88教案网

你的位置: 教案 > 小学教案 > 导航 > 六年级数学上册全册教案

小学六年级数学比教案

发表时间:2021-11-06

六年级数学上册全册教案。

六年级数学上册全册教案

本册 目标:

这一册教材的 目标是,使学生:

1. 理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算

简单的分数乘、除法,会进行简单的分数四则混合运算。

2. 理解倒数的意义,掌握求倒数的方法。

3. 理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。

4. 掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确

计算圆的周长和面积。

5. 知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转

设计简单的图案。

6. 能在方格纸上用数对表示位置,初步体会坐标的思想。

7. 理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分

数的简单实际问题。

8. 认识扇形统计图,能根据需要选择合适的统计图表示数据。

9. 经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常

生活中的作用,初步形成综合运用数学知识解决问题的能力。

10. 体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。

11. 体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

12. 养成认真作业、书写整洁的良好习惯。

第一单元 位置

单元教学目标:

1. 在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

2. 能在方格纸上用数对确定位置。

教学内容 位置(一) 新授课 新授

教学目标 1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

2. 使学生能在方格纸上用数对确定位置。

教学重点 能用数对表示物体的位置。

教学难点 能用数对表示物体的位置,正确区分列和行的顺序。

教具准备

教学过程 一、 导入

1、 我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

2、 学生各抒己见,讨论出用“第几列第几行”的方法来表述。

二、 新授

1、 教学例1

(1) 如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?

(2) 学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

(3) 教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

2、 小结例1:

(1) 确定一个同学的位置,用了几个数据?(2个)

(2) 我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。

3、 练习:

(1) 教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

(2) 生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

4、 教学例2

(1) 我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

(2) 依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

(3) 同桌讨论说出其他场馆所在的位置,并指名回答。

(4) 学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)

三、 练习

1、 练习一第4题

(1) 学生独立找出图中的字母所在的位置,指名回答。

(2) 学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

2、 练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置

3、 练习一第6题

(1) 独立写出图上各顶点的位置。

(2) 顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

(3) 照点A的方法平移点B和点C,得出平移后完整的三角形。

(4) 观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

四、 总结

我们今天学了哪些内容?你觉得自己掌握的情况如何?

五、 作业

练习一第1、2、5、7、8题。

板书设计:

教后反思:

第二单元 分数乘法

单元目标:

1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

4、 使学生理解倒数的意义,掌握求倒数的方法。

单元重点:

分数乘法的意义和计算法则。

单元难点:

1、 理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

2、 分数乘法计算法则的推导。

教案

教学内容 分数乘整数 课型 新授

教学目标 1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点 使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点 引导学生总结分数乘整数的计算法则。

教具准备

教学过程 一、 复习

1.出示复习题。

(1)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少? 9个11是多少? 8个6是多少?

(2)计算:

+ + = + + =

2.引出课题。

+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。

二、 新授

1、 利用 + + 教学分数乘法。

(1) 这道加法算式中,加数各是多少?(都是 )

(2) 表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法, ×3)

(3) + + =9,那么 + + = ×3,所以 ×3=____________=9。同学们想想看, ×3=9计算过程是怎样的?谁能把它补充完整。

2、 出示例1,画出线段图,学生独立列式解答。

(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?(列式: ×3 = )

3、 结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

4、 练习:练习完成“做一做”第2题。

5、 教学例2

(1)出示 ×6,学生独立计算。

(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。三、练习

1、 完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

2、 “做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)

三、 作业

练习二第1、2、4题。 个人修改

小编推荐

人教版六年级数学上册全册教案


人教版六年级数学上册全册教案

本册 目标:

这一册教材的 目标是,使学生:

1. 理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算

简单的分数乘、除法,会进行简单的分数四则混合运算。

2. 理解倒数的意义,掌握求倒数的方法。

3. 理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。

4. 掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确

计算圆的周长和面积。

5. 知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转

设计简单的图案。

6. 能在方格纸上用数对表示位置,初步体会坐标的思想。

7. 理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分

数的简单实际问题。

8. 认识扇形统计图,能根据需要选择合适的统计图表示数据。

9. 经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常

生活中的作用,初步形成综合运用数学知识解决问题的能力。

10. 体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。

11. 体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

12. 养成认真作业、书写整洁的良好习惯。

第一单元 位置

单元教学目标:

1. 在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

2. 能在方格纸上用数对确定位置。

教学内容 位置(一) 新授课 新授

教学目标 1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

2. 使学生能在方格纸上用数对确定位置。

教学重点 能用数对表示物体的位置。

教学难点 能用数对表示物体的位置,正确区分列和行的顺序。

教具准备

教学过程 一、 导入

1、 我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

2、 学生各抒己见,讨论出用“第几列第几行”的方法来表述。

二、 新授

1、 教学例1

(1) 如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?

(2) 学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

(3) 教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

2、 小结例1:

(1) 确定一个同学的位置,用了几个数据?(2个)

(2) 我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。

3、 练习:

(1) 教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

(2) 生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

4、 教学例2

(1) 我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

(2) 依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

(3) 同桌讨论说出其他场馆所在的位置,并指名回答。

(4) 学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)

三、 练习

1、 练习一第4题

(1) 学生独立找出图中的字母所在的位置,指名回答。

(2) 学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

2、 练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置

3、 练习一第6题

(1) 独立写出图上各顶点的位置。

(2) 顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

(3) 照点A的方法平移点B和点C,得出平移后完整的三角形。

(4) 观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

四、 总结

我们今天学了哪些内容?你觉得自己掌握的情况如何?

五、 作业

练习一第1、2、5、7、8题。

教后反思:

第二单元 分数乘法

单元目标:

1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

4、 使学生理解倒数的意义,掌握求倒数的方法。

单元重点:

分数乘法的意义和计算法则。

单元难点:

1、 理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

2、 分数乘法计算法则的推导。

教案

教学内容 分数乘整数 课型 新授

教学目标 1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点 使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点 引导学生总结分数乘整数的计算法则。

教具准备

教学过程 一、 复习

1.出示复习题。

(1)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少? 9个11是多少? 8个6是多少?

(2)计算:

+ + = + + =

2.引出课题。

+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。

二、 新授

1、 利用 + + 教学分数乘法。

(1) 这道加法算式中,加数各是多少?(都是 )

(2) 表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法, ×3)

(3) + + =9,那么 + + = ×3,所以 ×3=____________=9。同学们想想看, ×3=9计算过程是怎样的?谁能把它补充完整。

2、 出示例1,画出线段图,学生独立列式解答。

(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?(列式: ×3 = )

3、 结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

4、 练习:练习完成“做一做”第2题。

5、 教学例2

(1)出示 ×6,学生独立计算。

(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。三、练习

1、 完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

2、 “做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)

三、 作业

练习二第1、2、4题。 个人修改

教案

教学内容 一个数乘分数 新授课 新授

教学目标 1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。

2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

教学重点 理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点 推导算理,总结法则。

教具准备

教学过程 一、导入

1、计算下列各题并说出计算方法。

× × ×

2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。

二、新课

1、教学例3

(1)出示条件和问题:每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式: ×

(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的 ,第二步再涂出 小时粉刷这面墙的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”

(3)根据直观的操作结果,得出 × = ,根据刚才操作的过程和结果推导出计算方法: × = = 。

(4)提出问题: 小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。

2、相关练习:练习二第5题。

3、小结一个数乘分数的意义和计算方法。

(1)意义:一个数乘分数,表示求这个数的几分之几是多少。

(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。

4、教学例4

(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式: × 。

(2)先让学生独立计算,再交流计算的方法,明确分数乘分数也可以先约分再乘。通过展示学生的计算过程,进一步明确约分的书写格式: (km)

(3)学生独立解答“5分钟飞行多少千米?”,讲评中介绍分数乘整数的另一种格式。 新课标第一网不用注册,免费下载!

5、巩固练习:P11“做一做”(注意提醒学生要先观察能否约分,再着手计算)。

三、练习

1、练习三第6题

(1)求2枝长多少分米,就是求2个 是多少?算式: ×2

(2)求 枝或 枝长多少分米,就是求 的 是多少,或 的 是多少。

2、练习三第9题。(学生讨论交流,说说错在哪里,结合学生易犯的错误讲解)

四、作业

练习二第3、7、8、10题。 个人修改

教案

教学内容 分数混合运算和简便运算 新授课 新授

教学目标 1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。

教学重点:

教学难点:

教学重点 理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

教学难点 熟练掌握运算定律,灵活、准确、合理地进行计算。

教具准备

教学过程 一、复习

1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)

2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)

3、观察下面各题,先说说运算顺序,再进行计算。

(1)36×2+15 (2)5×6+7×3 (3)15×(34-27)

二、新授

1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。

(1) + × (2) × - (3) - × (4) × +

2、复习整数乘法的运算定律

(1)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c

(2)这些运算定律有什么用处?你能举例说明吗?

(3)用简便方法计算:25×7×4 0.36×101

3、推导运算定律是否适用于分数。

(1)鼓励学生大胆猜测并勇于发表自己的个人意见。

(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)

(3)各四人小组汇报讨论和计算结果。

4、教学例6

(1)出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)

(2)出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)

(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。

三、练习

P14“做一做”:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。

(4)练习课

教学目标:

1、使学生掌握分数乘加、乘减混合运算的顺序,能正确地进行计算。

2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。

教学重点:熟练掌握运算定律,灵活、准确、合理地进行简便计算。

教学难点:熟练掌握运算定律,准确、合理地进行简便计算。

教学过程:

一 、复习

1、复习分数混合运算的运算顺序。

2、复习乘法的简便运算定律

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c

二、巩固练习

1、练习三第1题:应用运算定律进行简便计算(引导学生仔细观察算式特点,正确运用定律进行计算)。

2、练习三第三题:分数混合运算(提醒学生注意运算顺序,如果可以应用韵律进行计算的题目也可以选择用简便方法计算,如: - × = ×(1- ); ×(5- )既可以按运算顺序先算小括号里面的,也可以应用乘法分配律进行计算。

3、练习三第2题:一朵花要用 张纸,一个同学做了9朵,列式 ×9,另一个同学做了11朵,列式 ×11,他们一共做了 ×9+ ×11(朵),学生还可能这样列式: ×(9+11),引导学生发现,这种列式实际上就是乘法分配律的两种形式。

4、练习三第8题:改错题,这两道题主要都是运算顺序错误,学生在纠错的同时也巩固了先乘除、后加减的运算顺序。

5、练习三第6题:要求学生观察题目,能用简便算法的要用简便算法。

6、练习三第4、5、9题:先让学生分析题意,再列式计算。计算中提醒学生注意运用定律使计算简便。

三、布置作业

完成相关的练习册。 个人修改

苏教版六年级数学上册全册教案


苏教版六年级数学上册全册教案

第一单元 方 程

第一课时 列方程解决实际问题(1) 01

内容:第一页的例1和练一练,练习一的第1-5题。

目标:1、使学生在解决实际问题的过程中,理解并掌握形如ax+_b=c的方程的解法,会列上述方程解决两步计算的实际问题。

2、使学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。

3、使学生在积极参与数学活动的过程中,养成独立思考、主动与他人合作交流、自觉检验等习惯。

教学重难点:让学生经历寻找实际问题中数量之间的相等关系并列方程解决问题的过程,在过程中自主理解并掌握有关方程的解法,加深对列方程解决实际问题的体验。

教学资源:小黑板

教学过程:

一、教学例1

1、 谈话导入:西安是我国有名的历史文化名城,有很多著名的古代建筑,其中就包括闻名遐迩的大雁塔和小雁塔。这节课我们来研究一个与这两处建筑有关的数学问题。

2、 提问:题目中告诉了我们哪些?条件要我们求什么问题?

启发:你能从中找出它们高度之间的关系吗?题目中的哪句话能清楚地表明它们之间高度的关系?

提出要求:你能不能用一个等量关系将它们高度之间的相等关系表示出来?

板书学生交流中可能想到的数量关系式:

小雁塔的高度×2—22=大雁塔的高度;

小雁塔的高度×2=大雁塔的高度+22;

小雁塔的高度×2—大雁塔的高度=22。

3、 引导学生观察第一个等量关系式,提问:在这个等量关系式中,哪个数量是已知的?哪个数量是要我们去求的?

追问:我们可以用什么方法来解决这个问题?

明确方法,并提示课题:这样的问题可以列方程来解答。今天我们继续学习列方程解决实际问题。(板书课题)

4、 谈话:我们已经学过列方程解决简单的实际问题。请同学们先回忆一下,列方程解决问题一般要经过哪几个步骤?

让学生先自主尝试设未知数,并根据第一个等量关系式列出方程。

5、 提问:这样的方程,你以前解过没有?运用以前学过的知识,你能解出这个方程吗?

交流中明确:首先要应用等式的性质将方程两边同时加上22,使方程变形为“2x=?”,再用以前学过的方法继续求解。

要求学生接着例题呈现的第一步继续解出这个方程。学生完成后,组织交流解方程的完整过程,核对求出的解,并提示学生进行检验,最后让学生写出答句。

6、 提问:还可以怎样列方程?

学生列出方程后,要求他们在小组内交流各自列出的方程,并说说列方程的根据,以及可以怎样解列出的方程。

7、 小结:刚才我们通过列方程解决了一个实际问题。你能说说列方程解决问题的大致步骤吗?其中哪些环节很重要?

引导学生关注:1)要根据题目中的条件寻找等量关系,而且一般要找出最容易发现的等量关系;2)分清等量关系中的已知量和未知量,用字母表示未知量并列方程;3)解出方程后,要及时进行检验。

二、巩固练习

1、 做练一练:读题,并设想解决这一问题的方法和步骤,然后让学生独立完成。

交流时让学生说说找出了怎样的等量关系,根据等量关系列出了怎样的方程,是怎样解列出的方程的,对求出的解有没有检验等。再让学生核对自己的答案,检查自己的解题过程。

启发思考:这个问题与例1有什么相同的地方?有什么不同的地方?

2、 做练习一第1题

先让学生说说解这些方程时,第一步要怎么做,依据是什么,然后让学生独立完成。交流反馈时,要在关注结果是否正确的同时,了解学生是否进行了检验。

3、 做练习一第2题

学生独立完成后,再要求说说写出的每个含有字母的式子分别表示哪个数量,是怎样想到写这样的式子的。

4、 做练习一第3题

学生独立完成后,指名说说自己的思考过程,进一步突出根据题中数量之间的相等关系列方程的。

三、总结: 今天我们学习了什么内容,你有哪些收获?还有没有疑惑的地方?

四:作业:做练习一的第4、5题

教学后记:

第二课时 列方程解决实际问题的练习课 02

教学内容:练习一的第6-13题。

教学目标:1、通过练习,使学生能把已经掌握的方程的解法类推到解新的方程道德过程中,会解形如ax±b=c、ax÷b=c的方程,加深对有关方程解法的理解和掌握。

2、进一步提高学生分析数量关系和列方程解决实际问题的能力,培养学生思维的灵活性。

3、使学生在积极参与数学活动的过程中,养成独立思考、主动与他人合作交流、自觉检验等习惯。

教学重难点:让学生经历寻找实际问题中数量之间的相等关系并列方程解决问题的过程,在过程中自主理解并掌握有关方程的解法,加深对列方程解决实际问题的体验。

教学资源:小黑板、投影仪、第13题中的温度计

教学过程:

一、揭示课题:

上节课,我们学会了运用等式的性质解一些稍复杂的方程。这节课,我们要通过练习,进一步加深对有关方程解法的理解,提高我们分析数量关系和能列方程解决实践问题的能力。

二、巩固练习:

1、第6题

(1)出示:4x+12=50 2.3x-1.02=0.36

让学生独立完成,指名学生板演。

集体校对时,提醒学生要自觉检验。并说说以后遇到像这样的方程一般可以怎样解。

(2)出示:30x÷2=360

先让学生说说这样的方程可以怎样解。再让学生做一做,指名板演。集体校对时,说说解这个方程的依据,并让学生做口头检验。

(3)师生共同总结解此类方程的一般方法。强调要养成自觉检验的习惯。

2、第7题

(1)说说两题中的x分别表示哪个数量。

(2)找出每题中数量之间的相等关系。第1题如果有困难,教师可提醒学生回忆三角形的面积计算公式。

(3)学生解答,指名板演。交流时,还要注意学生的解题格式(不要设未知量)

3、第8题

出示题目,问:你能把与杨树和松树有关的信息用列表的方法整理吗?让学生试着整理。

校对后,联系整理的过程找出数量之间的相等关系说一说。

问:你会列方程解答吗?口头说说。

4、第9题

出示题目,教师通过画简单示意图帮助学生理解题意。再让学生说说数量之间的相等关系。并口头列方程。

5、第11题

(1)出示题目。学生读题后说说题目要我们求什么。

(2)问:你会解答吗?可以让同桌互相说说自己的想法。

在全班交流时,教师适时提醒学生:像这样的题要用不同的字母来分别表示小亮出生时的身高和体重。可以用x表示小亮出生时的身高,用y来表示小亮出生时的体重。

(3)学生解答,指名板演。集体评讲。

三、联系生活,运用知识

1、第12题

投影出示题中的发票,让学生说说了解到了哪些信息。

问:你有办法算出墨水的单价吗?

学生独立尝试。集体交流,注意不同的方法。(方程和算术方法)

2、第13题。

(1)出示温度计,教师简单介绍:我国测量温度常用℃(摄氏度)作单位,有时还使用(华氏度)作单位。华氏温度和摄氏温度可以用下面的公式进行换算:(教师出示公式,学生齐读)

华氏温度=摄氏温度×1.8+32

(2)问:如果温度计测出的温度是86℉,相当于多少℃?

出示问题,让学生读一读。

(3)问:你会用学到的知识解决这个问题吗?

让学生尝试解答,指名板演。集体交流。

四、总结:

五、作业:练习一第8、9、10题。

第三课时 列方程解决实际问题(2) 03

教学内容:P4例2及“练一练”、练习二第1—5题

教学目标:1、使学生在解决实际问题的过程中,理解并掌握形如ax±bx=c的方程的解法,会列上述方程解决三步计算的实际问题。

2、使学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。

3、使学生在积极参与数学活动的过程中,养成独立思考、主动与他人合作交流、自觉检验等习惯。

教学重点难点:如何合适地用字母或含有字母的式子表示题中两个未知的数量。

教学资源:小黑板

教学过程:

一、谈话导入,揭示课题

前两节课,我们已经学过列方程解决实际问题,你能说说列方程解决实际问题的大致步骤吗?

这节课我们按列方程解决实际问题的步骤继续研究这方面的知识。

二、师生探究,学习新知

1、学习例2

(1)出示例2。读题,理解题意。

(2)师:你能用线段图表示题中数量之间的关系吗?

生各自独立画线段图。

(3)展示交流,明确合适的画法。

(4)师:结合题目和线段图,你能说说数量之间的相等关系吗?

生答,师出示,齐读:

水面面积+陆地面积=颐和园的占地面积

(5)师:如果用x来表示陆地面积,那么可以怎样表示水面面积呢? 生答后师在线段图上标注好,并写出设句,齐读设句。

(6)让生根据数量关系列出方程。

师板:x+3x=290

说说这个方程与前面学的方程有什么不同。

问:你会解这个方程吗?把你的想法和同桌交流一下。

(7)全班交流,师随机板书过程,并说明:解这样的方程时,一般应先化简。

追问:求出的x的值表示哪个数量?水面面积该怎样求?

生答师板:3x=72.5×3=217.5

(8)问:这道题怎样检验?

生交流自己的想法后,让生看书P4的检验过程,说说每一步检验的是什么。师随机板检验过程,写出答句。

2、“练一练”

(1)学生独立完成,要求写出检验过程。

(2)集体交流,说说是根据怎样的数量关系列出方程的,又是怎样解列出的方程的。

(3)比较:

引导学生说说“练一练”的解答过程与例2有什么相同的地方?有什么不同的地方?

追问:你觉得列方程解答这样的问题要注意些什么?

三、巩固练习

1、练习二第1题

(1)先让学生说说这几道方程与例题中的方程有什么共同的特点,解这些方程时先要做什么,这样做的依据是什么。

(2)学生独立完成。

(3)交流反馈时,要在关注结果是否正确的同时,了解学生是否进行了检验,是怎样检验的。

2、练习二第2题

学生独立完成后,再要求说说写出的每个含有字母的式子分别表示哪个数量,是怎样想到写这样的式子的。

提醒学生:填出的含有字母的式子要进行化简。

3、练习二第5题

(1)先独立解答。

(2)交流,让学生说清楚自己解决问题时的思考过程,进一步明确列出的方程依据了怎样的数量关系。

四、全课总结: 这节课学习了什么内容?你有什么想要提醒大家注意?

五、作业: 练习二第3、4题。

人教版六年级数学上册全册教案3


人教版六年级数学上册全册教案3

第八课时:圆的周长和面积的练习课

目标:

1、通过 使学生理解并掌握圆的周长和面积计算方法。

2、培养学生分析问题和解决问题的能力,发展学生的空间观念。

3、灵活解答几何图形问题。

教学重点:认真审题,分辨求周长或求面积。

教具准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。

2、分辨面积与周长有什么不同?

(1)概念

圆的周长是指圆一周的长度

圆的面积是指圆所围成的平面部分的大小。

(2)计算公式

求圆的周长公式:C=πd 或 C=2πr

求圆的面积公式:S=πr2

(3)使用单位

计算圆的周长用长度单位

计算圆的面积用面积单位

二、练习巩固

1、判断下面各题是否正确,对的打“√”,错的打“?”。

(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)?。 ( )

(2)半径为2厘米的圆的周长和面积相等。 ( )

(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内) ( )

(4) 面积:3.14×62=3.14×12=37.68 ( )

2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。

⑴半圆的周长是多少厘米?

2×3.14+2×2

=6.28+4

r=2cm =10.28(cm)

(2)半圆的面积:

3.14×22 + =3.14×4

=12.56(平方厘米)

3、一个圆的周长是25.12米,它的面积是多少:

已知:C=25.12米 求:S=?

r=25.12÷(2×3.14) S=πr2

=4(米) =3.14×42

=50.24(平方米)

4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?

已知:R=7厘米=0.7分米 r=0.5分米 求:S=?

S环=π×(R2-r2)

3.14×(0.72-0.52)

=3.14×0.24

=0.7536(平方分米)

三、课堂提高

1、思考题p71 (8)

一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)

(1)围成长方形: 31.4÷2=15.7(m)(长和宽的和)

长 × 宽 = 面积

当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.

(2)围成圆形

直径:31.4÷3.14=10(m)

半径:10÷2=5(m)

面积:3.14× 52=78.5(m2 )

(3)比较:长方形面积:61.6 m2 正方形面积:61.6225 m2 圆面积:78.5 m2

围成圆的面积最大。

2、思考题 p71 (9)、(10)

四、课堂总结

设计意图

本节课是是为避免学生把圆的面积与周长混淆。因此我特意设计了本堂对比课。对比我,我引导学生分清以下几点:

(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。

(2)求圆面积公式是S=πr2 ,求圆周长的公式是 C=πd 或 C=2πr。

(3)计算圆的面积用面积单位,计算圆的周长用长度单位。

根据以上三方面,帮助学生理清了圆的面积和周长的不同之处,我想练习中反映出来的情况会较好。

教学后记:

第九课时:整理和复习

第十课时:确定起跑线

教学目标:

1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。

2、让学生切实体会到数学在体育等领域的广泛应用。

教学重点:如何确定每一条跑道的起跑点。

教学难点:确定每一条跑道的起跑点。

教具准备:多媒体课件

教学过程:

一、 提出研究问题。(出示运动场运动员图片)

1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)

2、各条跑道的起跑线应该向差多少米?

二、 收集数据

1、看课本75页了解400m跑道的结果以及各部分的数据。

2、出示图片、投影片让学生明确数据是通过测量获取的。

直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)

三、 分析数据

学生对于获取的数据进行整理,通过讨论明确一下信息:

1、两个半圆形跑道合在一起就是一个圆。

2、各条跑道直道长度相同。

3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。

四、 得出结论

1、看书P76页最后一图:

2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)

3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5π)

五、 课外延伸

200m跑道如何确定起跑线?

设计意图

此节知识虽不是很重要,但我独列出来进行教学,主要原因有;

1、 此节知识的综合性很强。

2、 密切联系生活,能提高学生的应用能力。

3、 培养学生收集数据的良好习惯,重视科学性。

第五单元 百分数

单元目标:

1、理解百分数的意义,了解它在实际生活中的应用,会正确地读、写百分数。

2、能够进行小数、分数和百分数的互化。

3、理解折扣、纳税、利息的含义,知道它们在生活中的简单应用,会进行这方面的简单计算。

4、在理解、分析数量关系的基础上,使学生能正确地解答有关百分数的问题。

单元重点:

百分数的意义,求一个数是另一个数的百分之几的应用题。

单元难点:

比较复杂的百分数应用题。

第一课时:百分数的意义和写法

教学目标:

1、结合学生生活实际,借助学生的生活经验,使学生理解和掌握百分数的概念,知道百分数与分数之间的区别,会正确读、写百分数,会解释日常生活中常见的百分数。

2、在理解百分数的意义的过程中,培养学生的分析比较能力和抽象概括能力。

3、通过搜集学习材料并进行一系列的讨论和研究,使学生体验数学与日常生活的联系,激发学生学习数学的兴趣,树立学好数学的信心。

教学重点:理解和掌握百分数的意义。

教学难点:正确理解百分数和分数的区别。

教具准备:多媒体课件、投影机。

教学过程:

一、情境创设(投影出示)

1.说出下面各个分数的意义,并指出哪个分数表示具体数量,哪个分数表示倍比关系。

(1)一张桌子的高度是 米。

(2)一张桌子的高度是长度的 。

(引导学生说出: 米表示0.81米,是一具体的数量; 表示把长度平均分成100份,桌子高度占81份,表示倍比的关系。)

2、出示课本第77页情境图,让学生圈出其中的数字,初步感知百分数在生活中的应用,激发学生求知欲。

二、新知探究

(一)教师讲解……像98%、60%、65%这样的数叫做“百分数”。

(二)自学探究

1、教师课件出示自学提纲:

(1)理解百分数的意义。

(2)百分数和分数的联系及区别:

(3)会读、写百分数。

2、学生自学课本第77、78页。

教师巡回视察,掌握学生的自学情况。以有目的的讲评。

小组内解决疑难问题。

3、全部逐步汇报。

(1)表示一个数是另一个数的百分之几的数,叫做百分数,也可以叫做百分率或百分比。

(2)分数既可以表示一个数,又可以表示两个数的关系。而百分数只表示两个数的关系,它的后面不能写单位名称。

(3)百分数的读法:百分数的读法和分数的读法大体相同,也是先读分母,后读分子。

I教师写出一个百分数让个别学生读出。

(4)百分数的写法:通常不写成分数形式,而是在原来分子后面加上百分号“%”来表示。

教师出示数个读作让学生写出如:

百分之九十 写作:90%;

百分之六十四 写作:64%;

百分之一百零八点五 写作:108.5%。

(写百分号时,两个圆圈要写得小一些,以免和数字混淆)

4、同桌互说、互写百分数。

三、当堂测评(课件出示)

1、写出下面的百分数(30分)。

百分之四十 百分之二十四点七

百分之一百二十

2、读一读下面百分数(30分)。

35% 74.8% 56.03% 102.3% 98% 66.8%

3、选择合适的百分数填空(40分)。

2% 15% 120% 98% 100% 0.0001%

(1)今天上课,积极举手的同学占全班人数的( )。

(2)小汽车的速度是卡车速度的( )。

(3)只要同学们认真听讲,这个单元的及格率一定会达到( )。

(4)大海捞针的可能性是( )。

(5)我校学生的近视率高于( )。

学生独立完成教师巡看,及时发现学生的错误。

小组内讲评、订正。

教师对学生进行用眼保健、专心听讲的教育。

四、课堂总结

这节课有什么收获?

游戏

请这节课学会的同学举手,(全班48人),谁能用百分数说一句话,说明现在同学们举手的情况。(这节课学会的人数占全班人数的 %)现在四个组的人数同样多,如果其中一组同学举手,举手的人数可用什么百分数表示?(25%)它表示的意义是什么?两组同学举手呢?三组呢?

设计意图:

1、本堂课,我从三个层次入手。第一层:联系生活实际引出百分数;第二层:理解百分数的具体含义;第三层:教学百分数的读写。三个层次,思路清晰,教学层次明显。其中,我把教学重点放在理解百分数的具体含义上,并及时与分数做了比较,教学结构较为严谨。

2、当堂测评及时检查了学生对知识的掌握情况,并适时对其进行教育。

3、提倡学生自学,教师引导 。培养学生自学习惯的养成。

教学后记

第二课时:百分数和分数、小数的互化

教学目标:

1、使学生理解并掌握百分数和小数互化的方法,能正确地把分数、小数化成百分数或把百分数化成分数、小数。

2、在计算、比较,分析、探索百分数和分数、小数互化的规律的过程中,发展学生的抽象概括能力。

3、通过探索百分数和分数、小数互化的规律,激发学生的数学探索意识。

教学重点:

掌握百分数和分数、小数互化的方法。

教学难点:

正确、熟练地进行百分数和分数、小数的互化。

教具准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

1.百分数的意义是什么?

2.把下面的小数化成分数,并说一说是怎样化的?

0.45 1.2 0.367

3.把下面的分数化成小数,说一说是怎样化的?

4.写出下面各百分数。

百分之十六 百分之七十二点五

百分之一百八十 百分之五百

5.把下面各数扩大100倍是多少?小数点是怎样移动的?如果把它们缩小100倍是多少?小数点是怎样移动的?

2.5 5 0.48 1.25 10.3

个别学生口答。

二、新知探究

1.教学例1。

(1)出示例1:把0.24、1.4、0.123化成百分数。

(2)引导学生思考:要把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。

0.24= =24%

1.4= = = =140%

0.123= = =12.3%

(3)请大家观察一个,如果不看先化成分数的这个过程,小数可以怎样直接化成百分数的?(引导学生归纳出小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。)

(4)说明:当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。

(5)完成第80页“做一做”第(1)题。

2.教学例2

(1)出示例2:把27%、135%化成小数。

(2)引导学生思考:要把百分数化成小数,可以先把百分数改写成分母是100的分数,然后再用分子除以分母,把分数转化成小数。

(3)启发学生口述每题的转化过程,板书:

27%= =27÷100=0.27

135%= =135÷100=1.35

(4)引导学生观察、归纳,百分数怎样很快地直接化成小数?(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)

(5)使学生明白:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变。

(6)完成第80页“做一做”的第(2)题。

3. 引导学生进一步综合归纳百分数和小数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

4.教学例3

(1)出示例3:春蕾小学的一项调查表明,有蛀牙的学生人数占全校学生人数的20%,没有蛀牙的学生人数占80%。

(2)引导学生:百分数是分数的一部分,可以写成分数形式。请大家运用过去所学过的知识,试着把上面几个百分数改写成分数。

(3)根据学生回答,板书:

20%= = 80%= =

(4)想一想:2.5%怎样化成分数?(如果百分数的分子是小数的,可以根据分数的基本性质,把分子、分母同时扩大相同的倍数,使分子变成整数后,再约分。)

(5)完成P81“做一做”第1题。

5、教学例4

(1)学生通过小组自学讨论,找出将分数化成百分数的方法。

(2)小组汇报,并举例说明。(分子除以分母,除不尽时,保留三位小数,也就是百分号前保留一位小数)

(3)完成P82“做一做”第1、2题。

三、当堂测评

1、练习十九第1、2题。

2、练习十九第3题。

学生独立完成,教师巡视,学生汇报交流。

四、课堂总结

这节课有什么收获,还有什么不懂的?

设计意图:

百分数和小数的互化,我并没有直接给出互化的方法,而是让学生自己探索,通过观察例题,再结合“做一做”,让学生在观察比较中发现互化的规律,从而找出快捷的互化方法。百分数和分数的互化这部分内容与百分数和小数的互化编排类似,因此我放手给学生,让他们通过自学、尝试、实践,掌握百分数与小数互化的方法。同时,通过对方法的探索、分析、比较和总结,培养学生思维的灵活性和抽象概括能力。

教学后记

第三课时:练习课

第四课时:用百分数解决问题(1)

求百分率应用题

教学目标:

1、 理解生活中百分率问题的含义,掌握求百分率的方法。

2、 理解求百分率应用题的一般结构和求百分率思考过程的主要步骤,提高应用数学知识解决问题的能力。

3、 通过解决生活中简单的实际问题,培养学生数学的应用意识。

教学重点:理解生活中百分率问题的含义。

教学难点:掌握求百分率的方法。

教学准备:多媒体课件。

教学过程

一、 旧知铺垫(课件出示)

口答:

1、24是50的几分之几?

2、13厘米是43厘米的几分之几?

3、10千克是45千克的几分之几?

提问:要求一个数是另一个数的几分之几?应怎样求?

每个题中的单位1是什么?

二、新知探究

(一)教学例1(1)

1、课件出示自学提纲:

(1)审题,理解题意,明确已知条件及问题。

(2)掌握什么是达标率.

(3)怎样求达标率。

2、学生自学,教师巡视,发现疑难。

3、学生逐步汇报。

达标率是指达标学生的人数占学生总人数的百分之几。

达标率=达标学生人数/学生总人数×100%

120/160×100%

=0.75×100%

=75%

(二)教学例1(2)

学生自学85页教学内容,了解发芽率的计算方法。并进行计算填写在表格中。

教师提问:

什么叫发芽率?(发芽率是求发芽种子数占实验种子数的百分之几。)

这三种种子哪种种子的发芽率高?(大蒜发芽率高。)

让学生感知发芽对农民伯伯的重要性,教育学生热爱劳动、珍惜粮食。

(三)其它百分率学生完成做一做第1题,了解:

出勤率=出勤人数/应出勤人数×100%

成活率=成活棵树/种植棵树×100%

命中率=命中球数/投球总数×100%

岀粉率=面粉重量/小麦重量×100%

出油率=油的重量/花生的重量×100%

学生小组讨论,教师进行总结。

三、当堂测评

练习二十的1至4题。

四、课堂小结

这节课有什么收获呢?学生畅所欲言。

设计意图

1、 教学以学生自学为主,培养学生自学习惯。

2、 从达标率到出油率,拓宽知识面。

教学后记

第五课时:练习课

第六课时:用百分数解决问题(2)

稍复杂的“求一个数是另一个数的百分之几”

教学目标:

1、 掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。

2、 提高学生迁移类推和分析、解决问题的能力。

教学重点:

掌握解决此类问题的方法。

教学难点:

理解题中的数量关系。

教学准备:多媒体课件

教学过程:

一、 旧知铺垫(课件出示)

1、 把下面各数化成百分数。

0.63 1.08 7 0.044

2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”)

(1)某种学生的出油率是36%。

(2)实际用电量占计划用电量的80%。

(3)李家今年荔枝产量是去年的120%。

二、新知探究

1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。

(1)计划造林是实际造林的百分之几?

(2)实际造林是计划造林的百分之几?

(3)实际造林比计划造林增加百分之几?

(4)计划早林比实际造林少百分之几?

2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。

3、学生自主解决“实际早林比计划增加了百分之几”的问题。

(1)分析数量关系,让学生自己尝试着用线段图表示出来。

(2)让学生说说是怎样理解“实际造林比原计划增加百分之几”的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位“1”。)

(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。

方法一:(14-12)÷12=2÷12≈0.167=16.7%

方法二:14÷12≈1.167=116.7% 116.7%-100%=16.7%

(4)小结解题方法:像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位“1”,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。

(5)改变问题:问题如果是“计划造林比实际造林少百分之几?”,该怎么解决呢?

学生列出算式:(14-12)÷14

(再次强调两个问题中谁和谁比,谁是单位“1”。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。)

三、当堂测评

1、练习二十二第1、2题。

四、课堂质疑、谈表现

这节课都学到了什么?

还有什么不懂的?

自己表现得又怎样?

相对自己说些什么?

设计意图

紧扣线段图,帮助学生理解题意,分析数量关系,再通过讨论学习的方式,让学生自主尝试,并理解两种不同解法的含义。

教学后记

第七课时:练习课

第八课时:用百分数解决问题(3)

稍复杂的“求一个数是另一个数的百分之几”

教学目标:

1、 使学生掌握求稍复杂的已知一个数的百分之几是多少,求这个数的应用题的解题方法,并能正确地解答这类应用题。

2、感受数学与生活的联系,培养学生的应用意识和解决简单的实际问题的能力。

教学重点:

掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。

教学难点:

正确、灵活地解答这类百分数应用题的实际问题。

教学准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

1、出示复习题:学校图书室原有图书1400册,今年图书册数增加了 。现在图书室有多少册图书?

2、学生找出这道题目的分率句,确定单位“1”,并根据数量关系列式:1400×(1+ )

二、新知探究

(一)、教学例3

1、出示例题:学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?

2、出示自学提纲:

(1)读题,找已知条件和问题,明确这道题是把谁看成单位“1”。

(2)思考:从“今年图书册数增加了12%”这句话中,你能知道些什么?

(3)学生讨论后分小组交流,并独立列式计算:

3、学生汇报全班交流。

① 今年图书增加的部分是原有的12%。

② 今年图书的册数是原有的120%。

第一种:1400×12%=168(册)

1400+168=1568(册)

第二种:1400×(1+12%)

=1400×112%

=168(册)

4、 通过这道题的学习,你明白了什么?(求一个数的几分之几和求一个数的百分之几,都要用乘法计算)

(二)、巩固练习:完成P93“做一做”第1题。

三、当堂测评(课件出示)(每题25分)

1、(1)出示练习:

①油菜子的出油率是42%。2100千克油菜子可榨油多少千克?

②油菜子的出油率是42%。一个榨油厂榨出油菜子2100千克,用油菜子多少千克?

(2)分析理解:

A、出油率是什么意思?这两道题有什么相同和不同?

B、第(1)题是求一个数的百分之几是多少,应用什么方法计算?第(2)题是已知一个数的百分之几求这个数,可以怎样解?

(3)学生独立列式解答。

2、教科书练习二十二的第1、3、4题。

学生独立完成,教师巡回查看,小组内订正。

四、课堂回顾

这节课你有什么收获?

设计意图:

本部分内容是“求比一个数多(少)百分之几”的应用题,这部分内容与“求比一个数多(少)几分之几”的应用题相似,只是相应的分率转换成了百分率。因此,在复习上,我安排了与例题较为相似的分数应用题,通过对题目的改变,让学生了解二者的联系。因为题型及解题方法几乎都相同,学生学起来也会较为容易。

教学后记

第九课时:折 扣

教学目标:

1.明确折扣的含义。

2.能熟练地把折扣写成分数、百分数。

3.正确解答有关折扣的实际问题。

4.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。

教学重点:会解答有关折扣的实际问题。

教学难点:合理、灵活地选择方法,解答有关折扣的实际问题。

教学准备:多媒体课件

一、 创设情境(视频播放)

。节日期间各商家打折促销的活动场面:买二送一、八折、七五折、五折……

学生分析各商家搞了哪些促销活动?谁来说说他们是怎样进行促销?(学生汇报调查情况。)

教师讲解:打折出售,大家调查到的打折是商家常用的手段,是一个商业用语,

二、新知探究。

(一).教学折扣的含义,会把折扣改写。

1、课件出示自学提纲:

(1)什么叫折扣?

(2)几折如何用分数表示?百分数呢?

2、学生自学课本第97页的第一自然段。教师巡回了解学生的掌握情况。( “几折”是就是十分之几,也就是百分之几十)

3、练习检查自学情况。

八折:( )/10 ( )/% 七五折: ( )/10 ( )/%

六折:( )/10 ( )/% 四五折: ( )/10 ( )/%

( )折:9/10 ( )/% ( )折: ( )/10 25/%

个别学生回答,并说出是什么意思。集体订正。

4、小组长说出几折、十分之几或百分之几,组员轮流说出相应的数。教师各小组间查看。

5、讨论,找规律。

原价乘以( )%恰好是现价;现价除以原价是( )%;现价除以( )%是原价。

(二).运用折扣含义解决实际问题。

例4:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?

1、教师提出自学问题,指导学生分析题意:打八五折怎么理解?是以谁为单位“1”?

2 、学生试做,教师在学生中了解学习情况。

3、小组内讲评。

4、教师问:谁还有什么不懂得请提出来。并讲评。

5、学生独立完成课本97页“做一做”。

三、当堂测评(课件出示)

1、判断(20分)。

① 商品打折扣都是以原商品价格为单位“1”,即标准量。( )

② 一件上衣现在打八折出售,就是说比原价降低10%。( )

2、练习(40分)。

①四折是十分之( ),改写成百分数是( )。

②六折是十分之( ),改写成百分数是( )。

③七五折是十分之( ),改写成百分数是( )。

④九二折是十分之( ),改写成百分数是( )。

3、解决问题(40分)

爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

学生独立完成,小组内讲评、得分。教师让学生说出“比原价便宜了多少钱?”理解情况。

四、课堂总结;

在节日里你能否购买打折的商品?

设计意图:

1、重视情景教学。让学生初步感知数学在生活中的广泛应用,激发求知欲。

2、以学生自学为主,培养学生自学习惯的养成。

3、当堂测评了解学生掌握情况,增强学生的自信心。

教学后记:

第十课时:纳 税

教学目标:

1、使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。

2、在计算税款的过程中,加深学生对社会现象的理解,提高解决问题的能力。

3、增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。

教学重点:税额的计算。

教学难点:税率的理解。

教学准备:多媒体课件

教学过程:

一、 创设情境

1、 教师课件展示课本中的4件主题图。

2、 提问:

(1)这些设施的费用是从哪儿来的?(政府投资的,国家出钱建设的。)

(2)国家的钱又是从哪里来的?国家的起源主要来自于税收。)

今天我们就来学习纳税的有关知识。

二、 新知探究

(一)纳税的意义和项目。

1、学生自学98页有关纳税的内容。

讨论(课件出示):

(1)什么是纳税?

(2)为什么要纳税?

(3)你认为国家的哪些事是国家用税款做的。

(4)你对纳税人有什么看法?

(5)税收有几类?

(6)什么叫应纳税额?

(7)什么叫税率?

2、汇报:

(1)纳税是根据国际税法的有关规定,按照一定的比例把集体或个人收入的一部分缴纳给国际家。

(2)税收是国家收入的主要来源之一。

(3)公路的建设、医院、学校、国防科技等都是国家用税款做的。

(4)依法纳税是每个公民应尽的义务。

(5)税收主要分为消费税、增值税、营业税和个人所得税几类。

(6)缴纳的税款叫做应纳税额。

(7)应纳税额与各种收入的比率叫做税率。

3、试说以下税率表示什么。

A、商店按营业额的5%缴纳个人所得税。这里的5%表示什么?

B、某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?

(二)税款计算

1、出示例5(课本99页)

一家大型饭店十月份的营业额是30万元。如果按营业额的5%

缴纳营业税,这家饭店十月份应缴纳营业税多少万元?

2、理解:这里的5%表示什么?(应缴纳营业税款占营业额的百分比。)

3、要求“应缴纳营业税款多少”就是求什么?

4、让学生独立完成?教师巡视,小组内讲评。

30×5% = 1.5(万元)

答:十月份应缴纳营业税约为1.5万元。

三、当堂测评。

练习二十二第4题。(要点:5%对应的单位“1”是营业额,7%对应的单位“1”是营业税。)

学生独立完成,教师巡视。

四、课堂总结

1、这节课有什么收获?

2、“培养纳税意识、从我做起”我没应该做些什么?

设计意图:

1、从生活情境中来,到生活中去。这节课的开始我先展示了四副图,让学生初步感知税收的来源。在总结课堂时又把学生引入生活,做的学以致用。

2、先学后教,当堂测评。让学生体会知识的形成过程,了解并解决问题。测评使教师掌握教学实况。

教学后记:

第十一课时:利 息

教学目的:

1、通过教学使学生知道储蓄的意义;明确本金、利息、税后利息和利率的含义;掌握计算利息的方法,会进行简单计算。

2、对学生进行勤俭节约,积极参加储蓄;支援国家、灾区、贫困地区建设的思想品德教育。

教学重点:掌握利息的计算方法。

教学难点:正确地计算利息,解决利息计算的实际问题。

教学准备:多媒体课件

教学过程:

一、 谈话引入

随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一是支援国家建设,二是对个人也有好处,既安全和有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。

二、新知探究

(一)介绍存款的种类、形式。

学生自读课本第99页,了解;

存款分为活期、整存整取和零存整取等方式。

(二) 理解本金、利息、税后利息和利率和含义。

1、 阅读P99页的内容,自学讨论。

2、 小组汇报,全班交流。

本 金 :存入银行的钱叫做本金.

利 息:取款时银行多支付的钱叫做利息。

税后利息:国家规定,存款的利息要按20%的税率纳税。

利 率:利息和本金的比值叫做利率。

3、结合具体实例分析

教师课件出示:例如:小丽2001年月1月1日把100元钱存入银行,整存整取一年,到2002年1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的确1.8元,共101.8元。)

个别学生回答:

小丽存入的100元就是本金。

小丽实际得到的1.8元是税后利息。

4、教师讲解:

国债的利息不纳税。

利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。

5、学生阅读P99页表格,了解同一时期各银行的利率是一定的。

6、教师引导学会填写存款凭条。

课件出示空存款凭条,请学生尝试填写。然后评讲。(要填写的项目:户名、存期、存入金额,、存种、密码、地址等,最后填上日期。

(三)、利息的计算。

(1)出示利息的计算公式: 利息=本金×利率×时间

(2)讲解计算方法:

按照以上的利率,如果小丽的100元钱存整取三年,到期的利息是多少?学生计算后交流,教师板书:100×2.70%×3=8.10(元)

(3)三年后取款,小丽能得到8.10元利息吗?为什么?

学生发表意见后,教师指出:1999国家规定存款时,要按利息的确20%缴纳利息税,你能再算一算如果你存入100元,3年后实际能得多少利息吗?

(4)学生计算后回答,教师板书:

利息税金:8.10×20%=1.62元 税后利息:8.10-1.62=6.48元

加上她存入本金100元,到期时她可以实际得到本金和税后利息一共是106.48元。

(5)强调:教育储蓄课免征储蓄存款利息所得税率。

三、当堂测评(课件出示)。

1、张敏把800元压岁钱存入银行,存期三年,到期后他一共可取回多少钱?(50分)

2、李叔叔今年存入银行10万元,定期3年,年利率为2.7%,到期后扣除利息税,得到的利息购买一台6000元的彩色电视机吗?(50分)

学生独立完成,教师巡视。

小组内解决疑难后全班交流。

四、 课堂总结:

这节课你有什么收获?在你们小组内汇报一下。

学习了利息你有什么想法?以后该怎样做?

设计意图:

利息是百分数在生活中的具体应用,与人们的生活密切相关。主要是通过公式的掌握教给孩子解题的方法,快捷而实用。

教学后记:

第十二课时:整 理 和 复 习 (一)

第十三课时:整 理 和 复 习(二)

第六单元:统 计

单元目标:

1、 通过实例,认识扇形统计图的特点,知道扇形统计图可以直

观的反映部分量占总数的百分比,能从扇形统计图读出必要的信息。

2、 充分利用学生已有的知识经验,通过与所学过的条形统计图

的特点和作用的对比,体会扇形统计图的特点和用途。

3、 在学习中,应该使学生体会到,各种统计图有不同的特点,

可以从不同的角度反映数据的特征。

单元重点:使学生掌握扇形统计图的特点和作用。

单元难点:

1、 巩固对储蓄存款的认识,了解教育储蓄以及国债利率的有关知识。

2、 综合运用相关知识解决生活实际问题。

第一课时:扇形统计图

教学目标:

1、 认识扇形统计图的特点和作用。

2、 能看懂并能简单地分析扇形统计图所反映的情况。

教学重点:

看懂并能简单地分析扇形统计图所反映的情况。

教学难点:

看懂并能简单地分析扇形统计图所反映的情况。

教学准备:多媒体课件

教学过程:

一、 创设情境

教师出示课本第106页的主题图(投影出示)

1、 观察主题图的内容。

提问:主题图上都画了哪些运动项目?

2、 收集和整理数据,统计全班最喜欢的各项运动项目的人数,描述制成条形统计图和折线统计图方法。分别展示在黑板上。

3、 这两种统计图有什么特点。

如果要清楚的了解各部分数量同总数之间的关系,我们可以选用扇形统计图来表示。同时课件出示。

二、 新知探究

(一) 扇形统计图的特点。

1、教师提问

(二) 观察条形统计图,你从中得到了哪些有用的信息?

(三) 从条形统计图中,还有哪些信息不容易表示出来?(引发学生思考,从而发现条形统计图不容易看出各部分量与总量的关系)

(四) 生成扇形统计图。引导学生观察从扇形统计图中,你得到了哪些游泳的数学信息?(学生甘居直观观察,发表见解)

(五) 根据统计图上表示的情况,你对我班同学有哪些建议?

(六) 回顾知识生成,归纳扇形统计图的特点和作用。

(七) “做一做”:自主看图,说一说,你从图中得到了哪些有价值的数学信息?(分析后根据题意自主计算,全班核对)

三、 当堂测评

1、 练习二十五第1题:自主看图,说一说李明同学一天的作息安排是否合理,从中你能提出哪些合理化建议。(引导学生说说怎样安排时间才合理,才能做到劳逸结合)

2、 练习二十五第2题:自主看图,说一说从图中得到哪些信息,在小组内交流。(使学生体会到父母的辛苦和对自己的爱,激发学生对父母、对家庭的爱)

四、 课堂总结

学生总结、比较扇形统计图和条形统计图及折线统计图相比有何特点。

设计意图:

扇形统计图的教学,我主要联系了条形统计图和折线统计图的特点,让学生通过例题看到:在表示全班人数的圆中,用扇形可以清楚地表示出最喜欢的各种运动项目的人数占全班总人数的百分比。从而使学生真切地体会到扇形统计图的特点,并通过看图回答问题并提出问题,加深对扇形统计图

课后小记:

第二课时:合理存款

教学目标:

1、 让学生巩固对储蓄存款的认识,了解教育储蓄以及国债利率的有关知识。

2、 综合运用相关知识解决生活实际问题。

3、 通过活动,使学生认识到数学应用的广泛性;同时促使学生了解教育储蓄、国债等相关知识,培养学生的投资意识。

教学重难点:

巩固对储蓄存款的认识,了解教育储蓄以及国债利率的有关知识。

教学准备:

多媒体课件。

教学过程

一、 明确问题

提问:妈妈要存款一万元,供儿子六年后上大学用,怎样存款收益最大?

解决几个很关键的信息:本金、可存款年限以及资金用途。

二、 收集信息

通过去银行咨询以及查阅相关规定的方式获取信息:

1、 人民币储蓄存款利率,包括定期整存整取、零存整取、活期利率。

2、 教育储蓄存款免征存款利息所得税,它可存的期限以及相应利率。

3、 国债也是免征存款利息所得税,有三年期和五年期的……

三、 设计方案

根据上述收集到的信息,让学生小组合作设计具体的储蓄存款方案。

1、 将定期储蓄存款的方案填在课本111页第一张表格。

2、 其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格。

3、 每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。

四、 选择方案

从上述各种可行的方案中选取受益最大,即最优化的方案进行合理存款,并计算出到期后总共的收入。

可能的方案主要有以下几种:

1、 教育储蓄存六年。

2、 先买三年期国债,到期后再买三年期国债。

3、 先买三年期国债,到期后再存三年期教育储蓄。

4、 先买五年期国债,到期后再存一年期教育储蓄。

五、 课外测评

帮爸爸、妈妈合理存款。

设计意图:

这是一节实践性、实用性很强的课。教学中我注意做到以下几大:

1、 重视信息的收集,方案的设计。充分把学生的自主能动性体现出来。

2、 注重比较,让学生通过具体分析得出结论。

3、 注重教学的实践指导。

课后小记:

第七单元:数学广角

“鸡兔同笼”问题

单元目标:

1、知识与技能

(1)、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

(2)、尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会代数方法的一般性。

2、过程与方法

解决“鸡兔同笼”问题可用猜测、列表、假设或方程解等方法。

3、情感、态度与价值观

(1)、培养学生的逻辑推理能力。

(2)让学生体会到数学问题在日常生活中的应用。

单元重难点:

尝试用不同的方法解决“鸡兔同笼”问题。

一课时:“鸡兔同笼“问题

教学目标:

1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

2、通过猜测、列表、假设或方程解等方法,解决“鸡兔同笼”问题。

3、通过本节课的学习,知道与“鸡兔同笼”有关的数学史,对学生进行数学文化的熏陶和感染。

教学重点:

尝试用不同的方法解决“鸡兔同笼”问题。

教学难点:

通过对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

教学准备:

故事视频、探讨表格。

教学过程

一、故事引入

教师:在我国古代流传着很多有趣的数学问题,“鸡兔同笼”就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)

二、探究新知

1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?

让学生以两人为一组讨论。

汇报讨论的结果。

(1)、列表:

鸡 8 7 6 5 4 3

兔 0 1 2 3 4 5

脚 16 18 20 22 24 26

(2)、假设法:

假设笼子里都是鸡,那么就是8×2=16(只)脚,这样就比题目多26-16=10(只)脚。

因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有10÷2=5(只)兔子。

因此,鸡就有:8-5=3(只)

(3)、用方程解:

解:设鸡有x只,那么兔就有(8-x)只。

根据鸡兔共有26只脚来列方程式

2x+(8-x)×4=26

2x+8×4-4x=26

32-26=4x-2x

2x=6

x=3

8-3=5(只)

2、小结解题方法:

教师:以上三种解法,哪一种更方便?

小结:要解决“鸡兔同笼”问题,可以采用假设法或方程解都可以。用方程解更直接。

3、独立解决书中的趣题。

(1)、方程解:

解:设鸡有x只,那么兔就有(35-x)只。

根据鸡兔共有94只脚来列方程式

2x+(35-x)×4=94

2x+35×4-4x=94

140-94=4x-2x

2x=46

x=23

35-23=12(只)

答:鸡有23只,兔有12只。

(2)、算术解:

假设都是鸡。

2×35=70(只)

94-70=24(只)

24÷(4-2)=12(只)

35-12=23(只)

答:鸡有23只,兔有12只。

三、当堂测评

1、完成教科书第115页做一做的第1题。

学生独立读题分析后,列式解答。鼓励用方程解。

2、完成教科书第115页做一做的第2题。

提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)

请同学独立列式解答。(讲评时重点解释算术解的每步的算理)

6×8=48(人)

假设8条都是大船可坐48人。

48-38=10(人)

假设人数比实际的人数多10人。

多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。

10÷(6-4)=5(条)

8-5=3(条)

这是表示有3条大船。

四、课堂总结

通过本节课的学习,你能解决那些生活中的问题

设计意图:

1、“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为间的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

2、猜测、列表、假设或方程解 等方法的学则根据学社的实际情况。

3、练习中安排了类似的一些习题,比如“龟鹤”问题,生活中的一些实际问题等,让学生进一步体会到这类问题在日常生活中的应用,并巩固用“假设法”或方程的方法来解决这类问题。

教学后记:

人教版六年级数学上册全册教案2


人教版六年级数学上册全册教案2

第八课时:解决问题(三)

稍复杂的分数除法应用题

目标:

1、通过 , 使学生在理解分数除法意义及掌握分数乘法应用题

题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

教学重点:

弄清单位“1”的量,会分析题中的数量关系。

教学难点:分析题中的数量关系。

教具准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

小红家买来一袋大米,重40千克,吃了 ,还剩多少千克?

1、指定一学生口述题目的条件和问题,其他学生画出线段图。

2、学生独立解答。

3、集体订正。提问学生说一说两种方法解题的过程。

4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

二、新知探究

1、教学补充例题:小红家买来一袋大米,吃了 ,还剩15千克。买来大米多少千克?

(1)吃了 是什么意思?应该把哪个数量看作单位“1”?

(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:

买来大米的重量-吃了的重量=剩下的重量

(4) 指名列出方程。

解:设买来大米X千克。

x- x=15

2、教学例2

(1)出示例题,理解题意。

(2)比航模组多 是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的

(3)学生试画出线段图。

(4)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数

(5) 根据等量关系式解答问题。

(6) 解:设航模小组有χ人。

χ+ χ=25

(1+ )χ=25

χ=25÷

χ=20

答:航模小组有20人。

三、课堂小结

1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

四、当堂测评

练习十第4、12、14题。

学生独立完成,教师巡回指点,有困难的学生及时请教优秀学生,做到“一帮一、兵强兵”。

设计意图:

继续发挥线段图的作用,以方便学生理解,寻求解决问题的方法。

教学后记

第九课时:比和比的应用(一)

比的意义

教学目标:

1、使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。

2、引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。

教学重点:比与除法、分数的关系

教学难点:理解比的意义

教具准备:多媒体课件

教学过程:

一、创设情境,揭示课题

1. 课件呈现我国第一艘载人飞船“神舟”五号顺利升空的影像资料。

画面呈现联合国国旗和中华人民共和国国旗。

师:杨利伟展示的两面旗都是长15厘米,宽10厘米。怎样用算式表示它们的长和宽的关系?

学生回答:

(1)用“15÷10”表示长是宽的多少倍?

(2)用“10÷15”表示宽是长的几分之几?

师:我们还可说成长和宽的 比是15比10,寬和长的比是10比15.

2、板书课题

二、新知探究

(一)课件出示自学提纲。

1、弄懂什么叫做比。是表示什么关系。

2、一个比中有几个项,哪个项叫前项,哪个项叫后项。

3、认识比号,会正确读、写一个比。

4、掌握比值的概念并会求比值。

5、会将一个比写成分数形式。

(二)各小组根据提纲自学。

教师巡回查看,了解学生学习中的疑难,以便有目的的开展教学。

(三)逐步汇报并举例。

1、两个数相除,又叫做两个数的比。

2、“:”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。

3、15比10 记作15∶10 10比15 记作10∶15

4、比的前项除以后项所得的商,叫做比值。

例如:

3 ∶ 2=3÷2=

(四).教学比与除法、分数的关系。

各小组讨论

个别汇报,教师课件出示表格

除法 被除数 ÷(除号) 除数 商

分数 分子 -(分数线) 分母 分数值

比 前项 :(比号) 后项 比值

教师任意说一个比,让学生改写成分数或除法算式。

(五)判断:下面数量间的关系是表示两个数的比吗?

① 甲数是9,乙数是7,甲数和乙数的比是9比7;乙数和甲数的比是7比9。

② 拖拉机45分耕了2公顷地,工作总量和工作时间的比是2比45。

③ 足球比赛,甲队和乙队的比分是3比2。

三、当堂测评(课件出示)

学生独立完成,教师巡回指点,照顾学困生。

小组间订正、评分、纠错。

四、课堂小结

1、这节课你有什么收获?

2、觉得自己掌握得怎样?

3、有什么感受或想法?

教学后记

第十课时:比的基本性质

教学目的:

1、 通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。

2、 通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。

3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。

教学重点:理解比的基本性质,掌握化简比的方法

教学难点:化简比与求比值0的不同。

教具准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

1、什么叫做比?比的各部分名称是什么?

2、比与除法和分数有什么关系?

比 前项 :(比号) 后项 比值

除法 被除数 ÷(除号) 除数 商

分数 分子 -(分数线) 分母 分数值

3、除法中的商不变规律是什么?举例:6÷8=(6×2)÷(8×2)=12÷16

4、分数的基本性质是什么?举例: = =

二、新知探究

(一)比的基本性质

1、类比猜测:除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比也有这样的一条性质吗?如果有,这条性质的内容是什么?(学生猜测,并相互补充,把这条性质说完整)

2、验证猜测的性质能否成立:学生以四人小组为单位,讨论研究。

6÷8=(6×2)÷(8×2)=12÷16

6:8=(6×2)∶(8×2)=12:16

6:8=(6÷2)∶(8÷2)=3:4

6÷8=(6÷2)÷(8÷2)=3÷4

3、 小组派代表说明验证过程,其他同学补充说明。

正式得出“比的基本性质”:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

(二)自学教学例1(课件出示)

1、学生自学,小组讨论解题方法。

学生汇报,教师讲评。

2、把下面各比化成最简单的整数比

∶ 0.75∶2

想:每一步要乘以多少,为什么?

3、引导学生审题,说说题目提出了几个要求(两个,一是化成整数比,二必须是最简的)

4、 指名学生说出自己化简的方法,全班评判。

三、当堂测评

1、P46“做一做”(每题10分)

2、练习十一第2题(40)

(提醒学生第二个长方形,长的那条为“长”,短的那条为“宽”)

学生独立完成,小组内交流。教师巡回指点,学生汇报后,讲解疑难。

四、课堂总结

今天我们学习了什么知识?比的基本性质可以应用在生活中的好些方面,让我们细心的观察生活吧。

设计意图:

本堂课,是一节充分体现以学生为主的课。教学中,,由除法的“商不变性质”和“分数的基本性质“就能自然而然的联想到是否也存在着“比的基本性质”。对此,我不想束缚学生的思维,而是顺从学生的思维规律,鼓励他们大胆猜想,并通过举例、论证等方法小心验证,最后确切地得出了“比的基本性质”。在“大胆猜想——小心验证——得出结论”这一过程中,我尽量地放手给学生,让学生自主课堂,步步深入,而教师只在关键处起点拨作用。这样,整堂课的教学,学生的学习兴趣会更浓,积极性会很高,成就感会更足,理解和记忆也就自然较为深刻。

教学后记

第十一课时 :比的应用

教学目标:

1、 结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。

2、 培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。

3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。

教学重点:

进一步掌握按比例分配应用题的结构特点和解题思路。

教学难点:

正确分析解答比例分配应用题。

教具准备:多媒体课件。

教学过程:

一、设置情境(课件出示)

1、建筑工地上要运些水泥、沙子和石子,按2:3:5搅拌20吨的混凝土,为了刚好搅拌完而没剩余,工人叔叔应个准备多少呢?

学生想出办法并及时汇报。

2、(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。这就是今天我们要学习的比的应用。板书课题。

二、新知探究

(一)、教学例2。

1、教师课件出示自学提纲;

(1)弄清题意后,问:题目中要分配什么?是按什么进行分配的?

(2)“浓缩液和水的体积1:4”,是什么意思?

(3)求出两种各多少ml。应怎样求?(引导学生进行解题)

(4)如何检验解答是否正确呢?:

2、学生自学。教师巡回指点,照顾学困生,发现疑难。

3、学生逐步汇报,全班交流。

(1)分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。

(2)就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)稀释液平均分成的份数:1+4=5

(3)浓缩液的体积:500 × 1/1+4 = 100(ml)

水的体积: 500 × 4/1+4 = 400(ml)

答:稀释液100ml,水400ml。

(4)检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4

(二)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)

(三)课堂提高

(1)(课件出示)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)

(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)

(4)怎样分别算出各班应种的棵数?引导学生解答:

三个班的总人数:47+45+48=140(人)

一班应栽的棵数: 280× =94(人)

二班应栽的棵数: 280× = 90(人)

三班应栽的棵数: 280× = 96(人)

答:一班栽树94棵,二班栽树90棵,三班栽树96棵。

(5)学生进行检验。

(6)学生试做情境中的题,帮助工人叔叔解决问题。

教师巡视,个别指点讲解。

三、拓展延伸

用120厘米的铁丝做一个长方体的框架。长、宽、高的比是3:2:1.这个长方体的长、宽、高分别是多少?

四、课堂小结

这节课你都学到了什么?

觉得自己表现得怎样?

还有什么不的?

设计意图

本节课的内容相对而言较容易掌握,一开始,我将学生置于情境教学中,初步感受学习数学的乐趣。教学过程中,我两种方法并重,并让学生理解两种方法的殊途同归之处。对于类型稍有不同的题目,如“做一做”第2题,以人数为比例进行分配的,我在教学时添加了一道例题,教学后再让学生独力解决情境中的题,这样的教学会让学生学得较为轻松,也对这种类型题掌握得较扎实,同时也体会到数学的广泛应用。

教学后记

第十二课时 :练习课

第十三课时:整理和复习

第四单元 圆

单元目标:

1、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

2、使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

3、独立自学,使学生初步认识弧、圆心角和扇形。

4、使学生认识轴对称图形,知道轴对称的含义,能找出轴对称图形的对称轴。

5、通过介绍圆周率的史料,使学生受到爱国主义教育。

单元重点:

1、 认识圆和轴对称图形;

2、 掌握圆的周长和面积的计算公式。

单元难点:

理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆。

1. 认识圆

(1)圆的认识

教学目标:

1、使学生认识圆,掌握圆的特征,理解直径与半径的关系。

2、会使使用工具画圆。

3、培养学生观察、分析、综合、概括及动手操作能力。

教学重点:

圆的认识,通过动手操作,理解直径与半径的关系,认识圆的特征。

教学难点:画圆的方法,认识圆的特征。

教学准备:多媒体课件,圆规等。

教学过程:

一、旧知铺垫(课件出示)

1、我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征?

长方形 正方形 平行四边形 三角形 梯形

3、 出示圆片图形:

(1)圆是用什么线围成的?(圆是一种

曲线图形)

(2)举例:生活中有哪些圆形的物体?

(钟面、车轮、水杯、碗口等)

二、新知探究

(一)认识圆心、直径和半径。

1 、教师课件出示自学提纲。

(1)生拿出准备好的一个圆纸片。

(2)课本第56页动手折一折。

折过2次后,你发现了什么?再折出另外两条折痕呢?

(3)指出纸片的圆心、直径和半径。

2、自学,教师巡回指点,发现难点。

3、教师在黑板上画一个圆,让个别学生上台指出。

4、小组讨论:

(1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?

(2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?

(3)小结:在同一个圆里,有无数条直径,且所有的直径都相等。

在同一个圆里,有无数条半径,且所有的半径都相等。

5、直径与半径的关系。

(1)学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。

得出结论:在同一个圆里,

(2)58页做一做第一题。

(二)画圆。

1、介绍圆规的各部分名称及使用方法。

2、让个别学生说出老师刚才是如何画圆的。

学生自学课本第57页并小结出画圆的步骤和方法。

3、小组内画r=3cm的圆。组长检查评比,然后全班评比。

三、当堂测评

1、判断,并说明理由。(40分)

(1)半径的长短决定圆的大小。 ( )

(2)圆心决定圆的位置。 ( )

(3)直径是半径的2倍。 ( )

(4)圆的半径都相等。 ( )

2、画一个半径是2厘米的圆。再画一个直径是5厘米的圆。(30分

3、思考题:在操场如何画半径是5米的大圆?(30分)

学生独立完成教师巡回查看,发现疑难。

小组内评比,纠错。组长组织解决存在问题

四、谈收获、讲表现。

这节课你学到了什么,对自己的课堂表现还有什么提议吗?觉得在哪些地方还需改进。

第二课时:轴对称

教学目标:

1、在前面所学得成轴对称的平面图形的基础上,教学认识圆的对称轴。

2、使学生认识到圆是轴对称图形,且对称轴有无数条。

3、培养学生动手操作能力,在操作中加深对所学平面图形的对称轴的认识

教学重点:圆的对称轴。

教学难点:画对称轴的方法。

教具准备:多媒体课件、直尺。

教学过程:

一、创设情境,初步感知(课件出示)

1、举例说出轴对称的物体。

如:蝴蝶 、飞机、门窗、圆中的钟面、月饼等。想一想这些图形有什么特点?

2、观察、概括。

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线直线叫做对称轴。

二、教学认识圆的对称轴

1、出示例3: 你能分别画出下面两个圆的对称轴吗?你能画出几条?

2、学生尝试画出圆的对称轴,观察、再动手折一折,你发现了什么?

3、小结:圆有无数条对称轴。每一条直径所在的位置都是它的对称轴。

三、课堂提高。

1、在方格上画对称轴,并量出对称轴两边相对的点到对称轴的距离。

2、小结:对称轴两侧相对点到对称轴的距离相等。

3、从上面的图形可以看出,正方形、长方形、等腰三角形和圆都是轴对称图形,这些对称图形各有几条对称轴?画出来。

4、下面的图形是轴对称图形吗?它们各有几条对称轴?

长方形 等边三角形 等腰三角形 正方形 圆 环形

四、当堂测评

练习十四弟5、6、7题

学生独立完成,教师巡回查看,帮助学困生理解每道题。

小组内讲评,充分发挥组长的作用,以“兵强兵、兵练兵’.

五、课堂总结

今天我们学习了哪些知识?学生畅所欲言。

设计意图

本堂课是对圆的初步认识,概念较多,也可会较乏味。为了避免学生学得枯燥、没兴趣,我采用课件与动手操作相结合的方式进行教学,以分调动起学生的学习积极性,并让学生在动手操作的基础上,自主探索和发现圆的有关特性。在教学“画圆”时,我不讲授而是让学生自己来讲述、演示画圆的步骤。当堂测评检验学生的学习效果,同时让优秀的学生带动学困生,共同进步。

第三课时:圆的周长和面积

(1)圆的周长

教学目标:

1、使学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能正确计算圆周长。

2、培养学生的观察、比较、概括和动手操作的能力。

3、对学生进行爱国主义教育。

教学重点:

圆的周长和圆周率的意义,圆周长公式的推导过程。

教学难点:

圆周长公式的推导过程。

教学准备:多媒体课件、实物投影、圆、绳子、直尺、圆规等。

教学过程:

一、情境创设。

1、课件出示一个正方形花坛和一个圆形花坛。

问:这是什么图形?围着花坛跑一圈,哪个长哪个短呢?

学生想办法:(1)看哪个跑得步子多。

(2)计算它们的周长,进行比较更为简便。

2、什么是长方形的周长?怎样计算?这个长方形的周长与长和宽有什么关系? C=(a+b)×2

3、什么是圆的周长?

让学生上前比划,圆的周长在那?那一部分是圆的周长?

得出定义:围成圆的曲线的长叫做圆的周长。

二、新知探究

(一)圆周长的公式推导。

1、探索学习。

(1)你可以用什么办法知道一个圆的周长是多少?

(2)学生各抒己见,分别讨论说出自己的方法:

A、用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,

即可得出圆的周长。

B、把圆放在直尺上滚动一周,直接量出圆的周长。

C、用一条小线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗?

用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。

2、动手实践。

(1)4人小组,分别测量学具圆,报出自己量得的直径,周长,并计算周长和直径的比值。

(2)引生看表,问你们看周长与直径的比值有什么关系?

(3)你有办法验证圆的周长总是直径的3倍多一点吗?

(4)阅读课本P63,介绍圆周率,及介绍祖冲之。

∏=3.1415926535…… 是一个无限不循环小数。

3、得出计算公式。

圆的周长=圆周率×直径

C = ∏d

C = 2∏r

(二)、解决新问题。

1、解决情境题中的问题。

学生独立完成,小组内订正。

2、教学例1 : 圆形花坛的直径是20m,它的周长是多少米?小自

行车车轮的直径是50m,绕花坛一周车轮大约转动多少周?

小组内想出解决的办法,并在全班交流。

第一个问题: 已知 d = 20米 求:C = ?

根据 C =πd

20×3.14=62.8(m)

第二个问题: 已知: 小自行车d = 50cm

先求小自行车C = ? c=πd

50cm=0.5m

0.5×3.14=1.57(m)

再求绕花坛一周车轮大约转动多少周?

62.8 ÷1.57=40(周)

答:它的周长是62.8米。绕花坛一周车轮大约转动40周。

三、当堂测评

1、求下列各题的周长。(60分)

书本65页练习十五的第1题

2、判断正误。(40分)

(1)圆的周长是直径的3.14倍。 ( )

(2)在同圆或等圆中,圆的周长是半径的6.28倍。 ( )

(3)C =2πr =πd 。 ( )

(4)半圆的周长是圆周长的一半。 ( )

四、课堂质疑。

通过这节课的学习你都知道了什么?还有什么不懂得呢?

设计意图:

这节课我从以下几处着手:

1、 来源于生活,回归于生活。课前从生活中的实际问题入

手,提高学生学习兴趣,激起求知欲。在得出公式时及时解决问

题,体现数学课的应用价值。

2、 重视动手操作,深刻理解公式。对于公式的探究,我改变

以往的教师演示教学法,而是让学生通过具体的动手操作,让他们

体会知识概念的形成。教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。

教学后记:

第四课时:圆的周长(2)

教学目标:

1、通过教学使学生学会根据圆的周长求圆的直径、半径。

2、培养学生逻辑推理能力。

3、初步掌握变换和转化的方法。

教学重点:求圆的直径和半径。

教学难点:灵活运用公式求圆的直径和半径。

教具准备:多媒体课件、实物投影设备、挂钟。

教学过程:

一、旧知铺垫(课件出示)

1、口答。

4π 2π 5π 10π 8π

2、求出下面各圆的周长。

C=πd c=2πr

=3.14×2 =2×3.14×4

=6.28(厘米) =8×3.14

=25.12(厘米)

二、新知探究。

1、提出研究的问题。

(1)下面公式的每个字母各表示什么?这两个公式又表示什么?

C=πd C=2πr

(3)根据上两个公式,你能知道:

直径= 半径=

学生根据前面的公式推出:d= C/π r= C/2π

2、学习练习十四第2题。

(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

学生根据公式独立解答,教师巡回指点,照顾差生。

小组代表汇报,全班交流。

已知:c=3.77m 求:d=?

解法1 解法2 解:设直径是x米。

3.77÷3.14 3.14x=3.77

≈1.2(米) x=3.77÷3.14

x≈1.2

(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

已知:c=1.2米 r=c÷(2Π) 求:r=?

解:设半径为x米。

3.14×2x=1.2 1.2÷2÷3.14

6.28x=1.2 = 0.191

x=0.191 ≈0.19(米)

x≈0.19

三、当堂测评(课件出示)

1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?(20分)

2、求下面半圆的周长,选择正确的算式。(20分)

⑴ 3.14×8

⑵ 3.14×8×2

⑶ 3.14×8÷2+8

3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?(30分)

(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的 ,也就是走了整个圆的 。而钟面一圈的周长是多少?

(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的 ,也就是走了整个圆的 。则:钟面一圈的周长是多少?

45分钟走了多少厘米?

4、下图的周长是多少厘米?你是怎样计算的?(30分)

学生独立完成,教师巡回查看,发现疑难。

教师讲评,小组内打分,明确错误原因。

四、回放知识目标,学生谈掌握情况。

设计意图:

(1)重视公式的推导,提高学生推理、探究能力。

(2)通过当堂测评,丰富课堂知识面,了解学生对知识的掌握情况。

教学后记:

第五课时:练习课

第六课时:圆的面积

教学目标:⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。

⒊渗透转化的数学思想。

教学重点:圆面积的含义。圆面积的推导过程。

教学难点:圆面积的推导过程。

教学准备:教师准备:多媒体课件、

学生准备:同样的三角板两个/每人。

教学过程:

一、旧知铺垫(课件出示)

1、已知r,周长的一半怎样求?

2、用手中的三角板拼三角形,长方形、正方形、平行四边形等,

说出这些图形的面积计算公式。

s=ab s=a2 s= ah s= ah s= (a+b)h

二、新知探究

1、什么是圆的面积?(出示纸片圆让生摸一摸)

圆所占平面大小叫做圆的面积。

2、推导圆的面积公式。

(1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?

若分的分数越多,这个图形越接近长方形。

(1)找:找出拼出的图形与圆的周长和半径有什么关系?

圆的半径 = 长方形的宽

圆的周长的一半 = 长方形的长

长方形面积 = 长 ×宽

所以: 圆的面积 = 圆的周长的一半×圆的半径

S = πr × r

S圆 = πr×r = πr2

3、你还能用其他方法推算出圆的面积公式吗?

(1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积是这个圆面积的 。这个三角形底是圆周长的 ,三角形的高是圆的半径。

因为:三角形面积= ×底×高

圆面积= ×

=πr2

(2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的 ,平行四边形的底是 ,三角形的高即一个半径,

因为:平行四边形面积 = 底×高

圆面积 = ×r÷

=πr2

三、运用知识解决实际问题。(课件出示)

1、例1 一个圆的直径是20m,它的面积是多少平方米?

已知:d=20厘米 求:s=?

r=d÷2 20÷2=10(m)

s=Лr2

3.14×102

=3.14×100

=314(平方厘米)

四、当堂测评(课件出示)

1、根据下面所给的条件,求圆的面积。(40分)

r=5cm d =0.8dm

2、解答下列各题。(60分)

(1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?

(2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?

学社独立完成,教师巡回指点,发现疑难。

小组内订正,评比、得分。

全班内评比出优胜小组。

五、谈收获、表决心。

教学后记

第七课时:圆的面积(2)

教学目标:

1、使学生学会已知圆的周长求圆的面积的解题思路与方法,理解

并学会环形面积。

2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简

单的实际问题。

3、培养学生的逻辑思维能力。

教学重点:培养综合运用知识的能力。

教学难点:培养综合运用知识的能力。

教具准备:多媒体课件、实物投影、环形教具。

教学过程:

一、旧知铺垫(课件出示)

1、口算:

32 42 52 82 92 202

2π 3π 6π 10π 7π 5π

3、 填表

r d C S

3cm

9cm

10m

12.56m

填写要求

(1)学生独立计算,教师巡视进行个别指导。

(2)汇报解答过程及结果。

(3)周长是12.56时面积也是12.56,能说周长和面积相等吗?

三、新知探究

(一)、教学环形面积。

1、结合实物光盘,课件出示题目要求

例2 光盘的银色部分是个圆环,内圆半径是

2cm,外圆半径是6cm。它的面积是多少?

2、课件出示自学提纲:

(1)认真读题,理解题意。分析已知条件及问题。

(2)想一想如何解决这个问题。

(3)小组内交流自己的想法。

3、小组汇报不同的解题思路。

解法1:环形面积 = 大圆面积 - 小圆面积

3.14×62 3.14×22

=3.14×36 =3.14×4

=113.04(平方厘米) =12.56(平方厘米)

113.04-12.56=100.48 (平方厘米)

解法2:3.14×(62-22)=100.48(平方厘米)

4、小结环形的面积计算公式:

S=πR2-πr2 或 S=π×(R2-r2)

(二)完成做一做:

一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花

坛,其他地方是草坪。草坪的占地面积是多少?

三、当堂测评(课件出示)

1、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?

选择正确算式

A、(18.84÷3.14÷2)2×3.14

B、(18.84÷3.14)2×3.14

C、18.842×3.14

2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?

学生独立完成,教师巡视发现存在问题。

学生汇报解题方法及结果。

自我评价。

四、课堂小结。

1、这节课的学习内容是什么?

2、求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?

已知半径求面积 S=πr2

已知直径求面积 S=π( )2

已知周长求面积 S=π( )2

3、环形面积: S=π(R2-r2)

设计意图:

1、 重视教具的作用。在圆面积的教学中,在我带领着学生利用教具进行操作,在此基础上,让学生自主发现圆的面积与拼成长方形面积的关系,圆的周长、半径和长方形的长、宽的关系,并推导出圆的面积计算公式。

2、培养学生自主学习的习惯。教学环形的面积计算时,我充分放手给学生,让学生通过思考讨论领悟出求环形的面积是用外圆面积减去内圆面积,并引导他们发现这两种算法的一致性,同时提醒学生尽量使用简便算法,减少计算量。

教学后记

人教版六年级数学上册全册教案1


人教版六年级数学上册全册教案1

本册教案的说明:

1、单元有 目标、 重点、教学难点。课时教案由教学目标、教学重点、教学难点、教学准备、教学过程、设计意图和教学后记等7部分组成。其中教学过程由旧知铺垫(或情境创设)、新知探究、当堂测评和课堂总结4部分组成。

2、整个教学去掉了以往的“作业布置”环节,使学生课堂紧张,课外轻松。提高学习效率。

3、课件内容融于教案之中。

4、注重情境教育,激发学生的求知欲,感受数学的实用性。

5、采用“先学后教、当堂训练”的教学模式。重视学生自学。

教学内容及课时 :

第一单元: 位置 共 2 课时

第二单元: 分数乘法 共12课时

第三单元: 分数除法 共13课时

第四单元: 圆 共10课时

第五单元: 百分数 共13课时

第六单元: 统计 共 2 课时

第七单元: 数学广角 共 1 课时

第一单元 第一课时 位置

教学目标:

1.使学生学会在具体情境中探索确定位置的方法,懂得能用数对表示物体的位置。

2.经历探索确定物体位置的方法的过程,让学生在学习的过程中发展空间观念。

3.使学生感受确定位置的丰富现实情景,体会数学的价值,产生对数学的亲切感。

教学重点:能用数对表示物体的位置。

教学难点:能用数对表示物体的位置,正确区分列和行的顺序。

教学准备:投影仪、本班学生座位图

教学过程:

一、复习旧知,初步感知

1、教师提问:同学们,你能介绍自己座位所处的位置吗?

学生介绍位置的方式可能有以下两种:

(1)用“第几组第几个”描述。

(2)用在我的“前面”、“后面”、“左面”、“右面”来描述。让学生先说说

2、我们全班有48名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

3、学生各抒己见,讨论出用“第几列第几行”的方法来表述。

二、新知探究

1、教学例1(出示本班学生座位图)

(1)如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示自己的位置吗?

学生对照座位图初步感知,说出自己的位置。个别汇报,集体订正。

(2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

(3)教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

2、小结例1:

(1)确定一个同学的位置,用了几个数据?(2个)

(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。比较(2,3)与(3,2)的不同。

{在比较中发现不同之处,从而加深学生对数对的更深了解。}

3、 练习:

(1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

(2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

(电影院里的座位、地球仪上的经纬度、我国古代围棋等。)

{拓宽学生的视野,让学生体会数学在生活中的应用。}

三、当堂测评

教师课件出示,学生独立完成。小组内评比纠错。

{做到兵强兵、兵练兵。}

四、课堂总结

我们今天学了哪些内容?你觉得自己掌握的情况如何?还有什么不懂的?

{让学生说出,了解对知识的掌握情况。}

第二课时:位置(二)

教学目标:

1.使学生能结合方格纸用两个数据来确定位置,能依据给定的数据在方格纸上确定位置。

2.通过学习活动,增强学生运用所学知识解决实际问题的能力,提高应用意识。

教学重点:

在方格纸上用数对确定点的位置

教学难点:

利用方格纸正确表示列与行。

教学准备:

教师准备:投影机。

学生准备:方格纸

教学过程

一、复习巩固

标出下列班上同学的位置(图略)

{借助教师操作台上的学生座位图,迅速将实际的具体情境数学化}

二、新知探究

(一)教学例2

1.我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

2.依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

(在教学的过程中,教师要特别强调0列、0行,并指导学生正确找出。)

3.同桌讨论说出其他场馆所在的位置,并指名回答。

4.学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)

{充分利用学生已有的生活经验和知识,鼓励学生自主探索、合作交流。在教学时应充分利用这些经验和知识为学生提供探究的空间,让学生通过观察、分析、独立思考、合作交流等方式,将用生活经验描述位置上升为用数学方法确定位置,发展数学思考,培养空间观念。}(二)、课堂提高

练习一第6题

(1) 独立写出图上各顶点的位置。

(2) 顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

(3)照点A的方法平移点B和点C,得出平移后完整的三角形。

(4)观察平移前后的图形,说说你发现了什么?小组内相互说说。

(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

{。让学生看到在平面上用数对表示点的位置的方法,架起了数与形之间的桥梁,加强了知识间的相互联系。}

三、当堂测评

练习一第4题

学生独立完成,然后同学之间互相检验交流,最后,教师再展示学生的作品,学生评价。

练习一第5题

(1)学生自己在方格纸上画一个简单的多边形。各顶点用两个数据表示。

(2)同桌互相合作,一人描述,一人画图。

{继续渗透数形结合的思想.}

四、课堂自我评价

这节课你觉得自己表现得怎样?哪些方面还需要继续努力?

五、设计意图:

本节知识,我充分利用学生已有的生活经验和知识,从学生熟悉的座位顺序出发,让学生在口述“第几组几个”的练习过程中,潜移默化地建立起“第几列第几行”的概念,让学生从习惯上培养起先说“列”后说“行”的习惯。然后再过度到用网格图来表示位置,让学生懂得从网格坐标上找到相应的位置。这样由直观到抽象、由易到难,符合孩子的学习特点。

课后小记

第二单元 分数乘法

单元目标:

1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

4、使学生理解倒数的意义,掌握求倒数的方法。

单元重点:

分数乘法的意义和计算法则。

单元难点:

1、 理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

2、 分数乘法计算法则的推导。

第一课时 :分数乘整数

教学目标:

1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

3、 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:引导学生总结分数乘整数的计算法则

教具准备:多媒体课件、

教学过程:

一、复习引入

1.课件出示复习题。

(1)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少? 9个11是多少? 8个6是多少?

(2)计算:

+ + = + + =

2.引出课题。

+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。

二:新知探究

1.出示课题明确学习目标。

2.课件出示自学题纲,让学生自学课本。

(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?

(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?

(3)分数乘以整数的意义。

3、 课件出示例1

教师引导学生画出线段图。

学生根据线段图列出不同的算式,并解答。

(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的

”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?

2/11 + 2/11 + 2/11 =

2/11 × 3 =

(3).分数乘以整数的法则。

A.导出计算方法。

你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)

B.归纳法则。

通过以上计算,想一想分数乘以整数怎样计算呢?

师:比一比,看哪个组的同学总结的语言准确又简练。

小组讨论,总结出法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)

C.应用法则计算。

讨论,这两种方法哪种简单?为什么?

强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。

4、 教学例2

(1)出示 ×6,学生独立计算。

(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

三、当堂测评(课件出示)

1.看图写算式

2.先说算式意义,再填空。

3.看算式,约分计算。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

四、学生课堂自评

1、这节课你有什么收获?

2、每个学生给自己在课堂上的表现进行评价。

板书设计

分数乘以整数

意义:求几个相同加数 和的简便运算。

法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

2/11 ×3

= 2×3/11

= 6/11

教学后记

第二课时 :一个数乘分数

教学目标:

1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。

2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点:推导算理,总结法则。

教具准备: 多媒体课件

教学过程:

一、复习引入

1、计算下列各题并说出计算方法。

× × ×

2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。

二、新知探究

1、课件出示教学目标

理解一个数乘分数的意义。

掌握分数乘以分数的计算法则。

学会分数乘分数的简便计算。

2、教学例3

(1)出示条件和问题:每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式: ×

(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的 ,第二步再涂出 小时粉刷这面墙的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”

(3)根据直观的操作结果,得出 × = ,根据刚才操作的过程和结果推导出计算方法: × = = 。

(4)提出问题: 小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。

3、小结一个数乘分数的意义和计算方法。

(1)意义:一个数乘分数,表示求这个数的几分之几是多少。

(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。

4、教学例4

(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式: × 。

教学目标:

1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。

教学重点:

理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。

教具准备:多媒体课件

教学过程:

一、旧知铺垫

1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)

2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)

3、观察下面各题,先说说运算顺序,再进行计算。

(1)36×2+15 (2)5×6+7×3 (3)15×(34-27)

二、新知探究

1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。(课件出示)

(1) + × (2) × -

(3) - × (4) × +

2、复习整数乘法的运算定律

(1)乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c

(2)这些运算定律有什么用处?你能举例说明吗?

(3)用简便方法计算:25×7×4 0.36×101

3、推导运算定律是否适用于分数。

(1)鼓励学生大胆猜测并勇于发表自己的个人意见。

(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?

(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)

(3)各四人小组汇报讨论和计算结果。

4、教学例6

(1)课件出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)

(2)课件出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)

(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。

三、课堂检测

练习三的第一题,第三题。

(1) 先让学生观察题目中的已知数的特点,想想怎样做简便?应用

了什么运算定律。再独立完成练习。教师巡回指点,发现存有问题。

(2)小组内评比,解决疑难问题。

(3)教师讲解疑难。

四、课堂自我评价

每个学生对自己这节课的表现进行自我评价,并提出问题。

设计意图

体现学生学习的主动性和自主性。这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用四人学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内最后验证。

教学后记

第五课时 : 练习课

第六课时:解决问题(一)

求一个数的几分之几是多少

教学目标:

1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。

教学重点:理解题中的单位“1”和问题的关系。

教学难点:抓住知识关键,正确、灵活判断单位“1”。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、先说下列各算式表示的意义,再口算出得数。

12× ×

2、列式计算。

(1)20的 是多少? (2)6的 是多少?

3、学生得出:求一个数的几分之几用乘法。

二、新知探究

(一)课件出示自学目标

1、通过学习掌握求一个数的几分之几是多少的应用题的解

题方法并会分析数量关系。

2、知道解这类应用题的关键是什么?

3、知道如何找单位“1”。

(二)、教学例1

1、课件出示自学提示

(1)、正确理解关键句“我国人均耕地面积仅占世界人均耕地面积的 ”。

(2)、结合线段图理解题意,找到解题思路。

(3)、如何来理解单位“1”?(小组讨论,理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的 是多少)

(4)、在分析题意的基础上,学生独立列式、计算。

2、学生根据提示自学

全班交流汇报:

2500× =1000(平方米)

3、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。

4、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。

三、当堂测评

练习四第2题、第3题。

学生独立完成,教师巡回指点,照顾差生。

小组内订正后

四、课堂总结

解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出关键句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)

设计意图:

本堂课是解决“求一个数的几分之几是多少”的问题,教学中,我紧扣分数乘分数的意义进行复习,并事先复习如“20的 是多少?”的文字题,为解决与此相似的应用题做好准备。

由于本节课是分数应用题学习的初始,因而教学中,我除了帮助学生分析、理解题意之外,更重要的还在于教给学生分析、解答分数应用题的方法,特别是在如何找单位“1”这个关键点上,更是花了较多的时间,但我认为这是十分必要的。

教学后记:

第七课时:练习课

第八课时:解决问题(二)

稍复杂的“求一个数的几分之几是多少”的问题

教学目标:

1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

2、发展学生思维,侧重培养学生分析问题的能力。

教学重点:理解数量关系。

教学难点:根据多几分之几或少几分之几找出所求量是多少。

教具准备:多媒体课件。

教学过程:

一、 旧知铺垫(课件出示)

1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?

(1)一块布做衣服用去 。 (2)用去一部分钱后,还剩下 。

(3)一条路,已修了 。 (4)水结成冰,体积膨胀 。

(5)甲数比乙数少 。

2、口头列式:

(1)32的 是多少? (2)120页的 是多少?

(3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了 ,降低了多少分贝?

(4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的 ,人现在听到的声音是多少分贝?

3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。

二、新知探究

(一)教学例2

1、课件出示自学提纲:

1)画出线段图,分析题意,寻找解题方法。

2)小组间说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?让后把线段图表示完整。

3)四人小组讨论,根据线段图提出不同解决办法,并列式计算。

2、学生汇报:

解法一:80-80× =80-10=70(分贝)

解法二:80×(1- )=80× =70(分贝)

3、学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从

总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的

几份之几是多少的方法求出这个部分量。

4、巩固练习:P20“做一做”

(二)教学例3

1、读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多 ”表示什么意思?(组织学生讨论,说说自己的理解)

2、引导学生将句子转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的 ”。着重让学生说说谁与谁比,把谁看作单位“1”。

3、出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。

解法一:75+75× =75+60=135(次)

解法二:75×(1+ )=75× =135(次)

4、巩固练习:P21“做一做”(列式后让学生说说算式各部分表示什么)

三、当堂测评

练习五第2、3、4、5题。

1、学生依据例题引导的解题方法,引导学生抓住题目中关键句子分析,找到谁与谁比,

谁是表示单位“1”的量。独立完成。教师巡回指点,照顾差生。

2、小组间解决疑难,全班汇报,教师讲评。

四、谈收获、找疑难

这节课你有什么收获?还有什么不懂的吗?

设计意图:

例2和例3都是在理解和掌握了求一个数的几分之几是多少的问题的思路和方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。

教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位“1”,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。

教学后记 :

第九课时 :练习课

第十课时:倒数的认识

教学目标:

1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。

3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

教学重点:

理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数

的方法。

教学难点:掌握求倒数的方法。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、口算:

(1) × × 6× ×40

(2) × × 3× ×80

2、今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识

二、新授

1、课件出示知识目标:

(1)什么叫倒数?怎样理解“互为”?

(2)怎样求一个数的倒数?

(3)0、1有倒数吗?是什么?

2、教学倒数的意义。

(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。

(2)学生汇报研究的结果:乘积是1的两个数互为倒数。

(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)

(3)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

3、教学求倒数的方法。

(1)写出 的倒数: 求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

6=

4、教学特例,深入理解

(1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)

(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)

5、同桌互说倒数,教师巡视。

三、当堂测评

1、练习六第2题:

2、辨析练习:练习六第3题“判断题”。

3、开放性训练。

3/5×( )=( )×4/7=( )×5=1/3×( )=1

四、课堂总结

你已经知道了关于“倒数”的哪些知识?

你联想到什么?

还想知道什么?

设计意图

倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。

教学后记

第十一、十二课时:整理和复习

第三单元 分数除法

单元目标:

1. 理解并掌握分数除法的计算方法,会进行分数除法计算。

2. 会解答已知一个数的几分之几是多少求这个数的实际问题。

3. 理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。

4. 能运用比的知识解决有关的实际问题。

单元重点:

理解并掌握分数除法的计算方法,理解比的意义,能用比的知识解决实际问题

单元难点:

理解分数除法的算理,列方程解答分数除法问题

第一课时:分数除法的意义和分数除以整数

教学目标:

1、 通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

2、 动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

3、 培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

教学重点:

使学生理解算理,正确总结、应用计算法则。

教学难点:

使学生理解整数除以分数的算理。

教具准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

1、复习整数除法的意义

(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

2、口算下面各题

×3 × ×

× ×6 ×

二、新知探究

(一)、教学例1

1、课件出示自学提纲:

(1)出示插图及乘法应用题,学生列式计算。

(2)学生把这道乘法应用题改编成两道除法应用题,并解答。

(3)将100克化成 千克,300克化成 千克,得出三道分数乘、除法算式。

2、学生自学后小组间交流

3、全班汇报:

100×3=300(克)

A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)

B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)

×3= (千克) ÷3= (千克) ÷3=3(盒)

4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:

分数除法的意义与整数除法相同,都是已知两个因数的积与其

中一个因数,求另个一个因数。都是乘法的逆运算。

(二)、巩固分数除法意义的练习:P28“做一做”

(三)、教学例2

(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的 平均分成2份,并通过操作得出每份是这张纸的几分之几。

(2)小组汇报操作过程,得出:将一张纸的 平均分成2份,每份是这张纸的 。

(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

A、 ÷2= = ,每份就是2个 。

B、 ÷2= × = ,每份就是 的 。

(4)如果把这张纸的 平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

4、引导学生观察 ÷2和 ÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

三、当堂测评(课件出示)

1、计算

÷3 ÷3 ÷20 ÷5 ÷10 ÷6

2、解决问题

(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?

(2)、正方形的周长是4/5米,它的边长是多少米?

学生独立完成。

教师讲评,小组间批阅。

四、课堂总结

1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

2、谁来把这两部分内容说一说?

教学后记

第二课时:一个数除以分数

教学目标:

1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养学生的语言表达能力和抽象概括能力。

3、培养学生良好的计算习惯。

教学重点:

总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

教学难点:

利用法则正确、迅速地进行计算,并能解决一些实际问题。

教具准备:多媒体课件、实物投影。

教学过程:

一、旧知铺垫(课件出示)

1、计算下面,直接写出得数

×4 ×3 ×2 ×6

÷4 ÷3 ÷2 ÷6

2、列式,说清数量关系

小明2小时走了6 km,平均每小时走多少千米?

(速度=路程÷时间)

二、新知探究

(一)、例3,

1、实物投影呈现例题情景图。

理解题意,列出算式:2÷ ÷

2、探索整数除以分数的计算方法

(1)2÷ 如何计算?引导学生结合线段图进行理解。

(2)先画一条线段表示1小时走的路程,怎么样表示 小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是 小时走的路程)

(3)引导学生讨论交流:已知 小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

(4)根据学生的回答把线段图补充完整,并板书出过程。

先求 小时走了多少千米,也就是求2个 ,算式:2×

再求3个 小时走了多少千米,算式:2× ×3

(5) 综合整个计算过程:2÷ =2× ×3=2×

(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

(三)、计算 ÷ ,探索分数除以分数的计算方法

1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

÷ = × =2(km)

2、学生用自己的方法来验证结果是否正确。

3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

三、当堂测评

1、P31“做一做”的第1、2题。

2、练习八第2、4题。

学生独立完成,教师巡回指点,帮助学困生度过难关。

小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

四、课堂总结

1、这节课你们有什么收获呢?

2、在这节课上你觉得自己表现得怎样?

设计意图:

这两节课的教学我从以下着手:

1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

教学后记

第三课时:练习课

第四课时:分数混合运算

教学目标:

1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

2、 通过练习,培养学生的计算能力及初步的逻辑思维能力。

3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。

4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。

教学重点:确定运算顺序再进行计算。

教学难点:明确混合运算的顺序。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、复习整数混合运算的运算顺序

(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。

2、说出下面各题的运算顺序。

(1)428+63÷9―17×5 (2)1.8+1.5÷4―3×0.4

(3)3.2÷[(1.6+0.7)×2.5] (4)[7+(5.78—3.12)]×(41.2―39)

3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?

二、新知探究

(一)、教学例4(1)

1、教师课件出示例4

2、课件出示自学提纲:

(1)例4中的哪些条件和复习中的3相同?问题相同吗?

(2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……

(3)尝试说说自己的解题思路并解答。

3、学生根据提纲尝试解题。

4、全班汇报

(1)根据学生的回答,归纳出两种思路:

A、可以从条件出发思考,根据彩带长8m ,每朵花用 m 彩带,可以先算出一共做了多少朵花。

B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

(2)说说运算顺序,再进行计算。

(二)、教学例4(2)

(1)计算1/5÷(2/3+1/5)×15

让个别学生说出运算顺序并计算题目的得数。

教师巡回指点,搜集存在问题。

教师黑板出示问题,学生上台改正,并说明理由。

(2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。

三、当堂测评

练习九第1、2、3题:

注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6

楼楼板到地面的高度实际上只有5层楼的高度。

学生独立完成教师点评,解决疑难。

学生相互得分,评选优胜小组。

四、课堂小结

这节课有什么收获?说一说。

还有什么不懂的?提出来小组内解决。

设计意图

1、 在课初始,我便从复习整数及小数的运算顺序入手,

重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发

现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练

习加强计算的训练。

2、 当堂测评题将学生置于提高之处,联系实际生活解决问

题,让学生体会到数学知识的广泛性和严谨性

教学后记

第五课时:练习课

第六课时:解决问题(一)

已知一个数的几分之几是多少求这个数的应用题

教学目标:

1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重点:

弄清单位“1”的量,会分析题中的数量关系。

教学难点:

分数除法应用题的特点及解题思路和解题方法。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、根据题意列出关系式。

(1)一个数的3/4等于12.

(2)男生人数的11/12等于220人。

(3)甲数的5/8是40.

(4)乙数的4/5刚好是1/6.

2、解决问题

根据测定,成人体内的水分约占体重的 ,而儿童体内的水分约占体重的 ,六年级学生小明的体重为35千克,他体内的水分有多少千克?

(1)看看题目中所给的三个条件是否都用得上,并说说为什么。

选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

小明的体重× =体内水分的重量

(2)指名口头列式计算。

二、新知探究

(一)教学例1.

1、课件出示自学提纲:

(1)这一例题和复习中的题有什么不同和相同呢?想一想。

(2)有几个问题?都和哪些条件有关?

(3)读题、理解题意,并画出线段图来表示题意

(4)独立解决第一个问题。

2、全班汇报

(1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。

小明的体重× =体内水分的重量

(2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。

(3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)

(4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)

3、解决第二个问题:小明的体重是爸爸的 ,爸爸的体重是多少千克?

(1)启发学生找关键句,确定单位“1”。

(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

爸爸的体重× =小明的体重

①方程解:解:设爸爸的体重是χ千克。

χ= 35

χ=35÷

χ=75

②算术解: 35÷ =75(千克)

4、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

三、当堂测评(课件出示)

1、根据题意列出算式,不必计算(每题15分)。

(1)一个数的2/5是40,这个数是多少?

(2)一个数的3/8是24,这个数是多少?

(3)甲数是100,占乙数的4/5,乙数是多少?

(4)甲数是乙数的2/3,已知甲数是12,乙数是多少?

2、解决问题(40分)。

某校有女生160人,正好占男生的8/9,男生有多少人?

学生独立完成,教师巡回指点,注重学困生的提高。

小组内订正、互评,做到兵强兵。

四、课堂总结

这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。

设计意图:

本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。

教学后记:

第七课时:解决问题(二)练习课

人教版六年级数学上册全册导学案


人教版六年级数学上册全册导学案

人教版六年级数学上册全册导学案

【学习目标】1、认识圆,掌握圆的特征,理解直径与半径的关系。

2、会使使用工具画圆。3、培养观察、分析、综合、概括及动手操作能力。

【学习重难点】1、重点是通过动手操作,理解直径与半径的关系,认识圆.

2、难点是画圆的方法,认识圆的特征。

【学习过程】 一、复习。

1、我们以前学过的平面图形有哪些?这些图形都是用什么线围成的?

简单说说下面这些图形的特征?

长方形 正方形 平行四边形 三角形 梯形

2、圆是用什么线围成的?举例:生活中有哪些圆形的物体?

☆友情小提示:圆是一种曲线图形

二、探索新知

1、生活中哪些物体是圆形的?请你用生活中的物体试着在纸上画一个圆。并把它剪下,试着找出它的中心点。

2、自学课本p56---57

(1)在准备好的纸上画一个圆,并动手剪下。

(2)动手折一折。

(3)认识什么叫圆心?半径?直径?并在剪下的圆中分别标出。

(4)想一想:在同一个圆中有多少半径、多少直径?___________________________

直径和半径的长度有什么关系?__________________________________________

不在同一个圆中呢?____________________________________________________

☆友情小提示:①在同一个圆里,有无数条直径,且所有的直径都相等。

②在同一个圆里,有无数条半径,且所有的半径都相等。

③在同一个圆里,d=2r;

3、请试着用圆规画几个大小不同的圆。你能发现什么?说一说画圆的步骤和方法。

4、思考:圆和以前学过的平面图形有什么不同?

三、知识应用:独立完成P59“做一做”1、2、3、4题,组长检查核对,提出质疑。

四、层级训练:1、巩固训练:完成P60练习十四第1---4题。

2、拓展提高:在操场如何画半径是5米的大圆?

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

课后反思:

--41--

六.当堂检测

1.填空

(1)连接圆心和( )任意一点的线段叫半径,通过圆心并且两端都在( )的线段叫直径。

(2)一个圆有( )条直径,所有的半径长度都( ),所有的直径长度也都( ),直径的长度是半径的( )倍。

(3)画圆时,圆规两脚间的距离就是圆的( ),如果圆规两脚间的距离是3cm ,画出的圆的直径是( )。

(4)将一个圆形纸片至少对折( )次可以得到圆心。

(5)甲圆的半径是4cm,乙圆的直径是8cm,那么甲、乙两圆的直径比是( )。

(6)如下图,大圆直径是8cm,,两个小圆的直径相等,那么两个小圆的半径是( )

(1)r=2cm (2)d=3cm

2.按要求在上面空白处用圆规画圆,并用字母O、r、d分别表示出它们的圆心、半径和直径。

3.如下图,在一张长方形的纸上剪下两个相等的小圆后,剩余部分正好可以再剪出一个正方形,求原来长方形的周长。

2cm

4.如图所示的的卡片上最多能剪出多少个半径是1cm的圆?

8cm

10cm

5.(探究题)在正方形里画一个最大的圆,圆的半径是3.5dm,正方形的面积是多少?

--42--

4-2 >导学案

学生___________班级______日期________

【学习目标】1、在前面所学过的成轴对称的平面图形的基础上,认识圆的对称轴。

2、认识到圆是轴对称图形,且对称轴有无数条。

3、培养动手操作能力,在操作中加深对所学平面图形的对称轴的认识。

【学习重难点】1、重点是圆的对称轴。 2、难点是画对称轴的方法。

【学习过程】

一、举例说出轴对称的物体。如:蝴蝶 、飞机、门窗、圆中的钟面、______________等。想一想这些图形有什么特点?

☆友情小提示:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线直线叫做对称轴。

二、探索新知

1、我们学过的平面图形中哪些是轴对称图形?分别有几条对称轴?

平面图形

等腰梯形

长方形

等边三角形

正方形

对称轴(条)

2、想一想:圆是轴对称图形吗?如果是它有几条对称轴?试着折一折,画一画。

3、阅读课本例3,想一想: 你能分别画出下面两个圆的对称轴吗?你能画出几条?

4、试画出圆的对称轴,观察、再动手折一折,你发现了什么?

☆友情小提示:圆有无数条对称轴。每一条直径所在的位置都是它的对称轴。

三、知识应用:独立完成P59“做一做”1、2 题。组长检查核对,提出质疑。

☆友情小提示:对称轴两侧相对点到对称轴的距离相等。

四、层级训练:1、巩固训练:完成练习十四第5—9题。

2、拓展提高:请你创造性地利用大小相同或大小不相同的圆(1—4个)设计出有一条,两条,三条,四条对称轴的组合图形。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

--43--

六、当堂检测

1、填空题

(1).圆是( )图形,它有( )对称轴。

(2).正方形有( )条对称轴,长方形有( )条对称轴,等腰三角形有( )条对称轴,等边三角形有()条对称轴。

(3).如果一个图形( ),这个图形就是轴对称图形,折痕所在的这条直线叫做( )。

图形

名称

等腰

三角形

等腰

梯形

长方形

等边

三角形

正方形

环形

对称轴

条数

2、判断题(对的打“√”,错的打“×”)

(1).梯形可以画出一条对称轴。( )

(2).对称轴两侧相对的点到对称轴的距离相等。( )

(3).圆只有一条对称轴。( )

3、画出下面各图形的对称轴,能画几条?

4、下列图形是轴对称图形的画出它的对称轴。

--44--

4-3 >导学案

学生___________班级_______日期________

【学习目标】1、理解圆的周长和圆周率的意义。

2、理解并掌握圆的周长公式,并能正确计算圆周长。

3、培养观察、比较、概括和动手操作的能力。

【学习重难点】1、重点是圆的周长和圆周率的意义,圆周长公式的推导过程。

2、难点是圆周长公式的推导过程。

【学习过程】

一、认识圆的周长。

1、 这是什么图形?什么是正方形的周长?怎样计算?

这个正方形周长与边长有什么关系?

___________________________________________________________

2、 什么是圆的周长?

指一指,圆的周长在那?那一部分是圆的周长?

得出定义:围成圆的曲线的长叫做圆的周长。

☆友情小提示:正方形的周长总是它边长的4倍(即C=4a)。

猜一猜:圆的周长是否是它的直径的常数倍?说说你的理由。

二、探索新知:圆周长的公式推导。

1、找三个大小不同的圆形物体,量一量它们圆面的周长与直径,并记录在p63的表格中。说一说你是如何测量的?

☆友情小提示:

A、用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,即可得出圆的周长。

B、把圆放在直尺上滚动一周,直接量出圆的周长。

2、观察表格,想一想周长与直径的比值有什么关系?通过表格数据你有什么发现?

_______________________________________________________________________

3、阅读课本P63,了解圆周率的知识,谈谈你的感受。推导圆的周长公式。

☆友情小提示:

圆的周长公式 C=πd 或 C=2πr ( 其中π=3.14 )

4、自学课本P64例一,说一说你的解题思路和方法。

三、知识应用:独立完成P64“做一做”1、2题,组长检查核对,提出质疑。

四、层级训练:1、巩固训练:完成练习十五的第1、5、8题。

2、拓展提高:判断下面各题的正误。

(1)圆的周长是直径的3.14倍。 ( )

(2)在同圆或等圆中,圆的周长是半径的6.28倍。 ( )

(3)C =2πr =πd ( )

(4)半圆的周长是圆周长的一半。 ( )

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

--45—

六、当堂检测

1、填空题

(1)一个圆的周长是同圆直径的( )倍。

(2)有一个圆形鱼池的半径是10米,如果绕其周围走一圈,要走()米。

(3)画圆时,圆规两脚间的距离就是圆的( )。

(4)两端都在圆上的线段,( )最长。

(5)圆的半径和直径的比是( ),圆的周长和直径的比是( )。

(6)小圆的半径是6厘米,大圆的半径是9厘米。小圆直径和大圆直径的比是( ),小圆周长和大圆周长的比( )。

(7)用圆规画一个圆,如果圆规两脚之间的距离是6厘米,画出的这个圆的周长是( )厘米。

2、判断题。

(1)水桶是圆形的.( )

(2)两个圆的直径相等,它们的半径也一定相等.()

(3)π=3.14. ( )

(4)如果两个圆的周长相等,那么这两个圆的半径和直径的长度也一定分别相等.()

(5)圆只有一条对称轴.( )

(6)在一个圆里,两端都在圆上的线段叫做圆的直径。( )

(7)求圆的周长,用字母表示就是C=πd或C=2πr。( )

3、我来运用。

(1)饭店的大厅内挂着一只大钟,它的分针长48厘米。这根分针的尖端转动一周所走的路程是多少厘米?

(2)一个圆形的铁环,直径是40厘米,做这样一个铁环需要用多长的铁条?

(3)儿童公园有一个直径是15米的圆形金鱼池,在金鱼池周围要做4圈圆形栏杆,至少要用多少钢条?

(4)砂子堆在地面上占地正好是圆形,量出它一周的长度是15.7米,那么砂子堆的直径是多少米?

--46--

4-4 >导学案

学生___________班级______日期________

【学习目标】1、学会根据圆的周长求圆的直径、半径。

2、培养逻辑推理能力。 3、初步掌握变换和转化的方法。

【学习重难点】1、重点是求圆的直径和半径。2、难点是灵活运用公式。

【学习过程】

一、复习:求出下面各圆的周长。

4厘米

2厘米

1、圆的直径是2厘米, 2、圆的半径是4厘米,

求圆的周长是多少? 求圆的周长是多少?

已知:_____________________ 已知:__________________

求:_______________________ 求:____________________

解:_______________________ 解:____________________

二、、探索新知

1、探究下面的问题。

(1)你知道π表示什么吗?

(2)下面公式的每个字母各表示什么?这两个公式又表示什么?

C=πd C=2πr

(3)根据上两个公式推导下面的关系式:用字母表示为_____________________________

直径=周长÷圆周率 半径=周长÷(圆周率×2)

2、阅读练习十五第2题, ☆友情小提示 另一种解法:

理解题意,学习解答方法: 已知:c=3.77m

已知:c=3.77m 求:d

求:d 解:设直径是x米。

解:设直径是x米。 3.14x=3.77

3.77÷3.14 x=3.77÷3.14

≈1.2(米) x≈1.2

答:圆柱的直径是1.2米。 答:圆柱的直径是1.2米。

3、练一练:用一根1、2米长的铁条弯成一个圆形铁环,它的半径是多少?

(得数保留两位小数)

三、知识应用:求下面半圆的周长,选择正确的算式___________。

d=8厘米

⑴ 3、14×8

⑵ 3、14×8×2

⑶ 3、14×8÷2+8

四、层级训练:1、巩固训练:完成练习十五第3、4、6、7题。

2、拓展提高:练习十五第9、10题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(把你个性化的解答或创新思路写出来吧!)

--47—

六、当堂检测

1、填空题

(1)一个挂钟的时针长5厘米,一昼夜这根时针的尖端走了( )厘米。

(2)圆的半径是7厘米,它的周长是( )厘米,圆的直径是13米,它的周长是( )米。圆的周长是75.36分米,它的半径是( )分米。

(3)要在底面半径是14厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是6厘米,需用铁丝( )厘米。

(4)圆周率表示( )

(5)已知圆的周长是106.76分米,圆的半径是( )。

2、判断题。

(1)圆的半径扩大4倍,圆的周长也扩大4倍.( )

(2)小圆半径是大圆半径的1/2 ,那么小圆周长也是大圆周长的1/2 。( )

(3)半圆的周长就是这个圆周长的一半。( )

3、应用题。

(1)一辆自行车轮胎的外直径是70厘米,如果每分转120周,一小时能行多少千米?(保留整千米数)

(2)一个铁环直径是60厘米,从操场东端滚到西端转了90圈,另一个铁环的直径是40厘米,它从东端滚到西端要转多少圈?

(3)一种汽车轮胎的外直径是1.02米,每分钟转50周,车轮每分钟前进多少米?

(4)一辆自行车的车轮半径是40厘米,车轮每分钟转100圈,要通过2512米的桥,大约需要几分钟?

(5)一座大钟的时针长30厘米,分针长40厘米。一昼夜时针和分针的针尖经过的路程是多少厘米?

--48--

4-5 >导学案

学生___________班级_______日期________

【学习目标】1、理解圆面积的含义,理解公式的推导过程,掌握圆面积的计算公式。

2、培养动手操作、抽象概括的能力,运用所学知识解决简单实际问题。

3、领会转化的数学思想。

【学习重难点】1、重点是理解圆面积的含义,圆面积的推导过程。

2、难点是理解圆面积公式的推导过程。

【学习过程】

一、复习。

1、已知r,周长的一半怎样求?

2、用手中的三角板拼三角形、长方形、正方形、平行四边形等,并说出这

些图形的面积计算公式。

☆友情小提示:

s=ab s=a2 s= ah s= ah s= (a+b)h

二、探索新知

1、什么是圆的面积?(对照实物感知一下)

☆友情小提示:圆所占平面大小叫做圆的面积。

2、推导圆的面积公式。阅读P67——68例1之前内容。

(1)操作:将等分成16份的圆展开,可拼成一个什么样的图形?

☆友情小提示:若分的分数越多,这个图形越接近长方形。

(2)看一看拼出的图形与圆的周长和半径有什么关系?

完成P68圆面积公式推导过程。

☆友情小提示:圆的半径 = 长方形的宽 圆的周长的一半 = 长方形的长

长方形面积 = 长 ×宽 圆的面积 = 圆的周长的一半×圆的半径

S = πr × r S圆 = πr×r = πr2

三、知识应用:独立完成P68例1,组长检查核对,提出质疑。

四、层级训练:1、巩固训练:完成课本P70第1、5题。

2、拓展提高:

(1)、根据下面所给的条件,求圆的面积。

r=5cm d =0、8dm

(2)、解答下列各题。

①一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?

②公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

--49—

六、当堂检测

1、填空题。

(1)把一个圆分成若干等份,剪开拼成一个近似的长方形。这个长方形的长相当于( ),长方形的宽就是圆的( )。因为长方形的面积是( ),所以圆的面积是( ).

(2)圆的直径是6厘米,它的周长是( ),面积是( )。

(3)圆的周长是25.12分米,它的面积是( )。

(4)甲圆半径是乙圆半径的3倍,甲圆的周长是乙圆周长的( ),甲圆面积是乙圆面积的( )。

(5)一个圆的半径是8厘米,这个圆面积的3/4 是( )平方厘米。

(6)用圆规画一个圆,如果圆规两脚之间的距离是7厘米,画出的这个圆的周长是( )厘米。这个圆的面积是( )平方厘米。

(7)一个半圆半径是r,它的周长是( )。

2、计算

1.求圆的周长。

(1)r =4分米 (2)d=6厘米

2.求圆的面积。

r=3分米 (2)d=8厘米 (3)c=12.56米

3、应用题。

(1)有一只羊栓在草地的木桩上,绳子的长度是4米,这只羊最多可以吃到多少平方米的草?

(2)一种手榴弹爆炸后,有效杀伤范围的半径是8米,有效杀伤面积是多少平方米?

(3)一种铝制面盆是用直径30厘米的圆形铝板冲压而成的,要做1000个这样的面盆至少需要多少平方米的铝板?

(4)一张长30厘米,宽20厘米的长方形纸,在纸上剪一个最大的圆。还剩下多少平方厘米的纸没用?

(5)用一根长16分米的铁丝围成一个圆,接头处长0.3分米,这个圆的面积是多少?

--50--

4-6 >导学案

学生___________班级_______日期________

【学习目标】1、学会已知圆的周长求圆的面积的解题思路与方法,理解环形面积。

2、发展灵活综合运用知识的能力,运用所学的知识解决简单的实际问题。

3、发展逻辑思维能力。

【学习重难点】1、重点是培养综合运用知识的能力。

2、难点是发展逻辑思维能力。

【学习过程】

一、复习。

1计算(尽可能口算):

32 42 52 82 92 02

2π 3π 6π 10π 7π 5π

2、思考:(1)圆的周长和面积分别怎样计算?二者有何区别?

(2)求圆的面积需要知道什么条件?

(3)知道圆的周长能够求它的面积吗?

二、探索新知

1、阅读练习十六第3题,理解题意。讨论解题思路并解答。将正确解题格式写在反面。

☆友情小提示:C=__________ r=______________________________________

s=πr2=____________________________________________________

2、自学例题2,理解环形面积。说一说解题思路和方法。

☆友情小提示 环形的面积计算公式:S=πR2-πr2 或 S=π×(R2-r2)

三、知识应用:独立完成P69“做一做”第2题,组长检查核对,提出质疑。

四、层级训练:1、巩固训练:完成课本P70第4、6、7题。

2、拓展提高:

(1)、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?选择正确算式_________

A、(18.84÷3.14÷2)2×3.14 B、(18.84÷3.14)2×3.14

C、18.842×3.14 D、(18.84÷3.14×2)2×3.14

(2)、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?

(3)、交流讨论P71第8题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

☆友情小提示:求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?

已知半径求面积: S=πr2

已知直径求面积: S=π( )2

已知周长求面积: S=π( )2

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(把你个性化的解答或创新思路写出来吧!)

-51—

六、当堂检测

1、填空题。

(1).C=( ) = ( ) S= ( ) = ( ).

(2)已知圆的周长,d= ( ),r=( ) 。

(3)圆的半径扩大2倍,直径就扩大( )倍,周长就扩大( )倍,面积就扩大( )倍。

(4)用圆规画一个周长50.24厘米的圆,圆规两脚尖之间的距离应是( )厘米,画出的这个圆的面积是( )平方厘米。

(5)周长相等的长方形、正方形、圆,( )面积最大。

(6)圆的半径由6厘米增加到9厘米,圆的面积增加了( )平方厘米。

(7)要在一个边长为10厘米的正方形纸板里剪出一个最大的圆,剩下的面积是( )。

(8)要在底面半径是12厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是8厘米,需用铁丝( )厘米。

(9)有大小两个圆,大圆直径是小圆半径的4倍,小圆与大圆周长的比是( ),小圆与大圆面积的比是( )。

(10)环形面积S=( )。

2、解答

(1)在一个圆形喷水池的周长是62.8米,绕着这个水池修一条宽2米的水泥路。求路面的面积。

(2)一个半圆形养鱼池,直径是4米,这个养鱼池的周长是多少米?占地面积是多少平方米?

(3)在一个直径是16米的圆心花坛周围,有一条宽为2米的小路围绕,小路的面积是多少平方米?

(4)一个环形铁片,内圆直径是14厘米,外圆直径是18厘米,这个环形铁片的面积是多少?

(5)一个环形的外圆半径是8分米,内圆半径5分米,求环形的面积?

(6)环形的外圆周长是18.84厘米,内圆直径是4厘米,求环形的面积?

(7)校园圆形花池的半径是6米,在花池的周围修一条1米宽的水泥路,求水泥路的面积是多少平方米?

(8)1轧路机前轮直径1.2米,每分钟滚动6周。1小时能前进多少米?

2自行车轮胎外直径71厘米,每分钟滚动100圈。通过一座1000米的大桥约需几分钟?

--52--

4-7 >导学案

学生___________班级_______日期________

【学习目标】1、通过练习理解并掌握圆的周长和面积的计算方法。

2、培养分析问题和解决问题的能力,发展空间观念。

3、灵活解答几何图形问题。

【学习重难点】1、重点是认真审题,分辨求周长或求面积。

2、难点是提高分析问题和解决问题的能力。

【学习过程】

r=3

厘米

d=7

厘米

一、复习。

1、求出下面圆的周长和面积并用彩

笔描出周长,用阴影表示出面积。

2、概 圆的周长是指圆一周的长度

念 圆的面积是指圆所围成的平面部分的大小。

3、计算 求圆的周长公式:C=πd 或 C=2πr

公式 求圆的面积公式:S=πr2

4、使用 计算圆的周长用长度单位

单位 计算圆的面积用面积单位

免费资源下载绿色圃中小学教育网 课件|教案|试卷|无需注册

二、练习。

1、判断下面各题是否正确,对的打“√”,错的打“×”。

(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)?。 ( )

(2)半径为2厘米的圆的周长和面积相等。 ( )

(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内) ( )

2、一个圆的周长是25、12米,它的面积是多少?

3、一个环形的铁片,外圆半径是7厘米,内圆半径是0、5分米,这个环形的面积是多少平方分米?

三、拓展提高:1、课本P72第9、10题。

2、了解课本P72“扇形和圆心角”的知识。

四、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

☆友情小提示:

(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。

(2)求圆面积公式是S=πr2 ,求圆周长的公式是 C=πd 或C=2πr。

(3)计算圆的面积用面积单位,计算圆的周长用长度单位。

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(把你个性化的解答或创新思路写出来吧!)

--53--

五、当堂检测

1、填空题

(1)圆围成的曲线的长叫做圆的( ),用字母( )表示,圆无论大小它的周长总是直径长度的( )倍多一些。这个倍数是一个( )的数,我们把它叫做( ),用字母( )表示,取两位小数近似值约是( )。

(2)( )叫做圆的面积。

(3)把一个圆分成32等份,然后剪开拼成一个近似的长方形.这个长方形的长相当于( ),长方形的宽就是圆的( ).因为长方形的面积是( ),所以圆的面积是( )。

(4)圆的直径是6厘米,它的周长是( ),面积是( )。

(5)小圆的半径是2分米,大圆的半径是6分米,小圆和大圆的直径之比是( ),周长之比是( ),大圆和小圆的面积之比是( )。

(6)画一个周长是25.12厘米的圆,应该把圆规两脚间的距离定为( )。它的面积是( )。

(7)甲圆半径是乙圆半径的3倍,甲圆的周长是乙圆周长的( ),甲圆面积是乙圆面积的( )。

(8)圆的半径扩大3倍,直径扩大( )倍,周长扩大( )倍,面积扩大( )倍。

(9)半径是1.5厘米的半圆形求它的周长,列式是( )

(10)在面积是100平方厘米的正方形纸片上,剪下一个最大的圆,面积是( )。

(11)一个正方形的面积是20平方厘米,以这个正方形的边长为半径的圆面积是( )。

(12)半径是2厘米的圆中,画一个最大的正方形,其面积是( )。

(13)在一张长20厘米,宽16厘米的纸片上画一个最大的圆,这个圆的半径是( )厘米,周长是( )厘米,面积是( )平方厘米。

(14)一根铁丝可以围成一个直径是40厘米的圆,现在把它围成一个正方形,这个正方形的周长是在( ),面积是( )。

(15)一个时钟的时针长5厘米,这个时针的尖端一昼夜走了( )厘米。

(16)一辆自行车轮胎的外直径是60厘米,车轮每分钟转100周,这辆自行车每小时行( )千米。

(17)一只直径为50厘米的木桶外面要加一条铁箍,铁箍的接头处为2厘米,这条铁箍的长度为( )。

(18)一个半径是4分米的圆,如果半径减少2分米,它的周长减少( )分米。

2、解决问题

(1)一个圆形的铁环,直径是40厘米,做这样一个铁环需要用多长的铁条?

(2)一只大钟,时针长5分米,分针长7分米,它们的尖端转动一周各行多少距离?

(3)儿童公园有一个圆形的金鱼池,在金鱼池周围要做2圈直径是15米的圆形栏杆,至少要用多少钢条?

(4)砂子堆在地面上占地正好是圆形,量出它一周的长度是15.7米,那么直径是多少米?

(1) 一辆自行车轮胎的外直径是70厘米,如果每分转120周,一小时能行多少千米?(保留整千米数)

--54--

4-8 >导学案

学生___________班级_______日期________

【学习目标】1、通过掌握圆周长与面积的计算方法。

2、运用所学知识解决简单的实际问题。

3、养成认真审题的良好学习习惯。

【学习重难点】1、重点是掌握圆周长与面积的计算方法。

2、难点是提高运用所学知识解决简单的实际问题。

【学习过程】

一、周长与面积的区别

1、什么是圆?圆周长的计算公式是什么?圆面积的计算公式是什么?

r=2cm

2、看图计算。求出它的周长与面积。

(1)动手计算。

(2)周长与面积有什么不同?

☆友情小提示:概念不同,计算公式不同,单位不同。

二、运用所学知识解决实际问题

1、一个圆形花坛,直径是4米,周长是多少米?

2、一个圆形花坛,周长是12、56米,直径是多少米?

3、一个圆形花坛的半径是2米,它的面积是多少平方米?

4、一个圆形花坛的周长是12、56米,它的面积是多少平方米?

5、一个环形铁片,外直径是6米,内直径是4米,它的面积是多少平方米?

6、完成P73第1、2题。

三、综合练习

1、判断对错,

(1)圆的半径都相等。 ( )

(2)在同圆或等圆中圆周长约是半径的6、28倍。 ( )

(3)半圆的周长是圆周长的一半。 ( )

2、只列式不计算。

(1)一个圆形铁板的半径是5分米,它的面积是多少平方分米?

(2)一个圆形的铁板的直径是6分米,它的面积是多少平方分米?

(3)一个圆形铁板的周长是28、26分米,它的面积是多少平方分米?

3、说一说下面各题的解题思路。

(1)一个圆形花坛,直径是5米,小明围着它跑了5圈,小明一共跑了多少米?

(2)在草地的木桩上栓着一只羊,绳长3米,这只羊能吃到草的面积最大是

多少平方米?

四、层级训练:1、巩固训练:独立完成练习十七第1—3题。组长检查核对,提出质疑。

2、拓展提高:练习十七第4、5题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

--55--

六、当堂检测

1、一个铁环直径是60厘米,从操场东端滚到西端转了90圈,另一个铁环的直径是40厘米,它从东端滚到西端要转多少圈?

2、一根铁丝长18.84米,正好在一个圆形铁圈上绕满50圈,这个线圈的半径是多少厘米?

3、有一个圆环,内圆半径是10厘米,外圆半径是15厘米,这个圆环的面积是多少平方厘米?

4、一个挂钟的分针长1.2分米,从12时到12时45分,分针尖移动了多少厘米?

5、在一个长8米,宽5米的长方形花池中,建了一个最大的圆形花池,圆池内种牡丹花,圆池外种茉莉花,各占地多少平方米?

6、一辆自行车的车轮半径是36厘米。这辆自行车通过一条1080米长的街道时,车轮要转多少周?(得数保留整数)

7、有一个直径是8米的圆形花坛,在它的外围修一条宽3米的小路,求这条小路的面积是多少?

3、把一个圆形纸片剪开后,拼成一个宽等于半径,面积相等的近似长方形。这个长方形的周长是24.84厘米,原来这个圆形纸片的面积是多少平方厘米?

4、在一个周长是12米的正方形中作一个最大的圆,这个圆的周长是多少?它的面积又是多少?

5、一根绳长2.4米,它的一头拴在木桩上,另一头拴着养(接头出不计)。这只养在草地上吃草的范围有多大?

6、一个圆和一个正方形的周长都是28.26厘米,它们的面积谁大?大多少?

12、在一张长10厘米、宽6厘米的长方形纸上,画一个最大的半圆。这个半圆的面积是多少?

13、压路机前轮直径5分米,后轮直径12分米,后轮转动10周,前轮转动多少周?

--56--

5-1 >导学案

学生___________班级_______日期________

【学习目标】1、理解百分数的概念,正确读、写百分数,解释生活中常见的百分数。

2、培养分析比较能力和抽象概括能力。

3、体验数学与日常生活的联系,树立学好数学的信心。

【学习重难点】1、重点是理解和掌握百分数的意义。

2、难点是正确理解百分数和分数的区别。

【学习过程】

一、复习。

1、回答:(1)7米是10米的几分之几?

(2)51千克是100千克的几分之几?

2、说出下面各个分数的意义,并指出哪个分数表示具体数量,哪个分数表示倍比关系。

(1)一张桌子的高度是 米。 (2)一张桌子的高度是长度的 。

☆友情小提示: 米表示0.81米,是一具体的数量; 表示把长度平均分成100份,桌子高度占81份,表示倍比的关系。

二、探索新知

1、认识百分数:爱迪生说:“天才就是99%的汗水加上1%的灵感”;

某校的近视人数占全校总人数的64%……像99%、1%、64%这样的数叫做“百分数”。

2、生活中哪些地方还见过百分数?选择P77任意一幅图,说说图中百分数的具体含义。

3、自学课本78页,举例说说百分数表示什么?并归纳出百分数的意义。

☆友情小提示:表示一个数是另一个数的百分之几的数,叫做百分数,

也可以叫做百分率或百分比。

4、百分数与我们学过的哪种数比较相似?百分数与分数有哪些区别与联系?

☆友情小提示:分数既可以表示一个数,又可以表示两个数的关系。而百分数只表示两个数的关系,它的后面不能写单位名称。

5、百分数的写法:通常不写成分数形式,而是在原来分子后面加上百分号“%”来表示。如: 百分之九十 写作:90%;

百分之六十四 写作:64%;

百分之一百零八点五 写作:108.5%。

☆友情小提示:写百分号时,两个圆圈要写得小一些,以免和数字混淆。

6、 百分数的读法:百分数的读法和分数的读法大体相同,也是先读分母,后读分子。

三、知识应用:独立完成P78“做一做”1、2、3题。组长检查核对,提出质疑。

四、层级训练:1、巩固训练:完成P79练习十八第1—4题。

2、拓展提高:练习册P71“百分数的意义和写法”练习题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

--57--

六、当堂检测

(一)细心填写:

1、小明的作业全部完成,就是完成( )%,小军完成了一半,就是完成( )%。

2、六年级学生中男生有55%,也就是( )是( )的55%。

3、养禽场里的鸡比鹅多30%,也就是( )是( )的55%。

4、电视机厂计划生产电视机100台,实际生产112台,相当于原计划的( )%,超额完成计划的( )%。

5、“实际产量是计划的115%,是( )与( )相比较,实际比计划增产( )%。

6、今年用电比去年节约15%,今年用电相当于去年的( )%。

7、今年产值相当于去年的百分之一百零八,写作( ),今年产值比去年增加( )。

8、六年级植树500棵,活了450棵,活了的占总数的( )%。

(二)读出下列百分数:

10.6%读作:( ) 105%读作:( )

0.08%读作:( ) 100%读作:( )

5%读作:( ) 150%读作:( )

(三)写出下列百分数:

百分之九写作( ) 百分之十点五写作( )

百分之二百写作( ) 百分之一百零四写作( )

百分之零点零二写作( ) 百分之七十写作( )

(四)用阴影表示下列各百分数:

50% 42% 93% 8%

--58--

5-2 >导学案

学生___________班级_______日期________

【学习目标】1、能正确地把小数化成百分数或把百分数化成小数。

2、在探索百分数与小数互化的规律的过程中,发展抽象概括能力。

3、通过探索百分数和小数互化的规律,激发数学探索意识。

【学习重难点】1、掌握百分数和小数互化的方法。2、熟练地进行百分数和小数的互化。

【学习过程】

一、复习

1、百分数的意义是什么?__________________________________________

2、把下面的小数化成分数,并说一说是怎样化的?

0.1 0.23 0.731 1.99

3、把下面的分数化成小数,说一说是怎样化的?

4、把下面的分数化成百分数。

5、把下面各数扩大100倍是多少?小数点是怎样移动的?如果把它们缩小100倍是多少?小数点是怎样移动的?

2.5 5 0.48 1.25 10.3

二、探索新知

探究一:自学课本P80例1,完成填空,讨论归纳小数化成百分数的方法是什么?

(1)小数化成百分数,先把小数化成分母是( )的分数,再把这个分数改写成百分数。

(2)小数化成百分数,只要把小数点向( )移动( )位,同时在后面添上( )就行。

(说明:当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。)

(3)小数化成百分数,在原数基础上乘以( )就行。如:0.234=0.234×( )=( )

(4)解决问题:你能把下面的小数化成百分数吗?

0.38 1.05

0.055 3

知识应用一:用你喜欢的方法完成第80页“做一做”第(1)题。

探究二:自学课本P80例2, 并补充完整。讨论归纳百分数化成小数的方法是什么?

(1)百分数化成小数,可以先把百分数改写成分母是( )的分数,然后再用分子除以分母,把分数转化成小数。

(2)把百分数化成小数,只要把( )去掉,同时把小数点向( )移动( )位就行。

(说明:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变。)

(3)解决问题:把下面的各百分数化成小数

15% 80% 3.5% 135%

知识应用二:用你喜欢的方法完成第80页“做一做”第(2)题。

三、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(把你个性化的解答或创新思路写出来吧!)

--59--

四、当堂检测

1、把下列各数按从大到小的顺序排列

1.4 0.123 27% 124% 0.25 0.4%

2、比较大小

0.52 ( )52% 1.2( )12.3% 254%( )0.254 0.25%( )0.025

3、把相等的数用线连接起来

0.25 130%

72% 0.176

0.415 25%

106% 0.72

1.3 1.06

17.6% 41.5%

4、判断,对的打“√ ”、错的打“ ×”。

(1)1.041=1041% ( )

(2)2%=0.02 ( )

(3)100%=1 ( )

(4)300%=0.3 ( )

(5)0.8%=0.08 ( )

--60--

5-3 >导学案

学生___________班级_______日期________

【学习目标】1、掌握百分数与分数互化的方法,并能正确的互化。

2、在学习的过程中培养分析思维和抽象概括能力。

3、注意口腔卫生,保持牙齿健康。

【学习重难点】1、重点是掌握百分数和分数互化的方法。

2、难点是正确、熟练地进行百分数和分数的互化。

【学习过程】

一、交流讨论:

百分数与小数互化的方法有哪些?你能利用已有的知识把百分数化成分数吗?

二、探索新知

1.自学课本P81例3,讨论归纳百分数化成分数的方法是什么?说说怎样爱护牙齿。。

☆友情小提示:先把百分数写成分母是100的分数,再约成最简分数。

2、想一想: 3.5%怎样化成分数?______________________________________________

☆友情小提示:如果百分数的分子是小数的,可以根据分数的基本性质,把分子、分母同时扩大相同的倍数,使分子变成整数后,再约分。

例如:12.5%= = =

3、尝试练习:P81“做一做”1、2题。

4、自学课本P82例4, 交流讨论以下问题:

(1)把分数化成百分数有那些方法?

(2)对于利用分子除以分母把分数化成百分数的方法中除不尽的情况下,保留几位小数?商要算到第几位?

☆友情小提示:分子除以分母,除不尽时,通常保留三位小数,也就是百分号前保留一位小数。例如: =1÷14≈0.071=7.1%

三、知识应用:独立完成P82“做一做”第1、2题,组长检查核对,提出质疑。

四、层级训练:

1、巩固训练:完成练习十九第3--6题。

2、拓展提高:练习十九第7、8题。

3、补充练习:选择题

(1)在7的后面添上百分号,这个数 ( )

A.大小不变 B.缩小100倍 C.缩小100%

(2)和25%不相等的数是 ( )

A.2.5 B.1/4 C.0.25

五、总结梳理

回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(把你个性化的解答或创新思路写出来吧!)

六、当堂检测

1、把下面的分数化成百分数:

= = = =

= = = =

= = = =

= = = =

10 = 5 = 201 = 4 =

≈ ≈ ≈ ≈

≈ ≈ ≈ ≈

2、把下面百分数化成分数:

28%= 160%= 0.8%= 5%=

75%= 24%= 65%= 125%=

3、先求出商,再化成百分数:

250÷150= 4.2÷7= 40÷160=

124÷50= 3÷8= 8÷12=

4、在□填上“>”、“

33%□ 0.75□75% 45%□ 99.9%□1 1 □1.25%

12□120% 0.55□5% 81.8%□ 100%□1 □2%

5、把下面各组数从大到小排列。

(1) 2.5 2 245% 2 (2)3.14 3.1 3.

2.5= =

2 = =

245%= =

2 = =

--62--

5-4 >导学案

学生___________班级_______日期________

【学习目标】1、理解发芽率、出粉率、合格率等这些百分率的含义。

2、能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数

的百分之几的百分数应用题,解决生活中一些简单的实际问题。

3、培养知识迁移能力和数学的应用意识。

【学习重难点】1、重点是解答求一个数是另一个数的百分之几的百分数应用题。

2、难点是对一些百分率的理解。

【学习过程】

一、提出问题 1、口算比赛:(时间:1分钟)

― × 1― ÷ ÷

+ × + + ÷5

2、想一想,根据自己的口算情况,你能提出什么数学问题?

3、根据自己的口算情况回答“做对的题数占总题数的几分之几?

做错的题数占总题数的几分之几?”

4、能否将“做对的题数占总题数的几分之几”的分数应用题改成一道百分数应用题呢?

5、尝试解答各自的“做对的题数占总题数的百分之几”和“做错的题数占总题数的百分之几”的问题。

二、探索新知

1、自学课本P85例1(1),解决问题以下:

①达标学生的人数占总人数的几分之几? ②达标学生的人数占总人数的百分之几?

③它们之间有什么联系?

☆友情小提示:“求一个数是另一个数的百分之几的百分数应用题”与“求一个数是另一个数的几分之几的分数应用题”解法相同,关键是找准单位“1”,所不同的是,“求一个数是另一个数的百分之几的百分数应用题”计算的结果要化成百分数。

2、什么是达标率?求达标率时为什么要乘100%?计算结果有变化吗?

3、自学课本P85--86例1(2),解决问题以下:

①什么是发芽率? ②你还能说出一些百分率的例子吗?具体举些例说说怎么求?

4、思考:“某件产品的合格率是101%”这句话对吗?为什么?

5、尝试练习:P86“做一做”1、2题。

三、知识应用:独立完成P87第1--3题,组长检查核对,提出质疑。

四、层级训练:1、巩固训练:完成P87练习二十第4、6、7、8题。

2、拓展提高:练习二十第5、9、10题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

--63---

六、当堂检测

1、20米是16米的( )%,20米比16米多( )%。

2、16米是20米的( )%,16米比20米少( )%。

3、比25少20%的数是( ),比16多25%的数是( )。

4、36比( )少20%,( )比20多10%。

5、甲数是120,乙数是甲数的40%,乙数是( ),丙数比甲数多40%,丙数是( )。

6、一块3平方米的菜地,把它平均分成8份,每份占整块地的( )%。

7、一个长方形,如果它的长增加50%,宽不变,面积就比原来扩加( )%。

8、五年级有女生90人,比男生少10%,女生与男生的比是( )。

9、一件衣服,原价240元,现价180元,降低了百分之几?

10、一种彩电原价每台2500元,现在价格降低了400元。降价百分之几?

11、一种彩电现价每台2100元,比原来降低了400元。降价百分之几?

12、三年级有学生360人,男生与女生人数比是5:4。三年级男生人数比女生多百分之几?

13、第一小学有480人,只有5%的学生没有参加意外事故保险。参加保险的学生有多少人?

14、生物小组进行玉米种子发芽试验,有285粒种子发芽,发芽率是95%,这次有多少粒种子试验?

15、看一本书,第一天看了84页,第二天比第一天少看40%,第二天比第一天少看多少页?第三天应从那一页开始看?

--64--

5-5 >导学案

学生___________班级_______日期________

【学习目标】1、掌握求一个数比另一个数多(或少)百分之几的问题的解答方法。

2、提高迁移类推和分析、解决问题的能力。

3、体会求百分率的用处和必要性。

【学习重难点】1、重点是掌握解决此类问题的方法。

2、难点是理解题中的数量关系。

【学习过程】

一、 复习

1、把下面各数化成百分数。

0.63 1.08 7 0.044

2.说说下面每个百分数的具体含义是什么?是怎么求出来的?

(哪两个数相比,把谁看作单位“1”)

(1)某种学生的出油率是36%。

(2)实际用电量占计划用电量的80%。

(3)李家今年荔枝产量是去年的120%。

二、探索新知

1、阅读P90例题2,复习铺垫,解决下面问题并在题中标出单位“1”。

(1)实际造林公顷数是原计划的百分之几?

(2)原计划造林公顷数是实际造林的百分之几?

2、解决问题(一):“实际造林比原计划增加百分之几?

(1)说说这句话的含义:

______________比_____________增加的公顷数占_____________的百分之几?

(2)请画线段图来表示数量关系。

(3)尝试解决问题。

(4)参照P90这两种解题方法你理解吗?说说解题思路。

3、解决问题(二):“原计划造林比实际造林少百分之几?”(用两种不同的方法)

4、在生活中找一找 “增加百分之几”“减少百分之几”“节约百分之几”……的例子,并说说如何解决这类问题?

☆友情小提示:解决这类问题要先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。

5、尝试练习:P90“做一做”

三、知识应用:独立完成P91第1、2题,组长检查核对,提出质疑。

四、层级训练:1、巩固训练:完成练习二十一第3--6题。

2、拓展提高:练习二十一第7、8题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(把你个性化的解答或创新思路写出来吧!)

--65--

六、当堂检测

1、20米是16米的( )%,20米比16米多( )%。

2、16米是20米的( )%,16米比20米少( )%。

3、比25少20%的数是( ),比16多25%的数是( )。

4、36比( )少20%,( )比20多10%。

5、甲数是120,乙数是甲数的40%,乙数是( ),丙数比甲数多40%,丙数是( )。

6、一块3平方米的菜地,把它平均分成8份,每份占整块地的( )%。

7、一个长方形,如果它的长增加50%,宽不变,面积就比原来扩加( )%。

8、五年级有女生90人,比男生少10%,女生与男生的比是( )。

9、一件衣服,原价240元,现价180元,降低了百分之几?

10、一种彩电原价每台2500元,现在价格降低了400元。降价百分之几?

11、一种彩电现价每台2100元,比原来降低了400元。降价百分之几?

12、三年级有学生360人,男生与女生人数比是5:4。三年级男生人数比女生多百分之几?

13、第一小学有480人,只有5%的学生没有参加意外事故保险。参加保险的学生有多少人?

14、生物小组进行玉米种子发芽试验,有285粒种子发芽,发芽率是95%,这次有多少粒种子试验?

15、看一本书,第一天看了84页,第二天比第一天少看40%,第二天比第一天少看多少页?第三天应从那一页开始看?

--66--

5-6 >导学案

学生___________班级_______日期________

【学习目标】1、掌握求稍复杂的已知一个数的百分之几是多少求这个数的应用题的解题方法,并能正确地解答这类应用题。

2、培养应用意识和解决简单的实际问题的能力。

3、感受数学与生活的联系。

【学习重难点】1、重点是掌握比一个数多(少)百分之几的应用题数量关系和解题思路。

2、难点是正确、灵活地解答这类百分数应用题的实际问题。

【学习过程】

一、复习铺垫

学校图书室原有图书1400册,今年图书册数增加了 。

增加了多少图书?_______________________________________________________

现在图书室有多少册图书?_______________________________________________

☆友情小提示:找出这道题目的分率句,确定单位“1”,并根据数量关系列式.

二、探索新知

1、阅读例3,理解题意(可以借助线段图),找出已知条件和所求的问题,明确这道题是把谁看成单位“1”。

2、思考:从“今年图书册数增加了12%”这句话中,你能知道些什么?

☆友情小提示:① 今年图书增加的部分是原有的12%。

② 今年图书的册数是原有的112%。(即1+12%=112%)

3、交流讨论,解决问题(尝试用两种不同的方法解答)

4、参照P93,说说这两种解法的解题思路。

5、思考:百分数应用题和相应的分数应用题有什么相同和不同的地方?

☆友情小提示:求一个数的几分之几和求一个数的百分之几,都要用乘法计算。

6、尝试练习:完成P93“做一做”第1、2题。

1、解:_____________________ 2、解:_______________________

_________________________ __________________________

_________________________ __________________________

_________________________ __________________________

_________________________ __________________________

_________________________ __________________________

答:_____________________ 答:______________________

三、知识应用:独立完成P94第1--4题,组长检查核对,提出质疑。

四、层级训练:1、巩固训练:完成练习二十二第5--10题.

2、拓展提高:练习二十二第11--14题

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(把你个性化的解答或创新思路写出来吧!)

--67--

六、当堂检测

1、为了缓解交通拥挤的状况,某市正在进行道路拓宽。团结路的路宽由原来的12m增加到25m,拓宽了百分之几?

2、城关一小和城关二小的男生人数分别占全校学生总人数的52%。城关一小有学生800人,城关二小有学生750人,哪个学校的男生多?多多少人?

3、(1)五年级一班男生40人,是女生的25%,女生有多少人?

(2)五年级一班男生40人,比女生多25%,女生有多少人?

4、小红做了80道口算题,比小花多做20道。小花做题的数量是小红的百分之几?

5(1)一件西服原价480元,现价比原价便宜20%。现价多少元?

(2)一件西服原价480元,现价比原价便宜20%。现价比原价便宜多少元?

(3)一件西服现价480元,现价是原价的80%。原价多少元?

(4)一件西服现价480元,现价比原价便宜20%。原价多少元?

(2) 一件西服现价比原价便宜96元,便宜了20%。现价多少元?

6、养鸡场用2400个鸡蛋孵小鸡,有5%没有孵出来。孵出来的小鸡有多少只?

7、养鸡场用一些鸡蛋孵小鸡。有120个没有孵出来,占鸡蛋总数的5%。养鸡场一共用了多少个鸡蛋孵小鸡?

8、油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?

--68--

5-7 >导学案

学生___________班级_______日期________

【学习目标】1、明确折扣的含义。能熟练地把折扣写成分数、百分数。

2、正确解答有关折扣的实际问题。

3、学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。

【学习重难点】1、重点是会解答有关折扣的实际问题。

五、 难点是合理、灵活地选择方法,解答有关折扣的实际问题。

【学习过程】

五、交流讨论:

春节将至,各商家一般都搞哪些促销活动?谁来说说他们是怎样进行促销的?

二、探索新知

1、生活中哪些地方见过“打折”?举例说说。

2、自学课本P97“折扣”

(1)理解什么是“打折”?

(2)几折表示什么?

(3)例4中“八五折”,“九折”表示什么?

(4)写出几个折数,并把它化成相应的分数和百分数。

☆友情小提示:“几折”就是十分之几,也就是百分之几十。

3、阅读P97例4,理解题意,补充完整。(有困难可以交流讨论)

☆友情小提示 分析题意:打八五折怎么理解?是以谁为单位“1”?

4、尝试练习:P97“做一做”

5、阅读P103“什么是‘成数’?”

“成数”与“折数”有什么区别与联系?

6、思考:一件商品先打九折出售后,再涨价10%,现在的价格与原价一样吗?

三、知识应用:独立完成,组长检查核对,提出质疑。

1、填空

①四折是十分之( ),改写成百分数是( )。

②六折是十分之( ),改写成百分数是( )。

③七五折是十分之( ),改写成百分数是( )。

④九二折是十分之( ),改写成百分数是( )。

五、判断:

① 商品打折扣都是以原商品价格为单位“1”,即标准量。( )

② 一件上衣现在打八折出售,就是说比原价降低10%。( )

3、爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

四、层级训练:1、巩固训练:完成P101第1、3题。

2、拓展提高:P101第2题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

--69--

六、当堂检测

1(1)五成八改成百分数是( ).

(2)一件上衣打八折出售,就是说比原价降低( ).

(3)去年水稻总产量1000吨,今年比去年增产一成,今年水稻总产量( )吨.

(4)录音机原价600元,现价420元,打( )折出售.

(5)一件商品打九折销售后的售价是720元,这件商品原价( )元.

2、一种品牌的空调每台2500元,在甲商场这种品牌的空调打九折出售,在乙商场这种品牌的空调按“买一台送200元”出售。哪家商场卖得更便宜些?

3、一种玩具国庆搞促销活动,按八五折优惠出售,每只玩具只买17元,一只玩具比原价便宜了多少元?

4、一件衣服原价120元,先提价20%,后又按八折销售,现价是多少元?

5、一件外套,原价240元,商家搞活动,准备八五折出售,现在这件外套的标价应该是多少

6、学校给每个学生分配一个水杯,每只3元,南海商城打七五折,天汇商厦“买四送一”。学校想买100只水杯,请你当参谋,算一算:到哪家购买比较合算?

7、妈妈买一件标价为498元的大衣,参加大八折的活动,妈妈付给营业员400元,应找回多少元?

9、春节即将来临,各大商场纷纷出计促销。其中有一种瓜子,大包每包12元,小包每包4元。收集到以下信息:“新一百”商场买1大包送1小包;“天天惠”商场一律打九折;“家得利”商场满30元后打八折。现在小丽想买这种瓜子2大包4小包。请你给小丽当参谋,她该选择哪家商场去买最合算?(请结合计算说明)

--70--

5-8 >导学案

学生___________班级_______日期________

【学习目标】1、知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。

2、在计算税款的过程中,加深对社会现象的理解,提高解决问题的能力。

3、增强法制意识,知道每个公民都有依法纳税的义务。

【学习重难点】1、重点是税额的计算。

2、难点是税率的理解。

【学习过程】

一、复习铺垫:口答算式。

(1)100的5%是多少? (2)50吨的10%是多少?

(3)1000元的8%是多少? (4)50万元的20%是多少?

二、探索新知

1、自学课本98页有关纳税的内容。

(1)了解什么是纳税?都有哪些税收?(在书上划出并理解记忆)

(2)什么是应纳税额?什么是税率?(在书上划出并理解记忆)

(3)根据你身边的事情说一说纳税的意义?

(4)说说怎样求税率?怎样求应纳税额?

六年级数学下册全册教案


作为一位杰出的老师,时常需要编写教案,教案是备课向课堂教学转化的关节点。来参考自己需要的教案吧!以下是小编帮大家整理的六年级数学下册总复习教案,欢迎阅读与收藏。

六年级数学下册全册教案 篇1

第一课时

教学目标:使学生认识圆柱的特征,认识圆柱侧面的展开图。

教学准备:教师与学生每人带一个圆柱,教师给学生每4人小组发一个纸制的圆柱。每位学生准备好制作圆柱的材料。

教学重点:使学生认识圆柱的特征。

教学难点:理解圆柱侧面展开是长方形,并理解长与宽与圆柱之间的关系。

教学过程:

一、复习

我们已经认识了长方体和正方体。

谁能说一说长方体的特征?(长方体是由6个长方形围成的,相对的两个长方形完全相同,长方体的高有无数条。)正方体呢?

谁能说一说我们学习了长方体和正方体的哪些知识?

二、 新授

教师:今天老师和大家一起学习一种新的立体图形:圆柱体,简称圆柱。

1、 初步印象

教师:同学们,请你们用眼睛看,用手摸,说一说圆柱与长方体的有什么不同?

(圆柱是由2个圆,1个曲面围成的。)

2、 小组研究:圆柱的这些面有什么特征呢?面与面之间又有什么联系呢?

3、 交流和汇报

(1)关于两个圆形得出:上下2个圆是完全相等的圆,它们都是圆柱的底面。(2)关于曲面得出:它是圆柱的侧面,如果沿着高展开,可以得到一个长方形或正方形,如果沿着斜线展开可以得到一个平行四边形。展开后的长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

(3)关于圆柱的高:两个底面之间的距离叫圆柱的高。高有无数条。高有时也可用长、厚、深代替。

4、 举例说明进一步明确特征

教师:既然大家对圆柱已有了进一步的了解,那么在生活中那些物体是圆柱呢?

(学生举例,再让学生自己判断。当有一个学生说粉笔是圆柱时,教师可让学生进行讨论。)

5、 运用知识进行判断

下面哪些图形是圆柱?哪些不是?说明理由。

6、 制作圆柱

三、练习

1、 运用知识进行判断

下面哪些图形是圆柱?哪些不是?说明理由。

六年级数学下册全册教案 篇2

教学内容:

六年级下册第38—40页 1—5题

教学目标:

1、使同学牢固地掌握整数,小数、正负数等概念的意义,沟通知识之间的联系和区别。

2、使同学能熟练地读、写数,并进行数的改写。

3、通过自主探索和合作学习,使同学在整理复习中形成知识网络,学会复习方法,提高综合运用能力。

教学重、难点:

掌握有关数的意义和多位数的读写法,沟通联系,形成知识网络。

教学准备:

多媒体课件,练习纸等

教学过程:

一、联系实际,引入课题

1、谈话激趣。

谈话主题:日常生活中的整理话题

同学联系实际举例,教师和时渗透整理的意义和整理方法。

2、迁移导课。

师:生活中我们很多地方用到了整理,整理也是一种非常重要的学习方法,这节课我们一起整理和复习有关数的基础知识。(板书课题)

二、回忆整理,沟通联系。

1、数的`搜集。

师:同学们,回忆一下我们学过哪些数呢?

同学回忆搜集学过的数(随着同学回忆屏幕上显示:整数、小数、自然数、正数、负数……)

2、分类整理。

师:大家还记得这些数的意义吗?咱们看着大屏幕,小组内互相说一说。

各小组在班上交流,然后独立完成书38页第1题,集体证正。

3、数的读写和改写。

小组探究,一起参与

同学自身举例,出示多位数,提出问题考考大家。

通过同学之间、组与组之间、师生之间相互提问、相互质疑、相互争辩、相互评价,完成知识构建。

三、综合练习,加深理解。

填空:(1)在0.8、-15、10、3.15、-3.7、0.43中( )是自然数,( )是小数,( )是整数,( )是正数,( )是负数。

(2)九亿六千万四百三十写作( ),四舍五入到亿位记作( )。

(3)二百零七零零四写作( )

(4)53005300读作( )

(5)3.92保存一位小数约是( )

四、总结全课学习情况。

五、作业。

教科书39—40页3、4、5题。

六年级数学下册全册教案 篇3

教学内容:

课本第97页例7,“试一试”和“练一练”,练习十六第1—3题。

教学目标:

1、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。

2、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。

3、培养和解决简单的实际问题的能力,体会生活中处处有数学。

教学重点:

掌握百分数在实际生活中的应用。

教学难点:

渗透生活即数学的教学思想。

课前准备:

课件

教学过程:

一、认识、了解纳税

教师介绍:纳税是根据国家税法的规定,按照一定的比率把集体或个人收入的一部分缴纳给国家,用于发展经济、国防、科学、文化、卫生、教育和社会福利事业,以不断提高人民的物质和文化生活水平,保卫国家安全。因此,任何集体和个人,都有依法纳税的义务。

税收是国家财政收入的主要来源之一。税收的种类主要有增值税、消费税、营业税和所得税等几种。

提问:你知道生活中到税务部门纳税的事吗?那么究竟什么是纳税,纳税额应该怎样计算?今天我们就来学习纳税的有关知识。

二、教学新课

1、教学例7。

出示例7:星光书店八月份的营业额是60万元。如果按营业额的5%缴纳营业税,这个书店八月份应缴纳营业税多少万元?

指名学生读题后全班学生再次读题。

提问:题里的营业额的5%缴纳营业税,实际上就是求什么?怎样列式计算?

学生尝试练习。

学生可能有下面两种方法:

方法1:引导学生将百分数化成分数来计算。

方法2:引导学生将百分数化成小数来计算。

集体订正,教师板书算式。说说这题你是根据什么来列式的?

强调:求应纳税额实际上就是求一个数的百分之几是多少,也就是把应该纳税部分的总收入乘以税率百分之几,就求出了应纳税额

2、做“试一试”。

提问:这道题先求什么?再求什么?

生:先求5000元的20%是多少?再求实际获得的奖金。

学生板演与齐练同时进行,集体订正。

3、完成练一练后全班交流。

三、反馈练习

只列式不计算。

1、一家运输公司10月份的营业额是260000元,如果按营业额的3%缴纳营业税,10月份应缴纳营业税多少万元?

2、李华买了一辆12万元的汽车,按规定买汽车要缴10%的购置税。他买的这辆汽车一共要付多少元?

3、一个城市中的饭店除了要按营业额的5%缴纳营业税以外,还要按营业税的7%缴纳城市维护建设税。如果一个饭店平均每个月的营业额是14万元,那么每年应交这两种税共多少元?

四、课堂总结

提问:通过本节课的学习你学会了什么内容?认识到什么?如果没有纳税,国家就筹集不到必要的资金为大家办事。因此,我国宪法规定每个集体和公民都有依法纳税的义务。希望同学们长大了争当纳税先锋,为祖国的繁荣贡献力量!

五、布置作业

练习十六第1—3题。

六年级数学下册全册教案 篇4

一、方向与位置

2.学生自主完成第(2)题,然后重点交流不同的方法。

师:同学们根据平面图上的比例尺和角度能够准确描述出物体的位置。如果给出比例尺和现实生活中的实际距离和角度,你能画出平面图吗?现在,请同学们看试一试的题和图,谁来说一说线段比例尺表示什么?

师:看一看书上的第4个问题,再观察一下我们画出的平面图,你认为用文字描述旗杆、大门、图书馆、水房的位置和用平面图表示,哪种方式更好,为什么?

课题:用数对确定位置

教学内容:冀教版《数学》六年级下册第5、6页。

6.师生共同总结关于数对的知识。

四、尝试练习

1.提出“试一试”的问题。先让学生说一说数对表示的含义,再说一说方格图中纵向、横向数字表示的含义。

2.学生尝试完成确定各点的位置。

五、课堂练习

1.先让学生观察图,了解座位是怎样摆放的,再找出该坐哪个座位。最后,说一说他的座位可以用哪个数对表示。

2.用数对表示位置的变式练习。先指导学生理解题意再由学生独立完成。

六、知识拓展

介绍地球仪上数对的应用。激发学生课后收集资料的兴趣。。

让学生介绍自己在教室里的具体位置,唤起学生已有的知识和经验,调动学生参与的兴趣。

六年级数学下册全册教案 篇5

教学目标:

1、通过测量各种目标物影子长度的实践活动,使学生主动探索掌握影子长度与目标物实际高度之间的比例关系,并能学以致用,解决大树、旗杆、高楼等物体有多高的问题。

2、通过分组合作,培养学生动手动脑、解决实际问题的能力和团结协作精神。

3、通过活动,使学生感受到数学与现实生活的密切联系,进一步激发学习数学的兴趣,并在活动中培养创新精神。

教学重点:

引导学生探索发现“同一地点,同时测量长度不同的竿,高度与影长的比值是相等的”教学难点:运用发现的规律解决“大树有多高”之类的实际问题。

教学准备:

课前测量数据,多媒体课件。

教学过程设计:

一、预习导学

1、师:同学们,下面我们来看段小视频。

2、师:同学们,物体的影子是怎么形成的呢?

3、师:所形成的影子的长短是由什么决定的呢?(班班通出示图片,学生观察、交流、汇报。)

4、师:那么物体的影子长度和物体的高度之间有着什么样的联系呢?你们想知道吗?这节课,我们就来一起研究一下。(板书课题)

二、新课探究

1、探究两根长度相同的竿的影长。

(出示视频)学生记录数据。

师:通过同学的测量,同时同一地点测量两根长度相同的竿,影长有什么关系?

(生分析数据,汇报)结论:同一时间,同一地点测量相同长度的竿,影长是相同的。

2、探究两根长度不同的竿的影长。

(出示视频)学生记录数据

师:通过测量,同时同一地点测量两根长度不同的竿,影长有什么关系?(生分析数据,汇报)

结论:同一时间,同一地点测量不同长度的竿,影长是不相同的。

3、探究竿长度与影长之间的关系。

(出示表格)1号2号3号4号竿长/cm

影长/cm竿长与影长的比值

要求:竹竿长与影长的比值保留两位小数。(小组合作完成)观察比较:比较每次求得的比值,你有什么发现?(思考,交流,汇报)结论:在同一地点,同时测量不同长度的竿,高度与影长的比值是相同的。

4、验证结论师:刚才发现的结论正确么?如果是正确的,老师课前还准备了5号竿,同学们运用所发现的结论,计算一下5号竿的竿长。

(出示视频,学生记录数据,计算)

三、当堂练习

1、在上海中心大厦测得其影长为158米,同时测得一根竹竿的长为180厘米,影长为45cm,那么长海中心大厦的高为多少米?

2、早晨在校园里测得一棵梧桐树的影长为37。5米,同时测得一根竹竿长2米,其影长为3米,这棵梧桐树高()米?

3、在学校的操场上,有一棵大树和一根旗杆,若此时大树的影长6m,旗杆高4m,影长5m,求大树的高度?

四、你知道么?约公元前600年,泰勒斯从遥远的希腊来到了埃及。在此之前,他已经到过很多东方国家,学习了各国的数学和天文知识。到埃及后,他学会了土地丈量的方法和规则。他学到的这些知识能够帮助他解决这个千古难题吗?他苦苦思索着。有一天,当他看到金字塔在阳光下的影子时,他突然想到办法了。泰勒斯仔细地观察着影子的变化,找出金字塔地面正方形的一边的中点(这个点到边的两边的距离相等),并作了标记。然后他笔直地站立在沙地上,并请人不断测量他的影子的长度。当影子的长度和他的身高相等时,他立即跑过去测量金字塔影子的顶点到做标记的中点的距离。他稍做计算,就得出了这座金字塔的高度。

五、课堂总结

六年级数学下册全册教案 篇6

复习目标:

使学生进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。

复习重点:

分数除法的计算方法,化简比。

复习难点:

正确计算分数除法。

复习过程:

一、复习分数除法的意义和计算法则

1、这一章我们学习了分数除法的有关知识.请大家回忆一下分数除法有几种类型?

(1)分数除以整数,例如5;

(2)一个数除以分数,它又包括整数除以分数,例如20;和分数除以分数,例如。

(3)做第52页整理和复习的第2题。

2、分数除法的意义

(1)第52页整理和复习的第1题:要把这道乘法算式改写成两道除法算式,应该怎么办呢?(引导学生根据乘、除法的关系进行改写,然后让学生将改写的算式填写在书上)

(2)让学生说说是怎样题改写成两道分数除法算式的。

(3)分数除法的.意义是什么呢?(使学生明确,分数除法的意义与整数除法的意义相同,都是:已知两个因数的积与其中一个因数,求另一个因数的运算)

3、分数除法的计算法则

(1)分数除以整数应该怎样计算?一个数除以分数应该怎样计算?

(2)引导学生概括出分数除法的统一计算法则:除以一个数(0除外),等于乘这个数的倒数。

(3)完成P52整理和复习第2题。

(4)P53练习十三第2题。

二、复习比的意义和基本性质

1、比的意义

(1)什么叫做比?(两个数相除又叫做两个数的比)什么叫做比值?(比的前项除以后项所得的商.)

(2)以3∶2为例,让学生分别说出比号前项和后项。

3∶2=1.5

前比后比

项号项?值

(3)比和比值有什么区别和联系呢?(比值是一个数,是比的前项除以比的后项所得的商,它通常用分数表示,也可以用小数表示,有时还是整数。而比所表示的是两个数的关系,如3∶2,虽然也可以写成分数的形式,但仍读作3比2。特别强调比的后项不能为0)

(4)比和除法、分数的联系

除法被除数(除号)除数商

分数分子-(分数线)分母分数值

比前项:(比号)后项比值

2、比的基本性质

(1)复习概念及化简方法

①比的基本性质是什么?

②应用比的基本性质,怎样对整数比进行化简?

③不是整数的比应该怎样化简?

(2)学生做P52整理和复习第3题(指名学生说说自己是怎样想的)

三、课堂练习

1、练习十三的第1题(先让学生独立完成.订正时,要让学生说出判断正误的理由)

2、做练习十四的第2题.

3、做练习十四的第3题(学生独立完成.教师注意巡视,察看学生所用算法是否简便)

4、做练习十四的第7题.

六年级数学上册第四单元教案


六年级数学上册第四单元教案

第四单元

单元目标:

1、认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

2、学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

3、独立自学,使学生初步认识弧、圆心角和扇形。

4、使学生认识思对称图形,知道轴对称的含义,能找出轴对称图形的对称轴。

5、通过介绍圆周率的史料,使学生受到爱国主义教育。

单元重点:

1、 认识圆和轴对称图形;

2、 掌握圆的周长和面积的计算公式。

单元难点:

理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆。

1. 认识圆

(1)圆的认识

目标:

1、学生认识圆,掌握圆的特征,理解直径与半径的关系。

2、会使使用工具画圆。

3、培养学生观察、分析、综合、概括及动手操作能力。

重点:

圆的认识,通过动手操作,理解直径与半径的关系,认识圆的特征。

教学难点:画圆的方法,认识圆的特征。

教学过程:

一、自学

1、我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征?

长方形 正方形 平行四边形 三角形 梯形

2、 示圆片图形:(1)圆是用什么线围成的?(曲线图形)

3、 举例:生活中有哪些圆形的物体?

二、议学

(一)认识圆的特征。

1、学生自己在准备好的纸上画一个圆,并动手剪下。

2、动手折一折。

(1)折过2次后,你发现了什么?

(两折痕的交点叫做圆心,圆心一般用字母O表示)

(2)再折出另外两条折痕,看看圆心是否相同。

3、认识直径和半径。

(1)将折痕用铅笔画出来,比一比是否相等?

(2)观察这些线段的特征。(圆心和圆上任意一点的距离都相等)

(3)板书:通过圆心并且两端都在圆上的线段,叫做直径。连接圆心到圆上任意一点的线段,叫做半径。

4、讨论:

(1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?

(2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?

(3)小结:在同一个圆里,有无数条直径,且所有的直径都相等。

在同一个圆里,有无数条半径,且所有的半径都相等。

5、直径与半径的关系。

(1)学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。

得出结论:在同一个圆里,

6、巩固练习:课本58“做一做”的第1-4题。

(二)画圆

1、介绍圆规的各部分名称及使用方法。

2、引导学生自学用圆规画圆,并小结出画圆的步骤和方法。

三、悟学

(一)巩固练习

1、画一个半径是2厘米的圆。再画一个直径是5厘米的圆。

2、判断,并说为什么。

(1)半径的长短决定圆的大小。 ( )

(2)圆心决定圆的位置。 ( )

(3)直径是半径的2倍。 ( )

(4)圆的半径都相等。 ( )

3、思考题:在操场如何画半径是5米的大圆?

(二)课堂总结:经过今天的学习,你知道了什么?还有什么疑问?

(三)作业:书P60第1-4题。

(2)轴对称图形

教学目标:

1、在前面所学得成轴对称的平面图形的基础上,教学认识圆的对称轴。

2、学生认识到圆是轴对称图形,且对称轴有无数条。

3、培养学生动手操作能力,在操作中加深对所学平面图形的对称轴的认识。

教学重点:圆的对称轴。

教学难点:画对称轴的方法。

教学过程:

一、自学:

1、举例说出轴对称的物体。如:蝴蝶 、飞机、门窗、圆中的钟面、月饼等。想一想这些图形有什么特点?

2、观察、概括。

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线直线叫做对称轴。

二、议学:

1、你能分别画出下面两个圆的对称轴吗?你能画出几条?

2、学生尝试画出圆的对称轴,观察、再动手折一折,你发现了什么?

3、小结:圆有无数条对称轴。每一条直径所在的位置都是它的对称轴。

三、悟学:

1、在方格上画对称轴,并量出对称轴两边相对的点到对称轴的距离。

2、小结:对称轴两侧相对点到对称轴的距离相等。

3、从上面的图形可以看出,正方形、长方形、等腰三角形和圆都是轴对称图形,这些对称图形各有几条对称轴?画出来。

4、下面的图形是轴对称图形吗?它们各有几条对称轴?

长方形 等边三角形 等腰三角形 正方形 圆 环形

四、总结:

今天我们学习了哪些知识?

五、布置作业:

练习十四第5—9题。

教学追记:

本堂课是对圆的初步认识,概念较多,也能会较乏味。为了避免学生学得枯燥、没兴趣,我采用了课件与动手操作相结合的方式进行教学,充分调动起学生的学习积极性,并让学生在动手操作的基础上,自主探索和发现圆的有关特性。但在教学“画圆”时,我的讲授部分似乎就多了一些,如能让学生自己来讲述、演示画圆的步骤,有何不足在相互补充的话,这样的教学似乎会更好一些。

(3)圆的周长(一)

教学目标:

1、学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能

正确计算圆周长。

2、培养学生的观察、比较、概括和动手操作的能力。

3、对学生进行爱国主义教育。

教学重点:

圆的周长和圆周率的意义,圆周长公式的推导过程。

教学难点:

圆周长公式的推导过程。

教学过程:

一、自学:认识圆的周长

1、出示一个正方形。

这是什么图形?什么是正方形的周长?怎样计算?这个正方形周长与边长有什么关系? C=4a

2、什么是圆的周长?

让学生上前比划,圆的周长在那?那一部分是圆的周长?

得出定义:围成圆的曲线的长叫做圆的周长。

二、议学:

1、圆周长的公式推导

(1)你可以用什么办法知道一个圆的周长是多少?

(2)学生各抒己见,分别讨论说出自己的方法:

A、用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,即可得出圆的周长。

B、把圆放在直尺上滚动一周,直接量出圆的周长。

C、用一条小线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗?

用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。

2、动手实践。

(1)4人小组,分别测量学具圆,报出自己量得的直径,周长,并计算周长和直径的比值。

(2)引生看表,问你们看周长与直径的比值有什么关系?

(3)你有办法验证圆的周长总是直径的3倍多一点吗?

(4)阅读课本P63,介绍圆周率,及介绍祖冲之。

3、解决新问题。新-课-标-第-一-网

(1)教学例1 圆形花坛的直径是20m,它的周长是多少米?小自行车车轮的直径是50m,绕花坛一周车轮大约转动多少周?

第一个问题: 已知 d = 20米 求:C = ?

根据 C =πd 20×3.14=62.8(m)

第二个问题: 已知: 小自行车d = 50cm 先求小自行车C = ? c=πd 50cm=0.5m 0.5×3.14=1.57(m)

再求绕花坛一周车轮大约转动多少周?

62.8 ÷1.57=40(周)

答:它的周长是62.8米。绕花坛一周车轮大约转动40周。

三、巩固练习。

1、求下列各题的周长。书本65页练习十五的第1题

2、判断正误。

(1)圆的周长是直径的3.14倍。

(2)在同圆或等圆中,圆的周长是半径的6.28倍。

(3)C =2πr =πd

(4)半圆的周长是圆周长的一半。

四、作业。 P64 做一做 ,练习十五的第5、8题

(4)圆的周长(二)

教学目标:

1、通过教学使学生学会根据圆的周长求圆的直径、半径。

2、培养学生逻辑推理能力。

3、初步掌握变换和转化的方法。

教学重点:求圆的直径和半径。

教学难点:灵活运用公式求圆的直径和半径。

教学过程:

一、自学:

1、口答。 4π 2π 5π 10π 8π

2、求出下面各圆的周长。

二、议学:

1、提出研究的问题。

(1)你知道Π表示什么吗?

(2)下面公式的每个字母各表示什么?这两个公式又表示什么? C=πd C=2πr

(3)根据上两个公式,你能知道:

直径=周长÷圆周率 半径=周长÷(圆周率×2)

2、学习练习十四第2题。

(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

已知:c=3.77m 求:d=?

(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

已知:c=1.2米 R=c÷(2Π) 求:r=?

三、巩固练习。

1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

2、求下面半圆的周长,选择正确的算式。

⑴ 3.14×8

⑵ 3.14×8×2

⑶ 3.14×8÷2+8

3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的 ,也就是走了整个圆的 。而钟面一圈的周长是多少?20×2×3.14=125.6(厘米)

(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的 ,也就是走了整个圆的 。则:钟面一圈的周长是多少? 20×2×3.14=125.6(厘米)

45分钟走了多少厘米? 125.6× =94.2(厘米)

4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

一、 作业。P65-66 第3、6、7、9题

(5)圆的面积(一)

教学内容:圆的面积第67-68页圆面积公式的推导。例1及做一做的第1题。练习十六的第1、2、5题。

教学目标:⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。

⒊渗透转化的数学思想。

教学重点:圆面积的含义。圆面积的推导过程。

教学难点:圆面积的推导过程。

教学过程:

一、自学:

1、已知r,周长的一半怎样求?

2、用手中的三角板拼三角形,长方形、正方形、平行四边等,并说出这些图形的面积计算公式。

s=ab s=a2 s= ah s= ah s= (a+b)h

二、议学:

1、什么是圆的面积?(出示纸片圆让生摸一摸)

圆所占平面大小叫做圆的面积。

2、推导圆的面积公式。

(1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?

若分的分数越多,这个图形越接近长方形。

(1)找:找出拼出的图形与圆的周长和半径有什么关系?

圆的半径 = 长方形的宽

圆的周长的一半 = 长方形的长

长方形面积 = 长 ×宽

所以: 圆的面积 = 圆的周长的一半×圆的半径

S = πr × r

S圆 = πr×r = πr2

3、你还能用其他方法推算出圆的面积公式吗?

(1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积是这个圆面积的 。这个三角形底是圆周长的 ,三角形的高是圆的半径。

因为:三角形面积= ×底×高

圆面积= ×

= × ?r×r

=πr2

(2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的 ,平行四边形的底是 ,三角形的高即一个半径,

因为:平行四边形面积=底×高

圆面积 = ×r÷

= ×r×8

=πr2

还可以取3份、4份等,同学们可以一一推算。

三、运用知识解决实际问题。

1、例1 一个圆的直径是20m,它的面积是多少平方米?

已知:d=20厘米 求:s=?

2、根据下面所给的条件,求圆的面积。

r=5cm d =0.8dm

3、解答下列各题。

(1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?

(2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?

四、作业。

课本P70第1、5题。

(6)圆的面积(二)

教学目标:

1、学生学会已知圆的周长求圆的面积的解题思路与方法,理解并学会环形面积。

2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简单的实际问题。

3、培养学生的逻辑思维能力。

教学重点:培养综合运用知识的能力。

教学难点:培养综合运用知识的能力。

教学过程:

一、自学:

1、口算:

32 42 52 82 92 202

2π 3π 6π 10π 7π 5π

2、思考:

(1)圆的周长和面积分别怎样计算?二者有何区别?

(2)求圆的面积需要知道什么条件?

(3)知道圆的周长能够求它的面积吗?

二、议学:

1、教学练习十六第3题

小刚量得一棵树干的周长是125.6cm,这棵树干的横截面积是多少?

已知:c=125.6厘米 s=πr2

r:125.6÷(2×3.14) 3.14×202

=125.6÷6.28 =3.14×400

=20(厘米) =1256(平方厘米)

3、教学环形面积。

(1)例2 光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?

已知:R=6厘米 r=2厘米 求: s=?

3.14×62 3.14×22

=3.14×36 =3.14×4

=113.04(平方厘米) =12.56(平方厘米)

113.04-12.56=100.48 (平方厘米)

第二种解法:3.14×(62-22)=100.48(平方厘米)

(2)小结:环形的面积计算公式:

S=πR2-πr2 或 S=π×(R2-r2)

(3)完成做一做: 一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

三、悟学:

1、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?

选择正确算式

A、(18.84÷3.14÷2)2×3.14

B、(18.84÷3.14)2×3.14

C、18.842×3.14

2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?

3、课堂小结。

(1)这节课的学习内容是什么?

(2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?

已知半径求面积 S=πr2

已知直径求面积 S=π( )2

已知周长求面积 S=π( )2

(3)环形面积: S=π(R2-r2)

四、作业

课本P70第4、6、7题。

(7)圆的周长和面积的练习课

教学目标:

1、通过教学使学生理解并掌握圆的周长和面积计算方法。

2、培养学生分析问题和解决问题的能力,发展学生的空间观念。

3、灵活解答几何图形问题。

教学重点:认真审题,分辨求周长或求面积。

教学过程:

一、自学:

1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。

2、分辨面积与周长有什么不同?

(1)概念

圆的周长是指圆一周的长度

圆的面积是指圆所围成的平面部分的大小。

(2)计算公式

求圆的周长公式:C=πd 或 C=2πr

求圆的面积公式:S=πr2

(3)使用单位

计算圆的周长用长度单位

计算圆的面积用面积单位

二、练习。

1、判断下面各题是否正确,对的打“√”,错的打“?”。

(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)?。

(2)半径为2厘米的圆的周长和面积相等。

(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内)

(4) 面积:3.14×62=3.14×12=37.68

2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。

⑴半圆的周长是多少厘米? (2)半圆的面积:

3、一个圆的周长是25.12米,它的面积是多少:

已知:C=25.12米 求:S=?

4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?

已知:R=7厘米=0.7分米 r=0.5分米 求:S=?

S环=π×(R2-r2)

3.14×(0.72-0.52)

=3.14×0.24

=0.7536(平方分米)

三、巩固发展.

1、思考题p71 (8)

一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)

(1)围成长方形: 31.4÷2=15.7(m)(长和宽的和)

长 × 宽 = 面积

当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.

(2)围成圆形

直径:31.4÷3.14=10(m)

半径:10÷2=5(m)

面积:3.14× 52=78.5(m2 )

(3)比较:长方形面积:61.6 m2 正方形面积:61.6225 m2 圆面积:78.5 m2

围成圆的面积最大。

2、思考题 p71 (9)、(10)

四、作业。

课本P71第6、7题。

(8)整理和复习

教学目标:

⒈根据圆周长与面积的计算公式掌握圆周长与面积的计算方法。

⒉培养学生灵活、全面的运用知识的能力,及运用所学知识解决简单实际问题的能力。

⒊培养学生认真审题的良好学习习惯。

教学重点:灵活运用周长或面积公式解决实际问题。

教学过程:

一、周长与面积的区别。

1、什么是圆?圆周长的计算公式是什么?圆面积公式的计算公式是什么?

2、计算下题。求出它的周长与面积。

(1)学生动手计算。

(2)周长与面积有什么不同?

概念不同,计算公式不同,单位不同。

3、判断。两个图形相比较,哪个图形的周长长,哪个图形的面积就大。

(错。周长的长短和面积的大小没有必然的联系。)

二、运用所学知识解决实际问题。

1、一个圆形花坛,直径是4米,周长是多少米?

3.14×4=12.56(米)

2、一个圆形花坛,周长是12.56米,直径是多少米?

12.56÷3.14=4(米)

3、一个圆形花坛的半径是2米,它的面积是多少平方米?

3.14×22=12.56(平方米)

4、一个圆形花坛的周长是12.56米,它的面积是多少平方米?

r=12.56÷(2×3.14)= 2(米) 3.14×22=12.56(平方米)

5、一个环形铁片,外直径是6米,内直径是4米,它的面积是多少平方米?

⑴ 3.14×( )2=28.26(平方米)

3.14×( )2=12.56(平方米)

28.26-12.56=15.7 (平方米)

⑵ - = 5(平方米)

3.14×5=15.7(平方米)

6、先测量所需要的数据,再计算半圆的周长和面积。(解答结果保留整厘米数)

7、一个圆形餐桌面直径是2m,它的周长多少米?它的面积是多少米?如果一个人需要0.5M宽的位置就餐,这张餐桌大约能坐多少人?+

三、综合练习。

1、判断对错,

(1)圆的半径都相等。 ( )

(2)在同圆或等圆中圆周长约是半径的6.28倍。 ( )

(3)半圆的周长是圆周长的一半。( )

2、只列式不计算。

(1)一个圆形铁板的半径是5分米,它的面积是多少平方分米?

(2)一个圆形的铁板的直径是6分米,它的面积是多少平方分米?

(3)一个圆形铁板的周长是28.26分米,它的面积是多少平方分米?

3、说一说下面各题的解题思路。

(1)一个圆形花坛,直径是5米,小明围着它跑了5圈,小明一共跑了多少米?

(2)在草地的木桩上栓着一只羊,绳长3米,这只羊能吃到草的面积最大是

多少平方米?

二、 布置作业

练习十七1—3,思考第4题。

(9)确定起跑线

教学目标:

1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。

2、让学生切实体会到数学在体育等领域的广泛应用。

教学重点:如何确定每一条跑道的起跑点。

教学难点:确定每一条跑道的起跑点。

教学过程:

一、 提出研究问题。(出示运动场运动员图片)

1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)

2、各条跑道的起跑线应该向差多少米?

二、 收集数据

1、看课本75页了解400m跑道的结果以及各部分的数据。

2、出示图片、投影片让学生明确数据是通过测量获取的。

直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)

三、 分析数据

学生对于获取的数据进行整理,通过讨论明确一下信息:

1、两个半圆形跑道合在一起就是一个圆。

2、各条跑道直道长度相同。

3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。

四、 得出结论

1、看书P76页最后一图:

2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)

3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5π)

五、 课外延伸

200m跑道如何确定起跑线?

六年级数学上册第一单元教案


六年级数学上册第一单元教案

1 位置 2

2 分数乘法 5

3 解决问题 5

4 倒数的认识、整理复习 5

5 分数除法 5

6 解决问题 5

7 比和比例,整理复习 5

8 圆的认识 5

9 圆的周长 5

10 圆的面积 5

11 百分数的意义和写法 5

12 百分数和分数小数的互化 5

13 用百分数解决问题 5

14 用百分数解决问题 5

15 统计 5

16 数学广角 5

17 总复习 5

18 总复习 5

19 总复习 5

20

本册教学目标:

这一册教材的教学目标是,使学生:

1. 理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算

简单的分数乘、除法,会进行简单的分数四则混合运算。

2. 理解倒数的意义,掌握求倒数的方法。

3. 理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。

4. 掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确

计算圆的周长和面积。

5. 知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转

设计简单的图案。

6. 能在方格纸上用数对表示位置,初步体会坐标的思想。

7. 理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分

数的简单实际问题。

8. 认识扇形统计图,能根据需要选择合适的统计图表示数据。

9. 经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常

生活中的作用,初步形成综合运用数学知识解决问题的能力。

10. 体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。

11. 体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

12. 养成认真作业、书写整洁的良好习惯。

第一单元 位置

单元教学目标:

1. 在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

2. 能在方格纸上用数对确定位置。

教学内容 位置(一) 新授课 新授

教学目标 1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

2. 使学生能在方格纸上用数对确定位置。

教学重点 能用数对表示物体的位置。

教学难点 能用数对表示物体的位置,正确区分列和行的顺序。

教具准备 课件

教学过程 一、 导入

1、 我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

2、 学生各抒己见,讨论出用“第几列第几行”的方法来表述。

二、 新授

1、 教学例1

(1) 如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?

(2) 学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

(3) 教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

2、 小结例1:

(1) 确定一个同学的位置,用了几个数据?(2个)

(2) 我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。

3、 练习:

(1) 教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

(2) 生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

4、 教学例2

(1) 我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

(2) 依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

(3) 同桌讨论说出其他场馆所在的位置,并指名回答。

(4) 学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)

三、 练习

1、 练习一第4题

(1) 学生独立找出图中的字母所在的位置,指名回答。

(2) 学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

2、 练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置

3、 练习一第6题

(1) 独立写出图上各顶点的位置。

(2) 顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

(3) 照点A的方法平移点B和点C,得出平移后完整的三角形。

(4) 观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

四、 总结

我们今天学了哪些内容?你觉得自己掌握的情况如何?

五、 作业

练习一第1、2、5、7、8题。

个人修改

以前我们学过哪些表示 方向的方法?

怎样用数对表示同学的座位?

游戏:说数对猜同学。

板书设计:

位置(一)

用数对表示位置,先横后竖

教后反思:

第二单元 分数乘法

单元目标:

1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

4、 使学生理解倒数的意义,掌握求倒数的方法。

单元重点:

分数乘法的意义和计算法则。

单元难点:

1、 理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

2、 分数乘法计算法则的推导。

教案

教学内容 分数乘整数 课型 新授

教学目标 1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点 使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点 引导学生总结分数乘整数的计算法则。

教具准备

教学过程 一、 复习

1.出示复习题。

(1)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少? 9个11是多少? 8个6是多少?

(2)计算:

+ + = + + =

2.引出课题。

+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。

二、 新授

1、 利用 + + 教学分数乘法。

(1) 这道加法算式中,加数各是多少?(都是 )

(2) 表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法, ×3)

(3) + + =9,那么 + + = ×3,所以 ×3=____________=9。同学们想想看, ×3=9计算过程是怎样的?谁能把它补充完整。

2、 出示例1,画出线段图,学生独立列式解答。

(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?(列式: ×3 = )

3、 结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

4、 练习:练习完成“做一做”第2题。

5、 教学例2

(1)出示 ×6,学生独立计算。

(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

三、练习

1、 完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

2、 “做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)

三、 作业

练习二第1、2、4题。 个人修改

人教版六年级数学上册总复习教案


人教版六年级数学上册总复习教案

单元教学目标:

通过总复习,系统、全面地复习和整理本学期所学知识,帮助学生构建合理的知识体系,以便学生更好地理解和掌握所学的概念、计算方法以及有关的规律性的知识,进一步发展学生的数概念、空间概念、统计概念,增强学生综合运用知识的能力,全面达到本学期的教学目标。

第一课时 总复习——分数乘、除法

教学内容:教材第118页总复习第1——5题。

教学目标:

1.理解分数乘、除法的意义、倒数的意义,分数乘除法的关系,掌握分数乘、除的计算方法,能正确地进行分数乘除法的计算。

2.掌握比的意义,理解比与分数、除法的关系,比的基本性质,会求比值和化简比。

3.掌握解决分数乘除法问题的思路,能熟练地分析数量关系,正确地解决分数除法问题。

教学重点:概念和计算方法。

教学难点:掌握解决分数乘,除法问题的思路和方法。

教学过程:

一、分步复习活动准备

将学生课前就本节复习内容提出的知识性问题和难点问题分类整理,制成问题卡,交由3位学生主持复习。

师:同学们,经历了将近一个学期的学习,大家都有不同程度的收获,为了帮大家更好地复习整理本节知识,我们请3位同学分别主持复习。现在请第一位主持人出场。

二、复习分数乘除法的知识

1.主持人持知识问题卡提出问题,分别指名回答。

分数乘法的意义是什么?与整数乘法相同吗?

分数除法的意义是什么?与整数除法相同吗?

分数乘法的计算法则是怎样的?

什么叫倒数?怎样求一个数的倒数?

分数除法的计算方法是怎样的?

2.主持人持难点问题卡提出问题,指名回答。

分数乘、除法的关系是怎样的?

分数除法的计算具体要注意几点?

0有倒数吗?为什么?1呢?

3.教师组织学生活动

计算。

3/4×2/5= 2/3×5/6= 7/9×18= 3/10÷3/4= 5/9÷5/6=

21÷7/9= 3/10÷2/5= 5/9÷2/3= 6/11÷5/12=

4.复习比的知识

第二位主持人提出问题,学生回答。

知识性问题:

什么叫比?比的各部分名称是怎样的?举例说明?

怎样求比值?

比与分数、除法有什么联系?

比的基本性质是什么?怎样化简比?

难点问题:

为什么比的后项不能为0?

求比值与化简比有什么区别?

练习:

3÷4=()/()=()/12=():32=12:()

说出下面每个比的前项、后项,并求出比值。2:5 0.6÷0.3 4/7

把下面各比化成最简整数比. 8:12 0.25:0.45 1/4:1/8

(5)复习解决问题的解题思路和方法。

第三位主持人上场。

怎样解决分数乘除法问题呢?

主持人点4名同学板演教材第118页第3、4、5题。

对4名学生做的情况进行评议。

对比观察第3题第(1)(2)小题。

数量关系式是:原价×1/5=现价

第(1)小题已知原价求现价,用乘法计算。第(2)小题已知现价求原价,用除法计算或用方程解。

学生归纳分数乘除法问题的规律。

单位“1”的量已知,求一个数的几分之几是多少,用乘法计算;

单位“1”的量未知,已知一个数的几分之几是多少,求这个数,用除法计算。

验证第4、5题。

第4题,把地球总面积看作单位“1”,求单位“1”的量用除法计算。

第5题,先出示学生画的线段图。观察线段图结合理解:火车的速度已知,第1个单位“1”的量是火车的速度,求小汽车的速度用乘法计算,第二个单位“1”的量是喷气式飞机的速度,是未知的,要用除法计算。

主持人归纳:区分分数乘、除法问题,判断把谁看作单位“1”以及是已知还是未知,这是非常关键的一步,此外还应借助线段图分析数量关系,真正掌握知识。

师:归纳得真好。今天三位主持人在场上还有很多精彩表现,请同学们评一评。

三、应用练习

(1)完成练习二十七第5题。

(2)完成练习二十七第10、11题。

(3)完成练习二十七第7、8题,学生做后 思路和方法。

四、课堂小结

通过这节课的复习活动,你的学习有什么新的收获?

第二课时 总复习——百分数

教学内容:教材第119页总复习第6、7题。

教学目标:

1.理解百分数意义,掌握百分数和分数、小数的互化方法。

2.熟练运用百分数知识解决百分数问题,理解百分数问题的结构特征,归纳百分数问题的解题思路和方法。

3.培养学生解决问题的能力。体验百分数知识与日常生活的密切联系,培养学生应用知识的意识。

教学重点:运用百分数知识解决实际问题。

教学难点:归纳知识,形成体系。

教学过程:

一、创设情境导入

师:同学们,百分数在我们的生活中无处不有,只要我们留心它,发现它就在我们身边。

1.投影出示下面一段文字:

湖南汩罗义务教育阶段学生流失率低得令人咋舌。10年前初中是2.5%,小学是0.02%,现在小学连续10年的入学率,巩固率均为100%,初中流失率始终控制0.2%,近三年的数字是0.18%,0.17%和0.15%.

2.学生阅读文字,感知其中百分数。

3.从上面一段文字中你能发现什么?

从上面的百分数中中以看出汩罗义务教育实施情况非常理想;运用百分数很能够直观;百分数在实际应用中表示两个量之间的关系,一个量是另一个量的百分之几。

二、复习百分率的知识

1.师:看来,百分数的作用还真不小。你能理解上文中百分率的意思吗?

学生尝试理解流失率、入学率、巩固率的意思,教师指正。

2.复习已学过的一些百分率的计算公式。

3.学习理解烘干率和含水率。

完成教材第119页总复习第6题。

学生自学理解烘干率和含水率的意思,然后说一说,议一议。

烘干率=烘干后的重量/烘前的重量×100%

含水率=(烘前的重量-烘干后的重量)/烘前的质量×100%

学生试求烘干率和含水率,然后集体订正。

三、复习百分数的一般 。

1.求一个数比另一个数多(或少)百分之几。

2.求一个数多(或少)百分之几的数是多少

师;我们已经学习了运用百分数知识解决百分数的一般问题。现在大家回顾已学知识,把你掌握的方法告诉小组的成员。

分组讨论,交流分析问题的思路和解决问题的方法。

小组汇报。可能有以下几种:

解决百分数的问题可以依照解决分数问题的方法。

在分析问题时,可以先画线段图加深理解,判断单位“1” 的量是已知还是未知,找对应关系,写数量关系式。

根据百分数题型结构特征确定解法。

多(少)的数/另一个数=一个数比另一个数多(少)百分之几

一个数×(1+几%)=比一个数多(或少)百分之几的数。

综合问题结合实际来解答。

四、应用练习

1.完成总复习第7题

学生试做,指名板演。

方法一:(2622—2476)÷2476=146÷2476≈5.9%

方法二:2622/2476-1≈1.059-1≈5.9%

引导学生比较两种思路方法。

2.完成练习二十七第13题。

学生独立完成,然后说说各自的思路.

3.完成练习二十七第14、15题。

教师:九折是什么意思?

利息怎样计算?本息又是什么意思?

学生独立完成。

学生在班上交流。

五、课堂小结

通过这次学习活动,你有什么新的收获?

板书设计:

百分数——一个数是另一个数的百分之几

(1)百分率=()/()×100%

(2)一个数比另一个数多(少)百分之几

多(少)的数/另一个数多(少)百分之几

(3)比一个数多(少)百分之几的数是多少?

一个数×(1+N%)=比一个数多(少)百分之几的数

(4)售价×几折=实付钱数

收入×税率=应纳税额

利息=本金×利率×时间

第三课时 总复习——空间与图形

教学内容:教材第110、120页第8——10题。

教学目标:

1.进一步学习按行、列确定物体的位置,用数对确定物体的位置。

2.理解和掌握圆和轴对称图形的有关概念,圆的周长和面积的计算公式,并能正确地计算圆的周长与面积。

3.经历空间与图形知识的整理运用过程,体验应用知识,归纳概括的方法。

教学重点:掌握物体的位置,圆的特征、特性。

教学难点:掌握圆的周长和面积的计算。

教学过程:

一、复习物体的位置。

出示教材第119页第8题主题图。师:图上画了什么?引导学生观察主题图。

我们怎样确定物体的位置呢?

师:确定物体位置的方法有两种,即按行、列确定物体的位置,用数对确定物体的位置。

你能说出每一手棋所下的位置吗?

组织学生在小组中相互说一说,再指名汇报。

二、复习圆的知识

(出示一个圆)师;我们已经学习了有关圆的知识,你知道哪些知识呢?

组织学生在小组中交流、讨论,相互说一说,教师根据学生的汇报板书:

1.圆的认识。

圆心。用字母O表示,确定圆的位置。

半径。用字母r表示,从圆心到圆上任意一点的线段叫半径。决定圆的大小。

直径。用字母d表示,通过圆心并且两端都在圆上的线段叫做直径。

半径与直径的关系。在同一个圆里,所有半径都相等,所有直径都相等。

直径等于半径的2倍,即d=2r或r=d/2

2.轴对称图形及对称轴

等腰三角形、等边三角形、长方形、正方形、菱形、等腰梯形、圆都是轴对称图形,它们各有1条、3条、2 条、4条、2条、1条、无数条对称轴。

3.圆的周长

圆周率。圆的周长与直径的比值叫圆周率。用字母∏表示,是一个无限不循环小数。

圆的周长的计算公式。C=∏d或C=2∏r。

4.圆的面积

知道半径求圆的面积。S=∏r2

知道直径求圆的面积。S=∏(d/2)2

知道周长求圆的面积。S=∏(C/2∏)2

知道近似长方形的宽求圆的面积。

知道近似长方形的长求圆的面积。

5.环形的面积

环形的面积=大圆面积—小圆面积

=∏R2—∏r2

=∏(R2—r2)

三、巩固练习

练习二十七第1、11、12题。学生独立完成,教师巡视 ,再集体讲解。

四、课堂小结

通过这节课的学习活动,你又有哪些收获?

第四课时 总复习——统计

教学内容:教材第120页第11题。

教学目标:

1.了解统计在生活中的应用,掌握扇形统计图的特点。

2.会根据统计图,提出数学问题,并分析解决数学问题。

3.经历扇形统计图的认识过程,体验直观观察,分析问题的学习方法。

教学重难点:会根据统计图分析数据。

教学过程:

一、回顾。

1.统计在生产生活中有哪些应用?

组织学生在小组中议一议,然后指名说一说。

2.扇形统计图有什么特点?

扇形统计图能够清楚地表示出部分与整体的关系。

二、分析扇形统计图

出示某企业职工的文化程度情况扇形统计图

引导学生观察统计图,获取信息。

问:该企业职工中,哪种文化程度占的比重最多?

以下说法正确的是()

A该企业大学文化程度的职工占1/4。

B该企业职工中,中专生与初中生之和多于高中生。

C该企业职工中没有文盲。

D以下说法都对。

在该企业职工中,哪两种文化程度的人数相等?

若该企业有职工1000人,那么小学文化程度的职工有多少人?

该企业职工中,有大学文凭的人比有高中文凭的人少多少?

你还能提出什么问题?

组织学生在小组中讨论并相互交流,然后指名汇报。

三、请你用扇形统计图表示出下面的信息,然后回答问题。

超市一天的销量中,服装类占35%,烟酒类占30%,文化用品类占20%,糖果类占10%,药类用品占5%。如果超市一天的收益是5500元,算一算,每一类用品分别收益多少元?

四、巩固练习

教材第120页第11题。

教材练习二十七第16、17题。

学生独立完成,指名板演,全班集体订正。

五、课堂小结。

通过这节课的学习活动,你有什么收获?

2025年苏教版六年级数学下册教案全册


目标:

1.使学生通过复习加深对整数、小数、分数和百分数的理解,进一步明确有关数的意义和基本性质,体会整数与小数、小数与分数、分数与百分数的内在联系。

2.让学生体会到数在刻画现实世界中数量关系与空间形式方面的价值。

3.发展学生对数学的积极情感。

教学重点:

分数和小数的基本性质。

教学难点:

整数、小数和分数之间的联系。

教学准备:多媒体

教学过程:

一、复习

1.我们学过了哪些数?举例说明

2.回顾整数的意义www.

(1)追问:-1、-2…是整数吗?

判断:A、自然数都是整数B、整数就是自然数C、负数比0小D、负数都是整数

(2)排出整数的数位顺序表,个级、万级、亿级各包括哪几个数位?每个数位上的计数单位各是多少?相邻两个计数单位之间的进率是多少?

填空:()个一千是一万;一亿里面有()个千万;320000是由()个万组成的;49个亿、49个万个49个一组成的数是()。

3.回顾分数的意义

(1)你能想到哪些用分数表示信息的例子?

(2)谁来说说分数的意义?你对单位“1”是怎样理解的?

(3)什么是分数的基本性质?应用分数的基本性质可以解决哪些问题?

学生交流

4.回顾小数的意义

(1)举例什么样的数是小数?你认为小数与分数有怎样的关系?

(2)小数的性质是什么?

5.回顾百分数的意义

(1)你能想到哪些用百分数表示信息的例子

(2)百分率、百分比

二、巩固练习

1.完成83页的第1题

学生填写在书上

2. 3.7元=()元()角 0.45时=()分

4000千克=()吨 200秒=()分()秒

3.完成84页的第3题

先说说你能获得哪些信息?

指出:“23:00”不表示数量的多少

3.课后完成84页第4题

学生交流

三、小结

通过学习你有什么收获?

学生交流

四、作业

完成《练习与测试》相关作业。

板书设计

关于数的认识的复习

关于数的认识的复习

教学课时:

教学目标:

1.使学生进一步加深对整数、小数、分数和百分数之间的内在联系,掌握因数与公因数、倍数与公倍数、奇数与偶数、素数与合数的含义。巩固读数与写数的方法。

2.进一步体会不同领域数学内容的联系和综合。

3.使学生感受新知识获得的过程,培养创新意识。

教学重点:

分数、小数、百分数之间的联系和区别

教学难点:

整除中的有关概念

教学准备:多媒体

教学过程:

一、整理与反思

1.结合第5题练习。

让学生说说正数与负数、

分数与小数、

百分数与分数的联系和区别。

2.第6题。

先让学生独立写一写,

再让学生适当小结写法。

3.完成第7、8两题

小数点位置的移动怎样引起小数大小的变化?

学生交流

4.结合第9题小结

(1)读表中各数,并在小组里说说自己的想法。怎样读。

(2)改写与求近似数的区别

(3)适当小结整数、小数、分数和百分数大小比较的方法。

二、练习与实践

(1)读出下面的数。

4003 40034003 3043000000

指出:读整数时,每四位一级,每级按个级上的数读,并读出级名“万”或“亿”。

(2)写出下面各数。

三千五百

三千五百万三千五百

十二亿三千五百万

注意:每个数中“0”的个数。

三、小结

通过学习你有什么收获?

学生交流

四、作业

完成《练习与测试》相关作业。

板书设计

关于数的认识的复习

关于数的认识的复习

教学内容: “练习与实践”第10~14题。

教学目标:

1.进一步熟悉分数、小数和百分数的互化的方法和比较分数大小的方法。

2.巩固分数与除法的联系。

3.培养学生的判断、分析等思维能力。

教学重点:

分数、百分数与除法的联系

教学难点:

百分数大小的比较

教学准备:多媒体

教学过程:

一、整理与反思

1.完成第10题

(1)组成的数中素数和合数各有哪些?什么叫素数和合数?

(2)组成的数中哪些有公因数2、3或5?什么样的数能被2、3、5整除?

(3)什么叫做公倍数?

(4)你还能提出哪些问题?

2.说出每个分数的意义。

上面每个分数的分数单位是什么,各有几个这样的分数单位?什么叫分数单位?

3.完成86页的第11题。

结合练习帮助学生进一步明确分数基本性质的应用,并适当总结分数、小数与百分数的互化

4.完成86页12题

让学生找出数的排列的规律

5.完成86页第13题。

先让学生估计每个图形中涂色部分所占的百分比的大小,在让学生写出百分比

6.复习最简分数

(1)提问:怎样的分数是最简分数?谁来举几个最简分数的例子?

(2)在( )里填上适当的数,使每个分数都是最简分数。

①4米是6米的 。

②9千克是12千克的 。

③5厘米是1O厘米的 。

7.完成86页第14题第1小题

先让学生说说可以怎样判断

二、小结

通过学习你有什么收获?

学生交流

三、作业

完成《练习与测试》相关作业。

板书设计

关于数的认识的复习

关于数的运算的复习

教学内容:教科书第87页的“整理与反思”,“练习与实践”第1~4题。

教学目标:

1.使学生进一步加深对整数、小数和分数四则运算意义和方法的理解,能正确进行相关的口

算、笔算和估算。

2.使学生掌握加减法之间、乘除法之间的关系。

3.增强验算意识,培养验算习惯。

教学重点:

四则运算的计算和验算方法

教学难点:

四则运算的算理

教学准备:多媒体

教学过程:

一、整理与反思

1.整数四则运算意义。

提问:通常所说的四则运算是指什么?谁来说一说整数四则运算的意义各是怎样的?

2.计算方法

计算:865+78= 8.65+7.8= 13 +25 =

3、计算整数加减法的时候要把相同数位对齐,计算小数加减法的时候要把小数点对齐。计算分数要先通分化成同分母分数。你能说说这之间的联系吗?(让学生明白:要把相同计数单位的数直接相加)

4.对比练习:完成“练习与实践”的第2题

(1)问:怎样进行整数、小数和分数乘法和除法的计算?

(2)比较每组题的计算方法,体会内在联系。

二、练习与实践

1.完成87页第1题

(1)学生独立填出答案

(2)学生汇报结果,挑选几题,让学生说说怎样算的?

2.完成87页的第3题

(1)学生独立完成。

(2)让学生说说是怎样估算的?

3.完成87页第4题

(1)学生独立完成,个别学生板演。

(2)结合每道题目,让学生说说是怎样验算的?应该注意什么?

(3)说说加法与减法、乘法与除法各部分之间有什么关系?

三.小结

通过学习你有什么收获?

学生交流

四.作业

完成《练习与测试》相关作业。

板书设计

关于数的运算的复习

关于数的运算的复习

教学内容:教科书第88页的第5~8题。

教学目标:

1.使学生进一步认识整数、小数、分数应用题及其数量关系,加深理解和掌握分析应用题的推理过程和解题思路,正确解答百分数应用题。

2.进一步培养学生初步的思维能力和分析、解答应用题的能力。

3.养成独立思考、主动与人合作的习惯。

教学重点:

分析应用题的方法和解题规律

教学难点:

分析数量关系、确定解题思路的方法

教学准备: 多媒体

教学过程:

一、整理与反思

1.口算:

+ = 1 × = 6 -1 =

1÷ = 0.63÷0.7= × =

2.完成88页第5题

(1)学生自己默读题意。

(2)每道题你打算怎样进行计算?

(要结合具体情况合理选择、灵活地运用。)

3.(1)小军买《小学生字典》和《成语词典》各1本,30元够吗?

(2)冬冬买1本《儿童百科知识读本》需付多少元?比原价便宜多少元?

从图中你可以知道哪些信息?;

哪些书按七五折出售?哪些按原价出售?

4.林老师编写了一本《趣味数学故事》,获得稿费3800元。按规定,一次稿费超过800元的部分应按14%的税率纳税。林老师应缴纳税款多少元?

(1)学生读题

(2)提问:应纳税是多少元的14%?

(3)学生独立完成后集体交流

5.完成88页第8题

(1)怎样比较成绩更合理?小组讨论后再计算。为什么单单比较助跑摸高的厘米数不合理。

(2)一名篮球运动员身高188厘米,助跑摸高成绩是351厘米。他助跑摸高的高度是身高的百分之几?

二、小结

通过学习你有什么收获?

学生交流

三、作业

完成《练习与测试》相关作业。

板书设计

关于数的运算的复习

关于数的运算的复习

教学内容:教科书第89页的“整理与反思”,“练习与实践”第1~6题。

教学目标:

1.使学生进一步理解分数四则运算的意义和法则,能正确地进行分数四则运算。

2.使学生能正确地进行整数、小数和分数的四则混合运算,并能灵活地选择合理的方法使计算简便,提高学生的计算能力。

3.培养学生认真计算、自觉验算的良好习惯。

教学重点:

理解算理

教学难点:

运算率的具体应用

教学准备: 多媒体

教学过程:

一、整理与反思

1.说说下面式子的运算顺序

1842+56-453 ×45 ÷45

[( + )× ]÷

总结整数、小数和分数四则运算的运算顺序。

归纳:先乘除后加减,同一级运算从左往右依次计算,有括号的先算括号里的。

2.复习运算定律。

(1)填写书89页的表格

(2)还有哪些运算性质或运算规律?举例说明。2、完成“练习与实践”的第1题

(1)学生说说每题的运算顺序

(2)分组练习

二、练习与实践

1.完成“练习与实践”的第1、2题

(1)学生独立完成

(2)每题你运用的是什么运算性质或运算定律?

2.完成“练习与实践”的第3题

说说每题怎样算比较简便?

总结:根据题目中数的特点,灵活选用合理的方法。

3.完成“练习与实践”的第4题

说说题中的主要数量关系

每页的行数×每行的字数=每页的字数

4.完成“练习与实践”的第5题

(1)让学生标出行走的路线,再列式计算

(2)谁先超过中点?说明在相同时间里,路程的多少与什么有关系?

5.完成“练习与实践”的第7题

学生完成、交流。

三、小结

通过学习你有什么收获?

学生交流

四、作业

完成《练习与测试》相关作业。

板书设计

关于数的运算的复习

关于数的运算的复习

教学内容:教科书90页的“练习与实践”第7~10题。

教学目标:

1.使学生加深理解和掌握分数、百分数应用题的数量关系和解题思路,能正确地分析、解答分数,百分数应用题。

2.使学生进一步明确简单的和稍复杂的分数、百分数应用题之间的联系,以及不同类型的分数、百分数应用题的结构特征和解题规律;

3、进一步提高分析、推理和判断等思维能力。

教学重点:

分析分数应用题的方法

教学难点:

应用题的数量关系

教学准备: 多媒体

教学过程:

一、揭题

今天,我们复习分数、百分数应用题。通过复习,进一步掌握它们的结构特点和解题思路,能正确解答稍复杂的分数、百分数应用题,提高分析数量关系和解答应用题的能力。

二、练习与实践

1.在日常生活中,有哪些百分率?

什么叫出勤率?怎样计算出勤率?

要求出勤率,需要先求什么?

2.某班今天的出勤率为98%,缺席1人,今天到校多少人?

要求这个问题可以先求什么?

3.完成第8题

(1)八月份的用电量比七月份增加百分之几,也就是谁是谁的百分之几?把谁看作单位“1”?

强调:相差数÷单位“1”=相差的百分率

(2)九月份的用电量比七月份节约了百分之几?比八月份呢?

4.某商场有奖销售活动设置了10000张奖券。其中一等奖的中奖率是5%,二等奖是10%,三等奖是30%。一等奖和二等奖的奖券一共有多少张?三等奖的奖券比一等奖多多少张?

(1)学生读题

(2)5%是谁的5%?把谁看作单位“1”

(3)有哪些不同的方法?数量关系是什么?

5.对比练习

(1)三信小学九月份的水电费是480元,十月份的水电费是408元。十月份比九月份节约百分之几?

(2)三信小学九月份的水电费是480元,十月份比九月份节约了15%。十月份的水电费是多少元?

(3)三信小学九月份的水电费是480元,比九月份节约了15%。九月份的水电费是多少元?

这三题都是九月份和十月份之间的比较,有什么不同?

学生独立完成、交流

三、小结

通过学习你有什么收获?

学生交流

四、作业

完成《练习与测试》相关作业。

板书设计

关于数的运算的复习

关于数的运算的复习

教学内容:教科书91页的“练习与实践”第11、12题。

教学目标:

1.使学生进一步掌握分数、百分数应用题的解题思路和解题方法。

2.能正确地解答稍复杂的分数、百分数应用题,提高学生分析推理和解答应用题的能力。

3.培养学生互相协助的意识、能力。

教学重点:

运用所学知识解决简单实际问题

教学难点:

百分数应用题的解题思路和解题方法

教学准备: 多媒体

教学过程:

一、基础练习

1.根据题中的已知条件,请你提出三个不同的问题,再列式。

修一条水渠,已经修了200米,正好是未修米数的45 ,

A______________?列式_________

B_____________ ?列式__________

C_____________?列式___________

2、一种商品。现价比原价降低了10%。这句话的数量关系可表示为:

___________×10%=_____________

_________÷(1-10%)=__________

二、解决实际问题

1.完成91页第11题

安装分时电表前一共要付多少元电费?

安装分时电表后,谷时和峰时分别是多少千瓦时?

学生完成、交流

2.完成91页第12题

阅读上表,你了解到哪些信息?

理解“上浮”与“下浮”是谁的百分之几?

你还能提出什么问题?

学生完成、交流

三、小结

通过今天的复习,你对数学知识与日常生活的联系有了哪些新的认识?

学生交流

四、作业

完成《练习与测试》相关作业。

板书设计

关于数的运算的复习

关于式与方程的复习

教学内容:教科书92页“整理与反思”,完成“练习与实践”第1~6题。

教学目标:

1.使学生进一步体会方程的意义和思想,会用等式的性质解一些简单的方程。

2.使学生进一步认识用字母表示数及其作用,培养学生抽象,概括的能力。

教学重点:

能正确地用含有字母的式子表示数量及数量关系、计算公式。

教学难点:

会用等式的性质解一些简单的方程。

教学准备: 多媒体

教学过程:

一、整理与反思

今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,能正确地解简易方程。

师:你能自己举出一些用字母表示数的例子吗?

长方形的周长C=2(a+b)

加法交换率a+b=b+a……

师:什么叫方程?方程与等式有什么联系和区别?

(1)教师引导:含有字母的等式叫方程。

(2)表示相等的式子叫等式。方程是含有字母的等式。

师长:你知道等式有哪些性质?举例说一说。

强调:0除外

教师归纳:等式的两边同时加、减、乘、除以同一个数(除数不为0),等式的两边相等。

二、练习与实践

1.在括号里写出含有字母的式子

(1)一种贺卡的单价是a元,小英买5张这样的贺卡,用去()元;小明买n张这样的贺卡,付出10元,应找回()元。

(2)每千瓦时电费0.52元,每立方米水费2元。小明家本月用了a千瓦时电和b立方米水,一共要付水费()元。

2.第2题

(1)完成后交流,并让学生说出解每个方程的过程,分别运用了等式的哪些性质?

(2)说说解答每题时应注意什么?

3.电视节目现在能收看56套节目,比开通有线电视前的5倍少4套,开通有线电视前只能收看几套节目?

学生交流、完成

4.京沪高速公路全长1262千米。两辆汽车同时从北京和上海出发,相向而行,每小时分别行120千米和95千米。用计算器算一算,大约经过几小时两车相遇?(得数保留整数)

学生交流、完成

5.长江三峡水库总库容大约是黄河小浪底水库的3倍,黄河小浪底水库的总库容比长江三峡水库少260亿立方米。黄河小浪底水库的总库容是多少亿立方米?长江三峡呢?

学生交流、完成

4.第6题

强调:根据题目的情况,合理选择方法,列算式或列方程

三、小结

通过今天的复习,你对数学知识与日常生活的联系有了哪些新的认识?

学生交流

四、作业

完成《练习与测试》相关作业。

板书设计

关于式与方程的复习

关于式与方程的复习

教学内容:教科书93页 “练习与实践”第7~9题。

教学目标:

使学生进一步认识用字母表示数及其作用,培养学生抽象,概括的能力。

教学重点:

能正确地用含有字母的式子表示数量及数量关系、计算公式。

教学难点:

会用等式的性质解一些简单的方程。

教学准备: 多媒体

教学过程:

一、练习与实践

1.完成“练习与实践”第7题

理解“一种药品降价10%”的含义。指名板演,集体交流,说说解题思路

2.完成“练习与实践”第8题

两种衬衫的原价相同,由于打的折扣不同,所以现价不同。108元原是这两中衬衫现价的和。

3.完成“练习与实践”第9题

组织学生分组开展活动,适时互换角色,也可以让学生在小组里开展竞赛,以提高练习效果。

二、小结

通过今天的复习,你对数学知识与日常生活的联系有了哪些新的认识?

学生交流

三、作业

完成《练习与测试》相关作业。

板书设计

关于式与方程的复习

关于正比例和反比例的复习

教学内容:教科书94页“整理与反思”,完成“练习与实践”的第1~6题。

教学目标:

1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。

2、能运用比和比例的知识解决一些简单实际问题,积累解决问题的经验。

教学重点:

使学生加深认识比例的意义和基本性质。

教学难点:

能判断两个比能能不能组成比例,能比较熟练地解比例。

教学准备: 多媒体

教学过程:

一、整理与反思

今天我们一起来复习正比例和反比例相关知识。

(一)比的知识:

1.谁来举个例子说说什么是比?什么是比的基本性质?

(引导学生列举:“按比例分配”、“比例尺”、“图形的放大与缩小”等例)

2.说一说用比的知识可以解决哪些实际问题。

让学生体会比在解决实际问题时的应用。

(二)比和分数、除法的联系

出示:a∶b=( )( ) =( )÷( )(b=?0)

那么比和分数、除法的联系是什么?它们的区别呢?

谁来说说比的基本性质与分数的基本性质、商不变的规律?它们有什么联系吗,谁来说说?

(三)比例的知识

1.什么是比例?

2.比和比例有什么关系?(小组讨论后交流)

3.比例有怎样的基本性质?

二、练习与实践

1、完成“练习与实践”第1、2题

(1)第一题:学生独立数出班上男女生人数,再完成此题。

(2)第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。

2、完成“练习与实践”第3、4题

(1)先让学生估计,再说估计的理由 ,再算一算。

(2)解比例,做好后选两题验算一下。

3、完成“练习与实践”第5、6题

(1)先学生独立做最后交流,弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的93100 。使学生加深对比与百分数关系的理解。

(2)让学生独立得出:深色与浅色地砖铺地面积的比是20∶40,化简得1∶2。

三、小结

通过学习你有什么收获?

学生交流

四、作业

完成《练习与测试》相关作业。

板书设计

关于正比例和反比例的复习

关于正比例和反比例的复习

教学内容:教科书94页 “练习与实践”的第7~10题。

教学目标:

1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。

2、能运用比和比例的知识解决一些简单实际问题,积累解决问题的经验。

教学重点:

使学生加深认识比例的意义和基本性质。

教学难点:

能判断两个比能能不能组成比例,能比较熟练地解比例 。

教学准备: 多媒体

教学过程:

一、整理与反思

今天我们一起来复习正比例和反比例相关知识。

怎样判断两种量是否成正比例或反比例关系?

学生交流

二、练习与实践

1.完成“练习与实践”第7题

让学生先独立完成,再点评。

2.完成“练习与实践”第8题

引导学生列举几组对应的数值

再分析每组中两个数的关系,再判断。

3.完成“练习与实践”第9题

第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)

第2小题让学生在教材提供的方格图上描点、连线,

引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。

体会数形结合在解决问题方面的价值。

4.完成“练习与实践”第10题

什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)

怎样求图上距离?怎样求实际距离

学生量出的图上距离。

利用提供的线段比例尺,求出相应的实际距离

三、小结

通过学习你有什么收获?

学生交流

四、作业

完成《练习与测试》相关作业。

板书设计

关于正比例和反比例的复习

六年级数学上册第三单元教案


六年级数学上册第三单元教案

内容 比的基本性质

教学目标 1、理解比的基本性质。

2、利用比的基本性质正确化简比。

教学重难点 利用比的基本性质正确化简比。

课前准备 课件、 实物投影仪

教学过程 个人使用批注

一、创设情境,提出问题

一、听算练习:

求比值: 2:0.5 4:1 20:5 200:50

90:60 9:6 3:2 0.3:0.2

两个同学板演:写出过程。通过计算你有什么发现?每个比式之间会有什么联系?(提出学习目标)

二、引导探究,解决问题

1、观察黑板上的算式,你有什么发现:

生的发现:前面四个比的比值相等,后面四个比的比值相等。

板书算式: 2:0.5 = 4:1 = 20:5 = 200:50 = 4

(2×2) :(0.5×2) (20×10):(5×10)

90:60 = 9:6 = 3:2 = 0.2:0.3 = 1.5

(90÷10):(60÷10) (3÷10):(2÷10)

观察第一组比,他们的比值是相等的,前项和后项有什么变化?

以前两个比和后两个比为例,找同学说出自己的发现。

教师添加板书,渗透格式的书写。

让学生多说自己的发现,从①到③,从①到④,从②到④等,

然后小结规律:比的前项和后项同时乘同一个数,比值不变。

2、观察第二组比,发现规律:方法同上。

比的前项和后项同时除以同一个数(0除外),比值不变。

(有分数的基本性质做定势,0除外这个关键点学生不会忘记,在这里只须问一句为什么?就可以将这个要点突破)

3、将上面两个规律综合小结:

比的前项和后项同时乘或除以同一个数(0除外),比值不变。 这叫做比的基本性质。

4、出示课题:(比的基本性质)

5、理解概念,找出关键词。

6、利用比的基本性质做出准确判断:

① 8:10 =(8+10):10+10 = 18:20 ( )

② 12:16=(12÷6):(16 ÷ 4)= 2:4 ( )

③ 0.8:1=(0.8×10):(1×10)=8:10 ( )

④ 比的前项乘3,要使比值不变,比的后项应除以3。 ( )

7、学习了比的基本性质,你联想到了我们以前学过的那部分知识?

学生很容易想到这些内容,比的基本性质,商不变性质。联系旧知,形成系统的知识体系。我们刚刚学过分数、除法、比的联系,他们的性质能联系在一起也就不足为奇了。

问:比的基本性质在数学上有什么用途?(约分、通分)

商不变的性质有什么用途?(1.2÷0.3 500÷10 )

那么我们刚刚学过的比的基本性质有什么用途呢?

学生已经预习过,故学生应该知道利用比的基本性质可以化简比。

8、观察黑板上的两组等式,哪一个比最简单?学生回答,教师板书:

像1:4 3:2这样的比叫做最简整数比。

请学生举出最简比的例子,多找几个学生回答,

学生在举例的同时加深了对最简整数比的认识。

由学生总结。最简整数比的特点:

学生总结,教师板书。1、比的前项后项必须都是整数。

2、比的前项后项必须是互质数。

以后我们写出的比应该都化简成最简整数比。

9、化简比:

出示例题:“神州”五号搭载了两面联合国旗,一面的长是15厘米,宽是10厘米,另一面长是180厘米,宽是120厘米。写出这两面旗长与宽的比,并化成最简整数比。

学生口答写出比: 15:10 180:120

由于学生已经预习,因此化简的过程教给孩子。尝试练习,找同学板演:

汇报,学生讲解化简过程,教师规范化简格式。

化简分数比: 1/6 : 2/9 7/12 :3/8

化简小数比: 0.5:0.4 0.75:0.25

这部分内容的学习交给孩子自己,发挥学生的主体作用,学生尝试练习,学生讲解。最后让学生讨论化简整数比,分数比,小数比的方法。

化简整数比时,比的前项和后项同时除以它们的最大公因数。

化简分数比时,比的前项和后项同时乘分母的最小公倍数。

化简小数比时,先把小数比化成整数比,然后再化成最简比。

三、巩固训练,拓展延伸

1、等比接龙:

2:3=20:30=4:6=200:300=( )=( )=( )=( )

100:50=40:20=( )=( )= ( )=( )

2、一项工程,甲单独做12天完成,乙单独做10天完成,甲乙所用时间比是( ),工效比是( )。

3、甲是乙的1.2倍,甲与乙的比是( )。

4、甲是乙的1又1/4倍,甲与乙的比是( )。

四、完善认知

通过本节课学习?你懂得了什么?还有什么疑问吗?

教后反思:

最新小学六年级数学上册教案模板


在每学期开学之前,老师们都要为自己之后的教学做准备。在上课前要仔细认真的编写一份全面的教案。这样可以让同学们很容易的听懂所讲的内容,那编写一份教案应该注意哪些问题呢?为此,小编从网络上精心整理了《最新小学六年级数学上册教案模板》,更多信息请继续关注我们的网站。

最新小学六年级数学上册教案【篇1】

执教:任敏龙(杭州上城区教师进修学校)

1、喝过可乐吗?知道可乐的来历吗?

2、今天我们带来了一组饮料,一种是苹果汁、一种是蜜糖水,来配一种饮料。

出示配制表。并要求:不要太贪,配起来之后不要喝完,每个人品一点,再留下一点样品,作好记录。(板书:配记品)

学生小组工具:苹果汁、蜜糖水、量杯、配制表、纸杯若干。

饮料配制记录表

类型数量品评

第一款苹果汁ml

蜜糖水ml味道最好的是第款

苹果汁ml

蜜糖水ml

第二款苹果汁ml

蜜糖水ml

第三款苹果汁ml

蜜糖水ml

请代表向大家推荐自己配的饮料

师记录:苹果汁蜜糖水

(1)20ml20

(2)30ml20

(3)20ml10ml

(4)3030

(5)3030

(6)3030看来30:30还是最受欢迎的

(7)3020

选一个研究一下:

用质量代表苹果汁,用水量代表蜜糖水

按20、10的配法,总量是30。如果要配60的话,怎么配?

(我认为总共是3份,质量占2份,水量占1份。现在是6份,一个占4份,一个占2份,实质还是2份1份)

(两个30合为一个60)

要配90的话,怎么配呢?

假如要配少一点,配15的话,怎么配?

假如要生产的话,怎么告诉厂家配制的方法?

生1:告诉他,如果水是1,汁是2.

生2:告诉他,汁是水的2倍。

生3:告诉他,汁与水的比是2:1

生4:告诉他,水占汁的1/2

生5:告诉他,汁的量比水的量多1倍。

生6:水量是汁的百分之五十。(板书到生4边)

生7:水量比汁的量少一倍

生8:汁是总量的2/3.水是总量的1/3.

师:汁的量是水量的2倍,你怎么看出来的?

师:都在变,就是倍数关系没变

再问:2/3、1/2是怎么来的?

再问:汁量和水量的比是2:1,是什么意思?

汁量是2份,水量就是1份。

你能不能解释一下,具体怎么变?

把10看作1份,20就是2份。

60和40的配法是不是按刚刚的方法配的?为什么?

变的过程中关系不能变。

那么60和40按生3的写法就是几比几啊?

3:2怎么想的?

把这些叫配方。

2比1通常写成2:1,这个号和冒号不一样,叫比号。前面叫前项,后面叫后项。

比可以用多种写法写,可以写成2/1.指着说各项。

写3:2,再改写,再说各项。

把自己配方写成几比几。再按这个配方去配。

走出自己的位置,去品尝一下其它组的饮料,猜猜他们的苹果汁与蜜糖水的量的比是几比几?

了解生活中的比

出示(有图):

(1)桌子与椅子的数量比是1:4

(2)婴儿头长与身高的比是1:4

(3)这种棉麻混纺布中棉与麻的重量比是1:4

选一个比向同伴解释它的意思。

(1)生用倍数关系、份数、分率去解释,师即时理出头绪,小结方法。

(2)假如婴儿的头长是厘米,身高多少厘米?

如果是4米呢?生疑,师指出不切合实际

再请一个学生上台,看看是不是1:4

又指出1:4不能随便用。

出示划船图:

看划船图你能写出哪些比?

1:61只船,6个人

1:1男生与女生的比是1:1

1:1西湖与船的比是1:1

1:2划船的人与坐船的人的比1:2

4:6划船浆的支数与人数

1:1左右两边划船人的比

1:4让同学猜一猜1船与船浆的关系船与坐船人的比

所写学生揭示答案

在生活中有哪些(比如衣食住行、家里、学校里)地方有比?

手与头2:1

衣与裤1:1

砌房时水与泥土1:2

爸爸与妈妈1:1

手与脚1:1

师引:黑板长与宽的比大概是多少?(2:1、3:2)

倒底哪个对,量一量看。

拉一学生,你们看我和这个同学体重的比是多少?

(3:1、4:1、)

哪个对呢?我是60千克,生是25千克,几比几?

晚上睡觉时,床和我的比是1:1

生活中的比是无所不在的。

出示:我国有悠久的青铜器铸造史,先秦古籍《考工记》记载了各种器物铸造的器物

火药配制黑色火药原料是火硝、硫磺和木炭,它们重量的比是15:2:3.

看看我们今天学的是什么?

板书:生活中的比

有什么感受。

(好几个学生提到比例,师问:你们头脑中的比例到底是什么意思?指出生活中的比例和数学中的比例不一样)

还想了解些什么?

最新小学六年级数学上册教案【篇2】

一、学习目标

1.能在具体的情境中把握数的相对大小关系,进一步加深对正数、负数意义的理解,体会0是相对的。

2.会画折线统计图描述事物的变化情况。

3.通过学习,让学生感受正、负数与生活的密切联系,享受自主学习的乐趣。

二、学习重点

进一步理解正数、负数的意义以及对0的新认识,体会0是相对的。会画折线统计图描述事物的变化情况。

三、学习难点

研究问题时,会选择适当的量作为基准0。

四、教学建议

1.学生准备6张小楷纸。

2.教材中给出的是某市水文站发布的汛情资料,学生可能对其中的术语不熟悉,如,警戒水位、历史最高水位,需要教师通过相应的媒体、图片资料或在黑板上画出示意图等,帮助学生理解。为了防止水患,一般在河流的堤坝上都有一个警戒水位,如果水的高度超过了警戒水位,就应提防小心,采取措施。历史最高水位,是指历史上达到的最高的水位,它往往比警戒水位要高。

五、参考教学设计

(一)谈话引入

同学们都知道每年的7月、8月是洪水多发时期。下面是某市水文站发布的8月1-7日期间,每日下午3时的汛情公告。

警戒水位42.00米

历史最高水位42.48米

8月1日水位41.80米

8月2日水位42.60米

8月3日水位42.35米

8月4日水位42.36米

8月5日水位42.00米

8月6日水位41.86米

8月7日水位41.94米

(二)引导探究

1.为了能更清楚地看清每天水位的高低变化,可以用什么统计图来表示?

2.讨论交流:

你准备怎么去画统计图?

3.在书上画出水位变化情况的折线统计图,并标明警戒水位。

4.那你还能用正数和负数来表示各个水位吗?怎么表示?

预设:

方法一:把警戒水位看做0米。

方法二:把历史最高水位看做0米。

完成书上的表1和表2.填写前可以让学生先说一说-0.20、+0.60、-0.68表示的意思。

5.反馈表格填写。

6.学生自主制成折线统计图。

制作前可以让学生说说,你有什么困难?

预设:负数的点怎么描?

负数的点的方法与正数的点的方法是一样的,只不过一个是往下数,一个是往上数。

7.把上面的三幅折线统计图进行比较,你发现了什么?为什么?

预设:三幅折线统计图的形状完全一样,是可以通过平移互相得到的。虽然每次的0点不同,但数的相对大小关系没有变化,所以折线统计图的形状是不变化的。

8.对于0点你有什么新的认识?

预设:0是相对的,可以人为规定0点。

(三)应用拓展

某班学生的平均身高为145厘米,其中小芳高142厘米,小胖高144厘米,小明高145厘米,欢欢高146厘米,苗苗高148厘米。

(1)如果把平均身高记为0,如何表示这5名同学的身高?

(2)如果把小芳的身高记为0,如何表示这5名同学的身高?

(3)分别把(1)(2)的结果制成折线统计图,这两幅统计图有什么关系?

预设:折线统计图的形状都是一样的。虽然参照的标准变化了,但他们五人的身高及其相互之间的大小关系是不变的。

(四)全课总结

学了今天这一课你有什么体会?

预设:在研究问题时,我们可以选择适当的量作为基准0。

六、补充练习

以下是小明5个单元的成绩。

84,85,81,89,80。

以下是王刚5个单元的成绩。

96,98,92,95,95.

(1)你认为他们分别以几分看作0比较合适?说说你的理由。

(2)制成折线统计图。

最新小学六年级数学上册教案【篇3】

活动目标:

在具体情境中,体会图对刻画事物或数之间关系的作用,能分析一些简单的关系。发展有条理思考和表达的能力。

活动过程:

活动一:说一说

同学们现在已经是六年级的学生了,从小到大,你们的成长得到了很多人的关心和爱护,尤其是自己的亲人为你们付出的就更多了,是不是呀?

那谁来说一说你的家里都有哪些家庭成员呢?

(注:亲戚之间的称呼各地可能不统一,学生也不一定知道,教师根据学生的发言适时明确。)

活动二:画一画

听了大家的发言,老师了解到每个同学家里都有不少的亲戚朋友,你们真幸福,被浓浓的亲情包围着,那你们能用自己的方法列出你的亲戚关系,绘制成一棵亲情树吗?

要求从这棵亲情树上能让大家清楚地看出你家庭成员间的关系,待会儿看谁的设计最有创意!

都绘制好了吗?先在四人小组里互相交流、展示一下。

哪个小组的代表先来汇报一下你们组同学的设计?还有哪个组也想说?(注意对学生设计的鼓励性评价,同时了解学生中的各种不同表示方法)

活动三:看一看

有一个叫小冬的同学也把他家成员间的关系表示出来了,在我们书上83页,请同学们打开书看一看他是怎么表示的?

要求大家边看边思考书上提出的问题,想好后请举手。

组织交流时注意倾听学生的不同想法,只要有道理都给予肯定。

那刚才同学们的亲情树也能改用字母来表示吗?

好,试试看。

改好了吗?给同桌看看,互相说说对方写的字母各表示谁?

用字母来表示家庭成员间的关系,你感觉如何?

活动四:试一试

像这样的例子,书上还给我们提供了一些,请看试一试。

请同学们看试一试,先独立观察、思考。

有不明白的地方吗?

那谁来说说你是怎样想的?

组织交流时明确:箭头从D指向C,C是D的姐姐,可以推知,C是E的姐姐,E是D的姐姐。C是D、E的姐姐,所以C最大。

活动五:总结与反思

在这节课的学习中,你有什么收获?

小结:看来,今天同学们会运用一些字母或符号等,通过图来清晰、简洁地表达一些生活中的关系,真好。

最新小学六年级数学上册教案【篇4】

【教学内容】

新世纪小学数学六年级上册第55页

【教材分析】

数学教学内容应该是与现实密切联系的数学,能够在实际中得到应用的数学,即现实的数学。新世纪小学数学六年级上册《比的应用》这部分教学内容,恰恰具备了这样的特点,应该说它是学生对比的完整认识的重要组成部分。

之前,除法、分数的认识,为学生认识比搭建了坚实的台阶,比的意义和化简比的学习,为比的应用铺平了道路,平均分方法的掌握和对平均分结果特点的理解为学生能够自主研究比的应用提供了策略上的可能。而且比的应用的研究,也将为学生后续知识正比例的学习积累重要的感性经验。

【学习目标】

1、知识与技能

(1)能运用比的意义解决按照一定的比进行分配的实际问题。

(2)通过动手操作和数形结合等方式进一步体会比的意义,发展应用意识。

2、过程与方法

(1)经历问题解决的过程,体验解决问题策略的多样性,并选择适合自己的方法

最终解决问题。

(2)通过动手操作、合作探究,相互交流,发展问题解决能力、合作交流能力和创新能力。

3、情感态度与价值观

(1)在问题解决过程体验成功的喜悦,对数学产生良好的情感。

(2)在探究活动过程中感悟数学文化的魅力。

【教学准备】

小旗,水杯、水、筷子,课件

【教学过程】

一、情境引入

奥运圣火已经点燃,奥运盛会即将在北京召开,我想我们每一个人都希望为奥运会贡献自己的力量。今天我们也做一回奥运小使者,把奥运精神带进幼儿园。现在我们有一些印有奥运会会徽的小旗想要送给幼儿园的小朋友。

[设计意图]渗透爱国主义思想教育。

1.幼儿园有两个班,要把这些小旗分给这两个班,你觉得怎么分比较合理呢?为什么?

学生可能的答案:人数相同的情况下平均分,因为这样每个人分到的会同样多。

2.经调查,大班有30人,小班有20人,这回如果我们还把这些小旗平均分给这两个班,你觉得还合理吗?为什么?

学生可能的答案:不合理,因为每个人分到的就不一样多了。

怎么分合理呢?请你静静地想一想,先和同桌说一说,再和全班同学说说你的想法。

学生可能的答案:按人数比30:20=3:2进行分配。

3、3:2表示什么意思?

[设计意图]使学生体会按比分的必要性以及初步沟通按比分与平均分的关系。

二、问题解决活动1:合作研究怎样按3:2这个比来分配

为了研究方便,老师给大家提供了一些小旗。

(一)合作研究

1.合作要求:两个同学一组分工合作,每分一次,就详细记录下当次分给大班和小班小旗的面数,直到分完为止。(提示:记录时,不累计上次分得的小旗面数)

大班

小班

第一次

第二次

第三次

第四次

第五次

大班分得()面小旗

小班分得()面小旗

2.学生合作研究

3.教师组织反馈交流

u老师在巡视的过程中,收集约三种不同的分法,分步展示在投影上。

u四人一组交流讨论要求

(1)在组长带领下逐一分析每种分法,你们能理解这些分法吗?你有什么想法?你还想提出什么问题?

(2)观察、比较这几种分法,你能发现什么?

插问:你觉得分一次至少需要多少面小旗?为什么?

也就是可以把5面小旗按3:2进行分配,那这一次是把几面小旗按3:2进行分配的呢?

学生可能出现的方法预设:

分法1:每次分给大班3面,分给小班2面。

表扬:认真有耐心,十二次。

分法2:根据比的基本性质分,分的次数明显减少。

表扬:很会动脑筋,在分的过程中及时进行了调整。

分法3:先按人数分给大班30面,分给小班20面,余下的再按比分。

表扬:很会联系实际情况,这种分法在实际生活中非常实用。

[设计意图]本环节的设计意图有五个,其一,虽然是六年级的学生,但是动手操作的过程是必不可少的,因为逐次分配具有一定的实用价值。记录单能够恰好的保留学生最初的思维轨迹。其二,培养学生的动手操作能力、合作能力、问题解决能力。其三,让经历问题解决的过程,探索按比分的不同策略。其四,培养学生的语言表达能力、反思能力,倾听习惯,使学生在交流中获得方法的丰富和能力的提高。其五,培养学生的观察、比较、分析、综合能力

(二)验证

1.问题:大班和小班分得面数的比是不是3:2?你是怎么知道的?

大班

小班

分得小旗的总面数

人数

平均每人分到小旗的面数

30:20=3:2=36:24

2.师生一起小结:

(1)平均每人分到的小旗同样多吗?

(2)把这些小旗按大班和小班的人数比来分配是合理的分法吗?

(3)虽然不知道小旗的总面数,但是大家动手分一分,是否就能成功的把这些小旗按3:2进行分配?

[设计意图]正式打通人数比与小旗面数比之间的关系,深化比的意义。使学生初步体会按比分的本质:即每个单位分到同样多。

(三)当我们知道总数的情况下的按比分配

1.问题:如果有180面小旗,你打算怎样按3:2进行分配?你能想到几种方法?

2.四人一组交流,说说你想到的方法。课件配合演示

学生可能的答案:

方法1:按比逐次分配。

方法2:先求出一份是多少面小旗,再根据大、小班分别所占的份数,求出各应分得多少面

小国旗。

方法3:把比转化成分数,利用分数的意义求出大班和小班分到的小国旗的面数

3.小结:当我们知道总数的情况下,既可以逐次分一分,也可以算一算。可采用的方法就更多了。平均分能理解为按比分吗?按怎样的比分呢?

三、问题解决活动2:体验比的应用的广泛性

(一)问题情境

因为同学们表现得太出色了,老师带来了一个小礼物想要送给大家。请同学们认真倾听。边听边观察思考,你能发现什么?

(二)师生活动

1、看《小星星》演奏的视频

学生可能发现了水的体积和空着部分的容积竟然存在着一个比。

2、出示如下信息:

杯子的容积:320ml,杯子装满水敲击出的声音为1.

音阶

杯水的体积与空着部分的容积的比

2

29:3

3

25:7

4

23:9

5

37:27

6

1:3

3、提问:29:3表示什么意思?。

4、算一算2这个音所需的水量。

5、每位同学选择一个自己喜欢的音,计算出所需水量。

6、教师组织反馈交流

7、倒水演奏

8、小结:比与音乐的关系最早是由古希腊的著名数学家毕达哥拉斯首先发现的,老师认为你们真的很了不起,是今天课堂上里最闪亮的小星。

[设计意图]通过比与音乐的关系,拓宽学生的数学视野,体验比的应用的广泛性,培养学生的数感,感悟数学文化的魅力。

四、问题解决活动3(拓展练习):用数形结合的方法,加深对比的意义的理解。

(一)情境与问题

花坛设计稿征集启示:

某小区修建了一个36平方米的正方形大花坛,决定在花坛中栽种菊花、兰花和月季,两种花卉的种植面积的比是2:3:4,每种花卉的种植面积是多少平方米?请设计出栽种的方法,并画出示意图?(菊花用黄色,兰花用蓝色,月季用红色)

(二)师生活动

1.提问:2:3:4表示什么意思?。

2.学生计算并根据比设计花坛。

3.教师组织反馈交流。

4.教师小结。

五、总结

今天的学习,你有哪些收获和感受?

1、通过这节课的学习你对比有了哪些新的认识?

2、把一些事物按一定的比分的时候,可以用哪些策略?

3、你在生活中还能找到比的应用的例子吗?

【我的思考】

一、经历问题解决过程,体验策略多样性,感悟数学文化魅力

随着社会的进步,科学技术的发展,义务教育的全面实施以及数学科学自身的发展,许多国家和地区都对数学课程进行了不同程度的改革,但是都几乎无一例外的把问题解决作为数学课程的重要目标之一。当学生面对实际问题或非常规问题时,能够主动利用数学的思想方法,努力的寻找解决问题的策略,并力图最终使问题得到解决。这种能力将会在学生步入社会时,使他迅速的调整和适应新的环境。所以它也成为我们新《数学课程标准》的焦点。

使学生经历问题解决的过程,不仅是能力培养的需要,还是一种心理发展的需要。每个孩子都具备解决问题的潜力并渴望能够在解决问题时获得成功。不能不说,问题解决的过程将使孩子面对智慧和心理的双重考验,但同时也会从中获得双方面的提升。

二、六年级的学生,还需要分一分吗

这个问题也曾经不断的困扰我。但经过一段时间的研究后,我终于彻悟,在这里分一分与算一算具有同等地位。首先说按比分的策略我认为基本有两大类:(1)不数出总数,按比逐次分配,直至分完,结果即为按比分配的结果。(2)先数出总数,通过计算得出按比分的最终结果,在经过一次分配完成。而且第一种方法在不知总数又不方便得到总数的情况下很有实用价值。因此我设计了给幼儿园两个人数不同的班怎样合理分配小国旗的问题情境,让学生在具体的情境中进行实际操作探究,从而解决问题。

分一分使学生切身体验到了比的意义深化过程。因为学生每一次都是在按人数比分配小国旗,每一次分得小国旗的面数比都是3:2,最后两班分别共分得小国旗面数的比也是3:2,成功地完成了人数比到小国旗面数比的深化,突破了教学难点。

3、拓宽学生的数学视野,感悟数学文化的魅力。

不是每个人都能成为数学家,但应当使每一个公民都在一定的程度上学会数学地思考,即要实现数学教育发展学生数感的目的。当我们遇到可能与数学有关的问题时,一个数感发展好的学生能够自然地、有意识地把问题与数学联系起来,或者试图进一步用数学的观点和方法来处理和解释。这也就是主动地、自觉地甚至自动化地把数学应用于实际生活的思维过程。

古希腊的著名哲学家、数学家毕达哥拉斯首先发现了比与音乐的关系,他比任何人更早地把一种看来好像是质的现象声音的和谐量化。为此我设计了怎样利用比的知识,使玻璃杯敲出美妙音乐的有趣地问题解决活动。期望在这个活动中,让学生体验到比与音乐之间奇妙的联系。通过拓展学生的数学视野,让学生体会到世界上所有的事物,都可以成为他们发现数学元素和研究数学问题的题材。

【网络研讨与评论】

编写组特约指导教师教材编委、特级教师钱守旺的主要评论:

l这部分内容,新世纪小学数学教材的设计是有特色的。如果没有给出总数,怎样按3:2这个比来分配呢?面对这样的问题,很自然,学生首先要去理解这个3:2是什么意思呢?

l看了你的设计、又听了你的说课,我觉得前半部分设计还是比较好的。尤其是刚开始的引入部分,比较自然、新颖;操作活动的设计可能也更便于孩子操作。

l后半部分,活动:杯琴的活动建议演奏不必太做大。出于时间方面的考虑,把它做为数学文化介绍给孩子们就可以。如果做大,会占用很长时间。数学文化的渗透应适度,不要占时太长;教学应更多关注中、下的学生,不应过于重视形式上的东西,强化更基础的东西会更关注多数学生的发展。做为第一课时,应有一些基本的练习,书上的一些题目应穿插在我们的课堂教学当中。

l课堂热闹并不等于教学效果好,现在很多老师总是一味求新,其实这是一种偏差。

l尽可能在第一课时不要出现连比。

l这节课有两个方面还应该进一步地突出:那就是比与原来的平均分、还要联系比与分数之间的关系。

网友六年级的评论:

1.使学生经历了探索解决问题策略的过程。

2.课程设计由浅入深,循序渐进,符合学生的认知规律。

3.操作活动的设计使学生在体会数学与生活密切联系的同时,激发了学生浓厚的学习兴趣。

网友林志杰的评论:

在这里,我感受到了政治、经济、文化中心的人才果然很有深度不管在教学教学水平还是在教研方面以及个人能力方面。

网友生洁的评论:

我非常喜欢送奥运小红旗这个活动,在数学教学中也体现了我们的政治人文,与生活结合非常紧密.音乐与比的关系这个活动非常新颖,相信学生都会喜欢,而且从此激发他们学习和探究的兴趣。

网友尚待解答的困惑:

l如果有学生仅停留在平均分的水平上。教师该怎么引导他按3:2分?

l比的性质没有学,会不会影响比的应用?

l百分数和比是不是数?

最新小学六年级数学上册教案【篇5】

本课使用《新世纪小学数学教材六年级上册》

【课前慎思】

《圆的认识》一直是小学高年级数学的教学内容,几乎所有小学数学教学领域的名师大家都用过这节课来吟诗作画,各领风骚;后生新秀们更是频频用这节课来小试牛刀,异彩纷呈。

我在欣赏品味之余,发现我们对于圆的认识这节课教学内容的处理,主要存在以下三个问题:第一,注重组织学生通过折叠、测量、比对等操作活动来发现圆的特征,不重视通过推理、想象、思辨等思维活动来概括出圆的特征;第二,注重让学生学会用圆规画圆,不重视让学生思考为什么用圆规可以画出圆;第三,注重数学史料的文化点缀,不重视数学史料文化功能的挖掘。

我思考圆的认识这节课究竟要讲什么?

我思考特征是指一事物区别于他事物的特别显著的征象、标志。(《辞海》)那么,圆的特征究竟是什么?曲线围成、没有角、半径是直径的一半,是不是特征?一中同长的特征是不是需要下发空白研究报告,组织学生小组合作研究?这是不是为了研究报告而组织研究?这是不是教学上的形式主义?

我思考半径和直径是不是应该浓墨重彩去渲染?圆的概念都没有给出,是否需要咬文嚼字地概括出半径和直径的概念?揭示两者概念后,让学生从一个圆内各个不同的线段中挑出半径和直径,有没有哪位老师见过学生有错?学生都不会有错的活动,要不要组织?这样的活动是不是教者自作多情、自娱自乐?

我思考半径和直径的关系是不是教学难点,要不要研究,是否顾名思义就可以理解?得出关系后的填表练习,究竟是练习的两者关系,还是练习的乘以2和除以2的口算?我们是不是总是好为人师,以为我们不讲学生就不会?是的,熟能生巧,但熟还能生厌,那熟是不是还能生笨呢?现在的学生在课堂上是不是很少不懂装懂,而更多的是不是精明地懂装不懂?

我思考量出半径都相等,就科学、深刻吗?在一个圆内,半径和直径真的画不完吗?画不完就能说明半径有无数条吗?半径都相等和直径都相等要不要加上前提条件在同一个圆中或等圆中?我们说正常人的两条腿是一样长的,怎么不加上前提条件在同一个人身上?以后再说正方形的四条边都相等,还要不要加上在同一个正方形中呢?数学上的严谨就是这样的吗?要加上前提条件在同一个圆中或等圆中,这是不是教学内容上的形式主义?

我思考圆的画法是应该教,以促进学生更好地学,但应该一、二、三地教吗?是不是在学生容易疏忽的两个地方手拿住哪里、两脚之间的距离是直径还是半径点破就可以了?学生抑或老师画出的不圆,是否就该随手擦掉?那些不圆的作品,是不是课堂中的生命体?是否应该珍惜?

我思考我们的小学数学教学是否应该不仅关注是什么和怎样做,还应该引导学生去探究为什么和为什么这样做?这样是不是才凸显出数学是思维的体操这一学科特色?是不是应该带领学生经历从现象到本质的探究过程,促使学生养成研究问题的良好意识?问题是数学的心脏,我们数学老师是否可以给学生一个问题模式,让学生知道怎样思维,让学生掌握作为一种非言语程序性知识的思维?

我思考圆的意蕴实在是丰富,借着这么圆满的素材,我们是否可以在培养学生批判思维和突破常规的创新思维上做些文章,引导学生思考一定这样吗?柳暗花明、曲径通幽、殊途同归的心理体验,是否更有利于学生的可持续发展?

我思考

经过一段时间的慎思明辨,我认识到圆这一节课应该讲的有价值的东西实在是太多,有舍才有得,一课一得足矣!

【教学目标】

1.认识圆的特征,初步学会画圆,发展空间观念。

2.在认识圆的过程中,感受研究的一般方法,享受思维的乐趣。

【教学过程】

一、情景中创造圆

1.课件创设问题情景。

2.学生表达自己的想法。

3.展示学生的作品。

二、追问中初识圆

1.结合学生作品,追问:是什么?为什么?

2.课件动画演示。

3.研讨圆的特征。学生说,古人说。

4.质疑古人说法。大方无隅。

三、画圆中感受圆

1.画一个直径为4厘米的圆,并标上半径、直径。

2.从不圆中,感悟圆的画法。

3.追问为何这样做?

四、球场上解释圆

1.出示篮球场。

2.播放篮球开赛录像。

3.探讨大圆的画法。

4.追问大圆的画法。

五、回归情景突破圆

1.出示爱因斯坦的名言:我没有什么特别的才能,不过喜欢寻根刨底地追究问题罢了。

2.追问中提升认识。

六、课后延伸研究圆

1.依一天时间顺序,配乐出示各种各样的圆。

2.让学生选择感兴趣的追问研究。

【试教后的反思】

非常成功,非常享受!已经拖课了,学生还是不愿意下课。

师父张兴华满意地对我们几个徒弟说:应龙的这节课,我就七个字浑然大气铸成圆!

认识决定行为。已有的会成为包袱。备课时,我就觉得半径、直径不要像原来那样教,一问学生这是一个多大的圆,学生就会说出半径、直径。课堂事实也是这样,就让自己不再思考了。试教后一反思,才发现宝物在哪儿呢?是个更妙的问题,首先是回答了探讨的问题,其次是凸显了圆心定位置,半径定大小。现在想来,这样问,味道好极了!

正像电影《阿甘正传》中,阿甘妈妈对阿甘说的:要想往前走,就得甩掉过去。是啊,我今天的教法不就是想甩掉过去吗?但甩掉别人的过去容易,甩掉自己的过去就难了。否定别人容易,否定自己难。我是这样,听课老师会不会也是这样,而不肯接受我这节课呢?应该坦荡荡,何必长戚戚,我的地盘我作主,30年后再说吧。哦,我不该这样想,数学研究者往往是孤傲的,认为只有自己发现的1才是对的,我应该再思考,再否定自己,就像硬汉海明威说的比别人优秀并无任何高贵之处。真正的高贵在于超越从前的自我。

顿悟:几何画板上显示正多边形和圆的关系应该从正六边形开始,这样暗合了刘徽割圆术也是从正六边形开始的,并且解决了几何画板上正三角形不正、看着不舒服的问题,还解决了与前面研究正三角形、正方形、正五边形、正六边形一中同长重复的问题。哈哈,反思真好!

课上学生画出的不圆的资源化运用,感觉真好:有方法上的启迪、情感上的善意、借走橡皮的回应,那意境真有林黛玉说的留得残荷听雨声的美妙。

在完成了为什么没有规矩也画成了圆的追问,我说是啊,圆心只能一中,半径一定同长。当我们真正理解了祖先的圆,一中同长也,才知道以前听说的圆心、半径是多么重要的两个词啊!之后,看到学生闪亮的眼睛,我心里真舒畅。这样不就把经验、直观与抽象结合起来了吗?数学的抽象首先是一个过程,其次不就是建立一套术语概念系统吗?

整体感受在学生需要教的时候再教,效果就是好。看来我说教是因为需要教,没错!

自己以前也教过《圆的认识》,为什么没有今天这么享受呢?莫名地,我想起《老子》第四十五章:大成若缺,其用不弊。大盈若冲,其用不穷。大直若屈,大巧若拙,大辩若讷。这几句话的意思是:完全做成的东西,看上去好像缺了些什么,但用起来却一点也不差。完全装满水的容器,看上去好像是空的,但用起来却一点也不少。非常直的东西看上去却好像是弯的,大的机巧看上去倒好像很笨拙,特别善辩的人看上去倒好像不会说话。

那,我成在哪呢?在没有增加新知识点的情况下,上得学生不愿意下课。让学生体验到不同现象背后的本质是一样的,让学生体验到认识事物特征的价值,让学生认识圆的规矩的同时感受了研究问题的规矩,让学生体验到追问为什么是一件很有意味的事情爱因斯坦曾经说过这样的话:用专业知识教育人是不够的,通过专业教育,学生可以成为一种有用的机器,但不能成为和谐发展的人。要使学生对价值(社会伦理准则)有了理解并产生出热烈的情感,那才是最基本的。

那,我缺在哪呢?这一节课,对原来所重视的基础知识和基本技能淡化了,学生发展的情况究竟如何?

以前,我教《圆的认识》时,总是觉得这不能丢,那也不敢掉,把自己扣牢在自

己和他人一起画就的小圆里

哈哈哈,现在的我真是在理想圆里!

为什么以前的我没能、没敢这么上?教学的能力不到,教学的勇气不够,教学的追求没有

为什么今天的我能这么上、敢这么上?课程改革的深入,百花齐放的氛围大抵还源于自己对自己和他人教育实践的过程和结果的意义和价值的哲学之思。

花未全开月未圆,大成有缺。革命尚未成功,同志仍需努力!

拖课了,总是不好,如何在40分钟内和学生交流?要舍什么?

这节课,多处引经据典,是否过度了?度是几处呢?数学味淡了?那我们的课堂是为了学生的发展,还是为了上出一堂数学的课?话又说回来,哪一处又是与数学无关呢?是否只是顺手一投枪(鲁迅语)?那老师顺手多了,学生是否会目不暇接、审美疲劳?

华应龙:《圆的认识》课堂实录

整理:云山雪燕子

【教学目标】

1.认识圆的特征,初步学会画圆,发展空间观念。

2.在认识圆的过程中,感受研究的一般方法,享受思维的乐趣。

【教学过程】

师生问好。

一、情景中创造圆

师:同学们请看题目:

小明参加奥林匹克寻宝活动,得到一张纸条,纸条上面写的是:宝物距离左脚三米。宝物可能在哪呢?

生思考

师:有想法,你的桌子上有张白纸,上面有个红点,你们找到了吗?

生:找到了

师:那个红点代表的是小明的左脚,如果用纸上的1厘米代表实际距离的1米的话,能把你的想法在纸上表示出来吗?想,开始。

学生动手实践,师巡视。

师:真佩服,真佩服,我们西安的小朋友真棒!会动脑子,。除了你表示的那个点,还有其他可能吗?

生思考。

师:好,很多同学都想好了,我们来看屏幕。红点代表小明的左脚,[课件演示:在红点右侧找出一距离红点3米的点]刚才我看到,很多同学都找到了这个点,找到的同学举手。

生纷纷举手。

师:除了这一点,刚才我看到,还有的同学找到了这一点。[课件演示:在红点左侧找出一个距离红点3米的点]还有这一点,这一点[课件演示:分别在红点上下的距离为3米的点]我看有的同学还画了这些斜点,是吗?还有其他的可能吗?[课件演示:越来越密,最后连成了圆]

师:想到圆的举手。哇,真佩服,刚才我看有的同学都画出圆了,是吗?看屏幕,这是什么?认识吗?

生:认识,圆

二、追问中初识圆

师:那宝物可能在哪里呢?

生:在圆的范围内,在圆的这条线上。

师:你刚才的说法很有意思,先说在圆的范围内,后来改成在圆的这条线上。如果在范围内,距离不够3米,如果在圆上,距离够3米。那你们怎么告诉小明呢?如果宝物在圆上,怎么表达告诉小明呢?

生:可以这样对小明说:以你的左脚为圆心,画一个半径为3米的圆。在这个圆的周厂上取任意一点,这个地方也许就是埋宝物的地方。

师:同意吗?真厉害。刚才她说到两个词,一个是以左脚为圆心还有一个是半径多少?[板书:圆心,半径]

生:3米

师:就用上这两个词,就很准确地表达出了圆的位置,对吧。如果只说以左脚为圆心,不说半径3米,告诉小明,宝物啊就在以你左脚为圆心的圆上。行不行?

生:不行

师:为什么不行?

生:如果只告诉左脚是圆心的话,那圆可以无限延伸。就没法掌握圆的周长是多少。

师:那个圆可以无限延伸。我理解他的意思了,你理解了吗?

生:理解了。

师:也就是说圆的半径没定,圆的大小没定。对不对。

生:对

师:这样的话,可以画多少个圆,可以无限延伸,对不对。那如果不说以左脚为圆心行不行?

生:不行,那样圆的位置就可以无限延伸,。

师:除了说以左脚为圆心,半径为3米的圆上还可以怎么说?生活中听说过吗?

生:也可以说直径是6米。

师:同意吗?

生:同意。

师:可以说:以左脚为圆心,直径为

生:6米

师:对。这个直径:也能表达圆的大小。[板书:直径]

师:为什么宝物可能所在的位置会是一个圆呢?

生:因为在一个圆内,所有的半径都相等。

师:哦,他说了这个。什么宝物可能所在的位置会是一个圆呢?

生:因为以他的左脚为圆心,他可以随便走一圈,就变成圆了。

师:哦,可以随便走一圈。方向没有定,是吧。这也是另外一个角度看问题。刚才两个同学说的都很有道理,不过要很好的说明这个问题我们可以用圆的特点来说明。你觉得圆有特点呢?

生:我觉得圆有无数条半径,无数条直径。

生:圆心到圆上任意一点的距离都是相等的。

师:我们说图形的特点的时候一般要和以前学过的图形作比较。一句话,有比较才有结论。[课件:三角形,正方形等]以前我们学过三角形,正方形等。我们以前说图形的时候往往从边和角两个角度来说明,那你看,从边和角的角度来看,圆有什么特点呢?

生:它既没有棱也没有角。

师:同意吗?同意的请点点头,她说圆没有棱也没有角,对吗?

生:对

师:没有棱是什么意思?

生:没有棱是说它没有边,它不象正方形有4条边。

师追问:那它是没有边吗?

生:不是,有边。

师:有边,几条边?

生:1条。

师:那你们说圆的边和我们以前学过的图形有什么不同?

生:以前学过的图形的边是直线,而圆的边是曲线构成的。

师:同意?

生:同意。

师:看来我们从角来看,圆是没有角的。从边上来看,圆有没有边?

生:有!

师:有,几条边?

生:一条边。

师:这是圆很特别的地方。其他图形,最起码有3条边,而圆呢?只有一条边。并且它的边怎样?

生:是曲线的。

师:是曲线的。其他的是直线或者说是线段围成的。

师:圆,我们从边和角来看是这样的特点。我们的祖先墨子说:圆一中同长也[板书]知道这句话什么意思吗?一中指什么?

生:圆心

师:同长,什么同长?

生:半径

师:半径同长,有人说直径也同长。同意古人说的话吗?

生:同意。

师:圆,一中同长也。难道说正三角形,正四边形正五边行不是一中同长吗?

认为是的举手,认为不是的举手。为什么不是呢?

生:这些图形中心到角的距离比到边的距离要长一些。上前面指着说。

师:这些图形是不是一中同长?

生:不是。

师,不是的理由就是:从这个中心到边上的点跟到顶点的点的距离就不一样。那有没有一样的?正三角形里有几条一样的?

生:3条。

师:正方形呢?

生:4条。

师:正五边行呢?

生:5条。

师:正六边行?

生:6条。

师指圆:

生:无数条。

师:无数条?[板书]为什么是无数条?

生:圆心到圆上的半径都相等。所以有无数条。

师:我们解决的是什么问题?

生:我们解决的问题是相等的半径有无数条。

师:为什么有无数条?

生:圆心到圆上的距离都相等。

师:圆周上有多少个点?

生:无数个。

师:这些点和圆心连起来当然就有无数条,是吧。圆周上有无数点,请问:从这到这有多少个点?[指圆弧线]

生:无数个。

师:这些图形一中同长的条数是有限的,而圆从圆心到圆上的距离都是一样的。古人说的圆,一中同长你认同吗?

生:认同。

师:经过我们讨论更认同了,不过刚才有同学说圆是没有角的。圆只有1条边,边是曲线。究竟哪个更重要呢?我们来看[课件出示椭圆]这个图形是不是没有角的。是不是只有1条边,边是曲线。它是圆吗?它一中同长吗?所以说一中同长是圆最重要的特征。墨子的这一发现比西方早了1000多年,谁能学古人的样子读一读??

生读。

师:圆有什么特点?

生:一中同长。

师:我们来看小明的宝藏在什么范围?我们第2个问题解决完了吗?

三、画圆中感受圆

1从不圆中,感悟圆的画法。

师:孩子们,想自己画一个圆吗?画圆用什么?

生:用圆规。

师:古人说:没有规矩,不成方圆。大家看,规就是圆规、矩就是带着直角的尺。规是用来画圆的,矩是用来画方的。

师:既然大家都回会画?画一个半径为4厘米的圆

(生自己画圆)

师:画好了吗?

(展示学生的作品,学生此时的作品都不怎么标准)

师:从这些圆里,我们是否可以想象,它们是怎样创造出来的?

师:看来画圆并不是一件很容易的事,小组里交流一下,怎样画圆才能标准?

(生小组交流)

师:大家交流完了,好了。那现在你们说一下是怎么画的?

生:用圆规

师:了解圆规的发展,现在圆规的优点在哪里?

师:用这样的圆规画圆,手必须拿着哪,圆规就不动了?

生:拿着圆规的头,不能捏着它的两条腿。

师:对,就是拿住圆规的头,而不能捏着它的两条腿。

*(课件出示:再画:一个直径是4厘米的圆)

生画,师巡视

师:哎呀,老师在巡视时,我发现你们画的较规范的圆,大小不一样,为什么?

生:这里要我们画的是直径4厘米的圆。

师:你知道什么是直径吗?顾名思义,它和半径是什么关系?

生:直径是半径的2倍。

师:订好距离,就是圆的半径。

师:孩子们,谁愿意上来画一画。这个机会老师留着了。

师:展示画圆,故意出现破绽一:没有圆上?破绽二:没有画完?

生:两脚之间距离变化了;粗细不均匀;

师:你们真仔细,我把汗都画出来了。

2标上半径、直径。

师:学生标直径和半径;你说在画半径时特别注意什么?

生:在画半径时特别注意对齐圆的圆心,画完后表上字母r;

师:半径有两个端点,一个端点在(圆)上,另一个端点呢?

生:圆心;

师:再画一条直径;刚才他画的时候你注意到了吗?应该特别注意什么?那位戴眼镜的小伙子。

生:一定得通过圆心。

师:直径用字母d表示,数学上就是这么规定的。d和r是什么关系?

生:2倍,d=2r。

师:画圆是怎样画的?

师:先确定一条半径,也就是两脚之间的距离,然后确定一个圆心,再旋转一圈。为什么随手就能画出一个圆呢?

生:圆规画长是半径

师:为什么这么做呢?先确定圆心,半径长度。

生:圆心到圆上的距离就不相等了

师:圆的特点:圆一中同长。知道圆的特点太重要了。

四、球场上解释圆

1.出示篮球场。

师:是什么?中间是什么?中间为什么是个圆?不知道篮球比赛是怎么开始的,不能回答这个问题,我们一起来看。

2.播放篮球开赛录像。

师:为什么中间要是个圆呢?

生:刚开始比赛要往对方场地传球,这样中间画圆比较公平。

师:队员在圆上,球在中心。圆一周同长,比较公平。

3.探讨大圆的画法。

师:这个圆怎么画?

生:先找到圆心,两点间距离固定好,再画

师:大圆,再大,超大呢?没有圆规可以画?

生:用大拇指当圆心,用食指画

师:画大圆?

生:确定圆心半径再画。

师:这个大圆,没有圆规怎么画?

生自由交流

4.追问大圆的画法。

师:不是没有规矩不成方圆吗?怎么没有圆规也能画圆?

生:规矩不一定单独指圆规,指的应该是画图的工具。我们可以用不同的工具来画。

师:我们这句话还是对的。

五、回归情景突破圆

1.出示爱因斯坦的名言:我没有什么特别的才能,不过喜欢寻根刨底地追究问题罢了。

2.追问中提升认识。

师:一定这样吗?宝物一定是在以左脚为圆心,半径是3米的圆上吗?[课件:西瓜]宝物可能在哪里?

生:地下。

师:拿西瓜说事。我们就想到球了,球也是一中同长。圆和球有什么不同?

生:圆是平面图形,球是立体图形。

六、课后延伸研究圆

依一天时间顺序,配乐出示各种各样的圆。

最新小学六年级数学上册教案【篇6】

教学内容:

北师大版小学数学六年级(上册)第四单元第55页比的应用的相关知识。

教学目标:

1、能运用比的意义解决按照一定的比进行分配的实际问题。

2、感受比在生活中的广泛应用,提高解决问题的能力。

3、使学生感受到数学来源于生活,生活离不开数学。

教学重点:

利用比的相关知识解决实际问题。

教学难点:

比的应用的拓展练习。

教具准备:

CAI课件

教学过程:

一、创设情境:

1、师:秋天到了,橘子园里大丰收,果农给幼儿园运来了一筐橘子,要分给幼儿园的大班、小班两个班级,你觉得该怎样分呢?

(大班分的多,小班分的多,一个班一半。)

师:一个班一半,就是平均分,我们可以用一个什么比来表示?

(1:1)

师:两个班级还可以怎样分?

(按人数分配,人多的班分多点,人少的班分少点。)

2、师:幼儿园大班30人,小班20人,把这些橘子分给大班和小班,按人数分配怎么分合理?多找几名学生说说自己的想法

3、明确:按照大班和小班的人数比3:2分。

(提供现实生活情境,使学生体会到数学与生活的联系,激发学生的学习兴趣,引导学生分析问题中的数学信息。)

二、探究新知:

1、出示题目:这筐橘子100个,按人数比3:2应该怎样分?

(这一过程要给学生提供充分的体验时间,学生会不断调整一次分配的数量,不断的产生新的解题的策略,理解按一定的比例来分配的意义。)

方法一:

大班小班

30个20个

30个20个

方法二:画图

100个

方法三:列式法。

(1)分数:3+2=5

1003/5=60(个)

1002/5=40(个)

(2)份数:3+2=510053=60(个)

10052=40(个)

答:大班分84个,小班分56个,比较合理。

(有上面小组合作的经验与发现,这次可以操作、画图、列式等不同的方法来分,从实践中发现规律,理解部分量与总量的关系。)

2、出示题目:这筐橘子如果是140个,按人数比3:2应该怎样分?

按照以上的方法解决,注意方法优化。

列式法:

(1)分数:3+2=5

1403/5=84(个)

1402/5=56(个)

(2)份数:3+2=514053=84(个)

14052=56(个)

3、小结:我们利用比的知识可以解决为小朋友分橘子的问题,其实比在生活中的作用还很多呢!

三、巩固新知:

1、独立完成:试一试。

小清要调制2200克巧克力奶,巧克力和奶的质量比是2:9,需要巧克力和奶各多少克?

2、试做练一练的2题,并说明理由。

一种喷洒果树的药水,农药和水的质量比是1:150.现有3千克农药,需要加多少千克的水?

明确:药水由农药和水混合而成。

(培养学生独立思考问题、解决问题的能力。在这一过程中,学生和老师都能及时的发现不懂的,理解不好的问题,便于及时处理。)

四、拓展应用:

师:刚才同学们的表现都不错,现在有许多生活中的一些运用到比的知识来解决的问题,希望同学们能运用比的知识解决。

(1)三个比的拓展:

蛋糕师傅制作蛋糕时,分别使用鸡蛋、白糖和面粉三种原料配在一起,三种原料的比:2:1:3,这样一个18千克的面团需要多少鸡蛋、白糖和面粉呢?

(2)周长中的比:

一个长方形的周长是60厘米,长和宽的比为3:2,这个长方形的面积是多少?

(这一过程是比的拓展应用,让学生对比有更加深刻的认识,防止学生将比的应用知识类型化)

五、课堂总结:

师:本节课你学会了什么?

师:比在我们的生活中有很广泛的应用,希望大家用你智慧的眼睛去寻找,去发现!

比的应用课堂实录

教学内容:

北师大版小学数学六年级(上册)第四单元第54页比的应用的相关知识。

教学目标:

1、能运用比的意义解决按照一定的比进行分配的实际问题。

2、感受比在生活中的广泛应用,提高解决问题的能力。

3、使学生感受到数学来源于生活,生活离不开数学。

教学过程:

一、创设情境:(3分钟)

师:秋天到了,橘子园里大丰收,果农给幼儿园运来了一筐橘子,要分给幼儿园的大班、小班两个班级,你觉得该怎样分呢?

生1:给小班多分点,因为他们小!

师:爱护小朋友,真大度!

生2:给大班多分点,因为他们吃的多!

师:按照需求,很有道理!

生3:一个班一半,这样最公平。

师:一边一半,就是平均分,我们可以用一个什么比来表示?

生:1:1

师:还有其它的办法吗?

生4:按人数分配,人多的班分多点,人少的班分少点。

师:幼儿园大班30人,小班20人,把这些橘子分给大班和小班,按人数分配怎么分合理?

生1:按30:20来分。

生2:按3:2来分。

师:按照大班和小班的人数比3:2分。

(提供现实生活情境,使学生体会到数学与生活的联系,激发学生的学习兴趣,引导学生分析问题中的数学信息。)

二、探究新知:(20分钟)

1、师出示题目:这筐橘子100个,按人数比3:2应该怎样分?

(这一过程要给学生提供充分的体验时间,学生会不断调整一次分配的数量,不断的产生新的解题的策略,理解按一定的比例来分配的意义。)

生1:

大班小班

30个20个

30个20个

生2:画图

100个

生3:列式法

(1)分数:3+2=5

1003/5=60(个)

1002/5=40(个)

(2)份数:3+2=510053=60(个)

10052=40(个)

答:大班分84个,小班分56个,比较合理。

(有上面小组合作的经验与发现,这次可以操作、画图、列式等不同的方法来分,从实践中发现规律,理解部分量与总量的关系。)

2、师出示题目:这筐橘子如果是140个,按人数比3:2应该怎样分?

师:按照以上的方法解决,注意方法优化。

学生的主要方法:列式法(板演)

生1:(1)分数:3+2=5

1403/5=84(个)

1402/5=56(个)

生2:(2)份数:3+2=514053=84(个)

14052=56(个)

3、师小结:我们利用比的知识可以解决生活中的实际问题,其实比在生活中的应用很多呢!

三、巩固新知:(15分钟)

1、独立完成:试一试。

师:你这样做的理由是什么?

2、试做练一练的1题。

(培养学生独立思考问题、解决问题的能力。在这一过程中,学生和老师都能及时的发现不懂的,理解不好的问题,便于及时处理。)

四、拓展应用:

师:刚才同学们的表现都不错,现在有许多生活中的一些运用到比的知识来解决的问题,希望同学们能运用比的知识解决。

(1)三个比的拓展:

蛋糕师傅制作蛋糕时,分别使用鸡蛋、白糖和面粉三种原料配在一起,三种原料的比:2:1:3,这样一个18千克的面团需要多少鸡蛋、白糖和面粉呢?

师:说一说你是怎样想的?

(2)周长中的比:

一个长方形的周长是60厘米,长和宽的比为3:2,这个长方形的面积是多少?

师:为什么要将周长除以2呢?

(这一过程是比的拓展应用,让学生对比有更加深刻的认识,防止学生将比的应用知识类型化)

五、课堂总结:(2分钟)

师:本节课你学会了什么?

生:

《比的应用》教学反思

本节课能够做到以学生自主探究为主,开展小组合作学习,组织学生独立思考与集体讨论,鼓励学生表达自己的见解,促进用数学思想进行交流。通过观察、实践、比较、归纳、概括等数学活动,解答实际问题,并形成利用所学知识解决问题的能力!回顾本节课的授课过程,本次对课堂评价实效性的探索还是收到了可喜的效果。通过这节课的观察和记录,发现课堂语言缺乏能调动学生积极性的激励性评价语言,今后用富有感染力、充满真情的激励性语言,对学生的课堂表现,从知识、能力、情感态度价值观等方面热情地给予褒奖。同时注意数学建模的灵活性。在开展数学建模教学时,应该看重学生的参与过程,更多地表现活动的灵活性。这有利于调动学生主动思考的积极性,有利于培养进取精神和创造意识!

1、教材研究的深度和广度。

《比的应用》是属于数与代数部分内容,要求学生能利用比的知识解释一些简单的生活问题,感受比在生活中的广泛存在。在明确这一理念的基础上来研究教材,不只是看本章节的教学内容,还要联系前面的相关内容,甚至是后面的相关教材,这样才能注重新旧知识的衔接,也为下学期的正比例、反比例打下基础。

2、情境创设的趣味性,实用性。

好的情境创设不仅能激发学生学习数学的兴趣,最重要的是从现实出发,寻找身边的数学问题。本节课由橘农的一筐橘子引入,如何分给大小两个班级,不同的分配原则,特别是平均分的分法导入1:1的比,建立了分法和比的直接联系,为按人数比来分打下基础。利用按3:2给大班和小班分橘子,这种贴近学生生活又有一定挑战性的实际问题,不仅能调动学生学习的积极性,还能培养学生解决实际问题的能力。这种学生熟悉的生活素材放入问题中,能使学生真正体会数学不是无源之水,数学就在身边。

3、建构模型的开放性、挑战性。

对于比的应用的相关内容,容易建构一定的解题模型,但是也要防止照葫芦画瓢似的学习情况的产生,这就需要题目的设置要具有开放性、挑战性的,因此,在常规学习的基础上,给学生充分的思维空间和选择余地,激励学生去发现、去创新。重视了基础性,综合性,拓展性,练习的设置注意了有层次,有梯度,既有两个比到三个比,亦有总量不确定的情况,引导学生学习知识要灵活,要理解算理!正如建构主义学习观认为数学学习是一个以学生已有知识和经验为基础的主动建构过程。在这样的探索学习中,使每位学生的数学认知结构有不同程度的拓展,每位学生都体验着探索成功的喜悦。

最新小学六年级数学上册教案【篇7】

一 、创设情境,生成问题:

谈话引入:今天非常高兴能和同学们一起来学习、研究一个数学问题。我们以前已经初步认识了圆,你能找出生活中哪些物品的形状是圆的吗? 师(检查课前准备):看来大家平时非常留心观察。课前请同学们画两个大小不同的圆,并把它们剪下来,你们准备好了吗? 师:把它们举起来,大家互相看一看。回想自己画圆、剪圆的过程,你能说说圆是什么样子的吗?(师一手拿一个圆)(留给学生充分的思考交流的时间) 师:同学们观察得真仔细。圆的边是弯曲的,跟以前学的长方形、正方形的边是不同的。今天我们就来研究这种平面上的曲线图形。(板书课题)

二、探索交流,解决问题:

1、教师引导:圆里究竟藏有什么秘密呢?下面我们来做一个小实验。把你的圆对折,再对折,多折几次,把折痕画出来,看看你有什么发现,并把你的发现在小组里汇报。最后看看谁的收获多。(留时1 分钟)

2、师:你们组观察得真仔细!大家的发现可真不少,现在我们就把刚才的发现整理一下。

3、展示探究结果。结合多媒体课件辅助,完整认识圆的特征 师问:谁来告诉老师,你有哪些新发现?你怎样发现的?(大约 8 分钟) 结合学生交流、汇报探究结果,及时引导梳理。主要从圆的圆心、半径、直径、等方面来认识。这里特别要注意通过板书帮助学生进行新知的有目的的整理。

4、学习画圆(5 分钟)。 师问:你是如何画圆的?(指名回答) 课件展示如何画圆,然后学生动手练习,并强调画圆时应该注意些什么。——揭示圆的大小位置的确定:圆心确定圆的位置,半径决定圆的大小。 出示:学校要修建一个直径是20 米的花坛,你能帮学校画出这个圆吗?生演示操作

三、巩固应用,内化提高:

1、基本练习(4 分钟)

〈1〉投影出示:找出下列圆的半径、直径

〈2〉半径、直径的相关计算

〈3〉概念的判断和识别

2、应用练习。(10 分钟)

〈1〉车轮为什么做成圆形的,车轴应安装在哪?如果车轮制成方形的、三角形的,我们坐上去会是什么感觉呢?结合课件演示 〈2〉你能用今天学习的圆的知识去解释一些生活现象吗?

a:举行篝火晚会时,人们总是不知不觉会围成一个圆形,为什么?

b:平静的湖面扔一小石子,会有什么变化?为什么?

c:月饼为一般都做成圆形的,为什么?

小结:看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。

3、游戏(猜谜语):

师:同学们学到现在,已经很累了,我们来轻松一下吧。老师给大家猜一个谜语:有一个人在一片青草地上钉了一根木桩,用一根绳子拴了一只羊在那里。(利用电脑配上画面) 问题一:羊吃草的情况与今天学的知识有关吗?我们来看一看羊吃草的最大范围有多大好吗?(用电脑演示羊拉紧绳子旋转一周的情况,让学生直观的看到原来羊能吃到的草的最大范围是一个圆。) 问题二:拴羊的绳子与这个圆有什么关系吗?(是这个圆的半径) 问题三:钉在那儿的木桩是这个圆的什么呢?(是这个圆的圆心) 问题四:如果要让这个羊吃草的范围更大一点可以怎么办?(把绳子放长一点,也就是把半径扩大) 问题五:如果要让羊到另外一个地方去吃草,可怎么办?(可以把木桩移动一个地方,也就是移动圆心的位置), 问题六:这说明圆的半径与圆心与圆有什么关系呢?(圆的半径决定了圆的大小,而圆的圆心可以决定圆的位置。)

四、回顾整理,反思提升:

1、质疑 (篮球是圆形吗?表示圆心、半径和直径的字母可以随意改变吗?)

2、这节课你都学会了什么? 不管怎么说,老师觉得同学们的学习表现是不错的,所以我提议:我们一起伸出手划上一个圆满的句号。(句号是圆形的)

3、延伸:

3.1、用圆作画。

3.2、谈谈你眼中的圆。 板书设计: 圆的认识——平面曲线图形 圆心(o) 圆中心一点 确定圆的位置 半径(r)线段 连接圆心到圆上任意一点 确定圆的大小 长度都相等〈在同一个圆里〉 直径(d)线段 通过圆心 两端都在圆上 长度都相等 〈在同一个圆里〉 半径和直径的关系 d=2rr=d/2