜三角形类型的转化;?
5通过解斜三角形的应用的教学,继续提高运用所学知识解决实际问题的能力
知识点归纳
1正弦定理:在一个三角形中,各边和它所对角的正弦的比相等其比值为外接圆的直径
即(其中R表示三角形的外接圆半径)
利用正弦定理,可以解决以下两类有关三角形的问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角)
2余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍
第一形式,=,第二形式,cosB=
利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角
3三角形的面积:△ABC的面积用S表示,外接圆半径用R表示,内切圆半径用r表示,半周长用p表示则
①;②;
③;④;
⑤;⑥(其中)
4三角形内切圆的半径:,特别地,
5三角学中的射影定理:在△ABC中,,…
6两内角与其正弦值:在△ABC中,,…
7三内角与三角函数值的关系:在△ABC中
解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解”
题型讲解
例1在ΔABC中,已知a=,b=,B=45°,求A,C及边c.
解:由正弦定理得:sinA=,
因为B=45°90°且ba,
所以有两解A=60°或A=120°
(1)当A=60°时,C=180°-(A+B)=75°,
c=,
(2)当A=120°时,C=180°-(A+B)=15°,
c=
思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.
例2△ABC的三个内角A、B、C的对边分别是a、b、c,如果a2=b(b+c),求证:A=2B
分析析:研究三角形问题一般有两种思路一是边化角,二是角化边
证明:用正弦定理,a=2RsinA,b=2RsinB,c=2RsinC,代入a2=b(b+c)中,得
sin2A=sinB(sinB+sinC)sin2A-sin2B=sinBsinC
-=sinBsin(A+B)
(cos2B-cos2A)=sinBsin(A+B)
sin(A+B)sin(A-B)=sinBsin(A+B),
因为A、B、C为三角形的三内角,所以sin(A+B)≠0
所以sin(A-B)=sinB
所以只能有A-B=B,即A=2B
点评:利用正弦定理,将命题中边的关系转化为角间关系,从而全部利用三角公式变换求解
例3已知锐角△ABC中,sin(A+B)=,sin(A-B)=
(1)求证:tanA=2tanB;
(2)设AB=3,求AB边上的高
分析:有两角的和与差联想到两角和与差的正弦公式,以(1)为铺垫,解决(2)
(1)证明:∵sin(A+B)=,sin(A-B)=,

=2
∴tanA=2tanB
(2)解:<A+B<π,∴sin(A+B)=
∴tan(A+B)=-,
即=-
将tanA=2tanB代入上式整理得2tan2B-4tanB-1=0,
解得tanB=(负值舍去)
得tanB=,
∴tanA=2tanB=2+
设AB边上的高为CD,则AB=AD+DB=+=
由AB=3得CD=2+,所以AB边上的高为2+
评述:本题主要考查三角函数概念,两角和与差的公式以及应用,分析和计算能力
例4在△ABC中,a、b、c分别是∠A、∠B、∠C的对边长,已知a、b、c成等比数列,且a2-c2=ac-bc,求∠A的大小及的值
分析:因给出的是a、b、c之间的等量关系,要求∠A,需找∠A与三边的关系,故可用余弦定理由b2=ac可变形为=a,再用正弦定理可求的值
解法一:∵a、b、c成等比数列,∴b2=ac
又a2-c2=ac-bc,∴b2+c2-a2=bc
在△ABC中,由余弦定理得
cosA===,∴∠A=60°
在△ABC中,由正弦定理得sinB=,
∵b2=ac,∠A=60°,
∴=sin60°=
解法二:在△ABC中,
由面积公式得bcsinA=acsinB
∵b2=ac,∠A=60°,∴bcsinA=b2sinB
∴=sinA=
评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理
例5在中,,,,求的值和的面积.
解法一:先解三角方程,求出角A的值.
又,
解法二:由计算它的对偶关系式的值.

,

①+②得
①-②得
从而.
以下解法略去.
点评本小题主要考查三角恒等变形、三角形面积公式等基本知识,着重数学考查运算能力,是一道三角的基础试题.两种解法比较起来,你认为哪一种解法比较简单呢?
例6设函数,其中向量
(1)若f(x)=1-且x∈[-,],求x;
(2)若函数y=2sin2x的图象按向量(|m|)平移后得到函数y=f(x)的图象,求实数m、n的值
解:(1)依题设可知,函数的解析式为
=2cos2x+sin2x=1+2sin(2x+)
由1+2sin(2x+)=1-,可得三角方程
sin(2x+)=-.
∵-≤x≤,∴-≤2x+≤,∴2x+=-,即x=-.
(2)函数y=2sin2x的图象按向量平移后得到函数y=2sin2(x-m)+n的图象,即函数y=f(x)的图象
由(1)得f(x)=2sin2(x+)+1
∵|m|,∴,
点评本小题是2004年福建高考试题,主要考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,着重考查数学运算能力.平面向量与三角函数结合是高考命题的一个新的亮点之一.
例7如图,某园林单位准备绿化一块直径为BC的半圆形空地,△ABC外的地方种草,△ABC的内接正方形PQRS为一水池,其余的地方种花若BC=a,∠ABC=,设△ABC的面积为S1,正方形的面积为S2.
(1)用a,表示S1和S2;
(2)当a固定,变化时,求取最小值时的角.
讲解(1)∵

设正方形边长为x
则BQ=
(2)当固定,变化时,


任取,且,


是减函数.
取最小值,此时
点评三角函数有着广泛的应用,本题就是一个典型的范例.通过引入角度,将图形的语言转化为三角的符号语言,再通过局部的换元,又将问题转化为我们熟知的函数.这些解题思维的拐点,你能否很快的想到呢?
例8某城市有一条公路,自西向东经过A点到市中心O点后转向东北方向OB,现要修建一条铁路L,L在OA上设一站A,在OB上设一站B,铁路在AB部分为直线段,现要求市中心O与AB的距离为10km,问把A、B分别设在公路上离中心O多远处才能使|AB|最短?并求其最短距离(不要求作近似计算)
解:在△AOB中,设OA=a,OB=b
因为AO为正西方向,OB为东北方向,所以∠AOB=135°
则|AB|2=a2+b2-2abcos135°=a2+b2+ab≥2ab+ab=(2+)ab,当且仅当a=b时,“=”成立又O到AB的距离为10,设∠OAB=α,则∠OBA=45°-α所以a=,b=,
ab==
==
=≥,
当且仅当α=22°30′时,“=”成立
所以|AB|2≥=400(+1)2,
当且仅当a=b,α=22°30′时,“=”成立
所以当a=b==10时,|AB|最短,其最短距离为20(+1),即当AB分别在OA、OB上离O点10km处,能使|AB|最短,最短距离为20(-1)
小结:
1在△ABC中,∵A+B+C=π,
∴sin=cos,cos=sin,tan=cot
2∠A、∠B、∠C成等差数列的充分必要条件是∠B=60°
3在非直角三角形中,tanA+tanB+tanC=tanAtanBtanC
4根据所给条件确定三角形的形状,主要有两种途径:①化边为角;②化角为边并常用正弦(余弦)定理实施边角转化
5用正(余)弦定理解三角形问题可适当应用向量的数量积求三角形内角与应用向量的模求三角形的边长
6用向量的数量积求三角形内角时,需明确向量的夹角与三角形内角是相等还是互补
学生练习
1在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是
A等腰直角三角形B直角三角形C等腰三角形D等边三角形
解:由2cosBsinA=sinC得×a=c,∴a=b
答案:C
2下列条件中,△ABC是锐角三角形的是
AsinA+cosA=B>0
CtanA+tanB+tanC>0Db=3,c=3,B=30°
解:由sinA+cosA=,得2sinAcosA=-<0,∴A为钝角
由>0,得<0,∴cos〈,〉<0∴B为钝角
由tanA+tanB+tanC>0,得tan(A+B)(1-tanAtanB)+tanC>0
∴tanAtanBtanC>0,A、B、C都为锐角
由=,得sinC=,∴C=或
答案:C
3△ABC中,a、b、c分别为∠A、∠B、∠C的对边,如果a、b、c成等差数列,∠B=30°,△ABC的面积为,那么b等于
AB1+CD2+
解:∵a、b、c成等差数列,∴2b=a+c平方得a2+c2=4b2-2ac
又△ABC的面积为,且∠B=30°,
故由S△ABC=acsinB=acsin30°=ac=,得ac=6∴a2+c2=4b2-12
由余弦定理,得cosB====,
解得b2=4+2又b为边长,∴b=1+
答案:B
4在△ABC中,“A>30°”是“sinA>”的
A充分而不必要条件B必要而不充分条件
C充分必要条件D既不充分也不必要条件
解:在△ABC中,A>30°0<sinA<1,推不出sinA>;
sinA>30°<A<150°A>30°
答案:B
5如图,△ABC是简易遮阳棚,A、B是南北方向上两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD面积最大,遮阳棚ABC与地面所成的角为
A75°B60°C50°D45°
解:作CE⊥平面ABD于E,则∠CDE是太阳光线与地面所成的角,即∠CDE=40°,延长DE交直线AB于F,连结CF,则∠CFD是遮阳棚与地面所成的角,设为α要使S△ABD最大,只需DF最大
在△CFD中,=
∴DF=
∵CF为定值,∴当α=50°时,DF最大
答案:C
6在△ABC中,由已知条件解三角形,其中有两解的是
Ab=20,A=45°,C=80°Ba=30,c=28,B=60°
Ca=14,b=16,A=45°Da=12,c=15,A=120°
解:由a=14,b=16,A=45°及正弦定理,得=,所以sinB=因而B有两值
答案:C
7已知(a+b+c)(b+c-a)=3bc,则∠A=_______
解:由已知得(b+c)2-a2=3bc,∴b2+c2-a2=bc
∴=∴∠A=
答案:
8在锐角△ABC中,边长a=1,b=2,则边长c的取值范围是_______
解:若c是最大边,则cosC>0∴>0,∴c<
又c>b-a=1,∴1<c<
答案:(1,)
9在△ABC中,角A、B、C所对的边分别是a、b、c,若三角形的面积S=(a2+b2-c2),则∠C的度数是_______
解:由S=(a2+b2-c2)得absinC=2abcosC∴tanC=1∴C=
答案:45°
10在△ABC中,若∠C=60°,则=_______
解:==(*)
∵∠C=60°,∴a2+b2-c2=2abcosC=ab∴a2+b2=ab+c2
代入(*)式得=1
答案:1
11在△ABC中,角A、B、C所对的边分别为a、b、c,依次成等比数列,求y=的取值范围
解:∵b2=ac,∴cosB===(+)-≥
∴0<B≤,y===sinB+cosB=sin(B+)
∵<B+≤,∴<sin(B+)≤1故1<y≤
12已知△ABC中,2(sin2A-sin2C)=(a-b)sinB,外接圆半径为
(1)求∠C;(2)求△ABC面积的最大值
解:(1)由2(sin2A-sin2C)=(a-b)sinB
得2(-)=(a-b)
又∵R=,∴a2-c2=ab-b2∴a2+b2-c2=ab∴cosC==
又∵0°<C<180°,∴C=60°
(2)S=absinC=×ab=2sinAsinB=2sinAsin(120°-A)
=2sinA(sin120°cosA-cos120°sinA)=3sinAcosA+sin2A
=sin2A-sin2Acos2A+=sin(2A-30°)+
∴当2A=120°,即A=60°时,Smax=
13在△ABC中,BC=a,顶点A在平行于BC且与BC相距为a的直线上滑动,求的取值范围
解:令AB=kx,AC=x(k>0,x>0),则总有sinB=,sinC=(图略),且由正弦定理得sinB=sinA,所以a2=kx2sinBsinC=kx2sinA,由余弦定理,可得cosA==(k+-sinA),所以k+=sinA+2cosA≤=所以k2-k+1≤0,所以≤k≤
所以的取值范围为[,]
课前后备注
例1已知A、B、C是△ABC的三个内角,y=cotA+
(1)若任意交换两个角的位置,y的值是否变化?试证明你的结论(2)求y的最小值
解:(1)∵y=cotA+
=cotA+
=cotA+
=cotA+cotB+cotC,
∴任意交换两个角的位置,y的值不变化
(2)∵cos(B-C)≤1,
∴y≥cotA+=+2tan
=(cot+3tan)≥=
故当A=B=C=时,ymin=
评述:本题的第(1)问是一道结论开放型题,y的表达式的表面不对称性显示了问题的有趣之处第(2)问实际上是一道常见题:在△ABC中,求证:cotA+cotB+cotC≥
例2在△ABC中,sinA=,判断这个三角形的形状
分析:判断一个三角形的形状,可由三个内角的关系确定,亦可由三边的关系确定采用后一种方法解答本题,就必须“化角为边”
解:应用正弦定理、余弦定理,可得
a=,所以b(a2-b2)+c(a2-c2)=bc(b+c)所以(b+c)a2=(b3+c3)+bc(b+c)所以a2=b2-bc+c2+bc所以a2=b2+c2所以△ABC是直角三角形
评述:恒等变形是学好数学的基本功,变形的方向是关键若考虑三内角的关系,本题可以从已知条件推出cosA=0

解三角形


一名优秀的教师在教学方面无论做什么事都有计划和准备,作为教师就要精心准备好合适的教案。教案可以让讲的知识能够轻松被学生吸收,帮助教师在教学期间更好的掌握节奏。怎么才能让教案写的更加全面呢?下面是小编为大家整理的“解三角形”,仅供参考,大家一起来看看吧。

第九课时§2.3。4解三角形应用举例(四)
一、教学目标
1、知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题,掌握三角形的面积公式的简单推导和应用
2、过程与方法:本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。
3、情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验
二、教学重点:推导三角形的面积公式并解决简单的相关题目。
教学难点:利用正弦定理、余弦定理来求证简单的证明题。
三、教学方法:探析归纳,讲练结合
四、教学过程
Ⅰ.课题导入
[创设情境]
师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。在
ABC中,边BC、CA、AB上的高分别记为h、h、h,那么它们如何用已知边和角表示?
生:h=bsinC=csinB,h=csinA=asinC,h=asinB=bsinaA
师:根据以前学过的三角形面积公式S=ah,应用以上求出的高的公式如h=bsinC代入,可以推导出下面的三角形面积公式,S=absinC,大家能推出其它的几个公式吗?
生:同理可得,S=bcsinA,S=acsinB
师:除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?
生:如能知道三角形的任意两边以及它们夹角的正弦即可求解
Ⅱ.探析新课
[范例讲解]
例1、在ABC中,根据下列条件,求三角形的面积S(精确到0.1cm)(1)已知a=14.8cm,c=23.5cm,B=148.5;(2)已知B=62.7,C=65.8,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm
分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。
解:(1)应用S=acsinB,得S=14.823.5sin148.5≈90.9(cm)
(2)根据正弦定理,=,c=,S=bcsinA=b
A=180-(B+C)=180-(62.7+65.8)=51.5
S=3.16≈4.0(cm)
(3)根据余弦定理的推论,得cosB==≈0.7697
sinB=≈≈0.6384应用S=acsinB,得
S≈41.438.70.6384≈511.4(cm)
例2、如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm)?
师:你能把这一实际问题化归为一道数学题目吗?
生:本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解。
由学生解答,老师巡视并对学生解答进行讲评小结。
解:设a=68m,b=88m,c=127m,根据余弦定理的推论,cosB==≈0.7532,sinB=0.6578应用S=acsinBS≈681270.6578≈2840.38(m)
答:这个区域的面积是2840.38m。
例3、在ABC中,求证:(1)(2)++=2(bccosA+cacosB+abcosC)
分析:这是一道关于三角形边角关系恒等式的证明问题,观察式子左右两边的特点,联想到用正弦定理来证明
证明:(1)根据正弦定理,可设===k,显然k0,所以
左边===右边
(2)根据余弦定理的推论,
右边=2(bc+ca+ab)
=(b+c-a)+(c+a-b)+(a+b-c)=a+b+c=左边
变式练习1:已知在ABC中,B=30,b=6,c=6,求a及ABC的面积S
提示:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数。
答案:a=6,S=9;a=12,S=18
Ⅲ.课堂练习:课本练习第1、2题
Ⅳ.课时小结:利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状。特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用。
Ⅴ.课后作业:课本习题2-3A组第12、14、15题
五、教后反思:

解斜三角形


5.4解斜三角形

●知识梳理
1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即==.
利用正弦定理,可以解决以下两类有关三角形的问题.
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角.(从而进一步求出其他的边和角)
2.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍,即
a2=b2+c2-2bccosA;①
b2=c2+a2-2cacosB;②
c2=a2+b2-2abcosC.③
在余弦定理中,令C=90°,这时cosC=0,所以c2=a2+b2.
由此可知余弦定理是勾股定理的推广.由①②③可得
cosA=;
cosB=;
cosC=.
利用余弦定理,可以解决以下两类有关三角形的问题:
(1)已知三边,求三个角;
(2)已知两边和它们的夹角,求第三边和其他两个角.
特别提示
两定理的形式、内容、证法及变形应用必须引起足够的重视,通过向量的数量积把三角形和三角函数联系起来,用向量方法证明两定理,突出了向量的工具性,是向量知识应用的实例.另外,解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解”.
●点击双基
1.在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是
A.等腰直角三角形B.直角三角形
C.等腰三角形D.等边三角形
解析:由2cosBsinA=sinC得×a=c,∴a=b.
答案:C
2.下列条件中,△ABC是锐角三角形的是
A.sinA+cosA=B.>0
C.tanA+tanB+tanC>0D.b=3,c=3,B=30°
解析:由sinA+cosA=
得2sinAcosA=-<0,∴A为钝角.
由>0,得<0,∴cos〈,〉<0.∴B为钝角.
由tanA+tanB+tanC>0,得tan(A+B)(1-tanAtanB)+tanC>0.
∴tanAtanBtanC>0,A、B、C都为锐角.
由=,得sinC=,∴C=或.
答案:C
3.△ABC中,a、b、c分别为∠A、∠B、∠C的对边,如果a、b、c成等差数列,∠B=30°,△ABC的面积为,那么b等于
A.B.1+
C.D.2+
解析:∵a、b、c成等差数列,∴2b=a+c.平方得a2+c2=4b2-2ac.又△ABC的面积为,且∠B=30°,故由S△ABC=acsinB=acsin30°=ac=,得ac=6.∴a2+c2=4b2-12.由余弦定理,得cosB====,解得b2=4+2.又b为边长,∴b=1+.
答案:B
4.已知(a+b+c)(b+c-a)=3bc,则∠A=_______.
解析:由已知得(b+c)2-a2=3bc,∴b2+c2-a2=bc.∴=.∴∠A=.
答案:
5.在锐角△ABC中,边长a=1,b=2,则边长c的取值范围是_______.
解析:若c是最大边,则cosC>0.∴>0,∴c<.又c>b-a=1,
∴1<c<.
答案:(1,)
●典例剖析
【例1】△ABC的三个内角A、B、C的对边分别是a、b、c,如果a2=b(b+c),求证:A=2B.
剖析:研究三角形问题一般有两种思路.一是边化角,二是角化边.
证明:用正弦定理,a=2RsinA,b=2RsinB,c=2RsinC,代入a2=b(b+c)中,得sin2A=sinB(sinB+sinC)sin2A-sin2B=sinBsinC
-=sinBsin(A+B)
(cos2B-cos2A)=sinBsin(A+B)
sin(A+B)sin(A-B)=sinBsin(A+B),
因为A、B、C为三角形的三内角,所以sin(A+B)≠0.所以sin(A-B)=sinB.所以只能有A-B=B,即A=2B.
评述:利用正弦定理,将命题中边的关系转化为角间关系,从而全部利用三角公式变换求解.
思考讨论
(1)该题若用余弦定理如何解决?
解:利用余弦定理,由a2=b(b+c),得cosA===,cos2B=2cos2B-1=2()2-1=-1=.
所以cosA=cos2B.因为A、B是△ABC的内角,所以A=2B.
(2)该题根据命题特征,能否构造一个符合条件的三角形,利用几何知识解决?
解:由题设a2=b(b+c),得=①,
作出△ABC,延长CA到D,使AD=AB=c,连结BD.①式表示的即是=,所以△BCD∽△ABC.所以∠1=∠D.
又AB=AD,可知∠2=∠D,所以∠1=∠2.
因为∠BAC=∠2+∠D=2∠2=2∠1,
所以A=2B.
评述:近几年的高考题中,涉及到三角形的题目,重点考查正弦、余弦定理,考查的侧重点还在于三角转换.这是命题者的初衷.
【例2】已知锐角△ABC中,sin(A+B)=,sin(A-B)=.
(1)求证:tanA=2tanB;
(2)设AB=3,求AB边上的高.
剖析:有两角的和与差联想到两角和与差的正弦公式,结合图形,以(1)为铺垫,解决(2).
(1)证明:∵sin(A+B)=,sin(A-B)=,

=2.
∴tanA=2tanB.
(2)解:<A+B<π,∴sin(A+B)=.
∴tan(A+B)=-,
即=-.将tanA=2tanB代入上式整理得2tan2B-4tanB-1=0,解得tanB=(负值舍去).得tanB=,∴tanA=2tanB=2+.
设AB边上的高为CD,则AB=AD+DB=+=.由AB=3得CD=2+,所以AB边上的高为2+.
评述:本题主要考查三角函数概念,两角和与差的公式以及应用,分析和计算能力.
【例3】在△ABC中,a、b、c分别是∠A、∠B、∠C的对边长,已知a、b、c成等比数列,且a2-c2=ac-bc,求∠A的大小及的值.
剖析:因给出的是a、b、c之间的等量关系,要求∠A,需找∠A与三边的关系,故可用余弦定理.由b2=ac可变形为=a,再用正弦定理可求的值.
解法一:∵a、b、c成等比数列,∴b2=ac.
又a2-c2=ac-bc,∴b2+c2-a2=bc.
在△ABC中,由余弦定理得
cosA===,∴∠A=60°.
在△ABC中,由正弦定理得sinB=,
∵b2=ac,∠A=60°,
∴=sin60°=.
解法二:在△ABC中,
由面积公式得bcsinA=acsinB.
∵b2=ac,∠A=60°,∴bcsinA=b2sinB.
∴=sinA=.
评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理.
●闯关训练
夯实基础
1.在△ABC中,“A>30°”是“sinA>”的
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
解析:在△ABC中,A>30°0<sinA<1sinA>;sinA>30°<A<150°A>30°.
答案:B
2.如图,△ABC是简易遮阳棚,A、B是南北方向上两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD面积最大,遮阳棚ABC与地面所成的角为
A.75°B.60°C.50°D.45°
解析:作CE⊥平面ABD于E,则∠CDE是太阳光线与地面所成的角,即∠CDE=40°,延长DE交直线AB于F,连结CF,则∠CFD是遮阳棚与地面所成的角,设为α.要使S△ABD最大,只需DF最大.在△CFD中,=.
∴DF=.
∵CF为定值,∴当α=50°时,DF最大.
答案:C
3.在△ABC中,角A、B、C所对的边分别是a、b、c,若三角形的面积S=(a2+b2-c2),则∠C的度数是_______.
解析:由S=(a2+b2-c2)得absinC=2abcosC.∴tanC=1.∴C=.
答案:45°
4.在△ABC中,若∠C=60°,则=_______.
解析:=
=.(*)
∵∠C=60°,∴a2+b2-c2=2abcosC=ab.
∴a2+b2=ab+c2.
代入(*)式得=1.
答案:1
5.在△ABC中,由已知条件解三角形,其中有两解的是
A.b=20,A=45°,C=80°B.a=30,c=28,B=60°
C.a=14,b=16,A=45°D.a=12,c=15,A=120°
解析:由a=14,b=16,A=45°及正弦定理,得=,所以sinB=.因而B有两值.
答案:C
培养能力
6.在△ABC中,角A、B、C所对的边分别为a、b、c,依次成等比数列,求y=的取值范围.
解:∵b2=ac,∴cosB===(+)-≥.
∴0<B≤,
y===sinB+cosB=sin(B+).∵<B+≤,
∴<sin(B+)≤1.故1<y≤.
7.已知△ABC中,2(sin2A-sin2C)=(a-b)sinB,外接圆半径为.
(1)求∠C;
(2)求△ABC面积的最大值.
解:(1)由2(sin2A-sin2C)=(a-b)sinB得2(-)=(a-b).
又∵R=,
∴a2-c2=ab-b2.∴a2+b2-c2=ab.
∴cosC==.
又∵0°<C<180°,∴C=60°.
(2)S=absinC=×ab
=2sinAsinB=2sinAsin(120°-A)
=2sinA(sin120°cosA-cos120°sinA)
=3sinAcosA+sin2A
=sin2A-sin2Acos2A+
=sin(2A-30°)+.
∴当2A=120°,即A=60°时,Smax=.
8.在△ABC中,BC=a,顶点A在平行于BC且与BC相距为a的直线上滑动,求的取值范围.
解:令AB=kx,AC=x(k>0,x>0),则总有sinB=,sinC=(图略),且由正弦定理得sinB=sinA,所以a2=kx2sinBsinC=kx2sinA,由余弦定理,可得cosA==(k+-sinA),所以k+=sinA+2cosA≤=.所以k2-k+1≤0,所以≤k≤.
所以的取值范围为[,].
探究创新
9.某城市有一条公路,自西向东经过A点到市中心O点后转向东北方向OB,现要修建一条铁路L,L在OA上设一站A,在OB上设一站B,铁路在AB部分为直线段,现要求市中心O与AB的距离为10km,问把A、B分别设在公路上离中心O多远处才能使|AB|最短?并求其最短距离.(不要求作近似计算)
解:在△AOB中,设OA=a,OB=b.
因为AO为正西方向,OB为东北方向,所以∠AOB=135°.
则|AB|2=a2+b2-2abcos135°=a2+b2+ab≥2ab+ab=(2+)ab,当且仅当a=b时,“=”成立.又O到AB的距离为10,设∠OAB=α,则∠OBA=45°-α.所以a=,b=,
ab=
=
=
=
=≥,
当且仅当α=22°30′时,“=”成立.
所以|AB|2≥=400(+1)2,
当且仅当a=b,α=22°30′时,“=”成立.
所以当a=b==10时,|AB|最短,其最短距离为20(+1),即当AB分别在OA、OB上离O点10km处,能使|AB|最短,最短距离为20(-1).
●思悟小结
1.在△ABC中,∵A+B+C=π,∴sin=cos,cos=sin,tan=cot.
2.∠A、∠B、∠C成等差数列的充分必要条件是∠B=60°.
3.在非直角三角形中,tanA+tanB+tanC=tanAtanBtanC.
4.根据所给条件确定三角形的形状,主要有两种途径:①化边为角;②化角为边.并常用正弦(余弦)定理实施边角转化.
5.用正(余)弦定理解三角形问题可适当应用向量的数量积求三角形内角与应用向量的模求三角形的边长.
6.用向量的数量积求三角形内角时,需明确向量的夹角与三角形内角是相等还是互补.
●教师下载中心
教学点睛
1.一方面要让学生体会向量方法在解三角形方面的应用,另一方面要让学生体会解三角形是重要的测量手段,通过数值计算进一步提高使用计算器的技能技巧和解决实际问题的能力.
2.要加大以三角形为背景,以三角恒等变换公式、向量等为工具的小型综合题的训练.
拓展题例
【例1】已知A、B、C是△ABC的三个内角,y=cotA+.
(1)若任意交换两个角的位置,y的值是否变化?试证明你的结论.(2)求y的最小值.
解:(1)∵y=cotA+
=cotA+
=cotA+
=cotA+cotB+cotC,
∴任意交换两个角的位置,y的值不变化.
(2)∵cos(B-C)≤1,
∴y≥cotA+=+2tan=(cot+3tan)≥=.
故当A=B=C=时,ymin=.
评述:本题的第(1)问是一道结论开放型题,y的表达式的表面不对称性显示了问题的有趣之处.第(2)问实际上是一道常见题:在△ABC中,求证:cotA+cotB+cotC≥.
【例2】在△ABC中,sinA=,判断这个三角形的形状.
分析:判断一个三角形的形状,可由三个内角的关系确定,亦可由三边的关系确定.采用后一种方法解答本题,就必须“化角为边”.
解:应用正弦定理、余弦定理,可得
a=,所以b(a2-b2)+c(a2-c2)=bc(b+c).所以(b+c)a2=(b3+c3)+bc(b+c).所以a2=b2-bc+c2+bc.所以a2=b2+c2.所以△ABC是直角三角形.
评述:恒等变形是学好数学的基本功,变形的方向是关键.若考虑三内角的关系,本题可以从已知条件推出cosA=0.

高二数学必修五第一章解三角形教案)


每个老师不可缺少的课件是教案课件,大家在仔细规划教案课件。认真做好教案课件的工作计划,才能规范的完成工作!你们了解多少教案课件范文呢?以下是小编为大家收集的“高二数学必修五第一章解三角形教案)”仅供您在工作和学习中参考。

(一)教学目标
1.知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2.过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
(二)教学重、难点
重点:正弦定理的探索和证明及其基本应用。
难点:已知两边和其中一边的对角解三角形时判断解的个数。
(三)学法与教学用具
学法:引导学生首先从直角三角形中揭示边角关系:,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。
教学用具:直尺、投影仪、计算器
(四)教学设想
[创设情景]
如图1.1-1,固定ABC的边CB及B,使边AC绕着顶点C转动。A
思考:C的大小与它的对边AB的长度之间有怎样的数量关系?
显然,边AB的长度随着其对角C的大小的增大而增大。能否
用一个等式把这种关系精确地表示出来?CB

[探索研究](图1.1-1)
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在RtABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有,,又,A
则bc
从而在直角三角形ABC中,CaB
(图1.1-2)
思考:那么对于任意的三角形,以上关系式是否仍然成立?
(由学生讨论、分析)
可分为锐角三角形和钝角三角形两种情况:

如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则,C
同理可得,ba
从而AcB
(图1.1-3)
思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
(证法二):过点A作,C
由向量的加法可得
则AB

∴,即
同理,过点C作,可得
从而
类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)
从上面的研探过程,可得以下定理
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
[理解定理]
(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使,,;
(2)等价于,,
从而知正弦定理的基本作用为:
①已知三角形的任意两角及其一边可以求其他边,如;
②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如。
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

[例题分析]
例1.在中,已知,,cm,解三角形。
解:根据三角形内角和定理,

根据正弦定理,

根据正弦定理,
评述:对于解三角形中的复杂运算可使用计算器。
例2.在中,已知cm,cm,,解三角形(角度精确到,边长精确到1cm)。
解:根据正弦定理,
因为<<,所以,或
⑴当时,

⑵当时,

评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。
[随堂练习]第5页练习第1(1)、2(1)题。
例3.已知ABC中,A,,求
分析:可通过设一参数k(k0)使,
证明出
解:设
则有,,
从而==
又,所以=2
评述:在ABC中,等式
恒成立。
[补充练习]已知ABC中,,求
(答案:1:2:3)
[课堂小结](由学生归纳总结)
(1)定理的表示形式:;
或,,
(2)正弦定理的应用范围:
①已知两角和任一边,求其它两边及一角;
②已知两边和其中一边对角,求另一边的对角。