88教案网

你的位置: 教案 > 高中教案 > 导航 > 高三物理教案:《动量守恒》教学设计

高中物理教案

发表时间:2021-12-08

高三物理教案:《动量守恒》教学设计。

俗话说,居安思危,思则有备,有备无患。作为高中教师就要好好准备好一份教案课件。教案可以让学生更好地进入课堂环境中来,使高中教师有一个简单易懂的教学思路。那么怎么才能写出优秀的高中教案呢?下面是小编精心为您整理的“高三物理教案:《动量守恒》教学设计”,欢迎您阅读和收藏,并分享给身边的朋友!

一、动量

1、动量:运动物体的质量和速度的乘积叫做动量.是矢量,方向与速度方向相同;动量的合成与分解,按平行四边形法则、三角形法则.是状态量;通常说物体的动量是指运动物体某一时刻的动量,计算物体此时的动量应取这一时刻的瞬时速度。是相对量;物体的动量亦与参照物的选取有关,常情况下,指相对地面的动量。单位是kg·m/s;

2、动量和动能的区别和联系

①动量的大小与速度大小成正比,动能的大小与速度的大小平方成正比。即动量相同而质量不同的物体,其动能不同;动能相同而质量不同的物体其动量不同。

②动量是矢量,而动能是标量。因此,物体的动量变化时,其动能不一定变化;而物体的动能变化时,其动量一定变化。

③因动量是矢量,故引起动量变化的原因也是矢量,即物体受到外力的冲量;动能是标量,引起动能变化的原因亦是标量,即外力对物体做功。

④动量和动能都与物体的质量和速度有关,两者从不同的角度描述了运动物体的特性,且二者大小间存在关系式:P2=2mEk

3、动量的变化及其计算方法

动量的变化是指物体末态的动量减去初态的动量,是矢量,对应于某一过程(或某一段时间),是一个非常重要的物理量,其计算方法:

(1)ΔP=Pt一P0,主要计算P0、Pt在一条直线上的情况。

(2)利用动量定理 ΔP=F·t,通常用来解决P0、Pt;不在一条直线上或F为恒力的情况。

二、冲量

1、冲量:力和力的作用时间的乘积叫做该力的冲量.是矢量,如果在力的作用时间内,力的方向不变,则力的方向就是冲量的方向;冲量的合成与分解,按平行四边形法则与三角形法则.冲量不仅由力的决定,还由力的作用时间决定。而力和时间都跟参照物的选择无关,所以力的冲量也与参照物的选择无关。单位是N·s;

2、冲量的计算方法

(1)I=F·t.采用定义式直接计算、主要解决恒力的冲量计算问题。

(2)利用动量定理 Ft=ΔP.主要解决变力的冲量计算问题,但要注意上式中F为合外力(或某一方向上的合外力)。

三、动量定理

1、动量定理:物体受到合外力的冲量等于物体动量的变化.Ft=mv/一mv或 Ft=p/-p;该定理由牛顿第二定律推导出来:(质点m在短时间Δt内受合力为F合,合力的冲量是F合Δt;质点的初、未动量是 mv0、mvt,动量的变化量是ΔP=Δ(mv)=mvt-mv0.根据动量定理得:F合=Δ(mv)/Δt)

2.单位:牛·秒与千克米/秒统一:l千克米/秒=1千克米/秒2·秒=牛·秒;

3.理解:(1)上式中F为研究对象所受的包括重力在内的所有外力的合力。

(2)动量定理中的冲量和动量都是矢量。定理的表达式为一矢量式,等号的两边不但大小相同,而且方向相同,在高中阶段,动量定理的应用只限于一维的情况。这时可规定一个正方向,注意力和速度的正负,这样就把大量运算转化为代数运算。

(3)动量定理的研究对象一般是单个质点。求变力的冲量时,可借助动量定理求,不可直接用冲量定义式.

4.应用动量定理的思路:

(1)明确研究对象和受力的时间(明确质量m和时间t);

(2)分析对象受力和对象初、末速度(明确冲量I合,和初、未动量P0,Pt);

(3)规定正方向,目的是将矢量运算转化为代数运算;

(4)根据动量定理列方程

(5)解方程。

四、动量定理应用的注意事项

1.动量定理的研究对象是单个物体或可看作单个物体的系统,当研究对象为物体系时,物体系的总动量的增量等于相应时间内物体系所受外力的合力的冲量,所谓物体系总动量的增量是指系统内各个的体动量变化量的矢量和。而物体系所受的合外力的冲量是把系统内各个物体所受的一切外力的冲量的矢量和。

2.动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力。它可以是恒力,也可以是变力。当合外力为变力时F则是合外力对作用时间的平均值。

3.动量定理公式中的Δ(mv)是研究对象的动量的增量,是过程终态的动量减去过程始态的动量(要考虑方向),切不能颠倒始、终态的顺序。

4.动量定理公式中的等号表明合外力的冲量与研究对象的动量增量的数值相等,方向一致,单位相同。但考生不能认为合外力的冲量就是动量的增量,合外力的冲量是导致研究对象运动改变的外因,而动量的增量却是研究对象受外部冲量作用后的必然结果。

5.用动量定理解题,只能选取地球或相对地球做匀速直线运动的物体做参照物。忽视冲量和动量的方向性,造成I与P正负取值的混乱,或忽视动量的相对性,选取相对地球做变速运动的物体做参照物,是解题错误的常见情况。

扩展阅读

高三物理教案:《动量与能量》教学设计


古人云,工欲善其事,必先利其器。教师要准备好教案,这是教师的任务之一。教案可以让学生能够在课堂积极的参与互动,帮助教师营造一个良好的教学氛围。你知道如何去写好一份优秀的教案呢?下面是小编精心为您整理的“高三物理教案:《动量与能量》教学设计”,相信您能找到对自己有用的内容。

本文题目:高三物理教案:动量与能量

动量与能量的综合问题,是高中力学最重要的综合问题,也是难度较大的问题。分析这类问题时,应首先建立清晰的物理图象,抽象出物理模型,选择合理的物理规律建立方程进行求解。

一、力学规律的选用原则

1、如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律。

2、研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间问题)或动能定理(涉及位移问题)去解决。

3、若研究的对象为一物体系统,且它们之间有相互作用,一般用两个守恒定律去解决问题,但须注意研究的问题是否满足守恒条件。

4、在涉及相对位移问题时,则优先考虑能量守恒定律,即用系统克服摩擦力所做的总功等于系统机械能的减少量,也即转变为系统内能的量。

5、在涉及有碰撞、爆炸、打击、绳绷紧等物理现象时,须注意到一般这些过程均隐含有系统机械能与其他形式能量之间的转化,这种问题由于作用时间都极短,故动量守恒定律一般能派上大用场。

二、利用动量观点和能量观点解题应注意下列问题

(1)动量定理和动量守恒定律是矢量表达式,还可以写出分量表达式,而动能定理和能量守恒定律是标量式,绝无分量式。

(2)从研究对象上看动量定理既可研究单体,又可研究系统,但高中阶段一般用于单体,动能定理在高中阶段只能用于单体。

(3)动量守恒定律和能量守恒定律,是自然界最普遍的规律,它们研究的是物体系统,解题时必须注意动量守恒的条件和机械能守恒的条件,在应用这两个规律时,应当确定了研究对象及运动状态变化的过程后,根据问题的已知条件和要求解未知量,选择研究的两个状态列方程求解。

(4)中学阶段可用力的观点解决的问题,若用动量观点或能量观点求解,一般都要比用力的观点简便,而中学阶段涉及的曲线运动(加速度不恒定)、竖直面内的圆周运动、碰撞等,就中学只是而言,不可能单纯考虑用力的观点解决,必须考虑用动量观点和能量观点解决。

高三物理动量守恒定律教案23


一名优秀负责的教师就要对每一位学生尽职尽责,作为教师准备好教案是必不可少的一步。教案可以让学生们有一个良好的课堂环境,帮助教师营造一个良好的教学氛围。教案的内容具体要怎样写呢?以下是小编为大家精心整理的“高三物理动量守恒定律教案23”,希望对您的工作和生活有所帮助。

第二节动量守恒定律
三维教学目标
1、知识与技能:掌握运用动量守恒定律的一般步骤。
2、过程与方法:知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。
3、情感、态度与价值观:学会用动量守恒定律分析解决碰撞、爆炸等物体相互作用的问题,培养思维能力。
教学重点:运用动量守恒定律的一般步骤。
教学难点:动量守恒定律的应用。
教学方法:教师启发、引导,学生讨论、交流。
教学用具:投影片、多媒体辅助教学设备。
(一)引入新课
动量守恒定律的内容是什么?分析动量守恒定律成立条件有哪些?(①F合=0(严格条件)②F内远大于F外(近似条件,③某方向上合力为0,在这个方向上成立。)
(二)进行新课
1、动量守恒定律与牛顿运动定律
用牛顿定律自己推导出动量守恒定律的表达式。
(1)推导过程:
根据牛顿第二定律,碰撞过程中1、2两球的加速度分别是:

根据牛顿第三定律,F1、F2等大反响,即F1=-F2所以:
碰撞时两球间的作用时间极短,用表示,则有:

代入并整理得
这就是动量守恒定律的表达式。
(2)动量守恒定律的重要意义
从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。(2000年高考综合题23②就是根据这一历史事实设计的)。又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。

2、应用动量守恒定律解决问题的基本思路和一般方法
(1)分析题意,明确研究对象
在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。
(2)要对各阶段所选系统内的物体进行受力分析
弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力。在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。
(3)明确所研究的相互作用过程,确定过程的始、末状态
即系统内各个物体的初动量和末动量的量值或表达式。
注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。
(4)确定好正方向建立动量守恒方程求解。

3、动量守恒定律的应用举例
例2:如图所示,在光滑水平面上有A、B两辆小车,水平面的左侧有一竖直墙,在小车B上坐着一个小孩,小孩与B车的总质量是A车质量的10倍。两车开始都处于静止状态,小孩把A车以相对于地面的速度v推出,A车与墙壁碰后仍以原速率返回,小孩接到A车后,又把它以相对于地面的速度v推出。每次推出,A车相对于地面的速度都是v,方向向左。则小孩把A车推出几次后,A车返回时小孩不能再接到A车?

分析:此题过程比较复杂,情景难以接受,所以在讲解之前,教师应多带领学生分析物理过程,创设情景,降低理解难度。
解:取水平向右为正方向,小孩第一次
推出A车时:mBv1-mAv=0
即:v1=
第n次推出A车时:mAv+mBvn-1=-mAv+mBvn
则:vn-vn-1=,
所以:vn=v1+(n-1)
当vn≥v时,再也接不到小车,由以上各式得n≥5.5取n=6
点评:关于n的取值也是应引导学生仔细分析的问题,告诫学生不能盲目地对结果进行“四舍五入”,一定要注意结论的物理意义。
课后补充练习
(1)(2002年全国春季高考试题)在高速公路上发生一起交通事故,一辆质量为15000kg向南行驶的长途客车迎面撞上了一辆质量为3000kg向北行驶的卡车,碰后两车接在一起,并向南滑行了一段距离后停止.根据测速仪的测定,长途客车碰前以20m/s的速度行驶,由此可判断卡车碰前的行驶速率为?()
A.小于10m/s?B.大于10m/s小于20m/s?
C.大于20m/s小于30m/s?D.大于30m/s小于40m/s
(2)如图所示,A、B两物体的质量比mA∶mB=3∶2,它们原来静止在平板车C上,A、B间有一根被压缩了的弹簧,A、B与平板车上表面间动摩擦因数相同,地面光滑.当弹簧突然释放后,则有()?
A.A、B系统动量守恒B.A、B、C系统动量守恒?
C.小车向左运动D.小车向右运动?
(3)把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、弹、车,下列说法正确的是?
A.枪和弹组成的系统,动量守恒?
B.枪和车组成的系统,动量守恒?
C.三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系统动量近似守恒?
D.三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合力为零?
(4)甲乙两船自身质量为120kg,都静止在静水中,当一个质量为30kg的小孩以相对于地面6m/s的水平速度从甲船跳上乙船时,不计阻力,甲、乙两船速度大小之比:v甲∶v乙=_______.
(5)(2001年高考试题)质量为M的小船以速度v0行驶,船上有两个质量皆为m的小孩a和b,分别静止站在船头和船尾.现在小孩a沿水平方向以速率v(相对于静止水面)向前跃入水中,然后小孩b沿水平方向以同一速率v(相对于静止水面)向后跃入水中.求小孩b跃出后小船的速度.?
(6)如图所示,甲车的质量是2kg,静止在光滑水平面上,上表面光滑,右端放一个质量为1kg的小物体.乙车质量为4kg,以5m/s的速度向左运动,与甲车碰撞以后甲车获得8m/s的速度,物体滑到乙车上.若乙车足够长,上表面与物体的动摩擦因数为0.2,则物体在乙车上表面滑行多长时间相对乙车静止?(g取10m/s2)?
4、反冲运动与火箭
演示实验1:老师当众吹一个气球,然后,让气球开口向自己放手,看到气球直向学生飞去,人为制造一点“惊险气氛”,活跃课堂氛围。
演示实验2:用薄铝箔卷成一个细管,一端封闭,另一端留一个很细的口,内装由火柴头上刮下的药粉,把细管放在支架上,用火柴或其他办法给细管加热,当管内药粉点燃时,生成的燃气从细口迅速喷出,细管便向相反的方向飞去。

演示实验3:把弯管装在可以旋转的盛水容器的下部,当水从弯管流出时,容器就旋转起来。
提问:实验1、2中,气球、细管为什么会向后退呢?实验3中,细管为什么会旋转起来呢?
看起来很小的几个实验,其中包含了很多现代科技的基本原理:如火箭的发射,人造卫星的上天,大炮发射等。应该如何去解释这些现象呢?这节课我们就学习有关此类的问题。
(1)反冲运动
A、分析:细管为什么会向后退?(当气体从管内喷出时,它具有动量,由动量守恒定律可知,细管会向相反方向运动。)
B、分析:反击式水轮机的工作原理:当水从弯管的喷嘴喷出时,弯管因反冲而旋转,这是利用反冲来造福人类,象这样的情况还很多。
为了使学生对反冲运动有更深刻的印象,此时再做一个发射礼花炮的实验。分析,礼花为什么会上天?
(2)火箭
对照书上“三级火箭”图,介绍火箭的基本构造和工作原理。
播放课前准备的有关卫星发射、“和平号”空间站、“探路者”号火星探测器以及我国“神舟号”飞船等电视录像,使学生不仅了解航天技术的发展和宇宙航行的知识,而且要学生知道,我国的航天技术已经跨入了世界先进行列,激发学生的爱国热情。阅读课后阅读材料——《航天技术的发展和宇宙航行》。

高三物理教案:《能量守恒定律》教学设计


一、教材分析

前面学习的焦耳实验结果表明,在系统状态发生改变时,只要初末状态确定了,做功的数量或者热传递的数量就是确定的。而且,热功当量的测量结果表明,做功和热传递在改变内能上是等价的。从而得出热力学第一定律的数学表达式。又通过实例对表达式中物理量取值的正负意义进行了讨论。接着,讲述了能量守恒定律的确立。它具有重大的理论意义和实践意义。它对于制造永动机的不可能实现,给予了科学上的最后判决。

二、教学目标

知识与技能:

1、理解热力学第一定律。

2、能运用热力学第一定律解释自然界能量的转化、转移问题。

3、理解能量守恒定律,知道能量守恒定律是自然界普遍遵从的基本规律。

4、通过能量守恒定律的学习,认识自然规律的多样性和统一性。

5、知道第一类永动机是不能实现的。

过程与方法:

能够得出热力学第一定律,并会应用。

情感态度与价值观:

通过学习能量守恒定律的得出过程,学习科学家的探索精神

三、教学重点难点

重点:热力学第一定律

难点:能量守恒定律

四、学情分析

由于热力学第一定律是教学的重点及难点,因此应利用教学的相当多的时间来进行热力学第一定律的教学,具体来说△U=W+Q中各物理量的意义及正负号的确定对学生来讲是很困难的,以通俗易懂的语言来阐述;对于能量守恒定律的教学,调动学生相互讨论自然界中的各种能量间的转化,分析得出能量守恒定律。

五、教学方法

自主阅读与思考、精讲精练

六、课前准备

七、课时安排1课时

八、教学过程

(一)预习检查、总结疑惑

(二)情景引入、展示目标

焦耳的实验表明:只要系统初末状态是确定的,所需做功数量就是确定的。

另一方面,热功当量实验表明做功和热传递是等价的

(三)合作探究、精讲点播

1.热力学第一定律

(1).一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。这个关系叫做热力学第一定律。

其数学表达式为:ΔU=W+Q

(2).与热力学第一定律相匹配的符号法则

做功W

热量Q

内能的改变ΔU

取正值“+”

外界对系统做功

系统从外界吸收热量

系统的内能增加

取负值“-”

系统对外界做功

系统向外界放出热量

系统的内能减少

(3)热力学第一定律说明了做功和热传递是系统内能改变的量度,没有做功和热传递就不可能实现能量的转化或转移,同时也进一步揭示了能量守恒定律。

(4)应用热力学第一定律解题的一般步骤:

①根据符号法则写出各已知量(W、Q、ΔU)的正、负;

②根据方程ΔU=W+Q求出未知量;

③再根据未知量结果的正、负来确定吸热、放热情况或做功情况。

2.能量守恒定律

⑴.自然界存在着多种不同形式的能。举例说明。

⑵.不同形式的能量之间可以相互转化。举例说明。摩擦可以将机械能转化为内能;炽热电灯发光可以将电能转化为光能。

⑶.能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。这就是能量守恒定律。

(4).热力学第一定律、机械能守恒定律都是能量守恒定律的具体体现。

(5). 能量守恒定律的重要意义

第一,能量守恒定律是支配整个自然界运动、发展、变化的普遍规律,学习这个定律,不能满足一般理解其内容,更重要的是,从能量形式的多样化及其相互联系,互相转化的事实出发去认识物质世界的多样性及其普遍联系,并切实树立能量既不会凭空产生,也不会凭空消失的观点,作为以后学习和生产实践中处理一切实际问题的基本指导思想之一。第二,宣告了第一类永动机的失败。

3.第一类永动机不可能制成

任何机器运动时只能将能量从一种形式转化为另一种形式,而不可能无中生有地创造能量,即第一类永动机是不可能制造出来的。

典例探究

例1.一定量的气体在某一过程中,外界对气体做了8×104J的功,气体的内能减少了1.2×105J,则下列各式中正确的是 ( )

A.W=8×104J,ΔU =1.2×105J ,Q=4×104J

B.W=8×104J,ΔU =-1.2×105J ,Q=-2×105J

C.W=-8×104J,ΔU =1.2×105J ,Q=2×104J

D.W=-8×104J,ΔU =-1.2×105J ,Q=-4×104J

解析:本题主要考查热力学第一定律的应用。因为外界对气体做功,W取正值,即W=8×104J;内能减少,ΔU取负值,即ΔU=-1.2×105J;根据ΔU=W+Q,可知Q=ΔU-W=-1.2×105-8×104=-2×105J,即B选项正确。

答案:B

友情提示:注意热力学第一定律关系式中各物理量的符号法则。

例2.一定质量的气体,在压缩过程中外界对气体做功300J,但这一过程中气体的内能减少了300J,问气体在此过程中是吸热还是放热?吸收(或放出)多少热量?

解析:由题意可知,W=300J,ΔU=-300J,根据热力学第一定律可得

Q=ΔU-W=-300J-300J=-600J

Q为负值表示气体放热,因此气体放出600J的热量。

友情提示:注意热力学第一定律关系式中各物理量的符号法则及其物理意义。

例3. 一定质量的气体从外界吸收了4.2×105J的热量,同时气体对外做了6×105J的功,问:

(1)物体的内能是增加还是减少?变化量是多少?

(2)分子势能是增加还是减少?

(3)分子的平均动能是增加还是减少?

解析:(1)气体从外界吸热为:Q=4.2×105J

气体对外做功:W=-6×105J

由热力学第一定律:ΔU=W+Q=(-6×105)+(4.2×105J)=-1.8×105J

ΔU为负,说明气体的内能减少了。所以,气体内能减少了1.8×105J。

(2)因为气体对外做功,所以气体的体积膨胀,分子间的距离增大了,分子力做负功,气体分子势能增加了。

(3)因为气体内能减少,同时气体分子势能增加,说明气体分子的平均动能一定减少了。

友情提示:本题以热力学第一定律关系式为起点,结合分子动理论中内能的定义,分析得出:①气体对外做功,体积膨胀,分子间的距离增大了,分子力做负功,气体分子势能增加了②气体内能减少,同时气体分子势能增加,说明气体分

(四)反思总结、当堂检测

(五)发导学案、布置作业

九、板书设计

1.热力学第一定律

(1)内容:

数学表达式为:ΔU=W+Q

(2).与热力学第一定律相匹配的符号法则

做功W

热量Q

内能的改变ΔU

取正值“+”

外界对系统做功

系统从外界吸收热量

系统的内能增加

取负值“-”

系统对外界做功

系统向外界放出热量

系统的内能减少

(2).与热力学第一定律相匹配的符号法则

(3)热力学第一定律说明了做功和热传递是系统内能改变的量度,没有做功和热传递就不可能实现能量的转化或转移,同时也进一步揭示了能量守恒定律。

(4)应用热力学第一定律解题的一般步骤:

①根据符号法则写出各已知量(W、Q、ΔU)的正、负;

②根据方程ΔU=W+Q求出未知量;

③再根据未知量结果的正、负来确定吸热、放热情况或做功情况。

2.能量守恒定律

⑴.自然界存在着多种不同形式的能。

⑵.不同形式的能量之间可以相互转化

⑶.能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。这就是能量守恒定律。

(4).热力学第一定律、机械能守恒定律都是能量守恒定律的具体体现。

(5). 能量守恒定律的重要意义

3.第一类永动机不可能制成

任何机器运动时只能将能量从一种形式转化为另一种形式,而不可能无中生有地创造能量,即第一类永动机是不可能制造出来的。

十、教学反思

各种能量在一定条件下可以相互转化,转化过程中总能量守恒.这是一个意识问题,或者说是悟性,从内心深处感觉到总能量不变.这是很重要的物理思想.

高三物理《动量和能量验证动量守恒定律》教材分析


高三物理《动量和能量验证动量守恒定律》教材分析

考点24动量和能量验证动量守恒定律
考点名片
考点细研究:(1)动量和能量;(2)验证动量守恒定律等。其中考查到的如:20xx年全国卷第35题(2)、20xx年天津高考第9题(1)、20xx年广东高考第36题、20xx全国卷第35题(2)、20xx年大纲卷第21题、20xx年大纲卷第24题、20xx年天津高考第10题、20xx年北京高考第22题、20xx年山东高考第39题、20xx年全国卷、第35题、20xx年广东高考第35题等。
备考正能量:预计今后高考仍以碰撞为模型对动量守恒定律进行考查,与弹簧问题结合考查将是以后命题的新趋势,题型仍为选择题和计算题,难度会加大。

一、基础与经典
1.如图所示,两木块A、B用轻质弹簧连在一起,置于光滑的水平面上。一颗子弹水平射入木块A,并留在其中。在子弹打中木块A及弹簧被压缩的整个过程中,对子弹、两木块和弹簧组成的系统,下列说法中正确的是()

A.动量守恒、机械能守恒
B.动量守恒、机械能不守恒
C.动量不守恒、机械能守恒
D.动量、机械能都不守恒
答案B
解析子弹击中木块A及弹簧被压缩的整个过程,系统在水平方向不受外力作用,系统动量守恒,但是子弹击中木块A过程,有摩擦力做功,部分机械能转化为内能,所以机械能不守恒,B正确。
2.在光滑水平地面上有两个相同的弹性小球A、B,质量都为m。现B球静止,A球向B球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为Ep,则碰前A球的速度等于()
A.B.C.2D.2
答案C
解析设碰前A球的速度为v0,两个弹性小球发生正碰,当二者速度相同时,弹性势能最大,由动量守恒定律得mv0=2mv,Ep=mv-×2mv2,解得v0=2,C正确。
3.如图所示,在足够长的光滑水平面上有一静止的质量为M的斜面,斜面表面光滑、高度为h、倾角为θ。一质量为m(mmQ
D.mPvB,根据pA=mAvA=5kg·m/s,pB=mBvB=7kg·m/s,则有关系式;根据碰撞过程中的动量守恒,则有pA+pB=pA′+pB′,解得碰后A的动量为2kg·m/s,根据碰后的速度必须满足vA′≤vB′,可以得关系式≥,碰撞过程中能量不能增加,故有+≥+,可以得关系式≤,综合得≤≤,据此C、D选项正确。
10.(多选)如图所示,在光滑水平面上,质量为m的小球A和质量为m的小球B通过轻弹簧相连并处于静止状态,弹簧处于自然伸长状态;质量为m的小球C以初速度v0沿AB连线向右匀速运动,并与小球A发生弹性碰撞。在小球B的右侧某位置固定一块弹性挡板(图中未画出),当小球B与挡板发生正碰后立刻将挡板撤走。不计所有碰撞过程中的机械能损失,弹簧始终处于弹性限度内,小球B与挡板的碰撞时间极短,碰后小球B的速度大小不变,但方向相反。则B与挡板碰后弹簧弹性势能的最大值Em可能是()

A.mvB.mvC.mvD.mv
答案BC
解析系统初动能Ek=mv,系统机械能守恒,故A错误;质量相等的C球和A球发生弹性碰撞后速度交换,当A、B两球的动量相等时,B球与挡板相碰,则碰后系统总动量为零,则弹簧再次压缩到最短时弹性势能最大(动能完全转化为弹性势能),根据机械能守恒定律可知,系统损失的动能转化为弹性势能Ep=mv;当B球速度恰为零时与挡板相碰,则系统动量不变化,系统机械能不变,当弹簧压缩到最短时,A、B达到共同速度v1弹性势能最大,由动量守恒可得:mv0=,由功能关系可得出Ep′=mv-×mv,解得Ep′=mv,所以弹性势能的最大值要介于mv和mv之间,选项B、C正确,A、D错误。
二、真题与模拟
11.20xx·大纲卷]一中子与一质量数为A(A1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为()
A.B.C.D.
答案A
解析设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,mv=mv+Amv,解得v1=v0,故=,A正确。
12.20xx·厦门双十中学期末]如图所示,光滑平面上有一辆质量为2m的小车,小车上左右两端分别站着甲、乙两人,他们的质量都是m,开始两人和小车一起以速度v0向右匀速运动。某一时刻,站在小车右端的乙先以相对地面向右的速度v跳离小车,然后站在小车左端的甲以相对地面向左的速度v跳离小车。两人都离开小车后,小车的速度将是()

A.v0B.2v0
C.大于v0,小于2v0D.大于2v0
答案B
解析甲、乙两人和小车组成的系统动量守恒,初动量为4mv0,方向向右,由于甲、乙两人跳离小车时相对地面的速度大小相等,方向相反,即两人动量的代数和为零,有4mv0=2mv′,解得v′=2v0,故选项B正确,而A、C、D错误。
13.20xx·北京东城区联考]如图所示,静止在光滑水平面上的木板A,右端有一根轻质弹簧沿水平方向与木板相连,木板质量M=3kg。质量m=1kg的铁块B以水平速度v0=4m/s从木板的左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好停在木板的左端。在上述过程中弹簧具有的最大弹性势能为()

A.3JB.4JC.6JD.20J
答案A
解析设铁块与木板共速时速度大小为v,铁块相对木板向右运动的最大距离为L,铁块与木板之间的摩擦力大小为Ff。铁块压缩弹簧使弹簧最短时,由能量守恒可得mv=FfL+(M+m)v2+Ep。由动量守恒,得mv0=(M+m)v。从铁块开始运动到最后停在木板左端过程,由能量关系得mv=2FfL+(M+m)v2。联立解得Ep=3J,故选项A正确。
14.20xx·福州一中模拟]如图所示,光滑水平面上静止放置着一辆平板车A。车上有两个小滑块B和C,A、B、C三者的质量分别是3m、2m、m。B与板车之间的动摩擦因数为μ,而C与板车之间的动摩擦因数为2μ。开始时B、C分别从板车的左、右两端同时以大小相同的初速度v0相向滑行。已知B、C最后都没有脱离板车,则板车的最终速度v车是()

A.v0B.v0C.v0D.0
答案B
解析设水平向右为正方向,因为水平面光滑,三个物体组成的系统动量守恒,系统最终的速度相同为v车,所以2mv0-mv0=(3m+2m+m)v车,解得v车=v0,选项B正确。
15.20xx·福建惠安质检]如图所示,在光滑的水平直导轨上,有质量分别为2m、m,带电荷量分别为2q、q(q0)的两个形状相同的小球A、B正相向运动,某时刻A、B两球的速度大小分别为vA、vB。由于静电斥力作用,A球先开始反向运动,它们不会相碰,最终两球都反向运动。则()

A.vAvBB.vAvAvB
答案B
解析由于小球A、B组成的系统满足动量守恒,根据题意可知系统总动量向左,则有2mvAE0D.p1p0
答案AB
解析因为碰撞前后动能不增加,故有E1p0,B正确。

一、基础与经典
21.用图甲中装置验证动量守恒定律。实验中:

(1)为了尽量减小实验误差,在安装斜槽轨道时,应让斜槽末端保持水平,这样做的目的是()
A.使入射球与被碰小球碰后均能从同一高度飞出
B.使入射球与被碰小球碰后能同时飞出
C.使入射球与被碰小球离开斜槽末端时的速度为水平方向
D.使入射球与被碰小球碰撞时的动能不损失
(2)若A球质量为m1=50g,两小球发生正碰前后的位移-时间(xt)图象如图乙所示,则小球B的质量为m2=________。
(3)调节A球自由下落高度,让A球以一定速度v与静止的B球发生正碰,碰后两球动量正好相等,则A、B两球的质量之比应满足________。
答案(1)C(2)20g(3)1≤3
解析(1)在安装斜槽轨道时,应让斜槽末端保持水平,这样做的目的是使入射球与被碰小球离开斜槽末端时的速度为水平方向,C正确。
(2)由图知碰前B球静止,A球的速度为v0=4m/s,碰后A球的速度为v1=2m/s,B球的速度为v2=5m/s,由动量守恒知m1v0=m1v1+m2v2,代入数据解得m2=20g。
(3)因实验要求主碰球质量大于被碰球质量,1,令碰前动量为p,所以碰后两球动量均为,因碰撞过程中动能不可能增加,所以有≥+,即≤3,所以1≤3。
22.如图所示,A、B、C三个木块的质量均为m,置于光滑的水平桌面上,B、C之间有一轻质弹簧,弹簧的两端与木块接触而不相连。将弹簧压紧到不能再压缩时用细线把B和C紧连,使弹簧不能伸展,以至于B、C可视为一个整体。现A以初速v0沿B、C的连线方向朝B运动,与B相碰并粘合在一起。以后细线突然断开,弹簧伸展,从而使C与A、B分离。已知C离开弹簧后的速度恰为v0。求弹簧释放的势能。

答案mv
解析设碰后A、B和C的共同速度的大小为v,由动量守恒定律得:3mv=mv0
设C离开弹簧时,A、B的速度大小为v1,由动量守恒定律得:3mv=2mv1+mv0
设弹簧的弹性势能为Ep,从细线断开到C与弹簧分开的过程中机械能守恒,有:(3m)v2+Ep=(2m)v+mv
由式得弹簧释放的势能:Ep=mv。
二、真题与模拟
23.20xx·天津高考]如图所示,方盒A静止在光滑的水平面上,盒内有一小滑块B,盒的质量是滑块的2倍,滑块与盒内水平面间的动摩擦因数为μ。若滑块以速度v开始向左运动,与盒的左、右壁发生无机械能损失的碰撞,滑块在盒中来回运动多次,最终相对于盒静止,则此时盒的速度大小为________,滑块相对于盒运动的路程为________。

答案
解析设滑块的质量为m,最终盒与滑块的共同速度为v′,根据动量守恒得:mv=(m+2m)v′,解得:v′=v。
设滑块相对于盒的运动路程为s,根据能量守恒得:
μmgs=mv2-(m+2m)v′2,解得:s=。

2420xx·全国卷]如图,水平地面上有两个静止的小物块a和b,其连线与墙垂直;a和b相距l,b与墙之间也相距l;a的质量为m,b的质量为m。两物块与地面间的动摩擦因数均相同。现使a以初速度v0向右滑动。此后a与b发生弹性碰撞,但b没有与墙发生碰撞。重力加速度大小为g。求物块与地面间的动摩擦因数满足的条件。
答案≤μ
解析设物块与地面间的动摩擦因数为μ。若要物块a、b能够发生碰撞,应有:
mvμmgl
即μ
设在a、b发生弹性碰撞前的瞬间,a的速度大小为v1。由能量守恒有:
mv=mv+μmgl
设在a、b碰撞后的瞬间,a、b的速度大小分别为v1′、v2′,由动量守恒和能量守恒有:
mv1=mv1′+v2′
mv=mv′+v′
联立式解得:v2′=v1
由题意,b没有与墙发生碰撞,由功能关系可知:
v′≤μgl
联立式,可得:
μ≥
联立式,a与b发生弹性碰撞,但b没有与墙发生碰撞的条件为:≤μ。
25.20xx·全国卷]如图,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间。A的质量为m,B、C的质量都为M,三者均处于静止状态。现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞。设物体间的碰撞都是弹性的。

答案(-2)M≤mM,第一次碰撞后,A与C速度同向,且A的速度小于C的速度,不可能与B发生碰撞;如果m=M,第一次碰撞后,A停止,C以A碰前的速度向右运动,A不可能与B发生碰撞;所以只需考虑m。