88教案网

你的位置: 教案 > 高中教案 > 导航 > 高考物理第一轮考纲知识复习:热力学定律与能量守恒

高中生物一轮复习教案

发表时间:2021-03-22

高考物理第一轮考纲知识复习:热力学定律与能量守恒。

古人云,工欲善其事,必先利其器。高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生们充分体会到学习的快乐,帮助高中教师提高自己的教学质量。我们要如何写好一份值得称赞的高中教案呢?以下是小编收集整理的“高考物理第一轮考纲知识复习:热力学定律与能量守恒”,欢迎您参考,希望对您有所助益!

第3章热力学定律与能量守恒
【考纲知识梳理】
一、温度、内能、热量、功的理解
二、改变内能的两种方式
1、改变物体的内能通常有两种方式:做功和热传递。
(1)做功和热传递在改变物体的内能上是等效的,但有本质的区别。
(2)做功涉及到的是内能与其它能间的转达化;而热传递则只涉及到内能在不同物体间的转移。
三、对热力学第一定律的理解
1、热力学第一定律(第一类永动机不能制成)
做功和热传递都能改变物体的内能。也就是说,做功和热传递对改变物体的内能是等效的。但从能量转化和守恒的观点看又是有区别的:做功是其他能和内能之间的转化,功是内能转化的量度;而热传递是内能间的转移,热量是内能转移的量度。
(1)内容:外界对物体所做的功W加上物体从外界吸收的热量Q等于物体内能的增加ΔE,
(2)表达式:ΔE=Q+W这在物理学中叫做热力学第一定律。
表达式中符号法则:W为正值,表达外界对物体做功;W为负值,表示物体对外界做功;
Q为正值,表示物体从外界吸热;Q为负值,表示物体对外界放热;
ΔE为正值,表示物体内能增加;ΔE为负值,表示物体内能减少.
2、能的转化和守恒定律
能量既不会凭空产生,也不会凭空消灭或消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体,但总能量保持不变。这就是能的转化和守恒定律.
(1)能量守恒定律是自然界普遍适用的规律之一,违背该定律的第一类永动机是无法实现的.
(2)物质的不同运动形式对应不同形式的能,各种形式的能在一定的条件下可以转化或转移,在转化或转移过程中,能的总量守恒.
四、对热力学第二定律的理解
1、热传导的方向性:热传导的过程是有方向性的,这个过程可以向一个方向自发地进行(热量会自发地从高温物体传给低温物体),但是向相反的方向却不能自发地进行。
2、机械能与内能转化的方向性:机械能可以全部转化为内能,而内能不可能全部转化为机械能而不引起其它的变化.
3、热力学第二定律
(1)表述:
①不可能使热量由低温物体传递到高温物体,而不引起其他变化(按热传导的方向性表述)。
②不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化(按机械能和内能转化过程的方向性表述)。或第二类永动机是不可能制成的。
(2)意义:自然界种进行的涉及热现象的宏观过程都具有方向性。它揭示了有大量分子参与的宏观过程的方向性.
(3)能量耗散:自然界的能量是守恒的,但是有的能量便于利用,有些能量不便于利用。很多事例证明,我们无法把流散的内能重新收集起来加以利用。这种现象叫做能量的耗散。它从能量转化的角度反映出自然界中的宏观现象具有方向性。
3、永动机
(1)第一类永动机不可能制成:不消耗任何能量,却可以源源不断地对外做功,这种机器被称为第一类永动机,这种永动机是不可能制造成的,它违背了能量守恒定律。
(2)第二类永动机:没有冷凝器,只有单一热源,并从这个单一热源吸收的热量,可以全部用来做功,而不引起其他变化的热机叫做第二类永动机。第二类永动机不可能制成,它虽然不违背能量守恒定律,但违背了热力学第二定律。也是不可能制成的。因为机械能和内能的转化过程具有方向性,机械能可以全部转化为内能,但内能不能全部转化为机械能,而不引起其他变化。热机的效率不可能达到100%。
4、热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
【要点名师透析】
类型一热力学第一定律的应用
【例1】(20xx江苏高考)(1)为了将空气装入气瓶内,现将一定质量的空气等温压缩,空气可视为理想气体.下列图象能正确表示该过程中空气的压强p和体积V关系的是_____.
(2)在将空气压缩装入气瓶的过程中,温度保持不变,外界做了24kJ的功.现潜水员背着该气瓶缓慢地潜入海底,若在此过程中,瓶中空气的质量保持不变,且放出了5kJ的热量.在上述两个过程中,空气的内能共减小__________kJ,空气_______(选填“吸收”或“放出”)的总热量为_____kJ.
(3)已知潜水员在岸上和海底吸入空气的密度分别为
1.3kg/m3和2.1kg/m3,空气的摩尔质量为0.029kg/mol,阿伏加德罗常数NA=6.02×1023mol-1.若潜水员呼吸一次吸入2L的空气,试估算潜水员在海底比在岸上每呼吸一次多吸入空气的分子数.(结果保留一位有效数字).
【详解】(1)由玻意耳定律知pV=C,p与成正比,选B.
(2)根据热力学第一定律ΔU=W+Q,第一阶段W1=24kJ,ΔU1=0,所以Q1=-24kJ,故放热;第二阶段W2=0,Q2=-5kJ,由热力学第一定律知,ΔU2=-5kJ,故在上述两个过程中,空气的内能共减少ΔU=ΔU1+ΔU2=-5kJ;两过程共放出热量Q=Q1+Q2=
-29kJ,故空气放出的总热量为29kJ.
(3)设空气的摩尔质量为M,在海底和岸上的密度分别为ρ海和ρ岸,一次吸入空气的体积为V,则有代入数据得Δn=3×1022.
类型二热力学第二定律的应用
【例2】如图为电冰箱的工作原理示意图.压缩机工作时,强迫制冷剂在冰箱内外的管道中不断循环.在蒸发器中制冷剂汽化吸收箱体内的热量,经过冷凝器时制冷剂液化,放出热量到箱体外.
(1)下列说法正确的是_______
A.热量可以自发地从冰箱内传到冰箱外
B.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,是因为其消耗了电能
C.电冰箱的工作原理不违反热力学第一定律
D.电冰箱的工作原理违反热力学第一定律
(2)电冰箱的制冷系统从冰箱内吸收的热量与释放到外界的热量相比,有怎样的关系?
【详解】(1)选B、C.热力学第一定律是热现象中内能与其他形式能的转化规律,是能的转化和守恒定律的具体表现,适用于所有的热学过程,故C正确,D错误;
由热力学第二定律可知,热量不能自发地从低温物体传到高温物体,除非有外界的影响或帮助.电冰箱把热量从低温的内部传到高温的外部,需要压缩机的帮助并消耗电能,故B正确,A错误.
(2)由热力学第一定律可知,电冰箱制冷系统从冰箱内吸收了热量,同时消耗了电能,释放到外界的热量比从冰箱内吸收的热量多.
类型三气体实验定律与热力学定律综合
【例3】(20xx海南高考)如图,体积为V、内壁光滑的圆柱形导热汽缸顶部有一质量和厚度均可忽略的活塞;汽缸内密封有温度为2.4T0、压强为1.2p0的理想气体,p0和T0分别为大气的压强和温度.已知:气体内能U与温度T的关系为U=αT,α为正的常量;容器内气体的所有变化过程都是缓慢的.求:
(1)汽缸内气体与大气达到平衡时的体积V1;
(2)在活塞下降过程中,汽缸内气体放出的热量Q.
【详解】(1)在气体由p=1.2p0下降到p0的过程中,气体体积不变,温度由T=2.4T0变为T1,由查理定律得在气体温度由T1变为T0的过程中,体积由V减小到V1,气体压强不变,由盖—吕萨克定律得解得
(2)在活塞下降过程中,活塞对气体做的功为W=p0(V-V1)在这一过程中,气体内能的减少为ΔU=α(T1-T0)由热力学第一定律得,汽缸内气体放出的热量为Q=W+ΔU,解得Q=p0V+αT0
【感悟高考真题】
1.(20xx福建理综T28(2))一定量的理想气体在某一过程中,从外界吸收热量2.5×104J,气体对外界做功1.0×104J,则该理想气体的_______。(填选项前的字母)
A.温度降低,密度增大B.温度降低,密度减小
C.温度升高,密度增大D.温度升高,密度减小
【答案】选D.
【详解】由热力学第一定律,Q=2.5×104J,W=-1.0×104J可知大于零,气体内能增加,温度升高,A、B错;气体对外做功,体积增大,密度减小,C错D对.
2.(20xx大纲版全国T14)关于一定量的气体,下列叙述正确的是
A.气体吸收的热量可以完全转化为功
B.气体体积增大时,其内能一定减少
C.气体从外界吸收热量,其内能一定增加
D.外界对气体做功,气体内能可能减少
【答案】选AD
【详解】如果气体等温膨胀,则气体的内能不变,吸收热量全部用来对外做功,A正确;当气体体积增大时,对外做功,若同时吸收热量,且吸收的热量大于或等于对外做功的数值时,内能不会增加,所以B错误;若气体吸收热量同时对外做功,其内能也不一定增加,C错误;若外界对气体做功同时气体向外放出热量,且放出的热量多于外界对气体所做的功,则气体内能减少,所以D正确.
3.(20xx江苏物理T12.A)如题12A-1图所示,一演示用的“永动机”转轮由5根轻杆和转轴构成,轻杆的末端装有用形状记忆合金制成的叶片,轻推转轮后,进入热水的叶片因伸展而“划水”,推动转轮转动。离开热水后,叶片形状迅速恢复,转轮因此能较长时间转动。下列说法正确的是
A.转轮依靠自身惯性转动,不需要消耗外界能量
B.转轮转动所需能量来自形状记忆合金自身
C.转动的叶片不断搅动热水,水温升高
D.叶片在热水中吸收的热量一定大于在空气中释放的热量
(2)如题12A-2图所示,内壁光滑的气缸水平放置。一定质量的理想气体被活塞密封在气缸内,外界大气压强为P0。现对气缸缓慢加热,气体吸收热量Q后,体积由V1增大为V2。则在此过程中,气体分子平均动能_________(选填“增大”、“不变”或“减小”),气体内能变化了_____________。
(3)某同学在进行“用油膜法估测分子的大小”的实验前,查阅数据手册得知:油酸的摩尔质量M=0.283kgmol-1,密度ρ=0.895×103kgm-3.若100滴油酸的体积为1ml,则1滴油酸所能形成的单分子油膜的面积约是多少?(取NA=6.02×1023mol-1.球的体积V与直径D的关系为,结果保留一位有效数字)
【答案】(1)D(2)增大,(3)
【详解】(1)该永动机叶片进入水中,吸收热量而伸展划水,推动转轮转动,离开水面后向空气中放热,叶片形状迅速恢复,所以转动的能量来自热水,由于不断向空气释放热量,所以水温逐渐降低,ABC错,D对。
(2)气体做等压变化,体积变大,温度升高,平均动能增大,内能的变化为
(3)一个油酸分子的体积
分子直径为D=
最大面积带入数据得:S=
4.(20xx重庆15)给旱区送水的消防车停于水平面,在缓缓放水的过程中,若车胎不漏气,胎内气体温度不变,不计分子势能,则胎内气体
A.从外界吸热B.对外界做负功
B.分子平均动能减少D.内能增加
【答案】A
【解析】胎内气体经历了一个温度不变,压强减小,体积增大的过程。温度不变,分子平均动能和内能不变。体积增大气体对外界做正功。根据热力学第一定律气体一定从外界吸热。A正确
【考点模拟演练】
1.关于热力学定律,下列说法正确的是()
A.在一定条件下物体的温度可以降到0K
B.物体从单一热源吸收的热量可全部用于做功
C.吸收了热量的物体,其内能一定增加
D.压缩气体总能使气体的温度升高
【答案】B
【详解】根据热力学第三定律的绝对零度不可能达到可知A错误;物体从外界吸收热量、对外做功,根据热力学第一定律可知内能可能增加、减小和不变,C错误;压缩气体,外界对气体做正功,可能向外界放热,内能可能减少、温度降低,D错误;物体从单一热源吸收的热量可全部用于做功而引起其他变化是可能的,B正确.
2.下面说法正确的是
()
A.如果物体从外界吸收了热量,则物体的内能一定增加
B.我们可以制造一种热机,将流散到周围环境中的内能重新收集起来加以利用而不引起其他变化
C.假设两个液体分子从紧靠在一起开始相互远离,直到无穷远处,在这一过程中分子力先做正功后做负功
D.空调制冷,虽然是人为的使热量由低温处传到高温处,但这不违背热力学第二定律
【答案】CD
【详解】根据热力学第一定律,物体吸收热量但同时对外做功时,物体内能有可能减少,A错;
B选项中描述的现象要实现必须引起其他变化.否则就违背了热力学第二定律,B错;
开始分子力表现为斥力,越过r0位置后分子力表现为引力,所以分子力先做正功后做负功,C选项正确;
虽然热量由低温处向高温处传递,但这引起了其他变化,就是消耗了电能,所以D选项正确.
3.关于热力学定律,下列说法正确的是()
A.在一定条件下物体的温度可以降到0K
B.物体从单一热源吸收的热量可全部用于做功
C.吸收了热量的物体,其内能一定增加
D.压缩气体总能使气体的温度升高
【答案】选B.
【详解】由热力学第三定律知,绝对零度不可能达到,A错;由热力学第二定律知,物体从单一热源吸收的热量可全部用于做功,但是将产生其他影响,B对;物体吸收了热量,若全部用于对外做功,其内能不变,C错;压缩气体,若气体对外放热,气体的温度不一定升高,D错.
4.温室效应严重威胁着人类生态环境的安全,为了减少温室效应造成的负面影响,有的科学家受到了啤酒在较高压强下能够溶解大量的二氧化碳的启发,设想了一个办法:可以用压缩机将二氧化碳送入深海底,永久贮存起来.海底深处,压强很大,温度很低,海底深水肯定能够溶解大量的二氧化碳,这样就为温室气体二氧化碳找到了一个永远的“家”,从而避免温室效应.在将二氧化碳送入深海底的过程中,以下说法正确的是
()
A.压缩机对二氧化碳做功,能够使其内能增大
B.二氧化碳与海水间的热传递能够使其内能减少
C.二氧化碳分子平均动能会减少
D.每一个二氧化碳分子的动能都会减少
【答案】ABC
【详解】考查热力学第一定律.压缩机压缩气体对气体做功,气体温度升高,内能增大,A对;二氧化碳压入海底时比海水温度高,因此将热量传递给海水而内能减小,B是对的.二氧化碳温度降低,分子平均动能减小,但不是每个分子的动能都减小,C正确,D错.
5.用两种不同的金属丝组成一个回路,接触点1插在热水中,接触点2插在冷水中,如图所示,电流计指针会发生偏转,这就是温差发电现象,这一实验是否违反热力学第二定律?热水和冷水的温度是否会发生变化?简述这一过程中能的转化情况.

【答案】不违反热水温度降低,冷水温度升高.转化效率低于100%
【详解】温差发电现象中产生了电能是因为热水中的内能减少,一部分转化为电能,一部分传递给冷水,不违反热力学第二定律.
6.(20xx淮州月考)如图所示,将完全相同的A、B两球,分别浸没在初始温度相同的水和水银的同一深度处,已知A、B两球用同一种特殊的材料制成,当温度稍微升高时,球的体积会明显地变大.现让两种液体的温度同时缓慢地升高到同一值,发现两球膨胀后,体积相等。若忽略绳子、水和水银由于温度的变化而引起的体积膨胀,则以下判断正确的是()
A.因为同一深度处水的压强较小,所以A球膨胀过程中对外做的功较多
B.因为同一浓度处水银的压强较大,所以B球膨胀过程中内能增加较多
C.膨胀过程中,A球吸引的热量较多
D.膨胀过程中,B球吸收的热量较多
【答案】D
【详解】本题考查的是热力学第一定律的主要内容.A、B两球所处的环境初末状态一致,故两球的体积增量和温度增量均相同,所以内能增量相同,选项B错误.但A球位于水中,B球位于水银中,由于同一深度处水的压强较小,故A球膨胀过程中对外做功较少,选项A错误,由ΔV=W+Q的关系可知,B球膨胀过程中对外做功较多,故B球膨胀过程中吸收热量较多,选项D正确.
7.某一密闭容器中密封着一定质量的某种实际气体,气体分子间的相互作用力表现为引力.关于实际气体的下列说法中正确的是()
A.在完全失重的情况下,密闭容器内的气体对器壁的顶部没有作用力
B.若气体膨胀对外界做功,则分子势能一定增大
C.若气体被压缩,外界对气体做功,则气体内能一定增加
D.若气体从外界吸收的热量等于膨胀对外界做的功,则气体分子的动能一定不变
【答案】B
【详解】在完全失重的情况下,密闭容器内的气体仍然有压强,气体对器壁的顶部有作用力,所以A错误;体积膨胀,分子间距离增大,分子力做负功,气体的分子势能增加,B正确;外界对气体做功,但气体有可能向外界放热,所以内能的变化情况不能确定,C错误;气体从外界吸收的热量等于膨胀对外界做的功,所以内能不变,但分子势能增大了,所以分子动能一定减小,即D错误.
8.(20xx通州检测)把一定的热量传给一定量的气体,则()
A.该气体的内能一定增加
B.该气体的内能有可能减小
C.该气体的压强一定不会减小
D.该气体的体积一定不会减小
【答案】B
【详解】气体吸收一定的热量,可能同时对外做功.若气体吸收的热量小于气体对外做的功,则内能将减少,所以A错误,B正确.气体吸收热量,可能同时对外做功,则气体体积将增大,气体分子密集程度变小,所以气体压强可能减小,C、D均错误.
9.(1)蒸汽机、内燃机等热机以及电冰箱工作时都利用了气体状态变化来实现能量的转移和转化,我们把这些气体称为工质.某热机经过一个循环后,工质从高温热源吸热Q1,对外做功W,又对低温热源放热Q2,工质完全恢复初始状态,内能没有变化.根据热力学第一定律,在工质的一个循环中,Q1、Q2、W三者之间满足的关系是________.热机的效率η=WQ1不可能达到100%,从能量转换的角度,说明________能不能完全转化为________能.
(2)如图表示一定质量的某气体在不同温度下的两条等温线.图中等温线Ⅰ对应的温度比等温线Ⅱ对应的温度要________(填“高”或“低”).在同一等温线下,如果该气体的压强变为原来的2倍,则气体的体积应变为原来的________倍.
【答案】(1)Q1-Q2=W内机械(2)低1/2
【详解】(1)本题考查热力学第一定律.由热力学第一定律可得,ΔU=W+Q,Q1-W-Q2=0,Q1-Q2=W.
(2)本题考查气体定律.在两等温线上取体积相等的两个状态,可见等温线Ⅰ的压强小于等温线Ⅱ的压强,由pVT=C可得,等温线Ⅰ的温度低于等温线Ⅱ的温度;在等温条件下,可得如果气体的压强变为原来的2倍,则气体的体积变为原来的1/2倍.
10.内壁光滑的导热汽缸竖直浸入在盛有冰水混合物的水槽中,用不计质量的活塞封闭压强为1.0×105Pa,体积为2.0×10-3m3的理想气体,现在活塞上缓慢倒上沙子,使封闭气体的体积变为原来的一半.
(1)求汽缸内气体的压强;
(2)若封闭气体的内能仅与温度有关,在上述过程中外界对气体做功145J,封闭气体吸收还是放出热量?热量是多少?
【答案】(1)2.0×105Pa(2)放出热量145J
【详解】(1)封闭气体做等温变化,由玻意耳定律p1V1=p2V2,
得气体的压强p2=p1V1V2=1×105×2×10-31×10-3Pa=2.0×105Pa.
(2)因为气体做等温变化,所以内能不变,即ΔU=0
根据热力学第一定律ΔU=W+Q,
得热量Q=-W=-145J
说明封闭气体放出热量,热量为145J.wwW.jAb88.COM

相关阅读

高考物理基础知识要点复习热力学定律与能量守恒


一名优秀的教师就要对每一课堂负责,教师在教学前就要准备好教案,做好充分的准备。教案可以让学生能够听懂教师所讲的内容,帮助教师掌握上课时的教学节奏。教案的内容具体要怎样写呢?小编经过搜集和处理,为您提供高考物理基础知识要点复习热力学定律与能量守恒,欢迎您阅读和收藏,并分享给身边的朋友!

20xx届高三物理一轮复习全案:第3章热力学定律与能量守恒(选修3-4)
【考纲知识梳理】
一、温度、内能、热量、功的理解
二、改变内能的两种方式
1、改变物体的内能通常有两种方式:做功和热传递。
(1)做功和热传递在改变物体的内能上是等效的,但有本质的区别。
(2)做功涉及到的是内能与其它能间的转达化;而热传递则只涉及到内能在不同物体间的转移。
三、对热力学第一定律的理解
1、热力学第一定律(第一类永动机不能制成)
做功和热传递都能改变物体的内能。也就是说,做功和热传递对改变物体的内能是等效的。但从能量转化和守恒的观点看又是有区别的:做功是其他能和内能之间的转化,功是内能转化的量度;而热传递是内能间的转移,热量是内能转移的量度。
(1)内容:外界对物体所做的功W加上物体从外界吸收的热量Q等于物体内能的增加ΔE,
(2)表达式:ΔE=Q+W这在物理学中叫做热力学第一定律。
表达式中符号法则:W为正值,表达外界对物体做功;W为负值,表示物体对外界做功;
Q为正值,表示物体从外界吸热;Q为负值,表示物体对外界放热;
ΔE为正值,表示物体内能增加;ΔE为负值,表示物体内能减少.
2、能的转化和守恒定律
能量既不会凭空产生,也不会凭空消灭或消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体,但总能量保持不变。这就是能的转化和守恒定律.
(1)能量守恒定律是自然界普遍适用的规律之一,违背该定律的第一类永动机是无法实现的.
(2)物质的不同运动形式对应不同形式的能,各种形式的能在一定的条件下可以转化或转移,在转化或转移过程中,能的总量守恒.
四、对热力学第二定律的理解
1、热传导的方向性:热传导的过程是有方向性的,这个过程可以向一个方向自发地进行(热量会自发地从高温物体传给低温物体),但是向相反的方向却不能自发地进行。
2、机械能与内能转化的方向性:机械能可以全部转化为内能,而内能不可能全部转化为机械能而不引起其它的变化.
3、热力学第二定律
(1)表述:
①不可能使热量由低温物体传递到高温物体,而不引起其他变化(按热传导的方向性表述)。
②不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化(按机械能和内能转化过程的方向性表述)。或第二类永动机是不可能制成的。
(2)意义:自然界种进行的涉及热现象的宏观过程都具有方向性。它揭示了有大量分子参与的宏观过程的方向性.
(3)能量耗散:自然界的能量是守恒的,但是有的能量便于利用,有些能量不便于利用。很多事例证明,我们无法把流散的内能重新收集起来加以利用。这种现象叫做能量的耗散。它从能量转化的角度反映出自然界中的宏观现象具有方向性。
3、永动机
(1)第一类永动机不可能制成:不消耗任何能量,却可以源源不断地对外做功,这种机器被称为第一类永动机,这种永动机是不可能制造成的,它违背了能量守恒定律。
(2)第二类永动机:没有冷凝器,只有单一热源,并从这个单一热源吸收的热量,可以全部用来做功,而不引起其他变化的热机叫做第二类永动机。第二类永动机不可能制成,它虽然不违背能量守恒定律,但违背了热力学第二定律。也是不可能制成的。因为机械能和内能的转化过程具有方向性,机械能可以全部转化为内能,但内能不能全部转化为机械能,而不引起其他变化。热机的效率不可能达到100%。
4、热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
【要点名师精解】
类型一热力学第一定律的应用
【例1】一定质量的气体从外界吸收了4.2×105J的热量,同时气体对外做了6×105J的功.问:
(1)气体的内能是增加了还是减少了?变化量是多少?
(2)气体的分子势能是增加了还是减少了?
(3)气体分子的平均动能是增加了还是减少了?
解:(1)因为气体从外界吸热,所以Q=+4.2×105J;又因气体对外做功,所以W=-6×105J.
由热力学第一定律有:
ΔU=W+Q=-1.8×105J(4分)
ΔU为负,说明气体的内能减少了1.8×105J.(2分)
(2)因为气体对外做功,所以气体的体积膨胀,分子间的距离增大了,分子力做负功,气体分子势能增加.
(3)因为气体的内能减少,同时气体分子势能增加,说明气体分子的平均动能一定减少了.
【感悟高考真题】
1.(20xx重庆15)给旱区送水的消防车停于水平面,在缓缓放水的过程中,若车胎不漏气,胎内气体温度不变,不计分子势能,则胎内气体
A.从外界吸热B.对外界做负功
B.分子平均动能减少D.内能增加
【答案】A
【解析】胎内气体经历了一个温度不变,压强减小,体积增大的过程。温度不变,分子平均动能和内能不变。体积增大气体对外界做正功。根据热力学第一定律气体一定从外界吸热。A正确
2.(09重庆14)密闭有空气的薄塑料瓶因降温而变扁,此过程中瓶内空气(不计分子势能)(D)
A.内能增大,放出热量B.内能减小,吸收热量
C.内能增大,对外界做功D.内能减小,外界对其做功
3.(09四川16)关于热力学定律,下列说法正确的是(B)
A.在一定条件下物体的温度可以降到0K
B.物体从单一热源吸收的热量可全部用于做功
C.吸收了热量的物体,其内能一定增加
D.压缩气体总能使气体的温度升高
4.(09广东物理13)(1)远古时代,取火是一件困难的事,火一般产生于雷击或磷的自燃。随着人类文明的进步,出现了“钻木取火”等方法。“钻木取火”是通过方式改变物体的内能,把
转变为内能。
(2)某同学做了一个小实验:先把空的烧瓶放到冰箱冷冻,一小时后取出烧瓶,并迅速把一个气球紧密的套在瓶颈上,然后将烧瓶放进盛满热水的烧杯里,气球逐渐膨胀起来,如图所示。这是因为烧瓶里的气体吸收了水的,温度,体积。
答案:(1)做功,机械能;(2)热量,升高,增大
解析:做功可以增加物体的内能;当用气球封住烧瓶,在瓶内就封闭了一定质量的气体,当将瓶子放到热水中,瓶内气体将吸收水的热量,增加气体的内能,温度升高,由理气方程可知,气体体积增大。
5.(09山东物理36)(8分)一定质量的理想气体由状态A经状态B变为状态C,其中AB过程为等压变化,BC过程为等容变化。已知VA=0.3m3,TA=TB=300K、TB=400K。
(1)求气体在状态B时的体积。
(2)说明BC过程压强变化的微观原因
(3)没AB过程气体吸收热量为Q,BC过气体放出热量为Q2,比较Q1、Q2的大小说明原因。
解析:设气体在B状态时的体积为VB,由盖--吕萨克定律得,,代入数据得。
(2)微观原因:气体体积不变,分子密集程度不变,温度变小,气体分子平均动能减小,导致气体压强减小。
(3)大于;因为TA=TB,故AB增加的内能与BC减小的内能相同,而AB过程气体对外做正功,BC过程气体不做功,由热力学第一定律可知大于
考点:压强的围观意义、理想气体状态方程、热力学第一定律
【考点精题精练】
1、(20xx江苏盐城中学高三一模)若一定质量的理想气体分别按下图所示的三种不同过程由1状态变化到2状态,其中表示等压变化的是(填“A”、“B”或“C”),该过程中气体是(填“吸热”、“放热”或“既不吸热也不放热”)。

2.关于热力学定律,下列说法正确的是()
A.在一定条件下物体的温度可以降到0K
B.物体从单一热源吸收的热量可全部用于做功
C.吸收了热量的物体,其内能一定增加
D.压缩气体总能使气体的温度升高
答案:B
3.密闭有空气的薄塑料瓶因降温而变扁,此过程中瓶内空气(不计分子势能)()
A.内能增大,放出热量B.内能减小,吸收热量
C.内能增大,对外界做功D.内能减小,外界对其做功
答案:D
4、(20xx福建省莆田九中届高三第四次月考)在一个上下水温均匀并保持恒温的水池中,有一个小气泡缓缓地向上浮起,在气泡上升过程中正确的结论是(汽泡内是理想气体)
A.气泡内能减少,放出热量
B.汽泡内能不变,对外做功,吸收热量
C.气泡内能不变,不放热也不吸热
D.气泡内能增加,吸收热量
答案:B
5、下列叙述中,正确的是(C)
A.物体的温度越高,分子热运动就越剧烈,每个分子动能也越大
B.布朗运动就是液体分子的热运动
C.一定质量的理想气体从外界吸收热量,其内能可能不变
D.根据热力学第二定律可知热量能够从高温物体传到低温物体,但不可能从低温物体传到高温物体
6、下列有关热学知识的论述正确的是(BD)
A.两个温度不同的物体相互接触时,热量既能自发地从高温物体传给低温物体,也可以自发地从低温物体传给高温物体
B.在一定条件下,低温物体可以向高温物体传递能量
C.第一类永动机违背能的转化和守恒定律,第二类永动机不违背能的转化和守恒定律,随着科技的进步和发展,第二类永动机可以制造出来
D.温度是物体分子热运动平均动能的标志
7、列说法中正确的是(C)
A.第二类永动机无法制成是因为它违背了热力学第一定律
B.教室内看到透过窗子的“阳光柱”里粉尘颗粒杂乱无章的运动,这种运动是布朗运动
C.地面附近有一正在上升的空气团(视为理想气体),它与外界的热交换忽略不计。已知大气压强随高度增加而降低,则该气团在此上升过程中气团体积增大,温度降低
D.热量只能从高温物体向低温物体传递,不可能由低温物体传给高温物体
8、如图所示,一圆柱形容器竖直放置,通过活塞封闭着摄氏温度为t的理想气体,活塞的质量为m,横截面积为S,与容器底部相距h,现通过电热丝给气体加热一段时间,结果使活塞又缓慢上升了h,若这段时间内气体吸收的热量为Q,已知大气压强为,重力加速度为g,不计器壁向外散失的热量及活塞与器壁间的摩擦,求
(1)气体的压强;
(2)这段时间内气体的内能增加了多少?
解析:
(1)
(2)气体对外做功为
由热力学第一定律得:

高考物理第一轮热力学定律复习学案


第十三章热力学定律

1.本章主要是研究热和功间的关系、热力学第一第二定律,了解能源的开发利用,以拓宽同学们的视野。
2.本章主要是以以前学习过的内容为基础,研究功与能间的关系,以热力学定律为基础结合各种能量间关系的计算。
3.高考中以选择题形式考查对基础知识的理解,以计算题形式计算能量间的转化和转移关系。

第一课时热力学定律

【教学要求】
1.理解热力学第一定律和能量守恒定律。
2.知道热力学第二定律,知道能源与环境的关系,了解新能源的开发和利用。
【知识再现】
一、功和能
做功与热传递在改变内能方面二者是等价的.做功时内能与其它形式的能相互转化.热传递是不同物体(或一个物体的不同部分)之间内能的转移。
二、热力学第一定律
功、热量跟内能改变之间的定量关系△U=W+Q。
三、能的转化和守恒定律
1.能量既不能凭空产生,也不能凭空消失,它只能从一种形式为另一种形式或从到另一个物体。
2.不消耗任何能量,却源源不断地对外做功的机器叫,它违背了能的,因此这种机器制造出来。
四、热力学第二定律
1.热力学第二定律的两种表述
表述一,不可能使由低温物体传递到而不引起其他。
表述二:不可能从并把它全部用来对外而不引起其他变化。
2.第二类永动机:只从吸取热量,使之全部用来做功,而不引起其他变化的热机。
五、能源的开发利用
1.能源与人类发展关系是:。
2.能源与环境的关系是:。
3.等为新能源。
知识点一温度、热量、功、内能
功、热量是能量转化转移的量度,是与内能的变化相联系的,是过程量.内能是状态量.物体的内能大,并不意味着物体一定会对外做功或向外传递热量,或者做的功多,传递的热量多.只有物体的内能变化大的过程中做的功或传递的热量才会多.温度只是分子平均动能的标志.物体的内能除与温度有关外,还与物体的物质的量、体积、物态等因素有关.
【应用1】判断下列各种说法是否正确()
A.物体从10℃变为8℃,其热量减少了.
B.物体从10℃变为8℃,放出了一定的内能.
C.物体从10℃变为8℃,其内能减少了.
D.物体从10℃变为8℃,物体可能释放了一定热量.
导示:热量是在有热交换过程中内能转移的物理量,物体没有热量减少的说法,A错。B中也只能说是放出了热量,而不是内能,B错。物体的内能不仅与温度有关,还与体积有关,C错。物体温度降低,可能向外传热,也可能有做功过程,D正确。
热力学问题中,一样要区分过程量与状态量之间的关系,
知识点二热力学第一定律
物体内能的增量△U等于外界对物体做的功W和物体吸收的热量Q的总和.表达式:W十Q=△U
【应用2】关于物体内能及其变化,下列说法中正确的是()
A.物体的温度改变时,其内能必定改变
B.物体对外做功,其内能不一定改变;向物体传递热量,其内能不一定改变
C.对物体做功,其内能必定改变;物体向外传出一定热量其内能必定改变
D.若物体与外界不发生热交换,则物体的内能必定不改变
导示:物体的内能不仅与温度有关,还与体积有关,温度改变,内能不一定变化,A错。改变物体内能有两种方式:做功与热传递。物体对外做功,其内能不一定改变;同样向物体传递热量,其内能不一定改变,B正确,CD错。故选B。
符号法则:外界对物体做功,物体体积减小,W取正值;物体对外界做功,物体体积增大,W取负值.物体吸收热量,Q取正值;物体放出热量,Q取负值;物体内能增加,△U取正值,物体内能减少,△U取负值.
知识点三能量守恒定律
能量是量度物体运动的物理量,不同形式的能与不同的运动形式相对应.如:内能与分子热运动相对应,电能与电荷运动相对应等.能的转化一定要通过做功才能实现,而能的转移要通过某种形式的传递来完成.不同形式能的转化,意味着物体的运动由一种形式转化成了另一种形式,因此,能量守恒是沟通不同运动的重要纽带.
【应用3】如图所示,容器A、B各有一个自由移动的轻活塞,活塞下面是水,上面是大气,大气压恒定,A、B的底部由带着阀门K的管道相连,整个装置与外界绝热,开始时,A中的水面比B中的高,打开阀门,使A中的水逐渐向B中流,最后达到平衡,在这个过程中()
A.大气压力对水做功,水的内能增加
B.水克服大气压力做功,水的内能减少
C.大气压力对水不做功,水的内能不变
D.大气压力对水不做功,水的内能增加
导示:大气压力对左侧水做功,同时右侧水对大气做功,可知两者做功相等,所以大气对水做功为零。而水的内能增加的原因是因为重力对水做了功,转化成了水的内能。故ABC错,D正确。
各种形式的能在转化和转移中总能量守恒是无条件的,而某种或某几种形式的能的守恒是有条件的,如:在只有重力和弹力做功时,机械能才守恒,对此应予以注意.某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等,如:相互摩擦的系统中,一对滑动摩擦力所做的总功是负值,因此使系统的机械能减少,内能增加,摩擦力所做总功的绝对值等于滑动摩擦力与相对位移的乘积,即等于系统损失的机械能.同理,若某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等,这也是列能量守恒定律方程式的两条基本思路.
知识点四热力学第二定律
热力学第一定律和热力学第二定律是热力学知识的基础理论.热力学第一定律指出任何热力学过程中能量守恒,而对过程没有其他限制。热力学第二定律指明哪些过程可以自发的发生,哪些过程不可能自发的发生,如:第二类永动机不可能实现,热机效率不可能是100%,热现象过程中能量耗散是不可避免的,宏观的实际的热现象过程是不可逆的.
【应用4】下列说法中正确的是()
A.热量能自发地从高温物体传给低温物体
B.热量不能从低温物体传到高温物体
C.热传导是有方向的
D.能量耗散说明能量是不守恒的
导示:热量能自发地从高温物体传给低温物体,而从低温物体传到高温物体则必需有一定的条件,A对B错。热传导具有方向性,C正确。所有物理现象都遵循能的转化与守恒定律,D错。故选AC。
热力学第二定律有多种表述,但无论用什么方式表述,都是揭示了自然界的基本规律:一切与热现象有关的实际宏观过程都是不可逆的.
类型一热力学第一定律的应用
物体内能的增加与否,不能单单只看做功或者热传递,要将二者结合起来,内能的变化由△U=W+Q得到.应用热力学第一定律时,注意正确判断△U、W、Q的正负号。
【例1】在温度均匀的液体中,一个小气泡由液体的底层缓慢地升到液面,上升过程中气泡的体积不断地增大,则气泡在浮起的过程中()
A.放出热量B.吸收热量
C.不吸热也不放热D.无法判断
导示:气体分子之间的距离很大,相互作用力很小,对气体来说,气体的状态变化时,分子势能几乎不变.所以,一定质量的气体的内能的变化,就是气体分子热运动的动能总和的变化,即由温度的变化决定.在温度均匀的液体中,一个小气泡由液体的底层缓慢地升到液面的过程中,小气泡温度不变,其内能增量△U=0.上升过程中,气泡的体积不断增大,气体对外做功,即有W0,根据热力学第一定律,可知Q0,所以气泡在浮起的过程中,吸收热量,因此选项B正确.
物体处于大气环境中,做功的一个显著特点是物体的体积发生了变化,体积增大,物体对外做功,体积减小,外界对物体做功。
类型二能量守恒定律的应用
通过做功把其他形式的能量(特别是机械能)转化为内能的问题是一类重要的综合题.解这类综合题的关键在于弄清内能的来源.如:在机械能与内能相互转化的过程中,转化为内能的往往不是研究对象的全部机械能,而是系统损失的机械能.
【例2】直立容器内部有被隔开的AB两部分气体,A的密度小,B的密度大,抽去隔板,加热气体,使这两部分气体均匀混合,设在此过程中气体吸热Q,气体内能增量为ΔU,则
A.ΔU=QB.ΔUQC.ΔUQD.无法比较
导示:AB混合前重心在中线以下,混合后重心在中线上,所以系统重力势能增大.吸收热量的一部分转化为重力势能,故ΔUQ。故选B。
此类问题往往会结合平抛运动、圆周运动、相对运动、电磁感应等力、电知识,需要综合运用系统能量守恒等重要规律,是高考中的一个重点.
1.在一个与外界没有热交换的房间内打开冰箱门,冰箱冰箱正常工作,过一段时间房间内的温度将如何变化?()
A.降低B.升高C.不变D.无法判断
2.下列说法中正确的是()
A.自然界中进行的涉及热现象的宏观过程都具有方向性
B.根据热力学第二定律,可以发明一种机器将散失的能量重新收集、重新利用
C.可以用特殊的方法,使热机效率达到100%
D.冰箱可以实现热量从低温物体传给高温物体,所以热力学第二定律不正确
3.如图,密闭绝热容器内有一绝热的具有一定质量的活塞,活塞的上部封闭着气体,下部为真空,活塞与器壁的摩擦忽略不计.置于真空中的轻弹簧的一端固定于容器的底部,另一端固定在活塞上.弹簧被压缩后用绳扎紧,此时弹簧的弹性势能为Ep(弹簧处在自然长度时的弹性势能为0).现绳突然断开,弹簧推动活塞向上运动,经过多次往复运动后,活塞静止,气体达到平衡状态.经过此过程()
A.Ep全部转换为气体的内能
B.Ep一部分转换成活塞的重力势能,其余部分仍为弹簧的弹性势能
C.Ep全部转换成活塞的重力势能和气体的内能
D.Ep一部分转换成活塞的重力势能,一部分转换为气体的内能,其余部分仍为弹簧的弹性势能

参考答案:
1.B2.A3.D

20xx高考物理复习知识点:热力学定律能量守恒


一名优秀负责的教师就要对每一位学生尽职尽责,作为教师就要好好准备好一份教案课件。教案可以让讲的知识能够轻松被学生吸收,帮助教师有计划有步骤有质量的完成教学任务。那么一篇好的教案要怎么才能写好呢?以下是小编为大家精心整理的“20xx高考物理复习知识点:热力学定律能量守恒”,仅供参考,希望能为您提供参考!

20xx高考物理复习知识点:热力学定律能量守恒

高考物理复习知识点:热力学定律能量守恒
一、选择题(本题共6小题,共48分)
1.已知某气体的摩尔体积为VA,摩尔质量为MA,阿伏加德罗常数为NA,则根据以上数据可以估算出的物理量是()
A.分子质量B.分子体积
C.分子密度D.分子间平均距离
解析:根据m=MANA可知选项A正确;由于气体分子间距很大,故无法求出分子的体积和密度,选项B、C错误;由V=VANA=d3可知选项D正确.
答案:AD
2.如图1-13所示为两分子间距离与分子势能之间的关系图象,则下列
说法中正确的是()
A.当两分子间距离r=r1时,分子势能为零,分子间相互作用的引力
和斥力也均为零
B.当两分子间距离r=r2时,分子势能最小,分子间相互作用的引力
和斥力也最小
C.当两分子间距离r
斥力也增大
D.当两分子间距离rr2时,随着r的增大,分子势能增大,分子间相互作用的引力和斥力也增大
解析:当两分子间距离r=r1时,分子势能为零,但rr2时,由图象可以看出分子势能随着r的增大而增大,而分子间相互作用的引力和斥力逐渐减小,选项D错误.
答案:C
3.下列说法中正确的是()
A.给轮胎打气的过程中,轮胎内气体内能不断增大
B.洒水车在不断洒水的过程中,轮胎内气体的内能不断增大
C.太阳下暴晒的轮胎爆破,轮胎内气体内能减小
D.拔火罐过程中,火罐能吸附在身体上,说明火罐内气体内能减小
解析:给轮胎打气的过程中,轮胎内气体质量增加,体积几乎不变,压强增加,温度升高,内能增加,选项A正确;洒水车内水逐渐减小,轮胎内气体压强逐渐减小,体积增大,对外做功,气体内能减小,选项B错误;轮胎爆破的过程中,气体膨胀对外做功,内能减小,选项C正确;火罐内气体温度逐渐降低时,内能减小,选项D正确.
答案:ACD
4.根据热力学定律和分子动理论,可知下列说法正确的是()
A.可以利用高科技手段,将流散到环境中的内能重新收集起来加以利用而不引起其他变化
B.理想气体状态变化时,温度升高,气体分子的平均动能增大,气体的压强可能减小
C.布朗运动是液体分子的运动,温度越高布朗运动越剧烈
D.利用浅层海水和深层海水之间的温度差可以制造一种热机,将海水的一部分内能转化为机械能,这在原理上是可行的
解析:根据热力学第二定律知机械能可以完全转化为内能,而内能向机械能的转化是有条件的,A项错.温度是分子平均动能的标志,温度越高,分子平均动能越大,而气体压强大小宏观上取决于气体的温度与体积,温度升高,若体积增大,气体的压强可能减小,B项正确.布朗运动是布朗颗粒的运动而非液体分子的运动,但它反映了液体分子运动的无规则性,温度越高,布朗运动越显著,C项错误.利用浅层海水和深层海水之间的温度差可以制造一种热机,将海水的一部分内能转化为机械能,理论上满足热力学第一、第二定律,这在原理上是可行的,D项正确.
答案:BD
5.下面关于分子力的说法中正确的有()
A.铁丝很难被拉长,这一事实说明铁分子间存在引力
B.水很难被压缩,这一事实说明水分子间存在斥力
C.将打气管的出口端封住,向下压活赛,当空气被压缩到一定程度后很难再压缩,这一事实说明这时空气分子间表现为斥力
D.磁铁可以吸引铁屑,这一事实说明分子间存在引力
解析:逐项分析如下
选项诊断结论
A原来分子间距r等于r0,拉长时rr0,表现为引力√
B压缩时r
C压缩到一定程度后,空气很难再压缩,是气体分子频繁撞击活塞产生的气体压强增大的结果×
D磁铁吸引铁屑是磁场力的作用,不是分子力的作用×
答案:AB
6.电冰箱的制冷设备是用机械的方式制造人工低温的装置,压缩机工作时,强迫制冷剂在冰箱内外的管道中不断循环,实现制冷作用,那么下列说法中正确的是()
A.打开冰箱门让压缩机一直工作,可使室内温度逐渐降低
B.在电冰箱的内管道中,制冷剂迅速膨胀并吸收热量
C.在电冰箱的外管道中,制冷剂被剧烈压缩放出热量
D.电冰箱的工作原理违背了热力学第二定律
解析:电冰箱工作过程中,消耗电能的同时部分电能转化为内能,故室内温度不可能降低,选项A错误;制冷剂在内管道膨胀吸热,在外管道被压缩放热,选项B、C正确;电冰箱的工作原理并不违背热力学第二定律,选项D错误.
答案:BC
二、非选择题(本题共6小题,共52分)
7.某同学学到分子动理论后,想估算一瓶纯净水所包含的水分子数目,已知一瓶纯净水的体积是600mL,则所含水分子的个数约为________个.(结果保留1位有效数字,已知水的摩尔质量为18g/mol,阿伏加德罗常数取6.0×1023mol-1)
解析:根据m=ρV及n=mM×NA解得:n=2×1025个.
答案:2×1025
8.将下列实验事实与产生的原因对应起来
A.水与酒精混合体积变小
B.固体很难被压缩
C.细绳不易拉断
D.糖在热水中溶解得快
E.冰冻食品也会变干
a.固体分子也在不停地运动
b.分子运动的剧烈程度与温度有关
c.分子间存在引力
d.分子间存在斥力
e.分子间存在着空隙
它们的对应关系分别是:A-________;B-________;C-________;D-________;E-________(在横线上填上与实验事实产生原因前后对应的符号).
答案:edcba
9.用油膜法估测分子大小的实验步骤如下:
①向体积为V1的纯油酸中加入酒精,直到油酸酒精溶液总量为V2;
②用注射器吸取上述溶液,一滴一滴地滴入小量筒,当滴入n滴时体积为V0;
③先往边长为30~40cm的浅盘里倒入2cm深的水;
④用注射器往水面上滴一滴上述溶液,等油酸薄膜形状稳定后,将事先准备好的玻璃板放在浅盘上,并在玻璃板上描出油酸薄膜的形状;
⑤将画有油酸薄膜轮廓形状的玻璃板,放在画有许多边长为a的小正方形的坐标纸上;
⑥计算出轮廓范围内正方形的总数为N,其中不足半个格的两个格算一格,多于半个格的算一格.
上述实验步骤中有遗漏和错误,遗漏的步骤是____________________;错误的步骤是____________________(指明步骤,并改正),油酸分子直径的表达式d=________.
解析:本题考查的是用油膜法测分子直径,意在考查学生对单分子油膜的理解和粗略估算能力.本实验中为了使油膜不分裂成几块,需在水面上均匀撒上痱子粉;由于本实验只是一种估算,在数油膜所覆盖的坐标格数时,大于半个格的算一个格,少于半个格的舍去;油酸溶液在水面上充分扩散后形成一层单分子油膜,油膜厚度可看成分子直径,由题意可知,油酸溶液的浓度为V1/V2,一滴油酸溶液的体积为V0/n,一滴油酸溶液中含纯油酸体积为V1V0nV2,一滴油酸溶液形成的油膜面积为Na2,所以油膜厚度即分子直径d=V1V0NV2a2n.
答案:将痱子粉均匀撒在水面上错误的步骤是⑥,应该是不足半个格的舍去,多于半个格的算一格V1V0NV2a2n
10.(1)下列说法正确的是________.
A.空中下落的雨滴呈球形是因为液体有表面张力
B.布朗运动表明了分子越小,分子运动越剧烈
C.由能的转化和守恒定律知道,能源是不会减少的
D.液晶既有液体的流动性,又有光学性质的各向异性
(2)如图1-14所示,一个绝热活塞将绝热容器分成A、B两部分,用控制阀K固定活塞,保持A体积不变,给电热丝通电,则此过程中气体A的内能________,温度________;拔出控制阀K,活塞将向右移动压缩气体B,则气体B的内能________.
解析:(1)布朗运动表明了固体颗粒越小,液体温度越高,液体分子运动越剧烈,B错误;由能的转化和守恒定律知道,能量是守恒的,但能源是会不断减少的,能量与能源的意义不同,C错误.
(2)给电热丝通电,A容器温度升高,气体内能增加;拔出控制阀K,活塞将向右移动压缩气体B,对B做正功,气体B的内能增加.
答案:(1)AD(2)增加升高增加
11.一定质量的理想气体在某一过程中,外界对气体做功1.7×105J,气体内能减少
1.3×105J,则此过程中气体________(填吸收或放出)的热量是________J.此后,保持气体压强不变,升高温度,气体对外界做了5.0×105J的功,同时吸收了
6.0×105J的热量,则此过程中,气体内能增加了________J.
解析:根据热力学第一定律得:W=1.7×105J,ΔU=-1.3×105J,代入ΔU=W+Q可得,Q=-3.0×105J,Q为负值,说明气体要放出热量,放出的热量为3.0×105J;同理W=-5×105J,Q=6×105J,ΔU=W+Q=1.0×105J,即内能增加了1.0×105J.
答案:放出3.0×1051.0×105
12.某学习小组做了如下实验:先把空的烧瓶放入冰箱冷冻,取出烧瓶,
并迅速把一个气球紧套在烧瓶颈上,封闭了一部分气体,然后将
烧瓶放进盛满热水的烧杯里,气球逐渐膨胀起来,如图1-15所
示.
(1)在气球膨胀过程中,下列说法正确的是________.
A.该密闭气体分子间的作用力增大
B.该密闭气体组成的系统熵增加
C.该密闭气体的压强是由于气体重力而产生的
D.该密闭气体的体积是所有气体分子的体积之和
(2)若某时刻该密闭气体的体积为V,密度为ρ,平均摩尔质量为M,阿伏加德罗常数为NA,则该密闭气体的分子个数为________.
(3)若将该密闭气体视为理想气体,气球逐渐膨胀起来的过程中,气体对外做了0.6J的功,同时吸收了0.9J的热量,则该气体内能变化了________J;若气球在膨胀过程中迅速脱离瓶颈,则该气球内气体的温度________(填升高、降低或不变).
解析:(1)一切自然过程中,一个孤立系统的总熵不会减少,B正确;气球膨胀分子间的距离增大,分子间的作用力减小,A错误;气体的压强是由于气体分子频繁的撞击容器壁产生的,C错误;因气体分子之间存在间隙,所以密闭气体的体积大于所有气体分子的体积之和,D错误.
(2)该密闭气体的分子个数为n=ρVMNA.
(3)根据热力学第一定律ΔU=W+Q得:ΔU=-0.6J+0.9J=0.3J;气球在膨胀过程中对外界做功,气球内气体的温度必降低.
答案:(1)B(2)ρVMNA(3)0.3降低

高考物理第一轮考纲知识复习:功能关系能量守恒定律


第4节功能关系能量守恒定律
【考纲知识梳理】
一、功能关系
1.做功的过程是能量转化的过程,功是能的转化的量度。
2.功能关系——功是能量转化的量度
⑴重力所做的功等于重力势能的减少
⑵电场力所做的功等于电势能的减少
⑶弹簧的弹力所做的功等于弹性势能的减少
⑷合外力所做的功等于动能的增加
⑸只有重力和弹簧的弹力做功,机械能守恒
⑹重力和弹簧的弹力以外的力所做的功等于机械能的增加WF=E2-E1=ΔE
⑺克服一对滑动摩擦力所做的净功等于机械能的减少ΔE=fΔS(ΔS为相对滑动的距离)
⑻克服安培力所做的功等于感应电能的增加
二、能量守恒定律
【要点名师透析】
一、几种常见的功能关系
【例1】(20xx杭州模拟)(10分)一物块放在如图所示的斜面上,用力F沿斜面向下拉物块,物块沿斜面运动了一段距离,若已知在此过程中,拉力F所做的功为A,斜面对物块的作用力所做的功为B,重力做的功为C,空气阻力做的功为D,其中A、B、C、D的绝对值分别为100J、30J、100J、20J,则
(1)物块动能的增量为多少?
(2)物块机械能的增量为多少?
【答案】(1)150J(2)50J
【详解】(1)在物块下滑的过程中,拉力F做正功,斜面对物块有摩擦力,做负功,重力做正功,空气阻力做负功.根据动能定理,合外力对物块做的功等于物块动能的增量,则
ΔEk=W合=A+B+C+D=100J+(-30J)+100J+(-20J)
=150J(5分)
(2)根据功能关系,除重力之外的其他力所做的功等于物块机械能的增量,则
ΔE机=A+B+D=100J+(-30J)+(-20J)=50J(5分)
二、摩擦力做功的特点
【例2】(20xx广州模拟)(12分)质量为M的长木板放在光滑的水平面上,一质量为m的滑块以某一速度沿木板表面从A点滑到B点,在板上前进了L,而木板前进了l,如图所示,若滑块与木板间的动摩擦因数为μ,求:
(1)摩擦力对滑块和木板做的功;
(2)系统产生的热量.
【答案】(1)-μmg(L+l)μmgl(2)μmgL
【详解】(1)滑块的对地位移为x1=L+l
摩擦力对滑块做的功为:W1=-Ffx1=-μmg(L+l)(4分)
木板的对地位移为x2=l
摩擦力对木板做的功为:W2=Ffx2=μmgl(4分)
(2)滑块相对木板的位移为Δx=L
系统产生的热量Q=FfΔx=μmgL(4分)
三、对能量守恒定律的理解和应用
1.对定律的理解
(1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等.即ΔE减=ΔE增.
(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.即ΔEA减=ΔEB增.
2.应用能量守恒定律解题的步骤
(1)分清有多少形式的能[如动能、势能(包括重力势能、弹性势能、电势能)、内能等]在变化.
(2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE减和增加的能量ΔE增的表达式.
(3)列出能量守恒关系式:ΔE减=ΔE增.
【例3】(20xx福州模拟)(16分)如图所示,光滑水平面AB与竖直面内的半圆形导轨在B点相切,半圆形导轨的半径为R.一个质量为m的物体将弹簧压缩至A点后由静止释放,在弹力作用下物体获得某一向右的速度后脱离弹簧,当它经过B点进入导轨的瞬间对轨道的压力为其重力的8倍,之后向上运动恰能到达最高点C.(不计空气阻力)试求:
(1)物体在A点时弹簧的弹性势能.
(2)物体从B点运动至C点的过程中产生的内能.
【答案】(1)(2)mgR
【详解】(1)设物体在B点的速度为vB,弹力为FNB,则有
(3分)
又FNB=8mg
由能量转化与守恒可知:
弹性势能(4分)
(2)设物体在C点的速度为vC,由题意可知:
(3分)
物体由B点运动到C点的过程中,由能量守恒得:
(4分)
解得:Q=mgR(2分)
【考点模拟演练】
1.(20xx新课标全国卷T16)一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离。假定空气阻力可忽略,运动员可视为质点,下列说法正确的是
A.运动员到达最低点前重力势能始终减小
B.蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加
C.蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒
D.蹦极过程中,重力势能的改变与重力势能零点的选取有关
【答案】选A、B、C。
【详解】运动员在下落过程中,重力做正功,重力势能减小,故A正确。蹦极绳张紧后的下落过程中,弹性力向上,位移向下,弹性力做负功,弹性势能增加,故B正确。选取运动员、地球和蹦绳为一系统,在蹦极过程中,只有重力和系统内弹力做功,这个系统的机械能守恒,故C正确。重力势能改变的表达式为Ep=mgh,由于h是绝对的与选取的重力势能参考零点无关,故D错。
6.(20xx安徽高考T24)如图所示,质量M=2kg的滑块套在光滑的水平
轨道上,质量m=1kg的小球通过长L=0.5m的轻质细杆与滑块上的光滑轴O连接,小球和轻杆可在竖直平面内绕O轴自由转动,开始轻杆处于水平状态,现给小球一个竖直向上的初速度=4m/s,g取10。
若锁定滑块,试求小球通过最高点P时对轻杆的作用力大小和方向。
(2)若解除对滑块的锁定,试求小球通过最高点时的速度大小。
在满足(2)的条件下,试求小球击中滑块右侧轨道位置点与小球起始位置点间的距离。
【答案】(1)2N,方向竖直向上(2)(3)m
【详解】设小球能通过最高点,且此时的速度为v1,在上升过程中,因只有重力做功,小球的机械能守恒,则①

设小球到达最高点时,轻杆对小球的作用力为F,方向向下,则小球受到的拉力和重力提供做圆周运动的向心力,有③
由②③式,得④
由牛顿第三定律知,小球对轻杆的作用力大小为2N,方向竖直向上。
(2)若解除锁定,设小球通过最高点时的速度为v2,此时滑块的速度为V。小球和滑块起始状态沿在水平方向初速度均为零,在上升过程中,因系统在水平方向不受外力作用,水平方向的动量守恒。以水平向右方向为正方向,有⑤
在上升过程中,因只有重力做功,系统的机械能守恒,则⑥,
由⑤⑥式得。
(3)设小球击中滑块右侧轨道的位置点与小球起始位置点间的距离为s1,滑块向左移动的距离为s2。任意时刻小球的水平速度大小为v3,滑块的速度大小为V‘。由系统水平方向的动量守恒,得⑦将⑦式两边同乘以,得⑧,因⑧式对任意时刻附近的微小间隔都成立,累积相加后,有⑨,又⑩,由⑨⑩式,得m
3.(20xx大纲版全国T26)26.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击。通过对一下简化模型的计算可以粗略说明其原因。
质量为2m、厚度为2d的钢板静止在水平光滑桌面上。质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿。现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示。若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度。设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响。
【详解】设子弹初速度为,射入厚为的钢板后,最终的共同速度为,根据动量守恒
…………………①
解得
动能损失…………………③
分成两块钢板之后,设子弹打穿第一块时两者的速度分别是和,根据动量守恒
…………………③
子弹在钢板中所受的阻力为恒力,射穿第一块钢板的动能损失为,根据能量守恒,
…………………④
联立①②③④,考虑到必须大于,得
…………………⑤
设子弹射入第二块钢板并留在其中后两者的共同速度为,根据动量守恒
…………………⑥
动能损失
…………………⑦
联立①②⑤⑥⑦,得
…………………⑧
因为子弹在钢板中所受的阻力为恒力,由⑧式,得射入第二块钢版的深度
…………………⑨
4.(09天津10)如图所示,质量m1=0.3kg的小车静止在光滑的水平面上,车长L=15m,现有质量m2=0.2kg可视为质点的物块,以水平向右的速度v0=2m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数=0.5,取g=10m/s2,求
(1)物块在车面上滑行的时间t;
(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不超过多少。
答案:(1)0.24s(2)5m/s
解析:本题考查摩擦拖动类的动量和能量问题。涉及动量守恒定律、动量定理和功能关系这些物理规律的运用。
(1)设物块与小车的共同速度为v,以水平向右为正方向,根据动量守恒定律有

设物块与车面间的滑动摩擦力为F,对物块应用动量定理有

其中③
解得
代入数据得④
(2)要使物块恰好不从车厢滑出,须物块到车面右端时与小车有共同的速度v′,则

由功能关系有

代入数据解得=5m/s
故要使物块不从小车右端滑出,物块滑上小车的速度v0′不能超过5m/s。
5.(09山东38)(2)如图所示,光滑水平面轨道上有三个木块,A、B、C,质量分别为mB=mc=2m,mA=m,A、B用细绳连接,中间有一压缩的弹簧(弹簧与滑块不栓接)。开始时A、B以共同速度v0运动,C静止。某时刻细绳突然断开,A、B被弹开,然后B又与C发生碰撞并粘在一起,最终三滑块速度恰好相同。求B与C碰撞前B的速度。

解析:(2)设共同速度为v,球A和B分开后,B的速度为,由动量守恒定律有,,联立这两式得B和C碰撞前B的速度为。
考点:动量守恒定律
6.(09安徽24)过山车是游乐场中常见的设施。下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径、。一个质量为kg的小球(视为质点),从轨道的左侧A点以的初速度沿轨道向右运动,A、B间距m。小球与水平轨道间的动摩擦因数,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度取,计算结果保留小数点后一位数字。试求
(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;
(2)如果小球恰能通过第二圆形轨道,B、C间距应是多少;
(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径应满足的条件;小球最终停留点与起点的距离。

答案:(1)10.0N;(2)12.5m(3)当时,;当时,
解析:(1)设小于经过第一个圆轨道的最高点时的速度为v1根据动能定理

小球在最高点受到重力mg和轨道对它的作用力F,根据牛顿第二定律

由①②得③
(2)设小球在第二个圆轨道的最高点的速度为v2,由题意


由④⑤得⑥
(3)要保证小球不脱离轨道,可分两种情况进行讨论:
I.轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v3,应满足


由⑥⑦⑧得
II.轨道半径较大时,小球上升的最大高度为R3,根据动能定理
解得
为了保证圆轨道不重叠,R3最大值应满足
解得R3=27.9m
综合I、II,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件

当时,小球最终焦停留点与起始点A的距离为L′,则
当时,小球最终焦停留点与起始点A的距离为L〞,则
7.(09重庆23)2009年中国女子冰壶队首次获得了世界锦标赛冠军,这引起了人们对冰壶运动的关注。冰壶在水平冰面上的一次滑行可简化为如下过程:如题23图,运动员将静止于O点的冰壶(视为质点)沿直线推到A点放手,此后冰壶沿滑行,最后停于C点。已知冰面各冰壶间的动摩擦因数为,冰壶质量为m,AC=L,=r,重力加速度为g

(1)求冰壶在A点的速率;
(2)求冰壶从O点到A点的运动过程中受到的冲量大小;
(3)若将段冰面与冰壶间的动摩擦因数减小为,原只能滑到C点的冰壶能停于点,求A点与B点之间的距离。
解析:
8.(09广东物理19)如图19所示,水平地面上静止放置着物块B和C,相距=1.0m。物块A以速度=10m/s沿水平方向与B正碰。碰撞后A和B牢固地粘在一起向右运动,并再与C发生正碰,碰后瞬间C的速度=2.0m/s。已知A和B的质量均为m,C的质量为A质量的k倍,物块与地面的动摩擦因数=0.45.(设碰撞时间很短,g取10m/s2)
(1)计算与C碰撞前瞬间AB的速度;
(2)根据AB与C的碰撞过程分析k的取值范围,并讨论与C碰撞后AB的可能运动方向。
解析:⑴设AB碰撞后的速度为v1,AB碰撞过程由动量守恒定律得
设与C碰撞前瞬间AB的速度为v2,由动能定理得
联立以上各式解得
⑵若AB与C发生完全非弹性碰撞,由动量守恒定律得
代入数据解得
此时AB的运动方向与C相同
若AB与C发生弹性碰撞,由动量守恒和能量守恒得
联立以上两式解得
代入数据解得
此时AB的运动方向与C相反
若AB与C发生碰撞后AB的速度为0,由动量守恒定律得
代入数据解得
总上所述得当时,AB的运动方向与C相同
当时,AB的速度为0
当时,AB的运动方向与C相反
9.(09广东物理20)如图20所示,绝缘长方体B置于水平面上,两端固定一对平行带电极板,极板间形成匀强电场E。长方体B的上表面光滑,下表面与水平面的动摩擦因数=0.05(设最大静摩擦力与滑动摩擦力相同)。B与极板的总质量=1.0kg.带正电的小滑块A质量=0.60kg,其受到的电场力大小F=1.2N.假设A所带的电量不影响极板间的电场分布。t=0时刻,小滑块A从B表面上的a点以相对地面的速度=1.6m/s向左运动,同时,B(连同极板)以相对地面的速度=0.40m/s向右运动。问(g取10m/s2)

(1)A和B刚开始运动时的加速度大小分别为多少?
(2)若A最远能到达b点,a、b的距离L应为多少?从t=0时刻至A运动到b点时,摩擦力对B做的功为多少?
解析:⑴由牛顿第二定律有
A刚开始运动时的加速度大小方向水平向右
B刚开始运动时受电场力和摩擦力作用
由牛顿第三定律得电场力
摩擦力
B刚开始运动时的加速度大小方向水平向左
⑵设B从开始匀减速到零的时间为t1,则有
此时间内B运动的位移
t1时刻A的速度,故此过程A一直匀减速运动。
此t1时间内A运动的位移
此t1时间内A相对B运动的位移
此t1时间内摩擦力对B做的功为
t1后,由于,B开始向右作匀加速运动,A继续作匀减速运动,当它们速度相等时A、B相距最远,设此过程运动时间为t2,它们速度为v,则有
对A速度
对B加速度
速度
联立以上各式并代入数据解得
此t2时间内A运动的位移
此t2时间内B运动的位移
此t2时间内A相对B运动的位移
此t2时间内摩擦力对B做的功为
所以A最远能到达b点a、b的距离L为
从t=0时刻到A运动到b点时,摩擦力对B做的功为

10.(09宁夏24)冰壶比赛是在水平冰面上进行的体育项目,比赛场地示意如图。比赛时,运动员从起滑架处推着冰壶出发,在投掷线AB处放手让冰壶以一定的速度滑出,使冰壶的停止位置尽量靠近圆心O.为使冰壶滑行得更远,运动员可以用毛刷擦冰壶运行前方的冰面,使冰壶与冰面间的动摩擦因数减小。设冰壶与冰面间的动摩擦因数为=0.008,用毛刷擦冰面后动摩擦因数减少至=0.004.在某次比赛中,运动员使冰壶C在投掷线中点处以2m/s的速度沿虚线滑出。为使冰壶C能够沿虚线恰好到达圆心O点,运动员用毛刷擦冰面的长度应为多少?(g取10m/s2)
解析:

设冰壶在未被毛刷擦过的冰面上滑行的距离为,所受摩擦力的大小为:在被毛刷擦过的冰面上滑行的距离为,所受摩擦力的大小为。则有
+=S①
式中S为投掷线到圆心O的距离。


设冰壶的初速度为,由功能关系,得

联立以上各式,解得

代入数据得

【考点模拟演练】
1.已知货物的质量为m,在某段时间内起重机将货物以a的加速度加速升高h,则在这段时间内,下列叙述正确的是(重力加速度为g)()
A.货物的动能一定增加mah-mgh
B.货物的机械能一定增加mah
C.货物的重力势能一定增加mah
D.货物的机械能一定增加mah+mgh
【答案】选D.
【详解】根据动能定理可知,货物动能的增加量等于货物合外力做的功mah,A错误;根据功能关系,货物机械能的增量等于除重力以外的力做的功而不等于合外力做的功,B错误;由功能关系知,重力势能的增量对应货物重力做的负功的大小mgh,C错误;由功能关系,货物机械能的增量为起重机拉力做的功m(g+a)h,D正确.
2.(20xx福州模拟)重物m系在上端固定的轻弹簧下端,用手托起重物,使弹簧处于竖直方向,弹簧的长度等于原长时,突然松手,重物下落的过程中,对于重物、弹簧和地球组成的系统来说,正确的是(弹簧始终在弹性限度内变化)()
A.重物的动能最大时,重力势能和弹性势能的总和最小
B.重物的重力势能最小时,动能最大
C.弹簧的弹性势能最大时,重物的动能最小
D.重物的重力势能最小时,弹簧的弹性势能最大
【答案】选A、C、D.
【详解】重物下落过程中,只发生动能、重力势能和弹性势能的相互转化,所以当动能最大时,重力势能和弹性势能的总和最小,A正确;当重物的重力势能最小时,重物应下落到最低点,其速度为零,动能最小,此时弹簧伸长量最大,弹性势能最大,故B错误,C、D正确.
3.如图(甲)所示,质量不计的弹簧竖立固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图象如图(乙)所示,则()
A.t1时刻小球动能最大
B.t2时刻小球动能最大
C.t2~t3这段时间内,小球的动能先增加后减少
D.t2~t3这段时间内,小球增加的动能等于弹簧减少的弹性势能
【答案】选C.
【详解】小球在未碰弹簧前先做自由落体运动,碰后先做加速度减小的加速运动直到加速度为零,即重力等于弹簧的弹力时速度最大,而后做加速度增大的减速运动,上升过程恰好与下降过程互逆,在整个过程中小球的动能、势能及弹簧的弹性势能总和不变,由(乙)图可知t1时刻小球开始接触弹簧,t2时刻小球运动到最低点,动能最小,t3时刻小球恰好离开弹簧上升,t2~t3这段时间内小球从最低点向上运动的过程中先加速到速度最大然后做减速运动,小球动能先增加后减少,弹簧减少的弹性势能转化为小球的动能和重力势能,故选C.
4.(20xx吉林模拟)如图所示,小球从A点以初速度v0沿粗糙斜面向上运动,到达最高点B后返回A,C为AB的中点.下列说法中正确的是()
A.小球从A出发到返回A的过程中,位移为零,外力做功为零
B.小球从A到C过程与从C到B过程,减少的动能相等
C.小球从A到C过程与从C到B过程,速度的变化量相等
D.小球从A到C过程与从C到B过程,损失的机械能相等
【答案】选B、D.
【详解】小球从A出发到返回A的过程中,重力做功为零,摩擦力做负功,A错误;小球从A到C过程与从C到B过程中,合外力做功相等,动能的增量相等,但速度的变化量不等,B正确,C错误;小球从A到C过程与从C到B过程,损失的机械能等于克服摩擦力做的功,而克服摩擦力做的功相等,故D正确.
5.节日燃放礼花弹时,要先将礼花弹放入一个竖直的炮筒中,然后点燃礼花弹的发射部分,通过火药剧烈燃烧产生的高压燃气,将礼花弹由炮筒底部射向空中.若礼花弹在由炮筒底部出发至炮筒口的过程中,克服重力做功W1,克服炮筒阻力及空气阻力做功W2,高压燃气对礼花弹做功W3,则礼花弹在炮筒内运动的过程中(设礼花弹发射过程中质量不变)
()
A.礼花弹的动能变化量为W3+W2+W1
B.礼花弹的动能变化量为W3-W2-W1
C.礼花弹的机械能变化量为W3-W2
D.礼花弹的机械能变化量为W3-W1
【答案】BC
【详解】由动能定理,动能变化量等于合外力做的功,即W3-W2-W1,B正确.除重力之外的力的功对应机械能的变化,即W3-W2,C正确.
6.飞船返回时高速进入大气层后,受到空气阻力的作用,接近地面时,减速伞打开,在距地面几米处,制动发动机点火制动,飞船迅速减速,安全着陆.下列说法正确的是
()
A.制动发动机点火制动后,飞船的重力势能减少,动能减小
B.制动发动机工作时,由于化学能转化为机械能,飞船的机械能增加
C.重力始终对飞船做正功,使飞船的机械能增加
D.重力对飞船做正功,阻力对飞船做负功,飞船的机械能不变
【答案】A
【详解】制动发动机点火制动后,飞船迅速减速下落,动能、重力势能均变小,机械能减小,A正确,B错误;飞船进入大气层后,空气阻力做负功,机械能一定减小,故C、D均错误.
7.如图所示,具有一定初速度的物块,沿倾角为30°的粗糙斜面向上运动的过程中,受一个恒定的沿斜面向上的拉力F作用,这时物块的加速度大小为4m/s2,方向沿斜面向下,那么,在物块向上运动过程中,正确的说法是()
A.物块的机械能一定增加
B.物块的机械能一定减小
C.物块的机械能可能不变
D.物块的机械能可能增加也可能减小
【答案】A
【详解】机械能变化的原因是非重力、弹簧弹力做功,本题亦即看成F与Fμ做功大小问题,由mgsinα+Fμ-F=ma,知F-Fμ=mgsin30°-ma0,即FFμ,故F做正功多于克服摩擦力做功,故机械能增大.
8.如图所示,分别用恒力F1、F2先后将质量为m的物体由静止开始沿同一粗糙的固定斜面由底端拉至顶端,两次所用时间相同,第一次力F1沿斜面向上,第二次力F2沿水平方向,则两个过程
()
A.合外力做的功相同
B.物体机械能变化量相同
C.F1做的功与F2做的功相同
D.F1做的功比F2做的功多
【答案】AB
【详解】两次物体运动的位移和时间相等,则两次的加速度相等,末速度也应相等,则物体的机械能变化量相等,合力做功也应相等.用F2拉物体时,摩擦力做功多些,两次重力做功相等,由动能定理知,用F2拉物体时拉力做功多.
9.一物体沿固定斜面从静止开始向下运动,经过时间t0滑至斜面底端.已知在物体运动过程中物体所受的摩擦力恒定.若用F、v、x和E分别表示该物体所受的合力、物体的速度、位移和机械能,则如下图所示的图象中可能正确的是
()
【答案】AD
【详解】物体在沿斜面向下滑动的过程中,受到重力、支持力、摩擦力的作用,其合力为恒力,A正确;而物体在此合力作用下做匀加速运动,v=at,x=12at2,所以B、C错;物体受摩擦力作用,总的机械能将减小,D正确.
10.如图所示,甲、乙两车用轻弹簧相连静止在光滑的水平面上,现在同时对甲、乙两车施加等大反向的水平恒力F1、F2,使甲、乙同时由静止开始运动,在整个过程中,对甲、乙两车及弹簧组成的系统(假定整个过程中弹簧均在弹性限度内),正确的说法是()
A.系统受到外力作用,动能不断增大
B.弹簧伸长到最长时,系统的机械能最大
C.恒力对系统一直做正功,系统的机械能不断增大
D.两车的速度减小到零时,弹簧的弹力大小大于外力F1、F2的大小
【答案】选B.
【详解】对甲、乙单独受力分析,两车都先加速后减速,故系统动能先增大后减小,A错误;弹簧最长时,外力对系统做正功最多,系统的机械能最大,B正确;弹簧达到最长后,甲、乙两车开始反向加速运动,F1、F2对系统做负功,系统机械能开始减小,C错;当两车第一次速度减小到零时,弹簧弹力大小大于F1、F2的大小,当返回第二次速度最大时,弹簧的弹力大小等于外力大小,当速度再次为零时,弹簧的弹力大小小于外力F1、F2的大小,D错误.
11.(16分)工厂流水线上采用弹射装置把物品转运,现简化其模型分析:如图所示,质量为m的滑块,放在光滑的水平平台上,平台右端B与水平传送带相接,传送带的运行速度为v0,长为L;现将滑块向左压缩固定在平台上的轻弹簧,到达某处时由静止释放,若滑块离开弹簧时的速度小于传送带的速度,当滑块滑到传送带右端C时,恰好与传送带速度相同,滑块与传送带间的动摩擦因数为μ.求:
(1)释放滑块时,弹簧具有的弹性势能;
(2)滑块在传送带上滑行的整个过程中产生的热量.
【答案】(1)12mv20-μmgL
(2)mv0(v0-v20-2μgL)-μmgL
【详解】(1)设滑块冲上传送带时的速度为v,在弹簧弹开过程中,
由机械能守恒Ep=12mv2
滑块在传送带上做匀加速运动
由动能定理μmgL=12mv20-12mv2
解得:Ep=12mv20-μmgL.
(2)设滑块在传送带上做匀加速运动的时间为t,则t时间内传送带的位移
s=v0t
v0=v+atμmg=ma
滑块相对传送带滑动的位移Δs=s-L
相对滑动生成的热量Q=μmgΔs
解得:Q=mv0(v0-v20-2μgL)-μmgL.
12.(17分)如图所示,一质量为m的滑块从高为h的光滑圆弧形槽的顶端A处无初速度地滑下,槽的底端B与水平传送带相接,传送带的运行速度恒为v0,两轮轴心间距为l,滑块滑到传送带上后做匀加速运动,滑到传送带右端C时,恰好加速到与传送带的速度相同,求:
(1)滑块到达底端B时的速度大小vB;
(2)滑块与传送带间的动摩擦因数μ;
(3)此过程中,由于克服摩擦力做功而产生的热量Q.
【答案】(1)2gh(2)v20-2gh2gl(3)mv0-2gh22
【详解】(1)滑块在由A到B的过程中机械能守恒,
可得:mgh=12mv2B.
解得:vB=2gh.
(2)滑块在由B到C的过程中,应用动能定理得:
μmgl=12mv20-12mv2B.
解得μ=v20-2gh2gl.
(3)Q=Ffl相对=μmgl相对
l相对=v0-vB22μg=v0-2gh22μg,
故Q=mv0-2gh22.