88教案网

你的位置: 教案 > 高中教案 > 导航 > 对数与对数运算

高中对数函数教案

发表时间:2020-07-25

对数与对数运算。

2.2.1对数与对数运算(三)
(一)教学目标
1.知识与技能:
(1)掌握换底公式,会用换底公式将一般的对数化为常用对数或自然对数,并能进行一些简单的化简和证明.
(2)能将一些生活实际问题转化为对数问题并加以解答.
2.过程与方法:
(1)结合实例引导学生探究换底公式,并通过换底公式的应用,使学生体会化归与转化的数学思想.
(2)通过师生之间、学生与学生之间互相交流探讨,培养学生学会共同学习的能力.
(3)通过应用对数知识解决实际问题,帮助学生确立科学思想,进一步认识数学在现实生活、生产中的重要作用.
3.情感、态度与价值观
(1)通过探究换底公式的概念,使学生体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣,培养学生严谨的科学精神.
(2)在教学过程中,通过学生的相互交流,培养学生灵活运用换底公式的能力,增强学生数学交流能力,同时培养学生倾听并接受别人意见的优良品质.
(二)教学重点、难点
1.教学重点:
(1)换底公式及其应用.
(2)对数的应用问题.
2.教学难点:
换底公式的灵活应用.
(三)教学方法
启发引导式
通过实例研究引出换底公式,既明确学习换底公式的必要性,同时也在公式推导中应用对数的概念和对数的运算性质,在教学中可以根据学生的不同基础适当地增加具体实例,便于学生理解换底公式的本质,培养学生从具体的实例中抽象出一般公式的能力.
利用换底公式“化异为同”是解决有关对数问题的基本思想方法,它在求值或恒等变形中起着重要作用,在解题过程中应注意:(1)针对具体问题,选择恰当的底数;(2)注意换底公式与对数运算性质结合使用;(3)换底公式的正用与逆用.
(四)教学过程
教学
环节
教学内容师生互动设计意图
提出
问题
我们学习了对数运算法则,可以看到对数的运算法则仅适用于对数的底数相同的情形,若在解题过程中,遇到对数的底数不相同时怎么办?

师:从对数的定义可以知道,任何不等于1的正数都可以作为对数的底.数学史上,人们经过大量的努力,制作了常用对数、自然对数表,只要通过查表就能求出任意正数的常用对数或自然对数.这样,如果能将其他底的对数转换为以10或e为底的对数,就能方便地求出任意不为1的正数为底的对数.

产生认知冲突,激发学生的学习欲望.
概念
形成
1.探求换底公式,明确换底公式的意义和作用.
例如,求我国人口达到18亿的年份,就是计算x=log1.01的值,利用换底公式与对数的运算性质,可得
x=log1.01==≈=32.8837≈33(年).
由此可得,如果人口年增长率控制在1%,那么从2000年初开始,大约经过33年,即到2032年底我国的人口总数可达到18亿.

师:你能根据对数的定义推导出下面的换底公式吗?
logaN=(a>0,且a≠1;c>0,且c≠1;N>0).
(师生讨论并完成)
当a>0,且a≠1时,
若ab=N,①
则logaN=b.②
在①的两边取以c(c>0,且c≠1)为底的对数,
则logcab=logcN,
即blogca=logcN.
∴b=.③
由②③得logaN=(c>0,且c≠1).
一般地,logaN=(a>0,且a≠1;c>0,且c≠1;N>0),这个公式称为换底公式.

推导换底公式
应用
举例
(多媒体显示如下例题,生板演,师组织学生进行课堂评价)
例1计算:(1)log34log48log8m=log416,求m的值.
(2)log89log2732.
(3)(log25+log4125).

合作探究:现在我们来用已学过的对数知识解决实际问题.
例220世纪30年代,里克特(C.F.Richter)制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M,其计算公式为M=lgA-lgA0,其中,A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).
(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);
(2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1).

例3科学研究表明,宇宙射线在大气中能够产生放射性碳14.碳14的衰变极有规律,其精确性可以称为自然界的“标准时钟”.动植物在生长过程中衰变的碳14,可以通过与大气的相互作用得到补充,所以活着的动植物每克组织中的碳14含量保持不变.死亡后的动植物,停止了与外界环境的相互作用,机体中原有的碳14按确定的规律衰减,我们已经知道其“半衰期”为5730年.
湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7%,试推算马王堆古墓的年代.

课堂练习
1.课本P79练习第4题.
2.在,,log,logan,(a>0,a≠1,b>0,b≠1,ab≠1,n∈N)中和logab相等的有
A.2个B.3个C.4个D.1个
3.若log34log48log8m=log42,求m.
4.(1)已知log53=a,log54=b,试用a、b表示log2512;
(2)已知log1227=a,求log616.
例1分析:在利用换底公式进行化简求值时,一般情况是根据题中所给的对数式的具体特点选择恰当的底数进行换底,如果所给的对数式中的底数和真数互不相同,我们可以选择以10为底数进行换底.
(1)解:原方程等价于
××=2,
即log3m=2,∴m=9.
(2)解法一:原式
===.
解法二:原式
=
==.
(3)解:原式=
(log25+log25)
=log225log52
=log25log52
=log25log52=.
小结(1)不同底的对数要尽量化为同底的对数来计算;
(2)在第(3)小题的计算过程中,用到了性质logMn
=logaM及换底公式
logaN=.利用换底公式可以证明:logab=,
即logablogba=1.

例2解:(1)M=lg20-lg0.001
=lg=lg20000
=lg2+lg104≈4.3.
因此,这是一次约为里氏4.3级的地震.
(2)由M=lgA-lgA0可得
M=lg=10M
A=A010M.
当M=7.6时,地震的最大振幅为A1=A0107.6;
当M=5时,地震的最大振幅为A2=A0105.
所以,两次地震的最大振幅之比是
=
=107.6-5=102.6≈398.
答:7.6级地震的最大振幅大约是5级地震的最大振幅的398倍.
合作探究:可以看到,虽然7.6级地震和5级地震仅相差2.6级,但7.6级地震的最大振幅却是5级地震最大振幅的398倍.所以,7.6级地震的破坏性远远大于5级地震的破坏性.

例3解:我们先推算生物死亡t年后每克组织中的碳14含量.设生物体死亡时,体内每克组织中的碳14的含量为1,1年后的残留量为x,由于死亡机体中原有的碳14按确定的规律衰减,所以生物体的死亡年数t与其体内每克组织的碳14含量P有如下关系:
死亡年数t12
碳14含量Pxx2

3…t…
x3…xt…
因此,生物死亡t年后体内碳14的含量P=xt.
由于大约每过5730年,死亡生物体的碳14含量衰减为原来的一半,
所以=x5730,
于是x==(),
这样生物死亡t年后体内碳14的含量P=().
由对数与指数的关系,指数式P=()可写成对数式t=logP.
湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7%,即P=0.767,那么t=log0.767,
由计算器可得t≈2193.
所以,马王堆古墓是近2200年前的遗址.

课堂练习答案
1.(1)1;(2)1;(3).
2.A
3..
4.(1).
(2).

掌握换底公式的应用.

掌握利用对数知识解决实际问题.

归纳
总结1.换底公式及其应用条件(注意字母的范围).
2.解决实际问题的一般步骤:
学生先自回顾反思,教师点评完善.形成知识体系.
课后
作业作业:2.2第三课时习案学生独立完成巩固新知
提升能力
备选例题
例1已知log189=a,18b=5,求log3645.
【解析】方法一:∵log189=a,18b=5,
∴log185=b,
于是
=
=.
方法二:∵log189=a,18b=5,
∴lg9=alg18,lg5=blg8,

=.
【小结】(1)利用换底公式可以把题目中不同底的对数化成同底的对数,进一步应用对数运算的性质;
(2)题目中有指数式和对数式时,要注意指数与对数互化,统一成一种形式.
例2我们都处于有声世界里,不同场合,人们对音量会有不同的要求,音量大小的单位是分贝(dB),对于一个强度为I的声波,分贝的定义是:y=10lg.这里I0是人耳能听到的声音的最低声波强度,I0=10-12w/m2,当I=I0时,y=0,即dB=0.
(1)如果I=1w/m2,求相应的分贝值;
(2)70dB时声音强度I是60dB时声音强度I′的多少倍?
【解析】(1)∵I=1w/m2,
∴y=10lg
(2)由70=10lg,即,∴,
又60=10lg,即lg=6,∴=106.
∴=10,即I=10I′
答:(1)I=1w/m2,相应的分贝值为;
(2)70dB时声音强度I是60dB时声音强度I′的10倍JAb88.Com

相关知识

对数的概念与对数运算性质


作为优秀的教学工作者,在教学时能够胸有成竹,作为教师就要在上课前做好适合自己的教案。教案可以让学生更好的消化课堂内容,使教师有一个简单易懂的教学思路。关于好的教案要怎么样去写呢?以下是小编为大家收集的“对数的概念与对数运算性质”供您参考,希望能够帮助到大家。

2.2.1对数的概念与对数运算性质
一、内容与解析
(一)内容:对数的概念与对数的基本性质
(二)解析:我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.
教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.
二、教学目标及解析
(一)教学目标
1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.
2.通过与指数式的比较,引出对数的定义与性质.
3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;在学习过程中培养学生探究的意识;增加学生的成功感,增强学习的积极性.
(二)解析
1、理解对数的概念就是指:一是实际的需要;二是人为规定的一种新的表示数的符号;
2、熟练进行对数式与指数式的互化就是指:一是弄清楚对数与指数,对数式与指数式的含义;二是理解对数式与指数式的互化的实质;三是要把这种互化提升为一种方法,为我们以后解题奠定基础。3、会求一些特殊的对数式的值就是指能够熟练利用:和对数恒等式。
三、问题诊断分析
对数概念的理解中学生存在问题,所以要结合具体的实例,指出为了解决实际问题,引入对数的概念,体现了数学来源于实际的生活,并服务于实际的生活。
四、教学支持条件分析
在本节课()的教学中,准备使用(),因为使用(),有利于().

五、教学过程
1.庄子:一尺之棰,日取其半,万世不竭(1)取4次,还有多长?(2)取多少次,还有0.125尺?
2.假设2002年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?
抽象出:1.=?,=0.125x=?2.=2x=?
也是已知底数和幂的值,求指数你能看得出来吗?怎样求呢?
问题1.将上述问题进行归纳----对数的定义
一般地,如果a(a0,a≠1)的x次幂等于N,就是ax=N,那么数x叫做以a为底N的对数(logarithm),记作x=logaN,其中a叫做对数的底数,N叫做真数.
有了对数的定义,(1)前面问题中的x就可表示成什么式子?
x=log1.01,x=log1.01,x=log1.01.
(2)怎样用表格表示对数和指数幂之间的关系?
由此得到对数和指数幂之间的关系:
aNb
指数式ab=N底数幂指数
对数式logaN=b对数的底数真数对数
例如:42=162=log416;102=1002=log10100;4=2=log42;10-2=0.01-2=log100.01
探究一:指对互化
例1将下列指数式写成对数式:(课本第87页)
(1)=625(2)=(3)=27(4)=5.73
解析:直接用对数式的定义进行改写.
解:(1)625=4;(2)=-6;
(3)27=a;(4)
点评:主要考察了底真树与幂三者的位置.
变式练习1:将下列对数式写成指数式:
(1);(2)128=7;
(3)lg0.01=-2;(4)ln10=2.303
解:(1)(2)=128;
(3)=0.01;(4)=10
探究二:计算
例2计算:⑴,⑵,⑶,⑷
解析:将对数式写成指数式,再求解.
解:⑴设则,∴
⑵设则,,∴
⑶令=,
∴,∴
⑷令,∴,,∴
点评:考察了指数与对数的相互转化.
五.课堂目标检测
优化设计:随堂练习.
六.小结
本节主要学习了对数的概念,要熟练的进行指对互化.
七.配餐作业
优化设计:优化作业.

(1)求log84的值;
(2)已知loga2=m,loga3=n,求a2m+n的值.

2.2.1对数与对数运算


2.2.1对数与对数运算(一)
教学目标
(一)教学知识点
1.对数的概念;2.对数式与指数式的互化.
(二)能力训练要求
1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培养学生数学应用意识.
(三)德育渗透目标
1.认识事物之间的普遍联系与相互转化;2.用联系的观点看问题;
3.了解对数在生产、生活实际中的应用.
教学重点
对数的定义.
教学难点
对数概念的理解.
教学过程
一、复习引入:
假设2002年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?
=2x=?
也是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?
二、新授内容:
定义:一般地,如果的b次幂等于N,就是,那么数b叫做以a为底N的对数,记作,a叫做对数的底数,N叫做真数.
例如:;;
;.
探究:1。是不是所有的实数都有对数?中的N可以取哪些值?
⑴负数与零没有对数(∵在指数式中N>0)
2.根据对数的定义以及对数与指数的关系,??
⑵,;
∵对任意且,都有∴同样易知:
⑶对数恒等式
如果把中的b写成,则有.
⑷常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N的常用对数简记作lgN.
例如:简记作lg5;简记作lg3.5.
⑸自然对数:在科学技术中常常使用以无理数e=2.71828……为底的对数,以e为底的对数叫自然对数,为了简便,N的自然对数简记作lnN.
例如:简记作ln3;简记作ln10.
(6)底数的取值范围;真数的取值范围.
三、讲解范例:
例1.将下列指数式写成对数式:
(1)(2)(3)(4)
解:(1)625=4;(2)=-6;(3)27=a;(4).
例2.将下列对数式写成指数式:
(1);(2);(3);(4).
解:(1)(2)=128;(3)=0.01;(4)=10.
例3.求下列各式中的的值:
(1);(2)(3)(4)
例4.计算:⑴,⑵,⑶,⑷.
解法一:⑴设则,∴
⑵设则,,∴
⑶令=,∴,∴
⑷令,∴,,∴
解法二:
⑴;⑵
⑶=;⑷
四、练习:(书P64`)
1.把下列指数式写成对数式
(1)=8;(2)=32;(3)=;(4).
解:(1)8=3(2)32=5(3)=-1(4)=-
2.把下列对数式写成指数式
(1)9=2⑵125=3⑶=-2⑷=-4
解:(1)=9(2)=125(3)=(4)=
3.求下列各式的值
(1)25⑵⑶100
⑷0.01⑸10000⑹0.0001
解:(1)25==2(2)=-4(3)100=2
(4)0.01=-2(5)10000=4(6)0.0001=-4
4.求下列各式的值
(1)15⑵1⑶81⑷6.25⑸343⑹243
解:(1)15=1(2)1=0(3)81=2
(4)6.25=2(5)343=3(6)243=5
五、课堂小结
⑴对数的定义;⑵指数式与对数式互换;⑶求对数式的值.
2.2.1对数与对数运算(二)
教学目标
(三)教学知识点
对数的运算性质.
(四)能力训练要求
1.进一步熟悉对数定义与幂的运算性质;2.理解对数运算性质的推倒过程;
3.熟悉对数运算性质的内容;4.熟练运用对数的运算性质进行化简求值;
5.明确对数运算性质与幂的运算性质的区别.
(三)德育渗透目标
1.认识事物之间的普遍联系与相互转化;2.用联系的观点看问题.
教学重点
证明对数的运算性质.
教学难点
对数运算性质的证明方法与对数定义的联系.
教学过程
一、复习引入:
1.对数的定义其中与
2.指数式与对数式的互化
3.重要公式:
⑴负数与零没有对数;⑵,
⑶对数恒等式
4.指数运算法则
二、新授内容:
1.积、商、幂的对数运算法则:
如果a>0,a1,M>0,N>0有:
证明:①设M=p,N=q.由对数的定义可以得:M=,N=.
∴MN==∴MN=p+q,即证得MN=M+N.
②设M=p,N=q.由对数的定义可以得M=,N=.
∴∴即证得.
③设M=P由对数定义可以得M=,
∴=∴=np,即证得=nM.
说明:上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式.
①简易语言表达:“积的对数=对数的和”……
②有时逆向运用公式:如.
③真数的取值范围必须是:
是不成立的.
是不成立的.
④对公式容易错误记忆,要特别注意:
,.
2.讲授范例:
例1.用,,表示下列各式:

解:(1)=(xy)-z=x+y-z
(2)=(
=+=2x+.
例2.计算
(1),(2),(3),(4)
解:(1)25==2(2)1=0.
(3)(×25)=+=+=2×7+5=19.
(4)lg=.
例3.计算:
(1)(2)
(3)
说明:此例题可讲练结合.
解:(1)==
===1;
(2)===2;
(3)解法一:lg14-2lg+lg7-lg18=lg(2×7)-2(lg7-lg3)+lg7-lg(×2)
=lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0.?
解法二:
lg14-2lg+lg7-lg18=lg14-lg+lg7-lg18=lg
评述:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,如(3)题各部分变形要化到最简形式,同时注意分子、分母的联系.(2)题要避免错用对数运算性质.
例4.已知,,求
例5.课本P66面例5.
20世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M,其计算公式为
M=lgA-lgA0.
其中,A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).
(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);
(2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1).
3.课堂练习:
教材第68页练习题1、2、3题.
4.课堂小结
对数的运算法则,公式的逆向使用.
2.2.1对数与对数运算(三)
教学目标
(五)教学知识点
1.了解对数的换底公式及其推导;2.能应用对数换底公式进行化简、求值、证明;
3.运用对数的知识解决实际问题。
(六)能力训练要求
会用,等变形公式进行化简.
(三)德育渗透目标
培养学生分析问题解决问题的能力.
教学重点
对数换底公式的应用.
教学难点
对数换底公式的证明及应用.对数知识的运用。
教学过程
二、复习引入:
对数的运算法则
如果a>0,a1,M>0,N>0有:
二、新授内容:
1.对数换底公式:(a>0,a1,m>0,m1,N>0).
证明:设N=x,则=N.
两边取以m为底的对数:
从而得:∴.
2.两个常用的推论:
①,.
②(a,b>0且均不为1).
证:①;
②.
三、讲解范例:
例1

1.已知,,用a,b表示.
解:因为3=a,则,又∵7=b,
∴.
2.求值
例2.设,求m的值.
解:∵,
∴,即m=9.
例3.计算:①,②.
解:①原式=.
②∵,,∴原式=.
例4.P67例6
生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土时碳14的残余量约占76.7%,
试推算马王堆古墓的年代.
例5.已知x=,求x.
分析:由于x作为真数,故可直接利用对数定义求解;另外,由于等式右端为两实数和的形式,b的存在使变形产生困难,故可考虑将c移到等式左端,或者将b变为对数形式.
解法一:由对数定义可知:.
解法二:由已知移项可得,即.
由对数定义知:.
解法三:.
.
练习:教材P68第4题
三、课堂小结
换底公式及其推论

对数及其运算


做好教案课件是老师上好课的前提,大家在用心的考虑自己的教案课件。在写好了教案课件计划后,才能更好的在接下来的工作轻装上阵!那么到底适合教案课件的范文有哪些?下面是小编帮大家编辑的《对数及其运算》,仅供参考,欢迎大家阅读。

课题§4对数§4.1对数及其运算
一、教材及学情分析
对数及其运算是北师大版普通高中数学课程标准实验教科书《数学1(必修)》第三章第四单元第一节,是在系统学习研究函数的一般方法、指数的概念及运算性质,基本掌握指数函数的概念及性质的基础上引入的,既是指数有关知识的承接和延续,又是后续研究对数函数、探讨函数应用的基础,本节共两课时,本课是第一课时,重点研究对数的概念及其性质,教材以2000年国民经济生产总值增幅为背景,引入对数概念,在使学生认识引进对数必要性的同时,强化学生的数学应用意识,“思考交流”旨在引导学生进一步厘清指数式与对指数式之间的关系,明确1和底数对数的特点,深化真数取值范围的理解,为对数函数学习打下伏笔。常用对数及自然对数是对数的特例,教材将其安排在对数性质之后,旨在引领学生经历“特殊——一般——特殊”的过程,进一步发展学生的理性思维。因此,本节内容无论是只是传承,还是数学思想方法的强化渗透,都具有非常重要的奠基作用。
经历了义务教育阶段学习的高一学生,思维正处于由经验型向理论型过渡与转型期,思维的发散性与聚敛性基本成型,已具有研究函数和从事简单数学活动的能力,加之指数及指数函数等知识铺垫,对于本单元学习奠定了必要的知识和经验基础。
二、教学目标
1、知识技能目标
①理解对数的概念。
②理解和掌握对数的性质。
③理解指数与对数的关系,熟练地进行指数式与对数式互换。
2、过程与方法目标:经历由指数得到对数的过程,掌握指数式与对数式互化方法;结合对数概念探究对数的性质:0和负数没有对数。(a>1,且a≠1)
3、情感态度与价值观:
①通过指数式与对数式的互化,使学生感受对数式是指数式的另一种表达形式,进一步体会运用指数式探求对数的基本思路及方法,发展学生的数学表达能力和严谨有序的思维品质。
②通过随堂提问、练习评价,激发学生的探究兴趣,增强学生的成功感体验,帮助学生认识自我、建立自信。
三、重点与难点
1、重点:对数式与指数式的互化及对数的性质。
2、难点:对数概念的理解,的推导及应用。
四、教法选择
根据教材及学情特点,本课以“尝试指导,效果回授”教学法为主,辅之于讨论法和自学辅导法。以问题为主线,活动为载体,力求创设有效的教学情境,引导学生在在观察中思考,在思考中探索,在探索中发现,在发现中收获,在收获中创新,在创新中升华,通过具有一定层次梯度的问题序列,多角度、全方位训练学生思维的聚敛性和发散性。为增大课堂容量,“注重信息技术与数学课程的整合”(课标语),可借助多媒体辅助教学,为学生的教学探究与教学思维提供支持。教具准备:PPT演示文稿;学具准备:教科书,课堂练习本。
五、教学过程
(一)创设情境,导入新课
1、庄子:一尺木垂,日取其丰,不世不竭,
问题:①取4次还有多长?怎样计算?
②取多少次还有0.125尺?
2、如果2000年我国国民生产总值a亿,如果每年增长8.2%,那么经过多少年国民生产总值是2000年的2倍?
处理:问题1①由学生口答,教师根据学生回答情况板书①,并揭示运算实质。问题1②及问题2引导学生按照解决数学问题的常规步骤尝试建构方程,并板书如下
②③?
诱导:式②③与式①有什么不同?如何求x呢?(教师结合学生对前一问题的回答,因势利导,揭示②③的本质——已知底数和幂的值,求指数,说明这就是本节课要研究的内容,接着引入并板书课题)
(二)诱导尝试,探究新知
1、引导观察,探获本质——建构对数概念
(1)诱导:中x分别等于多少?目前大家没有学过这种运算,可以定义一种新运算,(边叙述边板书:如果,那么x叫作以为底0.125的对数,记作:);你们能模仿描述定义中的x吗?试试!(学生尝试描述,教师根据学生描述板书)
问题1:你们还能举出类似例子,并模仿表述吗?(处理方法同上)
问题2:你们能结合以上实例给出一般性的结论吗?(一名学生回答,发动其他学生参与补充)
(板书)定义:一般地,如果a(a>0,a≠1)的b次幂等于N,即,那么数b叫作以a为底N的对数,记作:中a叫作对数的底数,N叫作真数。(强调书写规范要求,引导学生阅读教科书P78对数概念及P79两种特殊对数及表示方法)
2、及时分化,适时类化——揭示概念本质,探索对数性质
(1)(课件出示)问题3:先独立思考完成下表,后四人一组讨论交流:①对数运算的实质是什么?②零与负数有没有对数?③与有什么关系?④若将中的b换成,你们有什么发现?若将中的N换成呢?
a的名称a的取值范围N的名称N的取值范围b的名称b的取值范围

【处理:①学生独立探索、合作交流,教师巡回视导,重点关注学生是否从定义出发,考察相关字母名称及取值范围,因势利导;②根据学生讨论情况,运用自定义动画完善此表;③结合学生讨论板书如下:
性质:(1)零与负数没有对数
(2)或
(三)变式训练,巩固新知
(课件展示)问题1:将下列指数式写成对数式
(1)(2)
(3)(4)
(5)(6)
(7)(8)
(9)(10)
处理:(1)提两名学生板演,将其余学生按座次左右依次分为A、B两组,A组完成单号,B组完成双号,交换互查。(2)评价完毕后,强调:(1)是对数的重要性质,必须熟练掌握。(板书:性质3:)
(2)注意:指数式与对数式互化最关键是搞清N与b在指数与对数式中的位置关系。
(课件展示)问题2:将下列对数式写成指数式
(1)(2)
(3)(4)
(5)(6)
处理:学生口答,教师依据学生口答顺序,用课件展示正确答案。
问题3:求下列各式的值
(1)(2)
(3)(4)
(5)(6)
(7)(8)
处理:教师引导学生从指数式与对数式关系入手,探求(1),并示范板书(1)解题过程。其余各题由学生分组独立完成。
机动练习及课外探究:
(1)填空:①=_____,②对数式中X的取值范围是

(2)求值:①;②;③
(四)全课小结,细化新知
1、提问:通过本节学习,你们有哪些收获?
2、在学生回答的基础上,概括如下:
本节课主要学习一个概念(对数);掌握三个性质(零与负数没有对数;或;);掌握一种方法(利用指数式与对数式的关系求对数值的方法);注意个问题:(1)指数式与对数式互化的关键是搞清N与b在指数与对数式中的位置关系;(2)常用对数与自然对数是两种特殊对数,务必牢固掌握。(3)
(五)推荐作业,延展新知
1、0和负数无对数
3、
思考:大家对对数概念和一些特殊式子已知有了一定的了解,但实际科学研究和了解自然起了巨大作用,还有哪类对数?(阅读课本)
引导板书常用对数自然对数
为了方便:(e=2.71828)
原式

简记

例如:
应用示例,练习巩固
问题1、将下列指数式写成对数式。
(1)(2)(3)(4)
学生板演:解:略
变式训练:指数式写成对数式。
(1)(2)(3)
思考:指数式与对数式互化注意问题?
最关键是搞清N与b在指数与对数式中的位关系,其中对数定义是指数式
与对数式互化的根据。
问题2、将下列对数式写成指数式。(让学生阅读题目,独立解题。)
(1)(2)(3)(4)
变式训练:把对数式写成指数式。(点评)
(1)(2)(3)(4)
问题3、求值(师生点评总结)
(1)(2)(3)(4)(5)
活动:学生独立解题,回答问题依据。(利用指数式与对数式关系转化为
指数式求解)
变形训练:
求下列各项的值:(1)(2)(3)
(4)(5)(6)

点评:本题注意方根的运算,也可借助对数恒等式来解(#)
总结提炼(学生先总结,学到什么知识,后老师总结)
1、对数的含义
2、对数式中字母取值范围a0且a≠1b∈RN0
3、三个公式(问0和负数有没有对数)
4、两个特殊对数
5、应用指对数式经化及求值注意地方
课后思考题(选做)
(1)对数式中X的取值范围是。
(2)若,则X=。
(3)计算:(a0b0c0N0)
课后练习:P801、2、3P87A、1、2
课后作业:
1、P87习题3-4A3、(1)(3)(5)(7)(9)4
2、请同学们阅读课本,搜集有关对数发展材料,寻找有关换底公式材料,为下一步学习打基础。
1、板书设计:引入(1)(2)
对数定义(注意事项)指数式和对数式的互化小结
对数与指数幂间关系问题1、
提出问题(交流探究)2、作业
两种常见对数3、
谢谢大家再见!!
知能训练:
1、把下列指数式写成对数式
(1)(2)(3)(4)(5)
2、把下列对数式写成指数式
(1)(2)(3)(4)
(5)(6)(7)(8)
3、求值(x的值)
(1)(2)(3)(4)
4、(1)求的值
(2)已知:、,求
(3)计算的值

对数的运算


§2.2.1对数的运算
学习目标
1.掌握对数的运算性质,并能理解推导这些法则的依据和过程;
2.能较熟练地运用对数运算法则解决问题.
旧知提示
复习1:(1)对数定义:如果,那么数x叫做,记作.
(2)指数式与对数式的互化:.
复习2:幂的运算性质.
(1);(2);(3).
复习3:根据对数的定义及对数与指数的互化关系解答:
(1)设,,求;
(2)设,,试利用、表示.
合作探究(预习教材P64~P66,找出疑惑之处)
:探究1:由,如何探讨和、之间的关系?
根据上面的探讨,能否得出以下式子?
如果a0,a1,M0,N0,则
(1);(2);(3).

新知:对数的运算性质
试一试:2000年人口数13亿,年平均增长率1℅,多少年后可以达到18亿?
典型例题
例1用,,表示下列各式:(1);(2).

例2计算:(1);(2);(3);(4)lg.

例3化简:
①;②;

课堂小结
①对数运算性质及推导;②运用对数运算性质;③换底公式.
知识拓展
①对数的换底公式;②对数的倒数公式.
③对数的性质:,,.
学习评价
1.下列等式成立的是()
A.B.
C.D.
2.如果lgx=lga+3lgb-5lgc,那么()
A.x=a+3b-cB.C.D.x=a+b3-c3
3.若,那么()
A.B.C.D.
4.计算:(1);(2);
(3);(4);(5).
课后作业
1.如,,且,,则下列各式:
(1);(2);(3);
(4);(5);(6).
其中成立的有()
A.2个B.3个C.4个D.5个
2.若,则=()
A.B.C.D.

3已知,则=.

4.已知,,则=.
5.计算:(1);(2);

思考题:设、、为正数,且,求证:.
(运用倒数公式:)