88教案网

你的位置: 教案 > 高中教案 > 导航 > 20xx高考物理重点难点总结:电磁感应

高中物理电磁感应教案

发表时间:2021-01-25

20xx高考物理重点难点总结:电磁感应。

一名优秀的教师在教学方面无论做什么事都有计划和准备,作为教师就需要提前准备好适合自己的教案。教案可以让学生能够听懂教师所讲的内容,帮助授课经验少的教师教学。所以你在写教案时要注意些什么呢?下面是由小编为大家整理的“20xx高考物理重点难点总结:电磁感应”,欢迎您参考,希望对您有所助益!

20xx高考物理重点难点总结:电磁感应

从应试而言,应是带电粒子在电磁场中的运动(力,运动轨迹,几何特别是圆),电磁感应综合(电磁感应,安培力,非匀变速运动,微元累加,含n递推,功与热)最难,位处压轴之列。当然,牛顿力学是基本功。电磁感应现象因磁通量变化而产生感应电动势的现象我们诚挚为电磁感应现象。具体来说,闭合电路的一部分导体,做切割磁感线的运动时,就会产生电流,我们把这种现象叫电磁感应,导体中所产生的电流称为感应电流。法拉第电磁感应定律概念基于电磁感应现象,大家开始探究感应电动势大小到底怎么计算?法拉第对此进行了总结并得到了结论。感应电动势的大小由法拉第电磁感应定律确定,电路中感应电动势的大小,跟穿过这一电路的磁通变化率成正比。公式:E=-n(dΦ)/(dt)。对动生的情况,还可用E=BLV来求。电动势的方向可以通过楞次定律来判定。高中物理wuli.in楞次定律指出:感应电流的磁场要阻碍原磁通的变化。对于动生电动势,同学们也可用右手定则判断感应电流的方向,也就找出了感应电动势的方向。需要注意的是,楞次定律的应用更广,其核心在”阻碍”二字上。(1)E=n*ΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ,Δt磁通量的变化率}(2)E=BLVsinA(切割磁感线运动)E=BLV中的v和L不可以和磁感线平行,但可以不和磁感线垂直,其中sinA为v或L与磁感线的夹角。{L:有效长度(m)}(3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}(4)E=B(L2)ω/2(导体一端固定以ω旋转切割)其中ω:角速度(rad/s),V:速度(m/s)电磁感应现象是电磁学中最重大的发现之一,它显示了电、磁现象之间的相互联系和转化,对其本质的深入研究所揭示的电、磁场之间的联系,对麦克斯韦电磁场理论的建立具有重大意义。电磁感应现象在电工技术、电技术以及电磁测量等方面都有广泛的应用。电磁感应与静电感应的关系电磁感应现象不应与静电感应混淆。电磁感应将电动势与通过电路的磁通量联系起来,而静电感应则是使用另一带电荷的物体使物体产生电荷的方法。高中物理最难的部分之动力学分析纵观整个高中物理,最难的地方还是在于力学。如果你是一位十年教龄的老师,相信您绝对认可我的这句话。貌似有不少的老师总是把“力学是物理的基础”挂在嘴边(咦,好像我也是这个样子的),这也是一个大实话;但这总是被学生误解,他们会认为物理中的力学问题都很基本的、简单的。其实往往情况相反,力学的很多问题,真的很难。如果你觉得自己没有遇到过力学难题,那说明你物理学得还不错,推荐你去买本物理竞赛的书看看吧。一天之内保证让你感慨:TMD,原来力学这么难啊!插入一句哈,有意向自主招生的同学,高一就开始准备点竞赛的书看看吧。高中老师可不像是初中老师一样当你的保姆,一切都考你自己,尤其是重点中学。回来了啊,接着说物理的问题。如果是静电场的问题,难度就在于判定电场的分布情况以及运动模式,这一点20xx年的北京高考理综物理压轴题考察的比较好。至于电磁感应的问题,难点往往在于电路与电热的分析,如果命题者在力学上面玩狠些的,也比较讨厌。好了,我们好像有点跑题了,还是回归下,来说力学的问题。我们的力学模块非常清晰,这也就是为什么多次进行力学体系的改革总是换汤不换药。整个高中物理的力学部分只有三大部分,分别是:(1)牛顿动力学(包括直线运动、受力分析与牛顿定律);(2)曲线运动(包括平抛运动、圆周运动、天体运动);(3)机械能与动量。别告诉我说你的受力分析很牛,随便一道小题,就能把你难道,不信你就看看王尚的这篇文章吧:20xx年海南高考理综物理第5题。也不要说你曲线运动已经学得非常棒了,2008年北京高考理综物理的压轴题(第24题),你不一定能做出来。至于机械能与动量的问题,我不用说,更是难点。OK,如果你觉得这里一点都不难,那么恭喜你,准备物理考满分吧;王尚相信有这样的学生存在,每个省都有。非常简单的一个物体的运动,是非常简单判定的。但是多个物体构成的复杂系统,多种运动情况的交替变换,涉及多种临界态并伴随着各种形式能量的变化,物理题可就不是那么好玩了,不是么?

延伸阅读

20xx高考物理考点解析:电磁感应规律的综合应用


20xx高三物理考点解析:电磁感应规律的综合应用

考点37电磁感应规律的综合应用
考点名片
考点细研究:(1)电磁感应的图象;(2)电磁感应与电路;(3)电磁感应与动力学和能量等。其中考查到的如:20xx年四川高考第7题、20xx年上海高考第33题、20xx年天津高考第12题、20xx年浙江高考第24题、20xx年福建高考第18题、20xx年安徽高考第19题、20xx年天津高考第11题、20xx年四川高考第11题、20xx年广东高考第35题、20xx年天津高考第11题、20xx年江苏高考第13题、20xx年北京高考第29题、20xx年福建高考第22题等。
备考正能量:电磁感应的计算题必定与电路、动力学、能量相结合,以单棒、双棒、线圈的电磁感应过程为模型,考查分析推理与计算能力,预计今后高考试题将会重点考查基本知识点。

一、基础与经典

1.一矩形线圈位于一个方向垂直线圈平面向里的磁场中,如图甲所示,磁感应强度B随t的变化规律如图乙所示。以I表示线圈中的感应电流,以图甲线圈上箭头所示方向的电流为正,则以下的it图中正确的是()

答案A
解析在0~1s内,据E=S可知感应电动势恒定,感应电流恒定,由楞次定律可得电流为逆时针方向,在图象中方向为负;1~2s内,B不变,i=0;2~3s内,同理,由E=S知i恒定,方向为正。综合分析可知A正确。
2.如图,MN、PQ是间距为L的平行光滑金属导轨,置于磁感应强度为B,方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻。一根与导轨接触良好、有效阻值为的金属棒ab垂直导轨放置,并在水平外力F作用下以速度v向右匀速运动,不计导轨电阻,则()

A.通过电阻R的电流方向为P→R→M
B.ab两点间的电压为BLv
C.a端电势比b端高
D.外力F做的功等于电阻R产生的焦耳热
答案C
解析由右手定则或楞次定律可判断出通过回路的电流方向为逆时针,即M→R→P,选项A错误。ab中产生的感应电动势为E=BLv,感应电流I=E/(1.5R),ab两点间的电压为U=IR=BLv,选项B错误。导体棒为电源,a端电势比b端高,选项C正确。由能量守恒定律,外力F做的功等于整个回路(即电阻R和金属棒电阻)产生的焦耳热,选项D错误。
3.磁卡的磁条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈。当以速度v0刷卡时,在线圈中产生感应电动势,其Et关系如图所示。如果只将刷卡速度改为,线圈中的Et关系图可能是()

答案D
解析若将刷卡速度改为,线圈切割磁感线运动时产生的感应电动势大小将会减半,周期将会加倍,故D项正确,其他选项错误。

4.如图,足够长的U形光滑金属导轨平面与水平面成θ角(0θ90°),其中MN与PQ平行且间距为l,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计。金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab棒接入电路的电阻为R,当流过ab棒某一横截面的电荷量为q时,棒的速度大小为v,则金属棒ab在这一过程中()

A.运动的平均速度大小为v
B.下滑的位移大小为
C.产生的焦耳热为qBlv
D.受到的最大安培力大小为sinθ
答案B
解析金属棒开始做加速度减小的变加速直线运动,A项错误;由q=Δt及===得位移x=,B项正确;此过程中由能量守恒知产生的热量Q=mgsinθ·x-mv2得Q=sinθ-mv2,选项C错误;当速度为v时,所受安培力为,选项D错误。
5.如图甲所示,一个匝数n=100的圆形导体线圈,面积S1=0.4m2,电阻r=1Ω。在线圈中存在面积S2=0.3m2的垂直线圈平面向外的匀强磁场区域,磁感应强度B随时间t变化的关系如图乙所示。有一个R=2Ω的电阻,将其两端a、b分别与图甲中的圆形线圈相连接,b端接地,则下列说法正确的是()

A.圆形线圈中产生的感应电动势E=6V
B.在0~4s时间内通过电阻R的电荷量q=8C
C.设b端电势为零,则a端的电势φa=3V
D.在0~4s时间内电阻R上产生的焦耳热Q=18J
答案D
解析由法拉第电磁感应定律可得E=n,由图乙结合数学知识可得k==T/s=0.15T/s,将其代入可求E=4.5V,A错误。设平均电流强度为,由q=Δt=Δt=nΔt=n,在0~4s穿过圆形导体线圈的磁通量的变化量为ΔΦ=0.6×0.3Wb-0=0.18Wb,代入可解得q=6C,B错误。0~4s内磁感应强度增大,圆形线圈内磁通量增加,由楞次定律可得b点电势高,a点电势低为负,故C错误。由于磁感应强度均匀变化产生的电动势与电流均恒定,可得I==1.5A,由焦耳定律可得Q=I2Rt=18J,D正确。
6.(多选)两根相距为L且足够长的金属直角导轨如图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面。质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电阻为2R。整个装置处于磁感应强度大小为B,方向水平向右的匀强磁场中。当ab杆在平行于水平导轨的拉力F作用下以速度v沿导轨匀速运动时,cd杆也正好以某一速度向下匀速运动。重力加速度为g。以下说法正确的是()

A.ab杆所受拉力F的大小为μmg+
B.cd杆所受摩擦力为零
C.cd杆向下匀速运动的速度为
D.ab杆所受摩擦力为2μmg
答案BCD

解析ab杆的速度方向与磁感应强度的方向平行,只有cd杆运动切割磁感线。设cd杆向下运动的速度为v1,根据闭合电路的欧姆定律及法拉第电磁感应定律有I=,E=BLv1,cd杆只受到竖直向下的重力mg和竖直向上的安培力作用,因为cd杆与导轨间没有正压力,所以摩擦力为零。由平衡条件得mg=BIL=,解得cd杆向下匀速运动的速度为。ab杆的受力如图所示,根据平衡条件可得FN=F安+mg=BIL+mg=2mg,F=f=μFN=2μmg。综上所述,选项B、C、D正确。
7.(多选)如图所示,边长为L、电阻不计的n匝正方形金属线框位于竖直平面内,连接的小灯泡的额定功率、额定电压分别为P、U,线框及小灯泡的总质量为m,在线框的下方有一匀强磁场区域,区域宽度为l,磁感应强度方向与线框平面垂直,其上、下边界与线框底边均水平。线框从图示位置开始静止下落,穿越磁场的过程中,小灯泡始终正常发光。则()

A.有界磁场宽度l,则加速度与速度成线性关系,且随着速度增大,加速度越来越大,即金属棒运动的vt图象的切线斜率越来越大,由于FA=,FAt图象的切线斜率也越来越大,感应电流、电阻两端的电压及感应电流的功率也会随时间变化得越来越快,B项正确;如果k=,则金属棒做匀加速直线运动,电动势随时间均匀增大,感应电流、电阻两端的电压、安培力均随时间均匀增大,感应电流的功率与时间的二次方成正比,没有选项符合;如果k,则金属棒做加速度越来越小的加速运动,感应电流、电阻两端的电压、安培力均增加得越来越慢,最后恒定,感应电流的功率最后也恒定,C项正确。
9.20xx·福建高考]如图所示,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场B中。一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,不计摩擦。在PQ从靠近ad处向bc滑动的过程中()

A.PQ中电流先增大后减小
B.PQ两端电压先减小后增大
C.PQ上拉力的功率先减小后增大
D.线框消耗的电功率先减小后增大
答案C

解析导体棒产生的电动势为E=BLv,其等效电路如图所示,总电阻为R总=R+=R+,在PQ从靠近ad处向bc滑动的过程中,总电阻先增大后减小,总电流先减小后增大,所以A项错误;PQ两端电压为路端电压U=E-IR,即先增大后减小,所以B项错误;拉力的功率等于克服安培力做功的功率,有P安=IE,先减小后增大,所以C项正确;根据功率曲线可知当外电阻=R时输出功率最大,而外电阻先由小于R开始增加到R,再减小到小于R的某值,所以线框消耗的功率先增大后减小,所以D项错误。
10.20xx·安徽高考]英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场。如图所示,一个半径为r的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场B,环上套一带电荷量为+q的小球。已知磁感应强度B随时间均匀增加,其变化率为k,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是()

A.0B.r2qkC.2πr2qkD.πr2qk
答案D
解析变化的磁场使回路中产生的感生电动势E==·S=kπr2,则感生电场对小球的作用力所做的功W=qU=qE=qkπr2,选项D正确。
11.20xx·银川质检](多选)如图,光滑斜面的倾角为θ,斜面上放置一矩形导体线框abcd,ab边的边长为l1,bc边的边长为l2,线框的质量为m,电阻为R。线框通过细棉线绕过光滑的滑轮与重物相连,重物质量为M,斜面上ef线(ef平行于底边)的右方有垂直斜面向上的匀强磁场,磁感应强度为B,如果线框从静止开始运动,进入磁场的最初一段时间是做匀速运动的,且线框ab边始终平行于底边,则下列说法正确的是()

A.线框进入磁场前运动的加速度为
B.线框进入磁场时匀速运动的速度为
C.线框做匀速运动的总时间为
D.该匀速运动过程中产生的焦耳热为(Mg-mgsinθ)l2
答案CD
解析线框进入磁场前,由整体法结合牛顿第二定律可知Mg-mgsinθ=(M+m)a,得a=,选项A错误;根据题意,在线框匀速进入磁场的过程中,根据平衡状态知Mg=mgsinθ+FA=mgsinθ+,得v1=,选项B错误;线框匀速进入磁场的时间t==,选项C正确;匀速进入磁场过程中,线框动能不变,产生焦耳热Q,由能量守恒定律知Q=(Mg-mgsinθ)l2,选项D正确。
12.20xx·云南统一检测](多选)如图所示,边长为L、不可形变的正方形导线框内有半径为r的圆形磁场区域,其磁感应强度B随时间t的变化关系为B=kt(常量k0)。回路中滑动变阻器R的最大阻值为R0,滑动片P位于滑动变阻器中央,定值电阻R1=R0、R2=。闭合开关S,电压表的示数为U,不考虑虚线MN右侧导体的感应电动势,则()

A.R2两端的电压为
B.电容器的a极板带正电
C.滑动变阻器R的热功率为电阻R2的5倍
D.正方形导线框中的感应电动势为kL2
答案AC
解析由法拉第电磁感应定律E=n=nS有E=kπr2,D错误;因k0,由楞次定律知线框内感应电流沿逆时针方向,故电容器b极板带正电,B错误;由题图知外电路结构为R2与R的右半部并联,再与R的左半部、R1相串联,故R2两端电压U2=U=,A正确;设R2消耗的功率为P=IU2,则R消耗的功率P′=P左+P右=2I×2U2+IU2=5P,故C正确。
13.20xx·湖北黄冈质检]如图,虚线P、Q、R间存在着磁感应强度大小相等,方向相反的匀强磁场,磁场方向均垂直于纸面,磁场宽度均为L。一等腰直角三角形导线框abc,ab边与bc边长度均为L,bc边与虚线边界垂直。现让线框沿bc方向匀速穿过磁场区域,从c点经过虚线P开始计时,以逆时针方向为导线框中感应电流i的正方向,则下列四个图象中能正确表示it图象的是()

答案A
解析由右手定则可知导线框从左侧进入磁场时,电流方向为逆时针方向,即沿正方向,且切割的有效长度逐渐增大,所以电流逐渐增大,导线框刚好完全进入P、Q之间的瞬间,电流由正向最大值变为零,然后电流方向变为顺时针且逐渐增加,当导线框刚好完全进入Q、R之间的瞬间,电流由负向最大值变为零。然后在出磁场过程中电流方向又变为逆时针且逐渐增大。故A正确。
14.20xx·山东潍坊段考]如图所示,两根间距为l的光滑平行金属导轨与水平面夹角为α,图中虚线下方区域内存在磁感应强度为B的匀强磁场,磁场方向垂直于斜面向上。两金属杆质量均为m,电阻均为R,垂直于导轨放置。开始时金属杆ab处在距磁场上边界一定距离处,金属杆cd处在导轨的最下端,被与导轨垂直的两根小柱挡住。现将金属杆ab由静止释放,金属杆ab刚进入磁场便开始做匀速直线运动。已知重力加速度为g,则()

A.金属杆ab进入磁场时感应电流的方向为由a到b
B.金属杆ab进入磁场时速度大小为
C.金属杆ab进入磁场后产生的感应电动势为
D.金属杆ab进入磁场后,金属杆cd对两根小柱的压力大小为零
答案B
解析由右手定则可知,金属杆ab进入磁场时产生的感应电流的方向为由b到a,故A错误;因金属杆ab刚进入磁场便开始做匀速直线运动,则有mgsinα=FA=BIl=B××l=,解得v=,故B正确;金属杆ab进入磁场后产生的感应电动势E=Blv,解得E=,故C错误;由左手定则可知,金属杆cd受到的安培力与斜面平行且向下,则金属杆cd对两根小柱的压力不为零,故D错误。
15.20xx·苏州模拟]如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个闭合线圈、分别用同种导线绕制而成,其中为边长为L的正方形,是长2L、宽为L的矩形,将两个线圈同时从图示位置由静止释放。线圈下边进入磁场时,立即做了一段时间的匀速运动,已知两线圈在整个下落过程中,下边始终平行于磁场上边界,不计空气阻力,则()

A.下边进入磁场时,也立即做匀速运动
B.从下边进入磁场开始的一段时间内,线圈做加速度不断减小的加速运动
C.从下边进入磁场开始的一段时间内,线圈做加速度不断减小的减速运动
D.线圈先到达地面
答案C
解析线圈的电阻是的倍,线圈进入磁场时产生的感应电动势是的2倍。即R=R,E=2E。由I=得,I=I;由F安=BIL,F=BI·2L,F=BI·L,则F=F,但G=G。由于进入磁场做匀速运动,即F=G,则FGⅡ,所以进入磁场立即做加速度不断减小的减速运动,A、B错误,C正确;因线圈、进入磁场时速度相同,但此后匀速,减速,故后到达地面,D错误。
16.20xx·四川联考](多选)如图所示,固定的竖直光滑U形金属导轨,间距为L,上端接有阻值为R的电阻,处在方向水平且垂直于导轨平面、磁感应强度为B的匀强磁场中,质量为m、电阻为r的导体棒与劲度系数为k的固定轻弹簧相连放在导轨上,导轨的电阻忽略不计。初始时刻,弹簧处于伸长状态,其伸长量为x1=,此时导体棒具有竖直向上的初速度v0。在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触。则下列说法正确的是()

A.初始时刻导体棒受到的安培力大小F=
B.初始时刻导体棒加速度的大小a=2g+
C.导体棒往复运动,最终将静止时弹簧处于压缩状态
D.导体棒开始运动直到最终静止的过程中,电阻R上产生的焦耳热Q=mv+
答案BC
解析由法拉第电磁感应定律得:E=Blv0,由闭合电路的欧姆定律得:I=,由安培力公式得:F=,故A错误;初始时刻,F+mg+kx1=ma,得a=2g+,故B正确;因为导体棒静止时没有安培力,只有重力和弹簧的弹力,故弹簧处于压缩状态,而且mg=kx2,所以压缩量为x2==x1,故C正确;因x2=x1,分析可得弹性势能不变,根据能量守恒,减小的动能和重力势能全都转化为焦耳热Q总=mv2+mg(x1+x2)=mv2+,但R上的焦耳热只是一部分,故D错误。
17.20xx·唐山统考](多选)如图所示,在倾角为θ的光滑斜面上,存在着两个磁感应强度大小均为B的匀强磁场区域。区域的磁场方向垂直斜面向上,区域的磁场方向垂直斜面向下,磁场边界MN、PQ、GH均平行于斜面底边,MP、PG均为L。一个质量为m、电阻为R、边长也为L的正方形导线框,由静止开始沿斜面下滑,下滑过程中ab边始终与斜面底边平行。t1时刻ab边刚越过GH进入磁场区域,此时导线框恰好以速度v1做匀速直线运动;t2时刻ab边下滑到PQ与MN的中间位置,此时导线框又恰好以速度v2做匀速直线运动。重力加速度为g,下列说法中正确的是()

A.当ab边刚越过PQ时,导线框的加速度大小为a=gsinθ
B.导线框两次做匀速直线运动的速度之比v1v2=41
C.从t1到t2的过程中,导线框克服安培力做的功等于机械能的减少量
D.从t1到t2的过程中,有机械能转化为电能
答案BC
解析线框在区域内做匀速直线运动,其合力为零,则mgsinθ-=0;线框的ab边刚越过PQ时,两边都在切割磁感线,都受到沿斜面向上的安培力,则mgsinθ-4=ma,a=-3gsinθ,选项A错误;线框再次匀速时,其合力也为零,则mgsinθ-4=0,则=,选项B正确;从t1到t2的过程中,安培力做负功,重力做正功,根据能量守恒定律,可得WG-WF=mv-mv,则克服安培力所做的功等于线框机械能的减少量,减少的动能和重力势能转化为电能,选项C正确,选项D错误。

一、基础与经典
18.匀强磁场磁感应强度B=0.2T,磁场宽度L=3m,一正方形金属框边长ab=l=1m,每边电阻R=0.2Ω,金属框以v=10m/s的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图所示。

(1)画出金属框穿过磁场区的过程中,金属框内感应电流I随时间t的变化图线;(规定电流方向逆时针为正)
(2)画出ab两端电压Ut的变化图线。(要求写出作图的依据)
答案见解析
解析本题考查电磁感应过程中的电路问题。
(1)金属框进入磁场区域时E1=Blv=2V,I1==2.5A,方向沿逆时针,感应电流持续的时间t1==0.1s。
金属框完全进入磁场中运动时:E2=0,I2=0,无电流持续的时间t2==0.2s。
金属框穿出磁场区时:E3=Blv=2V,I3==2.5A,方向沿顺时针,感应电流持续的时间t3==0.1s,得到It图线如图甲所示。

(2)cd边进入磁场区时,ab两端电压U1=I1R=2.5×0.2V=0.5V。
金属框完全在磁场中运动时,ab两端电压等于感应电动势U2=Blv=2V。
金属框出磁场时,ab两端电压:U3=E3-I3R=1.5V,
由此得Ut图线如图乙所示。
二、真题与模拟
19.20xx·上海高考]如图,一关于y轴对称的导体轨道位于水平面内,磁感应强度为B的匀强磁场与平面垂直。一足够长,质量为m的直导体棒沿x方向置于轨道上,在外力F作用下从原点由静止开始沿y轴正方向做加速度为a的匀加速直线运动,运动时棒与x轴始终平行。棒单位长度的电阻为ρ,与电阻不计的轨道接触良好,运动中产生的热功率随棒位置的变化规律为P=ky(SI)。求:

(1)导体轨道的轨道方程y=f(x);
(2)棒在运动过程中受到的安培力Fm随y的变化关系;
(3)棒从y=0运动到y=L过程中外力F的功。
答案(1)y=2x2(2)Fm=y
(3)L2+maL
解析(1)设棒运动到某一位置时与轨道接触点的坐标为(±x,y),安培力F=BIl=B··l==,
安培力的功率P=Fv==ky,
棒做匀加速运动,所以v2=2ay,R=2ρx,
联立得y=2x2。轨道形状为抛物线。
(2)安培力Fm=v=,
将轨道方程代入得:Fm=y。
(3)由动能定理有W=Wm+mv2,
克服安培力做功
Wm=m·L=·L=L2,
棒在y=L处的动能为mv2=maL,
外力做功W=L2+maL。
20.20xx·浙江高考]小明设计的电磁健身器的简化装置如图所示,两根平行金属导轨相距l=0.50m,倾角θ=53°,导轨上端串接一个R=0.05Ω的电阻。在导轨间长d=0.56m的区域内,存在方向垂直导轨平面向下的匀强磁场,磁感应强度B=2.0T。质量m=4.0kg的金属棒CD水平置于导轨上,用绝缘绳索通过定滑轮与拉杆GH相连。CD棒的初始位置与磁场区域的下边界相距s=0.24m。一位健身者用恒力F=80N拉动GH杆,CD棒由静止开始运动,上升过程中CD棒始终保持与导轨垂直。当CD棒到达磁场上边界时健身者松手,触发恢复装置使CD棒回到初始位置(重力加速度g=10m/s2,sin53°=0.8,不计其他电阻、摩擦力以及拉杆和绳索的质量)。求:

(1)CD棒进入磁场时速度v的大小;
(2)CD棒进入磁场时所受的安培力FA的大小;
(3)在拉升CD棒的过程中,健身者所做的功W和电阻产生的焦耳热Q。
答案(1)2.4m/s(2)48N(3)64J26.88J
解析(1)由牛顿定律a==12m/s2,
进入磁场时的速度v==2.4m/s。
(2)感应电动势E=Blv,
感应电流I=,
安培力FA=IBl,
代入得FA==48N。
(3)健身者做功W=F(s+d)=64J,
进入磁场后CD棒所受的合外力F合=F-mgsinθ-FA=0,
所以CD棒在磁场区做匀速运动,
在磁场中运动时间t=,
焦耳热Q=I2Rt=26.88J。
21.20xx·北京海淀模拟]如图虚线框内为某种电磁缓冲车的结构示意图,在缓冲车的底板上沿车的轴线固定有两个足够长的平行绝缘光滑导轨PQ、MN,在缓冲车的底部还安装有电磁铁(图中未画出),能产生垂直于导轨平面的匀强磁场,磁场的磁感应强度为B。在缓冲车的PQ、MN导轨内有一个由高强度材料制成的缓冲滑块K,滑块K可以在导轨上无摩擦地滑动,在滑块K上绕有闭合矩形线圈abcd,线圈的总电阻为R,匝数为n,ab的边长为L。缓冲车的质量为m1(不含滑块K的质量),滑块K的质量为m2。为保证安全,要求缓冲车厢能够承受的最大水平力(磁场力)为Fm,设缓冲车在光滑的水平面上运动。

(1)如果缓冲车以速度v0与障碍物碰撞后滑块K立即停下,请判断滑块K的线圈中感应电流的方向,并计算感应电流的大小;
(2)如果缓冲车与障碍物碰撞后滑块K立即停下,为使缓冲车厢所承受的最大磁场力不超过Fm。求缓冲车运动的最大速度;
(3)如果缓冲车以速速v匀速运动时,在它前进的方向上有一个质量为m3的静止物体C,滑块K与物体C相撞后粘在一起,碰撞时间极短。设m1=m2=m3=m,在cd边进入磁场之前,缓冲车(包括滑块K)与物体C已达到相同的速度,求相互作用的整个过程中线圈abcd产生的焦耳热。
答案(1)abcda(或逆时针)(2)
(3)mv2
解析(1)由右手定则(或楞次定律)判断出感应电流的方向是abcda(或逆时针),缓冲车以速度v0碰撞障碍物后滑块K静止,滑块相对磁场的速度大小为v0,线圈中产生的感应电动势E0=nBLv0,线圈中感应电流I=,解得I=。
(2)设缓冲车的最大速度为vm,碰撞后滑块K静止,滑块相对磁场的速度大小为vm,线圈中产生的感应电动势E1=nBLvm,线圈中的电流I1=,线圈ab边受到的安培力F1=nBI1L,依据牛顿第三定律,缓冲车厢受到的磁场力F1′=F1,依题意F1′=Fm,解得vm=。
(3)设K、C碰撞后共同运动的速度为v1,由动量守恒定律m2v=(m2+m3)v1,设缓冲车与物体C共同运动的速度为v2,由动量守恒定律(m1+m2)v=(m1+m2+m3)v2,设线圈abcd产生的焦耳热为Q,依据能量守恒Q=m1v2+(m2+m3)v-(m1+m2+m3)v,解得Q=mv2。

20xx高考物理《电磁感应的规律应用》复习资料整理


俗话说,凡事预则立,不预则废。高中教师要准备好教案,这是高中教师需要精心准备的。教案可以更好的帮助学生们打好基础,帮助高中教师营造一个良好的教学氛围。优秀有创意的高中教案要怎样写呢?下面是小编精心收集整理,为您带来的《20xx高考物理《电磁感应的规律应用》复习资料整理》,欢迎大家阅读,希望对大家有所帮助。

20xx高考物理《电磁感应的规律应用》复习资料整理

第十五讲电磁感应的规律应用

电磁感应是电学的难点,是高中物理中综合性最强的部分。这一章是高考必考内容之一。如感应电流产生的条件、方向的判定、自感现象、电磁感应的图象问题,每年必考,题目多以选择题、填空题的形式出现,难度一般中档左右。而感应电动势的计算、法拉第电磁感应定律,因与力学、电路、磁场、能量、动量等密切联系,涉及知识面广,综合性强,能力要求高,灵活运用相关知识综合解决实际问题。本章知识应用,和生产、生活、高科技联系紧密,如日光灯原理、磁悬浮列车的确原理、电磁阻尼现象、延时开关、传感器的原理、超导技术的应用、电磁流量计等,要特别关注此类问题。

一、夯实基础知识
1.深刻理解磁通量的概念及产生感应电流条件。
(1)磁通量:穿过某一面积的磁感线条数。公式为φ=BSsinθ,其中θ是指回路平面与磁感强度方向的夹角。
?(2)合磁通:若通过一个回路中有方向相反的磁场,则不能直接用公式φ=BSsinθ求φ,应考虑相反方向抵消以后所剩余的磁通量,亦即此时的磁通是合磁通。
?(3)产生感应电流的条件:穿过闭合回路的磁通量发生的变化。若电路不闭合,即使有感应电动势产生,也没有感应电流。
2.深刻理解楞次定律和右手定则。
?(1)感应电流方向的判断有两种方法:楞次定律和右手定则。当闭合电路中磁通量发生变化时,用楞次定律判断感应电流方向,但当闭合电路中一部分导体做切割磁感线运动时,则用右手定则就比较简便。
?(2)楞次定律的内容:感应电流的磁场总是要阻碍引起感应电流的原磁通的变化。可理解为:如原来磁场在增强,感应电流磁场与原磁场反向;如原来磁场在减弱,感应电流磁场就与原磁场方向一致。“阻碍”不是“阻止”,线圈中的磁通量还是在改变的。
(3)应用楞次定律的基本程序是:(1)弄清原磁场是谁产生的(由磁体还是电流产生),画出穿过闭合回路的磁场方向和分析磁通量的变化情况(增或减);(2)判定感应电流磁场的方向;当磁通量增加时感应电流磁场与原磁场方向相反;当磁通量减少时感应电流的磁场与原磁场方向相同;(3)用安培定则(右手螺旋定则)确定感应电流的方向。
注意:(1)楞次定律中“阻碍”二字的含义不是阻止,只是减缓引起感应电流的磁通量变化的快慢,闭合电路中的磁通量还是在改变的;“阻碍”的含义也不是相反,其实感应电流的磁场方向与引起感应电流的磁场方向可能相同也可能相反;(2)感应电流的能量并不是“创生”,在电磁感应现象中能量是守恒的,具体过程是:导体中感应电流在磁场中受到安培力的作用,从而阻碍导体与磁场间的相对运动,要维持它们间的相对运动,外力必须克服这个安培力做功,完成机械能向电能的转化,所以在电磁感应现象的一些问题中,有时用能量守恒的观点解答十分简便。
(4)楞次定律的含义是:感应电流的方向总要使自己的磁场阻碍引起感应电流的磁通量的变化。我们可以将楞次定律的含义推广为下列三种表述方式:○1阻碍引起感应电流的磁通量的变化;○2阻碍(导体的)相对运动(由磁体相对运动而引起感应电流的情况);○3阻碍引起感应电流的原电流的变化(自感现象)。
3.深刻理解法拉第电磁感应定律
?(1)定律内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比,即E=△Φ/△t。
?(2)注意的几个问题:
①当导体垂直切割磁感线时,定律的公式取特殊形式:E=BLv,如果电路有n匝,定律的公式写E=n△Φ/△t。
②E=△Φ/△t用来计算△t时间内的平均感应电动势;E=BLv,当v是瞬时速度时,用来计算瞬时感应电动势;当v是平均速度时,用来计算平均感应电动势。
③要严格区分磁通量、磁通量的变化量和磁通量的变化率等三个不同的概念,磁通量Φ=BS⊥是指穿过某一线圈平面的磁感线条数,磁通量的变化量△Φ=Φ2-Φ1(增量),△Φ大只说明磁通量改变多,但不能说明感应电动势就一定大,更值得注意的是磁通量从什么方向穿过线圈平面。例如一个回路开始时和转过180°时,回路平面都与磁场方向改变了。设从一方向穿过为正即+Φ2,则从另一方向穿过为负即-Φ2,在这一过程中磁通量的变化量△Φ=|Φ1|+|Φ2|,磁通量的变化率△Φ/△t是指穿过某一回路平面的磁通量变化的快慢程度,它决定回路的感应电动势的大小,但不能决定该回路感应电流的大小,感应电流的大小由该回路的感应电动势E和回路的电阻R共同决定(I=E/R)。?
(3)求磁通量变化量一般有四种情况:当回路面积S不变时,△Φ=△BS;当磁感强度B不变时,△Φ=B△S;当磁感强度和回路面积都变化时,△Φ=△BS+=B△S;当B和S都不变而它们的相对位置发生变化时(如转动),△Φ=BS⊥(S⊥是回路面积S在与B垂直方向上的投影)。
?(4)感应电动势在△t时间内的平均值一般不等于初态和末态的电动势之和的一半,即E≠(E1+E2)/2。

二、典型例题
题型1:分析求解磁通量及其变化。
磁通量φ是电磁感应中的重要概念,必须会分析求解磁通量及其变化的大小。特别要关注磁场反向穿出时引起的磁通量变化。
例1、如图1所示,两个同心放置的同平面的金属圆环,条形磁铁穿过圆心且与两环平面垂直,则通过两圆环的磁通量Φa、Φb比较:()
A、ΦaΦb。B、ΦaΦb。
C、Φa=Φb。D、不能比较。

例2、如图2所示,直导线ab通电流I。矩形线圈ABCD由图中实线位置运动到虚线所示位置过程,若第一次是平移,第二次是翻转1800.设前后两次通过线圈平面磁通量的变化为Δφ1和Δφ2,则:()
A.Δφ1Δφ2B.Δφ1Δφ2
C.Δφ1=Δφ2D.无法肯定Δφ1、Δφ2谁大。
例3、如图3所示,空间存在垂直于纸面的均匀磁场,在半径为的圆形区域内部及外部,磁场方向相反,磁感应强度的大小均为B。一半径为,电阻为R的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合。当内、外磁场同时由B均匀地减小到零的过程中,穿过线圈平面的磁通量的变化量为____________。
题型2:判定感应电流或感应电动势的方向。
判定感应电流或感应电动势的方向的方法有楞次定律和右手定则。
例4、如图4所示,一水平放置的矩形线圈abcd,在细长的磁铁的N极附近竖直下落,保持bc边在纸外,ad边在纸内,由图中的位置Ⅰ经过位置Ⅱ到位置Ⅲ,这三个位置都靠得很近,在这个过程中,线圈中感应电流()
A.沿abcd流动。
B.沿dcba流动。
C.由Ⅰ到Ⅱ是沿abcd流动,由Ⅱ到Ⅲ是沿dcba流动。
D.由Ⅰ到Ⅱ是沿dcba流动,由Ⅱ到Ⅲ是沿abcd流动。

注意:研究电磁感应现象时分析磁通量的变化情况很重要,因此要对有关磁场、磁感线的空间分布弄清楚。遇到具体问题时,首先要画出所研究的空间的磁感线分布,然后利用磁通量变化来分析,或利用切割磁感线来分析,或交替利用磁通量变化和切割磁感线来分析。
例5、如图8所示,闭合导体环固定。条形磁铁S极向下以初速度V0沿过导体环圆心的竖直线下落的过程中,从上向下看导体环中的感应电流方向如何?
方法1:

方法2:

例6、(202新课标卷)如图所示,两个端面半径同为R的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R时铜棒中电动势大小为,下落距离为0.8R时电动势大小为,忽略涡流损耗和边缘效应.关于、的大小和铜棒离开磁场前两端的极性,下列判断正确的是()
A、,a端为正B、,b端为正
C、,a端为正D、,b端为正

题型3:用楞次定律的推论解答相关问题。
例7、如图9所示,光滑导轨MN水平放置,两根导体棒P、Q平行放于导轨上,形成一个闭合回路,当一条形磁铁从上方向下落(未达导轨平面)的过程中,导体P、Q的运动情况是()
A.P、Q互相靠拢
B.P、Q互相远离
C.P、Q均静止
D.因磁铁下端的极性未知,无法判断

例8、如图10所示,通电螺线管与电源相连,与螺线管同一轴线上套有三个轻质闭合铝环,B在螺丝管中央,A、C位置如图10所示,当S团合时(本题忽略三环中感应电流之间相互作用力)
A.A向左、C向右运动,B不动;
B.A向右、C向左运动,B不动;
C.A、B、C都向左运动;
D.A、B、C都向右运动。

例9、如图13所示,在条形磁铁从图示位置绕O1O2轴转动90°的过程中,放在导轨右端附近的金属棒ab将如何移动?

题型4:电磁感应与电路的综合问题。
在电磁感应现象中产生感应电动势的那部分导体或者回路相当于电源,所以电磁感应问题往往与电路问题联系在一起。解决与电路相联系的电磁感应问题的基本方法是:(1)确定感应电流的方向;(2)画出等效电路;(3)运用全电路的欧姆定律、串并联电路的性质、法拉第电磁感应定律等公式联立求解。而正确地作出等效电路,则是解决电磁感应电路问题的关键。
当导体棒在磁场中平动切割磁感线产生感应电动势时,运动的导体棒是电源,其余部分是负载。当线圈位于变化磁场中时,位于磁场中的回路整体是电源。
例10、如图14所示,空间存在着一个范围足够大的竖直向下的匀强磁场,磁场的磁感强度大小为B.边长为L的正方形金属框abcd(下简称方框)放在光滑的水平地面上,其外侧套着一个与方框边长相同的U型金属框架MNPQ(下简称U型框),U型框与方框之间接触良好且无摩擦.两个金属框每条边的质量均为m,每条边的电阻均为r.
(1)将方框固定不动,用力拉动U型框使它以速度V0垂直NQ边向右匀速运动,当U型框的MP端滑至方框的最右侧(如图15所示)时,方框上的bd两端的电势差为多大?此时方框的热功率为多大?
(2)若方框不固定,给U型框垂直NQ边向右的初速度V0,如果U型框恰好不能与方框分离,则在这一过程中两框架上产生的总热量为多少?
(3)若方框不固定,给U型框垂直NQ边向右的初速度V(),U型框最终将与方框分离.如果从U型框和方框不再接触开始,经过时间t方框最右侧和U型框最左侧距离为s.求两金属框分离后的速度各多大.

例11、如图17所示,da、cb为相距L的平行导轨(电阻可以忽略不计)。a、b间接有一个固定电阻,阻值为R。长直细金属杆MN可以按任意角θ架在平行导轨上,并以匀速V滑动(平移),V的方向和da的方向平行。杆MN有电阻,每单位长的电阻为r0。整个空间充满匀强磁场,磁感应强度的大小为B,方向垂直纸面(dabc平面)向里。
(1)求固定电阻R上消耗的电功率为最大时θ角的值。
(2)求杆MN上消耗的电功率为最大时θ角的值。
例12、如图19,用相同的均匀导线制成的两个圆环a和b,已知a的半径是b的两倍,若在a内存在着随时间均匀变大的磁场,b在磁场外,MN两端的电压为U,则当b内存在着相同的磁场而a又在磁场外时,MN两点间的电压为多少?

题型5:求解“双电源”问题。
双电源问题有双杆切割磁感线和动生、感生电动势并存两种情况。
例13、如图22所示,两根平行的金属导轨,固定在同一水平面上,磁感B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可不计。导轨间的距离L=0.20m。两根质量均为m=0.10kg的平行杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻R=0.50Ω,在t=0时刻,两杆都处于静止状态。现有一与导轨平行,大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s,金属杆甲的加速度a=1.37m/s2,问此时两金属杆的速度各为多少?

例14、如图23所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为,导轨的端点P、Q用电阻可忽略的导线相连,两导轨间的距离有随时间变化的匀强磁场垂直于桌面,已知磁感强度B与时间的关系为比例系数一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直,在时刻,金属杆紧靠在P、Q端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在时金属杆所受的安培力.

题型6:求解各种导电滑轨问题。
所谓“闭合导电滑轨问题”是指一根金属棒在闭合导电滑轨上运动的有关问题。常见的有:闭合矩形导电滑轨、闭合三角形导电滑轨、闭合圆形导电滑轨等。
例15、如图24,直角三角形导线框abc固定在匀强磁场中,ab是一段长为L、电阻为R的均匀导线,ac和bc的电阻可不计,ac长度为L/2。磁场的磁感强度为B,方向垂直纸面向里。现有一段长度为L/2、电阻为R/2的均匀导体杆MN架在导线框上,开始时紧靠ac,然后沿ab方向以恒定速度V向b端滑动,滑动中始终与ac平行并与导线框保持良好接触。当MN滑过的距离为L/3时,导线ac中的电流是多大?方向如何?

例16、把总电阻为2R的均匀电阻丝焊接成一半径为a的圆周环,水平固定在竖直向下的磁感强度为B的匀强磁场中,如图26所示。一长度为2a,电阻等于R,粗细均匀的金属棒MN放在圆环上,它与圆环始终保持良好的电接触。当金属棒以恒定速度V向右移动,经过环心O时,求:
(1)棒上电流的大小和方向,及棒两端的电压UMN。
(2)在圆环和金属棒上消耗的总热功率。

题型7:分析计算感应电量的有关问题。
在电磁感应现象中,只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电流,设在时间内通过导线截面的电量为,则根据电流定义式及法拉第电磁感应定律,得:,如果闭合电路是一个单匝线圈(),则。
例17、如图27所示,闭合导线框的质量可以忽略不计,将它从如图27所示的位置匀速拉出匀强磁场。若第一次用0.3s时间拉出,外力所做的功为W1,通过导线截面的电量为q1;第二次用时间拉出,外力所做的功为W2,通过导线截面的电量为q2,则()
A.B.
C.D.
例18、如图28所示是一种测量通电螺线管中磁场的装置,把一个很小的测量线圈A放在待测处,线圈与测量电量的冲击电流计G串联,当用双刀双掷开关S使螺线管的电流反向时,测量线圈中就产生感应电动势,从而引起电荷的迁移,由表G测出电量Q,就可以算出线圈所在处的磁感应强度B。已知测量线圈共有N匝,直径为d,它和表G串联电路的总电阻为R,则被测处的磁感强度B为多大?

例19、如图68所示,两条平行且足够长的金属导轨置于磁感应强度为B的匀强磁场中,B的方向垂直导轨平面。两导轨间距为L,左端接一电阻R,右端接一电容器C,其余电阻不计。长为2L的导体棒ab如图68所示放置。从ab与导轨垂直开始,在以a为圆心沿顺时针方向的角速度ω匀速旋转900的过程中,通过电阻R的电量是多少?

题型8:感应电流所受安培力的冲量的有关问题。
感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BLI。在时间△t内安培力的冲量,式中q是通过导体截面的电量。利用该公式解答相当问题十分简便,下面举例说明这一点。
例20、如图30所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L的区域内,有一个边长为a(aL)的正方形闭合线圈以初速V0垂直磁场边界滑过磁场后速度变为V(VV0)那么?
A.完全进入磁场中时线圈的速度大于(V0+V)/2.?
B.安全进入磁场中时线圈的速度等于(V0+V)/2.
C.完全进入磁场中时线圈的速度小于(V0+V)/2.
D.以上情况A、B均有可能,而C是不可能的.

例21、光滑U型金属框架宽为L,足够长,其上放一质量为m的金属棒ab,左端连接有一电容为C的电容器和电键K,当K闭合时,给棒一个初速V0,使棒始终垂直框架并沿框架运动,如图31所示。求导体棒的最终速度。

题型9:电磁感应中的收尾问题。
导体棒在导电滑轨上做切割磁感线运动时,会产生感应电动势,从而在导体棒中产生感应电流,导体棒又要受到安培力作用而使运动状态发生变化,经过足够长时间后一定会达到某种收尾状态。收尾状态可为静止状态、匀速直线运动状态、匀加速直线运动状态等。
例22、(20xx江苏)如图所示,两足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直。一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放。导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I。整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。求:
⑴磁感应强度的大小B;
⑵电流稳定后,导体棒运动速度的大小v;
⑶流经电流表电流的最大值Im。

例23、如图33所示,AB、CD是两根足够长的固定平行金属导轨,两导轨间的距离为L,导轨平面与水平面的夹角是θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感强度为B,在导轨的A、C端连接一个阻值为R的电阻。一根垂直于导轨放置的金属棒ab,质量为m,从静止开始沿导轨下滑,求ab棒的最大速度。已知ab与导轨间的动摩擦因素为μ,导轨和金属棒的电阻都不计。

例24、如图34所示,两根竖直放置在绝缘地面上的金属框架,框架的上端接有一电容为C的电容器,框架上有一质量为m,长为L的金属杆平行于地面放置,与框架接触良好无摩擦,离地面的高度为h,强度为B的匀强磁场与框架平面相垂直,开始时电容器不带电,自静止起将棒释放,求棒落到地面的时间。不计各处电阻。

题型10:电磁感应中的图象问题。
根据题目条件描绘物理图象要求学生仔细分析物理现象,弄清物理过程,求解有关物理量或分析其与相关物理量间的变化关系,然后正确无误地作出图象。在作图时,要注意物理量的单位、坐标轴标度的适当选择及函数图象特征等。
例25、图35甲中abcd为一边长为L、具有质量的刚性导线框,位于水平面内,bc边中串接有电阻R,导线的电阻不计,虚线表示一匀强磁场区域的边界,它与线框的ab边平行,磁场区域的宽度为2L,磁感强度为B,方向竖直向下,线框在一垂直于ab边的水平恒定拉力作用下,沿光滑水平面运动,直到通过磁场区域,已知ab边刚进入磁场时,线框便变为匀速运动,此时通过电阻R的电流的大小为i0,试在图35乙的i—x坐标上定性画出从导线框刚进入磁场到完全离开磁场的过程中,流过电阻R的电流i的大小随ab边的位置坐标x变化关系曲线。

例26、如图37所示。一对平行光滑轨道放置在水平面上,两轨道间距L=0.20m,电阻R=1.0Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感强度B=0.50T的匀强磁场中,磁场方向垂直轨道面向下。现用一外力F沿轨道方向拉杆,使之做匀加速运动,测得力F与时间t的关系如图38所示。求杆的质量和加速度。

题型11:电磁感应中的力与能量问题。
安培力做功对应着电能与其它形式的能相互转化,即W安=ΔE电。安培力做正功,对应着电能转化为其它能(如电动机模型);克服安培力做功,对应着其它能转化为电能(如发电机模型);且安培力做功的绝对值,等于电能转化的量值。
例27、如图39(a)所示,倾角为θ=370,电阻不计,间距L=0.3m,长度足够的平行导轨所在处,加有磁感应强度B=1T,方向垂直于导轨平面(图中未画出)的匀强磁场,导轨两端各接一个阻值R=2Ω的电阻。另一横跨在平行导轨间的金属棒质量m=1kg,电阻r=2Ω,其与导轨间的动摩擦因数μ=0.5.金属棒以平行于导轨向上的初速度V0=10m/s上滑,直至上升到最高点的过程中,通过上端的电量Δq=0.1C(g=10m/s2,sin370=0.6),求上端电阻R上产生的焦耳热Q。

例28、[20xx四川卷]如图所示,间距l=0.3m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面内.在水平面a1b1b2a2区域内和倾角θ=37°的斜面c1b1b2c2区域内分别有磁感应强度B1=0.4T、方向竖直向上和B2=1T、方向垂直于斜面向上的匀强磁场.电阻R=0.3Ω、质量m1=0.1kg、长为l的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好.一端系于K杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m2=0.05kg的小环.已知小环以a=6m/s2的加速度沿绳下滑,K杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g=10m/s2,sin37°=0.6,cos37°=0.8.求:
(1)小环所受摩擦力的大小;
(2)Q杆所受拉力的瞬时功率.

例29、如图40所示,位于竖直平面内的矩形导线框,ab边长为L1,bd边长为L2,线框的质量为,电阻为R,其下方有一匀强磁场区域,该区域的上、下边界PP/和QQ/均与ab边平行,两边界间的距离H,HL2,磁场的磁感应强度为B,方向与线框平面垂直,如图40所示,令线框的dc边进入磁场以后,ab边到达边界之间的某一时刻线框的速度已达到这一阶段的最大值,从离开磁场区域上边界PP的距离为h处自由下落,问从线框的dc边开始下落到dc边刚刚到达磁场区域下边界QQ/的过程中,磁场作用于线框的安培力做的总功为多少?

例30、(20xx安徽卷)如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料,不同粗细的导线绕制(Ⅰ为细导线)。两线圈在距磁场上界面高处由静止开始自由下落,再进入磁场,最后落到地面。运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界。设线圈Ⅰ、Ⅱ落地时的速度大小分别为v1、v2,在磁场中运动时产生的热量分别为Q1、Q2。不计空气阻力,则()
A.v1v2,Q1Q2B.v1=v2,Q1=Q2
C.v1v2,Q1Q2D.v1=v2,Q1Q2

题型12:会分析自感的有关问题。
例31、如图41所示的电路,D1和D2是两个相同的小电珠,L是一个自愿系数相当大的线圈,其电阻与R相同,由于存在自感现象,在电键S接通和断开时,灯泡D1和D2先后亮暗的次序是:()
A、接通时D1先达最亮,断开时D1后暗。
B、接通时D2先达最亮,断开时D2后暗。
C、接通时D1先达最亮,断开时D1先暗。
D、接通时D2先达最亮,断开时D2先暗。

例32、(20xx江苏卷)如图所示的电路中,电源的电动势为E,内阻为r,电感L的电阻不计,电阻R的阻值大于灯泡D的阻值。在t=0时刻闭合开关S,经过一段时间后,在t=t1时刻断开S。下列表示A、B两点间电压UAB随时间t变化的图象中,正确的是()
A.B.C.D.

例33、如图43所示(a)、(b)中,R和自感线圈L的电阻都很小,接通K,使电路达到稳定,灯泡S发光,下列说法正确的是()
A.在电路(a)中,断开K,S将渐渐变暗。
B.在电路(a)中,断开K,S将先变得更亮,然后渐渐变暗。
C.在电路(b)中,断开K,S将渐渐变暗。
D.在电路(b)中,断开K,S将先变得更亮,然后渐渐变暗。

题型13:会分析求解联系实际的有关问题。
以现实生活有关的理论问题和实际问题立意命题,更加真实和全面地模拟现实,这是近几年高考的一大特点。电磁感应是高中物理的重要内容,它在现实生活中有许多实际运用。如用电磁感应原理进行测量、运用电磁感应原理进行信号转换、运用电磁感应原理制造“漏电保护器”、运用电磁感应原理制造“延时继电器”等。
例34、(20xx重庆卷)法拉第曾提出一种利用河流发电的设想,并进行了实验研究.实验装置的示意图可用题44图表示,两块面积均为S的矩形金属板,平行、正对、竖直地全部浸在河水中,间距为d.水流速度处处相同,大小为v,方向水平.金属板与水流方向平行,地磁场磁感应强度的竖直分量为B,水的电阻率为ρ,水面上方有一阻值为R的电阻通过绝缘导线和电键K连接到两个金属板上.忽略边缘效应,求:
(1)该发电装置的电动势;
(2)通过电阻R的电流强度;
(3)电阻R消耗的电功率.

例35、如图45所示是家庭用的“漏电保护器“的关键部分的原理图,其中P是一个变压器铁芯,入户的两根电线”(火线和零线)采用双线绕法,绕在铁芯的一侧作为原线圈,然后再接入户内的用电器。Q是一个脱扣开关的控制部分(脱扣开关本身没有画出,它是串联在本图左边的火线和零线上,开关断开时,用户的供电被切断),Q接在铁芯另一侧副线圈的两端a、b之间,当a、b间没有电压时,Q使得脱扣开关闭合,当a、b间有电压时,脱扣开关即断开,使用户断电。
(1)用户正常用电时,a、b之间有没有电压?
(2)如果某人站在地面上,手误触火线而触电,脱扣开关是否会断开?为什么?

三、课后练习
1、两圆环A、B置于同一水平面上,其中A为均匀带电绝缘环,B为导体环,当A以如图52所示的方向绕中心转动的角速度发生变化时,B中产生如图所示方向的感应电流。则()
A.A可能带正电且转速减小;B.A可能带正电且转速增大;
C.A一定带负电且转速减小;D.A可能带负电且转速增大。
2、一直升飞机停在南半球的地磁极上空。该处地磁场的方向竖直向上,磁感应强度为B。直升飞机螺旋桨叶片的长度为l,螺旋桨转动的频率为f,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动。螺旋桨叶片的近轴端为a,远轴端为b,如图53所示。如果忽略a到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则()
A.ε=πfl2B,且a点电势低于b点电势;
B.ε=2πfl2B,且a点电势低于b点电势;
C.ε=πfl2B,且a点电势高于b点电势;
D.ε=2πfl2B,且a点电势高于b点电势。
3、如图54所示,两块水平放置的平行金属板间距为d,定值电阻的阻值为R,竖直放置的线圈匝数为n,绕制线圈导线的电阻也为R,其它导线的电阻忽略不计。现有竖直向上的磁场B穿过线圈,在两极板中一个质量为m、电量为q,带正电的油滴恰好处于静止状态,则磁场B的变化情况是()
A.均匀增大,磁通量变化率的大小为;B.均匀增大,磁通量变化率的大小为;
C.均匀减小,磁通量变化率的大小为;D.均匀减小,磁通量变化率的大小为.
4、如图55所示,两个闭合圆形线圈A、B的圆心重合,放在同一水平面内,线圈A中通以如下面图53所示的变化电流,t=0时电流方向为顺时针(如图53中箭头所示)。在t1—t2时间内,对于线圈B,下列说法中正确的是()
A.线圈B内有顺时针方向的电流,线圈有收缩的趋势;
B.线圈B内有顺时针方向的电流,线圈有扩张的趋势;
C.线圈B内有逆时针方向的电流,线圈有扩张的趋势;
D.线圈B内有逆时针方向的电流,线圈有收缩的趋势.
5、一个半径为r、质量为m、电阻为R的均匀金属圆环,用一根长为L的绝缘细绳悬挂于O点,离O点下方L/2处有一宽度为L/4的垂直纸面向里的匀强磁场区域,如图56所示。现使圆环由与悬点O等高位置A处由静止释放,下摆中金属环所在平面始终垂直磁场,则金属环在整个过程中产生的焦耳热是()
A.mgL;B.mg(L/2+r)
C.mg(3L/4+r);D.mg(L+r)

6、如图57,甲、乙两个完全相同的线圈,在距地面同一高度处由静止开始释放,A、B是边界范围、磁感应强度的大小和方向均完全相同的匀强磁场,只是A的区域比B的区域离地面高一些,两线圈下落时始终保持线圈平面与磁场垂直,则()
A.甲先落地;
B.乙先落地;
C.二者同时落地;
D.无法确定。
7、为了控制海洋中水的运动,海洋工作者有时依靠水流通过地磁场所产生的感应电动势测水的流速。某课外活动兴趣小组有四个成员甲、乙、丙、丁组成,前去海边某处测量水流速度,假设该处地磁场的竖直分量已测出为B,该处的水流是南北流向。问下列测定方法可行的是()
A.甲将两个电极的垂直连线在水平面沿水流方向插入水流中,测出两极间距离L及相连测量电势差的灵敏仪器的读数U,则水流速度v=U/BL.
B.乙将两个电极的垂直连线在水平面上沿垂直水流向插入水流中,测出两极间距离L及两极相连测量电势差的灵敏仪器的读数U,则水流速度v=U/BL.
C.丙将两个电极的垂直连线沿垂直海平面方向插入水流中,测出两极间距离L及两极相连测量电势差的灵敏仪器的读数U,则水流速度v=U/BL.
D.丁将两个电极的垂直连线在水平面上沿任意方向插入水流中,测出两极间距离L及两极相连测量电势差的灵敏仪器的读数U,则水流速度v=U/BL.
8、正方形的闭合线框,边长为a,质量为m,电阻为R,在竖直平面内以某一水平初速度在垂直于框面的水平磁场中,运动一段时间t后速度恒定,运动过程中总有两条边处在竖直方向(即线框自身不转动),如图58所示。已知磁场的磁感应强度在竖直方向按B=B0+ky规律逐渐增大,如图58所示,k为常数。在时间t内:
A、水平分速度不断减小;
B、水平分速度不断增大;
C、水平分速度大小不变;
D、在竖直方向上闭合线框做自由落体运动。
9、两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的左端接有电阻R,质量为m,电阻可不计的金属棒ab在沿着斜面与棒垂直的恒力F作用下沿导轨匀速上滑并上升h高度,如图59,在这个过程中:()
A.作用于金属棒上的各个力的合力所做的功等于mgh;
B.作用于金属棒上的各个力的合力所做的功等于mgh与电阻R上发出的焦耳热之和;
C.恒力F与安培力的合力所做的功等于零;
D.恒力F与重力的合力所做的功等于电阻R上发出的焦耳热。
10、如图60,灯泡A1、A2的规格完全相同,线圈L的电阻可忽略,则:()
A.当接通电路时,A2先亮,A1后亮,最后A2比A1亮;
B.电路接通的瞬时,A1、A2一样亮;
C.断开电路时,A2立即熄灭,A1过一会儿再熄灭;
D.断开电路时,A1、A2都要过一会儿才熄灭。

11.(20xx新课标)如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。现使线框保持图中所示位置,磁感应强度大小随时间线性变化。为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为()
A.B.C.D.
12.(20xx上海卷)如右图,一有界区域内,存在着磁感应强度大小均为B,方向分别垂直于光滑水平桌面向下和向上的匀强磁场,磁场宽度均为L,边长为L的正方形线框abcd的bc边紧靠磁场边缘置于桌面上,使线框从静止开始沿x轴正方向匀加速通过磁场区域,若以逆时针方向为电流的正方向,能反映线框中感应电流变化规律的是图()

13、如图64所示,一质量为m=0.016kg、长L=0.5m、宽d=0.1m、电阻R=0.1Ω的矩形线圈,从h1=5m的高处由静止开始下落,然后进入匀强磁场,当下边进入磁场时,由于磁场力的作用,线圈正好作匀速运动。
(1)求匀强磁场的磁感应强度B。
(2)如果线圈的下边通过磁场所经历的时间t=0.15s,求磁场区域的高度h2.
(3)求线圈的下边刚离开磁场的瞬间,线圈的加速度的大小和方向。
(4)从线圈的下边进入磁场开始到线圈下边离开磁场的时间内,在线圈中产生的焦耳热是多少?

14、图65中a1b1c1d1和a2b2c2d2为在同一竖直面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。导轨的a1b1段与a2b2段是竖直的,距离为L1;c1d1段与c2d2段也是竖直的,距离为L2。x1y1与x2y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R。F为作用于金属杆x1y1上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。

15、如图66所示,横截面为矩形的管道中,充满了水银,管道的上下两壁为绝缘板,前后两壁为导体板(图中斜线部分),两导体板被一导线cd短路。管道的高度为a,宽度为b,长度为L。当加在管道两端截面上的压强差为P,水银沿管道方向自左向右流动时,作用在这段水银上的粘滞阻力f与速度成正比,即:f=kv.
(1)水银的稳定流速V1为多大?
(2)将管道置于一匀强磁场中,磁场与绝缘壁垂直,磁感应强度为B,方向向上,此时水银的稳定流速V2又是多大?(已知水银的电阻率为ρ,磁场只存在于管道所在的区域,不考虑管道两端之外水银对电路的影响。)

16.(20xx上海)如图,质量为M的足够长金属导轨abcd放在光滑的绝缘水平面上。一电阻不计,质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PQbc构成矩形。棒与导轨间动摩擦因数为,棒左侧有两个固定于水平面的立柱。导轨bc段长为L,开始时PQ左侧导轨的总电阻为R,右侧导轨单位长度的电阻为R0。以ef为界,其左侧匀强磁场方向竖直向上,右侧匀强磁场水平向左,磁感应强度大小均为B。在t=0时,一水平向左的拉力F垂直作用于导轨的bc边上,使导轨由静止开始做匀加速直线运动,加速度为a。
(1)求回路中感应电动势及感应电流随时间变化的表达式;
(2)经过多少时间拉力F达到最大值,拉力F的最大值为多少?
(3)某一过程中回路产生的焦耳热为Q,导轨克服摩擦力做功为W,求导轨动能的增加量。

17.如图67所示,磁场的方向垂直于xy平面向里。磁感强度B沿y方向没有变化,沿x方向均匀增加,每经过1cm增加量为1.0×10-4T,即。有一个长L=20cm,宽h=10cm的不变形的矩形金属线圈,以v=20cm/s的速度沿x方向运动。问:
(1)线圈中感应电动势E是多少?
(2)如果线圈电阻R=0.02Ω,线圈消耗的电功率是多少?
(3)为保持线圈的匀速运动,需要多大外力?机械功率是多少?

18.(20xx浙江)为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置,如图68所示,自行车后轮由半径r1=5.0╳10-2m的金属内圈、半径r2=0.40m的金属内圈和绝缘辐条构成。后轮的内、外圈之间等间隔地接有4根金属条,每根金属条的中间均串联有一电阻值为R的小灯泡。在支架上装有磁铁,形成了磁感应强度B=0.10T、方向垂直纸面向外的“扇形”匀强磁场,其内半径为r1、外半径为r2、张角θ=π/6。后轮以角速度ω=2πrad/s相对于转轴转动。若不计其它电阻,忽略磁场的边缘效应。
(1)当金属条ab进入“扇形”磁场时,求感应电动势E,并指出ab上的电流方向;
(2)当金属条ab进入“扇形”磁场时,画出“闪烁”装置的电路图;
(3)从金属条ab进入“扇形”磁场开始,经计算画出轮子转一圈过程中,内圈与外圈之间电势差Uab-t图象;
(4)若选择的是“1.5V、0.3A”的小灯泡,该“闪烁”装置能否正常工作?有同学提出,通过改变磁感应强度B、后轮外圈半径r2、角速度ω和张角θ等物理量的大小,优化前同学的设计方案,请给出你的评价。

20xx高考物理重要考点整理:电磁感应现象楞次定律


作为优秀的教学工作者,在教学时能够胸有成竹,高中教师要准备好教案,这是高中教师的任务之一。教案可以更好的帮助学生们打好基础,帮助高中教师营造一个良好的教学氛围。所以你在写高中教案时要注意些什么呢?下面是由小编为大家整理的“20xx高考物理重要考点整理:电磁感应现象楞次定律”,供大家借鉴和使用,希望大家分享!

20xx高考物理重要考点整理:电磁感应现象楞次定律

考点35电磁感应现象楞次定律
考点名片
考点细研究:(1)电磁感应现象;(2)磁通量;(3)楞次定律等。其中考查到的如:20xx年全国卷第20题、20xx年全国卷第19题、20xx年全国卷第18题、20xx年北京高考第20题、20xx年山东高考第17题、20xx年江苏高考第11题、20xx年全国卷第14题、20xx年广东高考第15题、20xx年山东高考第16题、20xx年大纲卷第20题、20xx年全国卷第19题等。
备考正能量:本考点在高考试题中以选择题形式考查,命题点为物理学史、电磁感应发生的条件、运用楞次定律分析感应电流方向。楞次定律是命题热点,考查应用楞次定律判断感应电流方向的基本方法和感应电流引起的作用效果,多与动力学结合。预计在今后高考中针对本考点仍以选择题考查楞次定律的基本应用。

一、基础与经典

1.下图中能产生感应电流的是()

答案B
解析根据产生感应电流的条件:A中,电路没闭合,无感应电流;B中,磁感应强度不变,面积增大,闭合电路的磁通量增大,有感应电流;C中,穿过线圈的磁感线相互抵消,Ф恒为零,无感应电流;D中,磁通量不发生变化,无感应电流。
2.(多选)用如图所示的实验装置研究电磁感应现象,下列说法正确的是()

A.当把磁铁N极向下插入线圈时,电流表指针发生偏转
B.当把磁铁N极从线圈中拔出时,电流表指针不发生偏转
C.保持磁铁在线圈中相对静止时,电流表指针不发生偏转
D.若磁铁和线圈一起以同一速度向上运动,电流表指针发生偏转
答案AC
解析当把磁铁N极向下插入线圈时,穿过线圈中的磁通量在变化,故线圈中会产生感应电流,电流表指针发生偏转,选项A正确;当把磁铁N极从线圈中拔出时,线圈中也会产生感应电流,故选项B错误;保持磁铁在线圈中相对静止时,线圈中的磁通量没变化,故无感应电流产生,所以电流表指针不发生偏转,选项C正确;若磁铁和线圈一起以同一速度向上运动,线圈与磁铁没有相对运动,故穿过线圈的磁通量也不变,电路中无感应电流,电流表指针不发生偏转,选项D错误。
3.如图所示,正方形闭合导线框处在磁感应强度恒定的匀强磁场中,C、E、D、F为线框中的四个顶点,图甲中的线框绕E点转动,图乙中的线框向右平动,磁场足够大。下列判断正确的是()

A.图甲线框中有感应电流产生,C点电势比D点低
B.图甲线框中无感应电流产生,C、D两点电势相等
C.图乙线框中有感应电流产生,C点电势比D点低
D.图乙线框中无感应电流产生,C、D两点电势相等
答案B
解析线框绕E点转动和向右平动,都没有磁通量的变化,无感应电流产生,由右手定则可知,图甲线框中C、D两点电势相等,则A错误,B正确;图乙线框中C点电势比D点高,则C、D都错误。
4.如图所示,一根长导线弯成如图abcd的形状,在导线框中通以图示直流电,在框的正中间用绝缘的橡皮筋悬挂一个金属环P,环与导线框处于同一竖直平面内,当电流I增大时,下列说法中正确的是()

A.金属环P中产生顺时针方向的电流
B.橡皮筋的长度增大
C.橡皮筋的长度不变
D.橡皮筋的长度减小
答案B
解析本题考查楞次定律,意在考查考生的理解应用能力。导线框中的电流所产生的磁场在金属环P内的磁通量方向垂直于纸面向里,当电流I增大时,金属环P中的磁通量向里且增大,由楞次定律和安培定则可知金属环P中会产生逆时针方向的感应电流,A错误;由于P中磁通量增大,为了阻碍磁通量的增加,P有远离bc边的趋势,故橡皮筋的长度增大,B正确,C、D错误。
5.如图所示,A、B是两根互相平行的、固定的长直通电导线,二者电流大小和方向都相同。一个矩形闭合金属线圈abcd与A、B在同一平面内,并且ab边保持与通电导线平行。线圈从图中的位置1匀速向左移动,经过位置2,最后到位置3,其中位置2恰在A、B的正中间。则下列说法中正确的是()

A.在位置2时,穿过线圈的磁通量为零
B.在位置2时,穿过线圈的磁通量的变化率为零
C.从位置1到位置3的整个过程中,线圈内感应电流的方向发生了变化
D.从位置1到位置3的整个过程中,线圈受到的磁场力的方向先向右后向左
答案A
解析磁通量是指穿过线圈中磁感线的净条数,故在位置2,磁通量为0,但磁通量的变化率不为0,A正确,B错误;1→2,磁通量减小,感应电流为逆时针方向,2→3,磁通量反向增大,感应电流仍为逆时针方向,C错误;由楞次定律知,线圈所受磁场力总是阻碍线圈与导线的相对运动,方向总是向右,D错误。
6.如图所示,一个闭合金属圆环用绝缘细线挂于O点,将圆环拉离平衡位置并由静止释放,圆环摆动过程中经过有界的水平方向的匀强磁场区域,A、B为该磁场的竖直边界,磁场方向垂直于圆环所在平面向里,若不计空气阻力,则()

A.圆环向右穿过磁场后,还能摆到释放位置
B.圆环进入磁场后离平衡位置越近速度越大,感应电流也越大
C.在进入和离开磁场时,圆环中均有感应电流
D.圆环最终将静止在平衡位置
答案C
解析当圆环进出磁场时,由于圆环内磁通量发生变化,所以有感应电流产生,同时金属圆环本身有内阻,部分机械能会转化成热量而损失,因此圆环不会摆到释放位置,A错误,C正确;随着圆环进出磁场,其机械能逐渐减少,圆环摆动的幅度越来越小,当圆环只在匀强磁场中摆动时,圆环内无磁通量的变化,无感应电流产生,圆环将在A、B间来回摆动,B、D错误。
7.(多选)如图甲所示,圆形线圈P静止在水平桌面上,其正上方固定一螺线管Q,P和Q共轴,Q中通有变化的电流i,电流随时间变化的规律如图乙所示,P所受的重力为G,桌面对P的支持力为FN,则()

A.t1时刻FNG,P有收缩的趋势
B.t2时刻FN=G,此时穿过P的磁通量最大
C.t3时刻FN=G,此时P中无感应电流
D.t4时刻FN

高考物理考点重点电磁感应复习


第九章电磁感应

1、电磁感应属于每年重点考查的内容之一,试题综合程度高,难度较大。
2、本章的重点是:电磁感应产生的条件、磁通量、应用楞次定律和右手定则判断感应电流的方向、感生、动生电动势的计算。公式E=Blv的应用,平动切割、转动切割、单杆切割和双杆切割,常与力、电综合考查,要求能力较高。图象问题是本章的一大热点,主要涉及ф-t图、B-t图、和I-t图的相互转换,考查楞次定律和法拉第电磁感应定律的灵活应用。
3、近几年高考对本单元的考查,命题频率较高的是感应电流产生的条件和方向的判定,导体切割磁感线产生感应电动势的计算,电磁感应现象与磁场、电路、力学等知识的综合题,以及电磁感应与实际相结合的问题,如录音机、话筒、继电器、日光灯的工作原理等.

第一课时电磁感应现象楞次定律

【教学要求】
1、通过探究得出感应电流与磁通量变化的关系,并会叙述楞次定律的内容。
2、通过实验过程的回放分析,体会楞次定律内容中“阻碍”二字的含义,感受“磁通量变化”的方式和途径,并用来分析一些实际问题。
【知识再现】
一、电磁感应现象—感应电流产生的条件
1、内容:只要通过闭合回路的磁通量发生变化,闭合回路中就有感应电流产生.
2、条件:①____________;②____________.
二、感应电流方向——楞次定律
1、感应电流方向的判定:方法一:右手定则;方法二:楞次定律。
2、楞次定律的内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
3、掌握楞次定律,具体从下面四个层次去理解:
①谁阻碍谁——感应电流的磁通量阻碍原磁场的磁通量.
②阻碍什么——阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.
③如何阻碍——原磁通量增加时,感应电流磁场方向与原磁场方向相反;当原磁通量减少时,感应电流磁场方向与原磁场方向相同,即“增反减同”.
④阻碍的结果——阻碍并不是阻止,结果是增加的还增加,减少的还减少.
知识点一磁通量及磁通量的变化
磁通量变化△ф=ф2-ф1,一般存在以下几种情形:
①投影面积不变,磁感强度变化,即△ф=△BS;
②磁感应强度不变,投影面积发生变化,即△ф=B△S。其中投影面积的变化又有两种形式:
A.处在磁场的闭合回路面积发生变化,引起磁通量变化;
B.闭合回路面积不变,但与磁场方向的夹角发生变化,从而引起投影面积变化.
③磁感应强度和投影面积均发生变化,这种情况少见。此时,△ф=B2S2-B1S1;注意不能简单认为△ф=△B△S。
【应用1】如图所示,平面M的面积为S,垂直于匀强磁场B,求水平面M由此位置出发绕与B垂直的轴转过60°和转过180°时磁通量的变化量。
导示:初位置时穿过M的磁通量为:ф1=BS;
当平面M转过60°后,磁感线仍由下向上穿过平面,且θ=60°所以ф2=BScos60°=BS/2。
当平面转过180°时,原平面的“上面”变为“下面”,而“下面”则成了“上面”,所以对平面M来说,磁感线穿进、穿出的顺序刚好颠倒,为了区别起见,我们规定M位于起始位置时其磁通量为正值,则此时其磁通量为负值,即:ф3=-BS
由上述得,平面M转过60°时其磁通量变化为:
△ф1=│ф2-ф1│=BS/2
平面M转过180°时其磁通量变化为:
△ф2=│ф3-ф1│=2BS。
1、必须明确S的物理意义。
2、必须明确初始状态的磁通量及其正负(一定要注意在转动过程中,磁感线相对于面的穿入方向是否发生变化)。
3、注意磁通量与线圈匝数无关。

知识点二安培定则、左手定则、右手定则、楞次定律的比较
(1)应用现象
(2)应用区别:关键是抓住因果关系
①因电而生磁(I→B)→安培定则
②因动而生电(v、B→I安)→右手定则
③因电而受力(I、B→F安)→左手定则
【应用2】如图所示,两个线圈套在同一个铁芯上,线圈的绕向在图中已经表示.左线圈连着平行导轨M和N,导轨电阻不计,在导轨垂直方向上放着金属棒ab,金属棒处于垂直纸面向外的匀强磁场中,下列说法中正确的是()
A.当金属棒向右匀速运动时,a点电势高于b点,c点电势高于d点
B.当金属棒向右匀速运动时,b点电势高于a点,c点与d点为等电势
C.当金属棒向右加速运动时,b点电势高于a点,c点电势高于d点
D.当金属棒向右加速运动时,b点电势高于a点,d点电势高于c点
导示:选择BD。在图中ab棒和右线圈相当于电源。当导体棒向右匀速运动时,根据右手定则,可以判断b点电势高于a点,此时通过右线圈在磁通量没有变化,所以,右线圈中不产生感应电流,c点与d点为等电势。
当金属棒向右加速运动时,b点电势高于a点,此时通过右线圈在磁通量逐渐增大,根据楞次定律可以判定d点电势高于c点。

类型一探究感应电流产生的条件
【例1】如图,在通电直导线A、B周围有一个矩形线圈abcd,要使线圈中产生感应电流,你认为有哪些方法?
导示:当AB中电流大小、方向发生变化、abcd线圈左右、上下平移、或者绕其中某一边转动等都可以使线圈中产生感应电流。

类型二感应电流方向的判定
判定感应电流方向的步骤:
①首先明确引起感应电流的原磁场方向.
②确定原磁场的磁通量是如何变化的.
③根据楞次定律确定感应电流的磁场方向——“增反减同”.
④利用安培定则确定感应电流的方向.
【例2】如图所示,导线框abcd与导线在同一平面内,直导线通有恒定电流I,当线圈由左向右匀速通过直导线时,线圈中感应电流的方向是()
A.先abcd后dcba,再abcd
B.先abcd,后dcba
C.始终dcba
D.先dcba,后abcd,再dcba
导示:选择D。当线圈由左向右匀速通过直导线时,穿过线圈的磁通量先向外增大,当导线位于线圈中间时磁通量减小为O;然后磁通量先向里增大,最后又减小到O。

类型三楞次定律推论的应用
楞次定律的“阻碍”含义,可以推广为下列三种表达方式:
①阻碍原磁通量(原电流)变化.(线圈的扩大或缩小的趋势)—“增反减同”
②阻碍(磁体的)相对运动,(由磁体的相对运动而引起感应电流).—“来推去拉”
③从能量守恒角度分析:能量的转化是通过做功来量度的,这一点正是楞次定律的根据所在,楞次定律是能量转化和守恒定律在电磁感应现象中的具体体现。
【例3】如图所示,光滑固定导体M、N水平放置,两根导体捧P、Q平行放于导轨上,形成一个闭合回路.当一条形磁铁从高处下落接近回路时()
A、P、Q将互相靠拢
B、P、Q将互相远离
C、磁铁的加速度仍为g
D、磁铁的加速度小于g
导示:方法一:设磁铁下端为N极,如图所示,根据楞次定律可判断P、Q中的感应电流方向。根据左手定则可判断P、Q所受安培力的方向。可见P、Q将互相靠拢。由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到反作用力,从而加速度小于g。当磁铁下端为S极时,根据类似的分析可得到相同的结果。所以,本题应选A、D。
方法二:根据楞次定律知:“感应电流的磁场总要阻碍原磁通量的变化”,为阻碍原磁通量的增加,P、Q只有互相靠拢来缩小回路面积,故A正确,B错。楞次定律可以理解为感应电流的磁场总要阻碍导体间的相对运动,可把PQMN回路等看为一个柱形磁铁,为了阻碍磁铁向下运动,等效磁铁的上面必产生一个同名磁极来阻碍磁铁的下落,故磁铁的加速度必小于g,故C错D正确。

1、如图是某同学设计的用来测量风速的装置。请解释这个装置是怎样工作的。

2、已知一灵敏电流计,当电流从正接线柱流入时,指针向正接线柱一侧偏转,现把它与线圈串联接成图示电路,当条形磁铁按如图所示情况运动时,以下判断正确的是()
A.甲图中电流表偏转方向向右
B.乙图中磁铁下方的极性是N极
C.丙图中磁铁的运动方向向下
D.丁图中线圈的绕制方向与前面三个相反

3、(赣榆县教研室2008年期末调研)如甲图所示,
光滑的水平桌面上固定着一根绝缘的长直导线,可以自由移动的矩形导线框abcd靠近长直导线放在桌面上。当长直导线中的电流按乙图所示的规律变化时(甲图中电流所示的方向为正方向),则()
A.在t2时刻,线框内没有电流,线框不受力
B.t1到t2时间内,线框内电流的方向为abcda
C.t1到t2时间内,线框向右做匀减速直线运动
D.t1到t2时间内,线框受到磁场力对其做负功

答案:1.略2.ABD3.BD