88教案网

你的位置: 教案 > 高中教案 > 导航 > 《DNA分子的结构》教案及反思

小学古诗及教案

发表时间:2020-04-20

《DNA分子的结构》教案及反思。

一名优秀的教师就要对每一课堂负责,作为高中教师就要早早地准备好适合的教案课件。教案可以让学生们有一个良好的课堂环境,帮助高中教师缓解教学的压力,提高教学质量。高中教案的内容具体要怎样写呢?下面是由小编为大家整理的“《DNA分子的结构》教案及反思”,欢迎阅读,希望您能阅读并收藏。

《DNA分子的结构》教案及反思

1.概述DNA分子结构的主要特点;
2.制作DNA双螺旋结构模型;
3.讨论DNA双螺旋结构模型的构建历程。

1.DNA分子结构的主要特点;
2.制作DNA双螺旋结构模型。

DNA分子结构的主要特点。

PPT、板书、学生活动

1课时(40min)

一、导入
谈论一个社会热点话题:随着科学技术的发展,想要知道自己是否为父母亲生的,应该怎么做?(亲子鉴定)亲子鉴定实质上是鉴定什么物质?(DNA)为什么通过鉴定DNA就能做到?要想知道亲子鉴定的原理我们首先得了解DNA分子的结构。
导入新课:板书:3.2DNA分子的结构
二、回顾DNA分子相关的已有知识
引导学生一起回顾:
1.DNA的中文名称是?(脱氧核糖核酸)
2.DNA的基本组成元素?(有且只有C、H、O、N、P)
3.DNA的基本组成单位?(脱氧核糖核苷酸/脱氧核苷酸)
(1个脱氧核糖核苷酸由1分子磷酸、1分子脱氧核糖和1分子含氮碱基组成)板图:脱氧核苷酸的分子结构模式
4.含氮碱基有几种?(4)分别是?(AGCT)
5.4种碱基对应的脱氧核苷酸就有4种,分别是?(腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胞嘧啶脱氧核苷酸、胸腺嘧啶脱氧核苷酸)
6.多个脱氧核苷酸分子连接起来才能形成DNA分子,脱氧核苷酸分子之间的连接是:一个核苷酸分子的脱氧核糖与下一个核苷酸分子的磷酸连接形成一种化学键,叫磷酸二酯键。这样多个脱氧核苷酸就构成了一条脱氧核苷酸链。
以上关于DNA的化学组成,是科学家们在19世纪50年代对DNA分子的所有认识。
至于DNA分子的具体结构如何,还需要后来科学家的不断探索和研究。
三、DNA双螺旋结构模型的构建
(一)(采用课前发学案预习的方式,学案结合教材P49的《思考与讨论》问题,教师以问题串形式引导学生了解整个构建过程,学生回答检测其预习效果,幻灯片展示相关图片及信息)
1.构建此模型的科学家是?(两位当时很年轻的科学家:美国生物学家沃森和英国物理学家克里克)
2.DNA是由几条链组成?(两条链)空间结构?(双螺旋)科学家得出此结论的依据是?
(依据:1951年,英国科学家威尔金斯和富兰克林提供了DNA的X射线衍射图谱。)
3.DNA的基本骨架?(磷酸-脱氧核糖)位于?(双螺旋内侧)
4.碱基位于?(内侧)如何配对?(A-T,C-G)
刚开始的碱基配对是相同碱基配对,后来违反化学规律;为什么这样配对(依据)?
(依据:1952年,奥地利著名生物化学家查哥夫研究得出:腺嘌呤(A)的量总是等于胸腺嘧啶(T)的量(A=T);鸟嘌呤(G)的量总是等于胞嘧啶(C)的量(G=C))
5.至此构建了DNA双螺旋结构模型的平面结构,展示沃森和克里克的双螺旋的立体结构,并且他们于1953年4月25日,写论文发表在英国《自然》杂志上,今年正好是DNA模型构建60周年。
6.直到1962年,沃森、克里克和威尔金斯因此荣获1962年诺贝尔医学生理学奖。
(二)模型构建过程中涉及的情感态度价值观教育(教师引导,学生思考)
1.整个过程中涉及的科学家有哪些?(沃森、克里克、威尔金斯、富兰克林、查哥夫。)
科学研究需要科学家们的合作交流、相互借鉴
2.在发现DNA结构的过程中涉及哪些学科?(生物、物理、化学等)
科学研究需要学科之间的交叉、渗透
3.DNA分子结构模型的构建是一蹴而就吗?(不是,经历了构建被否定重建的反复过程)
科学研究是在不断探索、修正和完善中得以实现的
(三)DNA双螺旋结构模型构建的意义
DNA分子双螺旋结构模型的构建,被誉为20世纪最伟大的成就,标志着DNA的研究进入到分子水平,也是高科技的标志。(图片展示中关村的DNA雕塑)
四、DNA分子的结构特点
(从平面结构入手)
整个DNA分子:(1)由两条链组成,关系:平行,方向:一条链磷酸在头部,另一条链磷酸在尾部;所以为反向平行。(补充:一条DNA分子中有2个游离的磷酸基团)
DNA分子的一条链:(2)外侧:脱氧核糖和磷酸交替连接,形成了楼梯的扶手,即基本骨架;内侧是碱基,形成了台阶。
DNA分子两条链之间:(3)两条链之间,碱基与碱基连接。G、C配对形成一个碱基对,碱基对之间通过一种化学键连接氢键,G、C之间三个氢键,A、T之间两个氢键(补充:氢键数目越多,DNA分子越稳定,所以GC含量高的DNA分子稳定性强)
(A只和T配对、C只和G配对,这种碱基之间的一一对应的关系就叫做碱基互补配对原则。)
五、学生活动:制作DNA双螺旋结构模型
6人一组,利用模型盒中的材料制作一个DNA双螺旋结构模型。
1.介绍模型盒里的材料(图片直观展示)
2.教师以问题形式提示学生构建模型的正确思路,建立点-线-面-体的构建原则
①何制作一个脱氧核苷酸?(点)
②脱氧核苷酸如何连接成一条链?(线)
③两条链之间如何正确连接?(面)
④如何体现双螺旋结构?(体)
3.学生以小组为单位,制作模型,教师巡视,及时发现问题,适当引导。
4.小组展示自己的模型
六、DNA分子的特性
(学生比较小组之间的模型,思考,教师引导学生,逐步引出DNA分子的特性)
1.比较小组之间的模型,DNA模型的共同点是什么?
(a.脱氧核糖与磷酸交替排列的顺序b.碱基互补配对原则;c.稳定的双螺旋结构;)稳定性
2.碱基对的排列顺序一样吗?
(不一样,碱基对的排列顺序千变万化)多样性
(补充:对于一个碱基位置来说,可以有四种可能,那么对于一条DNA分子,如果有2000个碱基对,有多少种排列顺序?42000碱基对的排列顺序就代表了遗传信息。)
3.对于每个DNA分子,碱基对的排列顺序是特定的吗?
每一个DNA分子碱基对的特定排列顺序特异性
(亲子鉴定的原理:亲子鉴定鉴定DNA分子结构,孩子的同源染色体,一条来自父方,一条来自母方,由于DNA分子的特异性,所以一条DNA和父亲相同,一条DNA与母亲相同。)
七、课后作业
1.课后拓展题:DNA分子作为遗传物质,必须要复制,根据结构特点,大家设想一下复制方式。
2.动手作业:3-5人一组,利用生活中的材料制作DNA双螺旋结构模型。
八、课堂反馈
1.下列制作DNA螺旋模型中,连接正确的是()
2.知1个DNA分子中有1800个碱基对,其中胞嘧啶有1000个,这个DNA分子中应含有的脱氧核苷酸的数目和腺嘌呤的数目分别是
A.1800个和800个B.1800个和l800个
C.3600个和800个D.3600个和3600个
3.20个碱基对组成的DNA分子片段,可因其碱基对组成和序列不同携带不同的遗传信息,其种类最多可达()
A、120B、1204C、460D、4120
4.是DNA的分子结构模式图,说出图中1-10的名称。
1________________________
2________________________
3________________________
4________________________
5________________________
6________________________
7________________________
8________________________
9________________________
10_______________________

3.2DNA分子的结构
一、DNA分子的化学组成
1.组成元素:C、H、O、N、P
2.基本组成单位:脱氧核苷酸
二、DNA双螺旋结构模型的构建
三、DNA的结构特点:
1.2条链:反向平行,双螺旋
2.外侧:磷酸-脱氧核糖;内侧:碱基
3.A=T,G=C(氢键)
四、DNA的结构特性:
1.稳定性
2.多样性
3.特异性

本节课在设计上有两个突破:
(1)为了节省课堂上阅读资料的时间,按照新课程理念,采用学案形式,让学生提前预习,熟悉DNA双螺旋结构模型的构建过程;在教学中,采用问题串的形式,按照模型构建的结论-依据模式,检测学生的预习效果,并且调动学生回答问题的积极性,加大学生的课堂参与度,提高课堂教学效率。
(2)为了增强学生对模型构建过程的印象,设计学生活动:体验制备DNA双螺旋模型构建过程,提高课堂教学的参与度和广度,增强小组合作能力,以问题串的形式提示学生模型构建过程中应注意的问题,让学生在进行活动时有条理、有思考,活动结束时,以小组为单位进行模型展示,激发学生的积极性,并且有效利用学生的展示,对比、提问进而引出DNA分子的三大特性。
本节课优点:
(1)在模型构建过程的科学史讲解过程中,注重对学生情感、态度、价值观的教育(如学科交叉渗透、团结合作、坚持不懈等科学精神的渗透教育)
(2)学生的课堂参与度广而深,注重学生思维的培养
(3)学生活动的成果展示,对于一位教师的课堂生成能力是一个很大的挑战
本节课不足之处:
(1)课堂时间把握不足,如模型构建过程讲解较快,而后面关于学生活动的处理有点拖,导致课堂拖堂、
(2)上课结束,未对本节课内容进行小结
(3)由于时间关系,未做课堂练习进行巩固
(4)关于学生活动《体验制备DNA双螺旋模型构建过程》,教师可先根据点-线-面-体思路,让学生对于模型构建有条理,确保达到教学效果;此活动中,教师可以刻意制作一个错的模型,让学生去寻找并发现问题,可以检测学生对DNA结构特点的理解,加深记忆;在学生的模型成果展示过程中,对于课堂的预设不足,自己显得紧张,课堂生成能力欠缺。
(5)在授课过程中,努力做到放开讲课,提高自身的课堂生成能力,做到扬长避短,逐步形成个人的教学风格

相关知识

DNA的分子结构


生物:3.1.2《DNA的分子结构》例题与探究(中图版必修2)
典题精讲
例1DNA分子多样性的原因是()
A.DNA是由4种脱氧核苷酸组成的
B.DNA的相对分子质量很大
C.DNA具有规则的双螺旋结构
D.DNA的碱基对有很多种不同的排列顺序
思路解析:组成DNA分子的碱基虽然只有4种,但是碱基对的排列顺序却是千变万化的,这就构成了DNA分子的多样性。
答案:D
绿色通道:DNA分子的多样性,同时也决定了DNA分子的特异性。
变式训练下图所示为DNA分子平面结构图,仔细读图后完成下列问题:
(1)写出图中各编号的中文名称:
①___________,②___________,③___________,④___________,⑤___________,⑥___________,⑦___________,⑧___________,⑨___________。
(2)图中共有脱氧核苷酸___________个,碱基___________对。
(3)图中部分由___________个脱氧核苷酸化合而成。一个脱氧核苷酸由一分子___________、一分子___________、一分子___________构成。
思路解析:该题考查学生对DNA双螺旋结构模型知识的理解。由于DNA分子由两条脱氧核苷酸长链盘绕成规则的双螺旋结构,脱氧核糖与磷酸交替排列的顺序稳定不变;DNA内部的碱基靠氢键连接起来形成碱基对,且严格遵循碱基互补配对原则。每个脱氧核苷酸是由一分子的磷酸、一分子的脱氧核糖和一分子的含氮碱基组成的。
答案:(1)①磷酸 ②脱氧核糖 ③胞嘧啶 ④胞嘧啶脱氧核苷酸 ⑤腺嘌呤 ⑥鸟嘌呤 ⑦胞嘧啶 ⑧胸腺嘧啶 ⑨氢键 (2)8 4 (3)8 磷酸 脱氧核糖 含氮碱基
例2在DNA双螺旋链中,已查明某一脱氧核苷酸对中有一个胸腺嘧啶,则该脱氧核苷酸对中还有()
A.一个磷酸、一个脱氧核糖和一个鸟嘌呤
B.两个磷酸、两个脱氧核糖和两个腺嘌呤
C.两个磷酸、两个脱氧核糖和一个腺嘌呤
D.三个磷酸、三个脱氧核糖和三个鸟嘌呤
思路解析:一个脱氧核苷酸是由一分子磷酸、一分子脱氧核糖和一分子含氮碱基组成,因为组成脱氧核苷酸的含氮碱基只有A、T、C、G四种,所以脱氧核苷酸只有四种。在组成DNA的双螺旋结构时,两个脱氧核苷酸分子的碱基通过氢键,按照碱基互补配对原则(A与T配对,G与C配对)形成脱氧核苷酸时,依题意画出DNA双螺旋链的局部图:
不难得出正确答案。
答案:C
绿色通道:此题要求学生掌握脱氧核苷酸的化学组成和碱基互补配对原则,并用它分析DNA的双螺旋结构,考查应用能力。
变式训练DNA分子的基本骨架是()
A.磷脂双分子层B.规则双螺旋结构
C.脱氧核糖和磷酸交替连接D.碱基的连接
思路解析:组成DNA分子的基本单位是脱氧核苷酸,而每个脱氧核苷酸是由一分子磷酸、一分子脱氧核糖和一分子含氮碱基组成的。DNA分子是由两条具有反向平行关系的子链螺旋而成的,在链的外侧是脱氧核糖和磷酸交替连接而成的,构成DNA分子的基本骨架。
答案:C
例3某生物碱基的组成是嘌呤碱基占58%,嘧啶碱基占42%,此生物不可能是()
A.T4噬菌体B.细菌
C.烟草花叶病毒D.酵母菌和人
思路解析:细菌、酵母菌和人的细胞中既有DNA也有RNA,因为RNA是单链,所以不满足嘌呤碱基和嘧啶碱基之和相等。烟草花叶病毒只有RNA,符合条件。T4噬菌体只有DNA。
答案:A
黑色陷阱:对核酸中碱基组成的理解不够,对DNA双螺旋结构中碱基互补配对的原则未掌握,对不同生物含有的核酸种类不明确,都是错答此题的原因。
变式训练1所有病毒的遗传物质()
A.都是DNAB.都是RNA
C.是DNA和RNAD.是DNA或RNA
思路解析:病毒是由蛋白质和核酸组成的,核酸只有一种,要么是DNA,要么是RNA。
答案:D
变式训练2大豆根尖细胞所含的核酸中,含有碱基A、G、C、T的核苷酸种类数共有()
A.8种B.7种C.5种D.4种
思路解析:大豆根尖细胞中含有DNA、RNA,A、T、C、G参与4种脱氧核苷酸、3种核糖核苷酸的构成。
答案:B
问题探究
问题1DNA的空间结构是怎样的?
导思:从外观上看,DNA是由两条平行的脱氧核苷酸长链盘旋成规则的双螺旋结构。外侧(像楼梯“扶手”)是脱氧核糖和磷酸交替连接,构成基本骨架,内侧由碱基对(像楼梯“台阶”或谓横档)将两条链连接起来。
探究:DNA分子的空间结构:(1)DNA分子是由两条链组成的,这两条链按反向平行的方式盘旋成双螺旋结构。(2)DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧构成骨架;碱基排列在内侧。(3)两条链上的碱基,通过氢键连接成碱基对,A与T配对,G与C配对,碱基之间的这种一一对应的关系,叫做碱基互补配对原则。
问题2碱基互补配对原则的意义是什么?
导思:DNA骨架之间的碱基连接是有一定规则的,只能是嘌呤碱基与嘧啶碱基配对。换句话说,嘌呤与嘌呤之间,嘧啶与嘧啶之间均不能配对。具体是:腺嘌呤(A)一定与胸腺嘧啶(T)配对,鸟嘌呤(G)一定与胞嘧啶(C)配对,这就是碱基互补配对原则。
探究:(1)由于碱基互补配对原则,使四种脱氧核苷酸组成的DNA分子在结构上具有稳定性。(2)由于碱基互补配对原则,确保了DNA的自我复制能够准确无误地完成。

DNA分子的结构和复制


教学设计方案

1.教学重点
(1)DNA分子的结构。
(2)碱基互补配对原则及其重要性。
(3)DNA分子的多样性。
(4)DNA复制的过程及特点。
2.教学难点
(1)DNA分子的立体结构特点。
(2)DNA分子的复制过程。
3.教学疑点
DNA分子中只能是A—T、C-G配对吗?能不能A—C、G—T配对?为什么?
4.解决办法
(1)充分发挥多媒体计算机的独特功能,把DNA的化学组成、立体结构和DNA的复制过程等重、难点知识编制成多媒体课件。将这些较难理解的重、难点知识变静为动、变抽象为形象,转化为易于吸收的知识。
(2)通过制作DNA双螺旋结构模型,加深对DNA分子结构特点的理解和认识。
(3)通过讨论交流、通过提高学生的识图能力、思维能力,通过配合适当的练习,将知识化难为易。
(4)通过单环化合物、双环化合物所占空间及碱基对之间氢键数的稳定性,来说明只能是A—T、C—G配对。
2课时。

第一课时
(一)引言:
我们经过学习,已经知道DNA是主要的遗传物质,它能使亲代的性状在子代表现出来。那么,DNA为什么能起遗传作用呢?我们来学习DNA的结构。
(二)教学过程
1.DNA的结构
1953年,沃森和克里克提出了著名的DNA双螺旋模型,为合理地解释遗传物质的各种功能奠定了基础。为了理解DNA的结构,先来学习DNA的化学组成。
(1)DNA的化学组成
学生阅读教材第7-8页,看懂图6-4及银幕上出现的结构平面图,基本单位图。学生回答下列问题:
①组成DNA的基本单位是什么?每个基本单位由哪三部分组成?
②组成DNA的碱基有哪几种?脱氧核苷酸呢?DNA的每一条链是如何组成的?
学生回答后,教师点拨:
①组成DNA的基本单位是脱氧核苷酸,它由一个脱氧苷糖、一个磷酸和一个含氮碱基组成。
②组成DNA的碱基有四种:腺嘌呤(A),鸟嘌呤(G),胞嘧啶(C)、胸腺嘧啶(T);有四种脱氧核苷酸:腺嘌呤脱氧核苷酸,鸟嘌呤脱氧核苷酸,胞嘧啶脱氧核苷酸,胸腺嘧啶脱氧核苷酸。DNA的每一条链由四种不同的脱氧核苷酸聚合而成多脱氧核苷酸链。
(2)DNA分子的立体结构
出示DNA模型,学生阅书第8页,指着模型进解说过归纳,结构的主要特点是:
①两条长链按反向平行方式盘旋成双螺旋结构(简要解释“反向”,一条链是55-35,另一条链是35-55,不宜过深)。
②脱氧核糖和磷酸交替连接,排列在DNA分子的外侧,构成基本骨架,碱基排列在内侧。
③碱基互补配对原则:
两条链上的碱基通过氢键(教师对“氢键”要进行必要的解释)连接成碱基对,且碱基配对有一定的规律:A—T、G—C(A一定与T配对,G一定与C配对)。
可见,DNA一条链上的碱基排列顺序确定了,根据碱基互补配对原则,另一条链上的碱基排列顺序也就确定了(可在黑板上练习一道题以巩固互补配对原则)。
教师设问,学生思考后,由教师回答:
设问一:碱基配对时,为什么嘌呤碱不与嘌呤碱或嘧啶碱不与嘧啶碱配对呢?
这是由于嘌呤碱是双环化合物(画出双环),占有空间大;嘧啶碱是单环化合物(画出单环),占有空间小。而DNA分子的两条链的距离是固定的,只有双环化合物和单环化合物配对才合适。
设问二:为什么只能是A—T、G—C,不能是A—C,G—T呢?
这是由于A与T通过两个氢键相连,G与C通过三个氢键相连,这样使DNA的结构更加稳定,所以,A与T或G与C的摩尔数比例均为1:1。
学生训练:某生物细胞DNA分子的碱基中,腺嘌呤的分子数占18%,那么鸟嘌呤的分子数占()
A.9%B.18%C.32%D.36%
答案:C
(为巩固DNA立体结构的有关知识,加深对DNA分子结构特点的理解,此时应让学生做《实验十二、制作DNA双螺旋结构模型》,实验的材料及一些基本步骤可在上课前准备好,教师示范,控制好上课的时间)。
(3)DNA的特性
师生共同活动,学生讨论和教师点拨相结合。
①稳定性:DNA分子两条长链上的脱氧核糖与Pi交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DAN分子的稳定性。
②多样性:DNA分子中碱基相互配对的方式虽然不变,而长链中的碱基对的排列顺序是千变万化的。如一个最短的DNA分子大约有4000个碱基对,这些碱基对可能的排列方式就有种。实际上构成DNA分子的脱氧核苷酸数目是成千上万的,其排列种类几乎是无限的,这就构成DNA分子的多样性。
③特异性:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。
本节课我们学习了DNA的化学组成,DNA的立体结构和DNA的特性。组成DNA的碱基共有A、T、G、C四种,构成DNA的基本单位也有4种。每个DNA分子由二条多脱氧核苷酸长链反向平行盘旋成双螺旋结构,两条链上的碱基按照碱基互补配对原则,即A—T、G—C,通过氢键连接成碱基对。DNA分子具有稳定性、多样性和特异性。多样性产生的原因主要是碱基对的排列顺序千变万化,4种脱氧核苷酸排列的特定顺序,包括特定的遗传信息。每个DNA分子能够贮存大量的遗传信息。
(三)课堂练习
1.课本10-11页三、四题。
2.根据碱基互补配对原则,在A≠G时,双链DNA分子中,下列四个式子中正确的是()
A.B.
C.D.
答案:选B
3.分析一个DNA分子时,其一条链上那么它的另一条链和整个DNA分子中的比例分别是()
A.0.4和0.6B.2.5和0.4
C.0.6和1.0D.2.5和1.0
答案:D
(四)板书设计

第二课时
(一)引言:
通过上节课有关DNA结构的学习,理解DNA分子不仅能够储存大量的遗传信息,还能传递遗传信息,遗传信息的传递就是通过DNA分子的复制来完成的,怎样复制呢?
(二)教学过程:
2.DNA的复制
(1)复制的概念
在细胞有丝分裂和减数第一次分裂的间期,以母细胞DNA分子为模板,合成子代DNA的过程。DNA的复制实质上是遗传信息的复制。
(2)“准确”复制的原理
①DNA具有独特的双螺旋结构,能为复制提供模板;
②碱基具有互补配对的能力,能够使复制准确无误。
(3)DNA复制的过程
学生阅书第10页,看图6-6,银幕上也出现动态的DNA分子复制过程图解,待学生看懂图后,回答如下问题:
①什么叫解旋?解旋的目的是什么?
②什么叫“子链”?复制一次能形成几条子链?
③简述“子链”形成的过程。
让学生充分回答上述问题后,教师强调:
复制的过程大致可归纳为如下三点:
①解旋提供准确模板:在ATP供能、解旋酶的作用下,DNA分子两条多脱氧核苷酸链配对的碱基从氢键处断裂,两条螺旋的双链解开,这个过程叫做解旋。解开的两条单链叫母链(模板链)。
②合成互补子链:以上述解开的每一段母链为模板,以周围环境中游离的4种脱氧核苷酸为原料,按照碱基互补配对原则,在有关酶的作用下,各自合成与母链互补的一段子链。
③子、母链结合盘绕形成新DNA分子:在DNA聚合酶的作用下,随着解旋过程的进行,新合成的子链不断地延伸,同时每条子链与其对应的母链盘绕成双螺旋结构,从而各自形成一个新的DNA分子,这样,1DNA分子→2个完全相同的DNA分子。
(4)DNA复制的特点
讲述:
①DNA分子是边解旋边复制的,是一种半保留式复制,即在子代双链中,有一条是亲代原有的链,另一条(子链)则是新合成的。
②DNA复制严格遵守碱基互补配对原则准确复制。从而保证了子代和亲代具有相同的遗传性状。
问:DNA复制后两个子代DNA分子和亲代DNA分子是否完全相同?为什么?
通过设问,学生回答,进一步让学生理解和巩固DNA复制的全过程。
(5)DNA复制的必需条件
讲述:
DNA复制时必需条件是亲代DNA的两条母链提供准确模板、四种脱氧核苷酸为原料、能量(ATP)和一系列的酶,缺少其中任何一种,DNA复制都无法进行。
(6)DNA复制的生物学意义
DNA通过复制,使遗传信息从亲代传给了子代,从而保证了物种的相对稳定性,保持了遗传信息的连续性,使种族得以延续。
(三)小结:
1.通过学习DNA的结构和复制,必须掌握DNA的化学组成、立体结构、碱基互补配对原则以及DNA的复制过程、复制的必需条件及DNA复制在生物学上的重要意义。为学习生物的遗传和生物的变异奠定基础。
2.目前DNA分子广泛用于刑事案件侦破等方面
(l)DNA分子是亲子鉴定的主要证据之一。
(2)把案犯在现场留下的毛发、血等进行分析作为破案的证据,与DNA有关。
(四)课堂练习:
1.某生物的双链DNA分子共有含氮碱基77对,其中一条链上(A+T):(C+G)=2.5,问该DNA分子连续复制两次共需游离的胸腺嘧啶脱氧核苷酸的数目是()
A.1200个B.400个C.600个D.1500个
2.课本第10页复习题一、二。
(五)板书设计

第2节DNA分子的结构


第2节DNA分子的结构

教学目的

1.理解DNA分子的结构特点。
2.理解DNA分子复制的过程和意义。
3.通过学习DNA分子的结构,培养学生的空间想象能力。
4.通过制作DNA双螺旋结构模型,培养学生的创新能力和动手操作能力。
5.通过“设同—议论—补充—结论”的教学模式,充分发挥学生的主体作用。

教学重点

DNA分子的结构和复制。
教学难点
DNA分子的结构特点和DNA分子的复制过程。

教学用具

1.DNA双螺旋结构模型。
2.DNA分子复制过程图解。
3.自制的幻灯胶片。

教学方法

探究与讲述相结合。

教材分析

本节内容用两课时。第一课时讲DNA分子的结构,第二课时讲DNA分子的复制。利用两课时之间的课余时间让学生自制DNA双螺旋结构模型。为了能使学生制作成功,在第一课时多用些时间,适当补充些有关DNA的生化知识,让学生很好地掌握DNA“双链、螺旋,平行,反向,配对”的空间结构,为第二节DNA分子的复制的学习打下基础。

板书

教学过程

二、DNA分子的结构和复制
 
核苷酸
含N碱基(CHON)
 |
戊糖(C、H、0)
 |
磷酸(H、0、P)
(一)DNA分子的结构
 
1.构成DNA分子的基本单元—脱氧核糖核酸
 
 
 
 
2.脱氧核苷酸间通过脱水缩合连在一起形成多核苷酸链
A-脱氧核糖-磷酸

T-脱氧核糖-磷酸

C-脱氧核糖-磷酸

G-脱氧核糖-磷酸

|
脱—A



脱—T



脱—C



脱—G
3.DNA分子由两条平行且反向的多核苷酸链构成
 
A十G=T十C
4.DNA分子的立体结构是规则的双螺旋结构
①脱氧核苷酸的排列顺序千变万化(多样性)
②双链平行且反向
③碱基互补配对(特异性)
双链螺旋结构
极性反向平行
碱基互补配对
排列顺序无穷
(二)制作DNA双螺旋结构模型
 存在问题:
 1.碱基间距不一
 2.双键不平行
 3.外侧链不反向
 4.螺旋周期不足或多于10个核苷酸 
 
应该注意:
 1.选材适宜
 2.嘌呤碱基AG和嘧啶碱基CT的区别。
 3.外侧脱—磷—脱—磷链的平行和反向。
 4.螺旋周期。
 5.氢键的连接。第一课时
引言:我们已经学习了DNA是主要的遗传物质及DNA作为遗传物质的证据。同学们已经知道:DNA在生物传种接代、生命延续中的重要作用。不知有没有想过:
提问:为什么DNA在生命活动中的作用如此重要?
(生甲:与DNA结构严谨有关;生乙:与DNA可以复制有关。)
教师小结:同学们回答得很好!DNA能在遗传中起重要作用与它的结构和功能特点有密切的关系。那么,DNA结构如何?怎样进行复制呢?在学习之前,我们还是来回忆一下“生命的物质基础”中的有关知识。
提问:核酸有几种?
回答:核酸有两种:核糖核酸RNA和脱氧核糖核酸DNA。
提问:核酸是由哪些元素组成的?
回答:核酸是由C、H、0、N、P五种元素组成的。
提问:构成核酸的基本单位是什么?
回答:是核苷酸。
讲述:核苷酸有两大类:一类是构成RNA的基本单位:核核苷酸;另一类是构成DNA的基本单位:脱氧核糖核苷酸。
提问:在粗提取DNA的实验中,DNA哪一个重要特性是在实验中应引起注意的?
(回答:极易吸附于玻璃上因而不能用玻璃试管。)
提问:RNA与DNA有何区别?(学生讨论:略)
教师小结:出示幻灯片,附表于后。
讲述:1953年英国科学家克里克和美国科学家沃森共同提出了DNA的双螺旋结构。
1.构成DNA分子的基本单位——脱氧核糖核苷酸。
(出示幻灯片)
讲述:戊糖的第二号碳原子脱去了一个氧原子,故为脱氧核糖;含N碱基与脱氧核糖的第一号碳原子间脱去一个水分子连在一起构成一分子核苷;磷酸分子与脱氧核糖的第五号碳原子间脱去一个水分子连在一起构成一分子脱氧核糖核苷酸;构成脱氧核苷酸的含N碱基共有4种:嘌呤:腺嘌呤A、鸟嘌呤G;嘧啶:胞嘧啶C、胸腺嘧啶T。
由此:四种含N碱基分别构成了四种脱氧核苷酸:腺嘌呤(A)脱氧核苷酸。鸟嘌呤(G)脱氧核苷酸。胞嘧啶(C)脱氧核苷酸、胸腺嘧啶(T)脱氧核苷酸。
2.脱氧核苷酸间通过脱水缩合连在一起成为多核苷酸链。
(出示幻灯片)
讲述:上一分子脱氧核苷酸的第3号碳原子脱去(-OH),下一分子脱氧核苷酸的磷酸分子脱去(-H),这样脱去一分子水使两个脱氧核苷酸连在一起。多个脱氧核苷酸通过脱水缩合便形成了脱氧核苷酸链(多核苷酸链):外侧链“磷酸—脱氧核糖”交替排列,含N碱基连在链的脱氧核糖上。
3.DNA分子是由两条平行且反向的多核苷酸链构成。
讲述:在双核苷酸链的外侧骨架一条为:磷—脱—磷—脱;另一条为:脱—磷—脱—磷;两条链上的脱氧核苷酸数目相等,长度一样,排列反向;内部的碱基间严格遵循碱基互补配对原则:一条链上有碱基A,另一条链必有碱基T与其配对,一条链上有碱基C,另一条链上必有碱基G与其配对;碱基间通过氢键连在一起:A与T有两个氢键,G与C有三个氢键。由此,在双链DNA分子中:嘧啶碱基的总数与嘌呤碱基的总数相等。A+G=C+T。这可作为判断单、双链DNA的唯一依据。但不同生物的DNA分子中AT对和GC对的比例不同:
(A+T)/(G+C)=a(不同生物a值不同)。
4.DNA分子的立体结构是规则的双螺旋结构。
(出示DNA双螺旋结构模型)
讲述:在DNA分子的双链螺旋结构中:①共有四种碱基对:AT对、TA对、GC对、CG对。②每螺旋一周一条链由10个脱氧核苷酸构成,也就是有10对碱基可螺旋为一周,这样的螺旋结构对链上的脱氧核苷酸顺序无任何限制。因此,DNA分子中的脱氧核苷酸的排列顺序千变万化。从四种碱基中任选三种在一条链上作全排列的形式就有43=64种。假设一条链上有4000个碱基,按全排列的公式推算则有多少种排列顺序呢?
(让学生通过对数计算可以得出44000=102408种)
这样千变万化的顺序决定了生物界的多样性。人类中找不到两个人的指纹完全相同就在于此。但是,每一DNA都有其特异的脱氧核苷酸的排列顺序。由此,我们完全可以通过对DNA中脱氧核苷酸序列的测定建立人的DNA档案,鉴别人的血缘关系,为刑事案的侦破提供可靠依据,是人类基因组计划研究的重要组成部分。
由上1、2、3、4可知:DNA的结构为:(见板书)
这样严谨的结构,使DNA分子的结构具有相对的稳定性,从而使生命能种族延续、代代相传——遗传。

二、制作DNA双螺旋结构模型

(让学生结合上课时及教材上所讲有关DNA结构的内容,自己动手制作DNA双螺旋结构模型,进一步加深对DNA分子结构特点的理解,选择适当的材料,利用课余时间,每四人分成二组进行制作。)
(经收回后检查,有些小组制作效果不太好,存在下列问题
1.碱基间距不一
2.双链不平行
3.没有体现出“反向”。
4.每螺旋一周不足10个脱氧核苷酸或多于10个。
但在选材上,同学们费了心思:有硬纸片,有玉米杆,有橡皮泥,还有用泥土捏制等。)
(各小组就制作过程进行充分讨论,略。)

教师小结:同学们讨论的很好,在制作时应该:

1.选材要适当,易取,易制为好。
2.把嘌呤和嘧啶两类碱基从形状上区别开。
3.外侧骨架“脱—磷—脱—磷……”链的平行和反向。
4.螺旋一周必须为10个核苷酸。
5.氢键数目:AT对两个,CG对三个。
制作不好的各小组的同学,下课以后,不妨重新制作。能制
好吗?
生:能!
师:好!我和同学们一起等你们满意而归。
提问:在制过程中,有没有同学想到DNA是左旋,还是右旋呢?
生:这个没想过,我们认为是左旋。
师:好!DNA到底是左旋,还是右旋,我在这里就不详述了,等同学们上了大学后再学习。

3.2DNA分子的结构教学案


人教版必修二生物3.2DNA分子的结构教学案
一、DNA双螺旋结构模型的构建
(阅读教材P47~48)
1.构建者
美国生物学家沃森和英国物理学家克里克。
2.模型构建历程

二、DNA分子的结构(阅读教材P49~50)
项目特点
整体由两条脱氧核苷酸链按反向平行方式盘旋而成

列外侧由脱氧核糖和磷酸交替连接组成,构成基本骨架
内侧碱基通过氢键连接形成碱基对
碱基互
补配对A与T配对、G与C配对

重点聚焦
1.沃森和克里克是怎样发现DNA分子的双螺旋结构的?
2.DNA分子的双螺旋结构有哪些主要特点?


[共研探究]
阅读教材P47~48沃森和克里克构建DNA双螺旋结构模型的故事,回答下列问题:
1.沃森和克里克在构建模型的过程中,借鉴利用了他人的哪些经验和成果?
提示:(1)当时科学界已发现的证据;(2)英国科学家威尔金斯和富兰克林提供的DNA衍射图谱;(3)奥地利著名生物化学家查哥夫的研究成果:腺嘌呤(A)的量总是等于胸腺嘧啶(T)的量,鸟嘌呤(G)的量总是等于胞嘧啶(C)的量。
2.沃森和克里克在构建模型过程中,出现了哪些错误?
提示:(1)将碱基置于螺旋外部。
(2)相同碱基进行配对连接双链。
3.判断正误
(1)在DNA模型构建过程中,沃森和克里克曾尝试构建三螺旋结构模型。(√)
(2)沃森和克里克在构建DNA双螺旋结构模型过程中,碱基配对方式经历了相同碱基配对到嘌呤与嘧啶配对的过程。(√)

[对点演练]
1.下列关于沃森和克里克构建DNA双螺旋结构模型的叙述,错误的是()
A.沃森和克里克构建DNA双螺旋结构模型是建立在DNA分子以4种脱氧核苷酸(碱基为A、T、G、C)为单位连接而成的长链的基础上
B.威尔金斯和富兰克林通过对DNA衍射图谱的有关数据进行分析,得出DNA分子呈螺旋结构
C.沃森和克里克曾尝试构建了多种模型,但都不科学
D.沃森和克里克最后受腺嘌呤(A)的量总是等于胸腺嘧啶(T)的量,鸟嘌呤(G)的量总是等于胞嘧啶(C)的量的启发,构建出了科学的模型
解析:选B 沃森和克里克以威尔金斯和富兰克林提供的DNA衍射图谱的有关数据为基础,推算出DNA分子呈螺旋结构。
[共研探究]
观察下图,结合制作DNA双螺旋结构模型体验,探讨下列问题:
1.DNA分子的基本组成
(1)DNA分子的元素组成有C、H、O、N、P。
(2)DNA的基本组成单位是4种脱氧核苷酸。
(3)若图中的⑥为鸟嘌呤,则④的名称是胞嘧啶脱氧核苷酸。
2.DNA分子的结构
(1)DNA分子是由两条脱氧核苷酸链按反向平行方式盘旋成双螺旋结构。
(2)②脱氧核糖和①磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。
(3)碱基互补配对原则:⑤A(腺嘌呤)一定与T(胸腺嘧啶)配对;G(鸟嘌呤)一定与⑦C(胞嘧啶)配对。
(4)同一条链中,连接相邻两个碱基的结构是—脱氧核糖—磷酸—脱氧核糖—;两条链中连接相邻两个碱基的结构是氢键。
3.DNA的相关计算
(1)每个DNA片段中,游离的磷酸基团数是2个;磷酸数∶脱氧核糖数∶含氮碱基数是1∶1∶1。
(2)在不同的双链DNA分子中:A/T、G/C、(A+G)/(T+C)和(A+C)/(T+G)的比值无特异性。
(3)在双链DNA分子中,由于A=T,G=C,所以嘌呤数等于嘧啶数,即A+G=T+C,(A+G)/(T+C)=1,因此双链DNA分子中(A+G)/(T+C)的值相同;在单链DNA分子中不存在同样的规律,因为A与T,G与C不一定相等。
4.结合DNA分子的结构特点,归纳DNA分子结构稳定性的原因。
提示:(1)DNA分子由两条脱氧核苷酸长链盘旋成粗细均匀、螺距相等的规则双螺旋结构。(2)DNA分子中脱氧核糖和磷酸交替连接排列在外侧,构成基本骨架。(3)DNA分子双螺旋结构的中间为碱基对,碱基之间形成氢键,从而维持双螺旋结构的稳定。(4)DNA分子之间对应碱基严格按照碱基互补配对原则进行配对。

[总结升华]
1.DNA分子的结构及特点

(1)由图1得到以下信息:
①数量关系a:每个DNA分子片段中,游离磷酸基团有2个b:脱氧核糖数=磷酸数=含氮碱基数c:A—T碱基对有2个氢键,G—C碱基对有3个氢键
②位置关系a:单链中相邻碱基间通过—脱氧核糖—磷酸—脱氧核糖—连接b:互补链中相邻碱基间通过氢键相连
③化学键氢键:连接互补链中相邻碱基的化学键磷酸二酯键:连接单链中相邻两个脱氧核苷酸的化学键
④DNA初步水解产物是脱氧核苷酸,彻底水解产物是磷酸、脱氧核糖和含氮碱基。
(2)图2是图1的简化形式,其中①是磷酸二酯键,③是氢键。
(3)DNA分子的特性
①稳定性:a.DNA中脱氧核糖和磷酸交替连接的方式不变;b.两条链间碱基互补配对的方式不变。
②多样性:不同DNA分子中脱氧核苷酸的数量不同,排列顺序多种多样。n个碱基对构成的DNA分子中,排列顺序有2n种。
③特异性:每种DNA都有区别于其他DNA的特定的碱基排列顺序。
2.碱基间的数量关系分析
项目双链DNA1链2链规律
A、T、G、C关系A=T
G=CA1=T2
G1=C2
T1=A2
C1=G2双链DNA中,A总等于T,G总等于C,且1链上的A等于2链上的T,1链上的G等于2链上的C
非互补碱基和之比,
即(A+G)/(T+C)
或(G+T)/(A+C)1m1/mDNA双链中非互补碱基之和总相等,两链间非互补碱基和之比互为倒数
互补碱基和之比,
即(A+T)/(G+C)
或(G+C)/(A+T)nnn在同一DNA中,双链和单链中互补碱基和之比相等
某种碱基的比例
(x为A、T、G、C中
某种碱基的百分
含量)x1+x22
x1x2某碱基占双链DNA碱基总数的百分数等于相应碱基占相应单链的比值的和的一半

(1)“三看法”判断DNA分子结构的正误
一看外侧链成键位置是否正确,正确的成键位置在一分子脱氧核苷酸的5号碳原子上的磷酸基团与相邻核苷酸的3号碳原子之间;二看外侧链是否反向平行;三看内侧链碱基之间配对是否遵循碱基互补配对原则。
(2)区分核酸种类的方法
①若含T,A≠T或嘌呤≠嘧啶,则为单链DNA。因为双链DNA分子中A=T,G=C,嘌呤(A+G)=嘧啶(T+C)。
②若嘌呤≠嘧啶,肯定不是双链DNA(可能为单链DNA,也可能为RNA)。但若是细胞中所有核酸的嘌呤≠嘧啶,则可能既有双链DNA又有RNA。
[对点演练]
2.判断正误
(1)DNA的两条核糖核苷酸长链反向平行缠绕成双螺旋结构。()
(2)DNA的一条单链中相邻的两个碱基通过碱基互补形成的氢键连接。()
(3)DNA分子的碱基配对方式决定了DNA分子结构的多样性。()
解析:(1)构成DNA的两条长链为脱氧核苷酸链且反向盘旋,非缠绕。(2)DNA的一条单链中相邻的两个碱基通过—脱氧核糖—磷酸—脱氧核糖—连接。(3)DNA分子中碱基对排列顺序的多样性决定了其结构的多样性。
答案:(1)× (2)× (3)×
3.如图为DNA分子结构示意图,相关叙述正确的是()
a.②和③相间排列,构成了DNA分子的基本骨架
b.④的名称是胞嘧啶脱氧核苷酸
c.⑨是氢键,其形成遵循碱基互补配对原则
d.DNA分子中特定的脱氧核苷酸序列代表了遗传信息
e.③占的比例越大,DNA分子越不稳定
f.⑤⑥⑦⑧依次代表A、G、C、T
A.bcdf B.cdf
C.abcfD.bce
解析:选B DNA分子是反向平行的双螺旋结构,①磷酸与②脱氧核糖交替排列在外侧,构成了DNA的基本骨架;④中的③②及②下方的磷酸基团组成胞嘧啶脱氧核苷酸;碱基互补配对,配对碱基之间通过氢键相连;DNA分子中特定的脱氧核苷酸序列代表了遗传信息;G与C之间形成3条氢键,G与C含量越多,DNA分子越稳定;根据碱基互补配对原则,⑤⑥⑦⑧依次代表A、G、C、T。


1.如图是4位同学拼制的DNA分子部分平面结构模型,正确的是()
解析:选C 脱氧核苷酸之间的连接点在一个脱氧核苷酸的磷酸和另一个脱氧核苷酸的脱氧核糖之间,A、B两项错误;磷酸分别与两个脱氧核糖的5号、3号碳原子相连,C项正确,D项错误。
2.在DNA分子的一条脱氧核苷酸链中,相邻的碱基A与T之间的连接结构是()
A.氢键
B.—磷酸—脱氧核糖—磷酸—
C.肽键
D.—脱氧核糖—磷酸—脱氧核糖—
解析:选D 审题时应扣住“一条脱氧核苷酸链中,相邻的碱基A与T之间的连接结构”,相邻的脱氧核苷酸相连接,依靠磷酸基团和脱氧核糖之间形成磷酸二酯键,因此两个碱基之间的连接结构是:—脱氧核糖—磷酸—脱氧核糖—。
3.某DNA分子碱基中,鸟嘌呤分子数占22%,那么胸腺嘧啶分子数占()
A.11% B.22%
C.28%D.44%
解析:选C 在DNA中,A=T,G=C。当G%=22%时,T%=1/2(1-G%-C%)=28%。
4.如图为DNA分子的平面结构,虚线表示碱基间的氢键。请据图回答:
(1)从主链上看,两条单链________平行;从碱基关系看,两条单链________。
(2)________和________相间排列,构成了DNA分子的基本骨架。
(3)图中有________种碱基,________种碱基对。
(4)含有200个碱基的某DNA片段中碱基间的氢键共有260个。请回答:
①该DNA片段中共有腺嘌呤________个,C和G构成的碱基对共________对。
②在DNA分子稳定性的比较中,________碱基对的比例越高,DNA分子稳定性越高。
解析:(1)从主链上看,两条单链是反向平行的;从碱基关系看,两条单链遵循碱基互补配对原则。(2)脱氧核糖与磷酸交替连接排列在外侧,构成DNA分子的基本骨架。(3)图中涉及4种碱基,4种碱基之间的配对方式有两种,但碱基对的种类有4种,即A—T、T—A、G—C、C—G。(4)假设该DNA片段只有A、T两种碱基,则200个碱基,100个碱基对,含有200个氢键,而实际上有260个氢键,即G—C或C—G碱基对共60个,所以该DNA中腺嘌呤数为1/2×(200-2×60)=40个,C和G共60对。由于G与C之间有三个氢键,A与T之间有两个氢键,因此,G与C构成的碱基对的比例越高,DNA分子稳定性越高。
答案:(1)反向 碱基互补配对 (2)脱氧核糖 磷酸
(3)4 4 (4)①40 60 ②G与C


1.下列哪项不是沃森和克里克构建过的模型()
A.碱基在外侧的双螺旋结构模型
B.同种碱基配对的三螺旋结构模型
C.碱基在外侧的三螺旋结构模型
D.碱基互补配对的双螺旋结构模型
解析:选B 沃森和克里克最先提出了碱基在外侧的双螺旋和三螺旋结构模型,后来又提出了碱基在内侧的双螺旋结构模型,并且同种碱基配对。最后提出了碱基互补配对的双螺旋结构模型。
2.有一对氢键连接的脱氧核苷酸,已知它的结构中有一个腺嘌呤,则它的其他组成应是()
A.三个磷酸、三个脱氧核糖和一个胸腺嘧啶
B.两个磷酸、两个脱氧核糖和一个胞嘧啶
C.两个磷酸、两个脱氧核糖和一个胸腺嘧啶
D.两个磷酸、两个脱氧核糖和一个尿嘧啶
解析:选C 据碱基互补配对原则可知,另一个碱基为T,两个脱氧核苷酸含有两个磷酸和两个脱氧核糖。
3.制作DNA分子的双螺旋结构模型时,发现制成的DNA分子的平面结构很像一架“梯子”,那么组成这架“梯子”的“扶手”、“扶手”之间的“阶梯”、连接“阶梯”的化学键以及遵循的原则依次是()
①磷酸和脱氧核糖②氢键③碱基对④碱基互补配对
A.①②③④B.①③②④
C.③①②④D.①②④③
解析:选B “扶手”代表DNA的骨架,即磷酸和脱氧核糖交替连接形成的长链,排列在内侧的碱基对相当于“阶梯”,连接“阶梯”的化学键是氢键,碱基间遵循碱基互补配对原则。
4.下列关于DNA分子双螺旋结构特点的叙述,错误的是()
A.DNA分子由两条反向平行的链组成
B.脱氧核糖和磷酸交替连接,排列在外侧
C.碱基对构成DNA分子的基本骨架
D.两条链上的碱基通过氢键连接成碱基对
解析:选C DNA分子中,脱氧核糖和磷酸交替连接,排列在外侧,构成DNA分子的基本骨架。
5.下列关于DNA分子结构的叙述,不正确的是()
A.每个DNA分子一般都含有4种脱氧核苷酸
B.一个DNA分子中的碱基、磷酸、脱氧核苷酸、脱氧核糖的数目是相等的
C.每个脱氧核糖上均连着一个磷酸和一个碱基
D.双链DNA分子中的一段,如果有40个腺嘌呤,就一定同时含有40个胸腺嘧啶
解析:选C 在DNA分子长链中间的每个脱氧核糖均连接一个碱基和两个磷酸基团,链端的脱氧核糖只连接一个碱基和一个磷酸基团。
6.如图为核苷酸链结构图,下列叙述不正确的是()
A.能构成一个完整核苷酸的是图中的a和b
B.图中每个五碳糖都只有1个碱基与之直接相连
C.各核苷酸之间是通过化学键③连接起来的
D.若该链为脱氧核苷酸链,从碱基组成上看,缺少的碱基是T
解析:选A 核苷酸由1分子磷酸、1分子五碳糖和1分子碱基组成,即图中的a,b中磷酸的连接位置不正确,A错误;由题图可知,每个五碳糖都只有1个碱基与之直接相连,B正确;核苷酸之间通过磷酸二酯键即图中③相连形成核苷酸链,C正确;脱氧核苷酸根据碱基不同分为腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胞嘧啶脱氧核苷酸、胸腺嘧啶脱氧核苷酸,因此若该链为脱氧核苷酸链,从碱基组成上看,缺少的碱基是胸腺嘧啶T,D正确。
7.从分子水平上对生物体具有多样性或特异性的分析,错误的是()
A.碱基对的排列顺序的千变万化,构成了DNA分子中基因的多样性
B.碱基对的特定的排列顺序,又构成了每一个基因的特异性
C.一个含2000个碱基的DNA分子,其碱基对可能的排列方式就有41000种
D.人体内控制β珠蛋白的基因由1700个碱基对组成,其碱基对可能的排列方式有41700种
解析:选D β珠蛋白基因碱基对的排列顺序,是β珠蛋白所特有的。任意改变碱基的排列顺序后,合成的就不一定是β珠蛋白。
8.(2014上海高考)在DNA分子模型搭建实验中,如果用一种长度的塑料片代表A和G,用另一长度的塑料片代表C和T,那么由此搭建而成的DNA双螺旋的整条模型()
A.粗细相同,因为嘌呤环必定与嘧啶环互补
B.粗细相同,因为嘌呤环与嘧啶环的空间尺寸相似
C.粗细不同,因为嘌呤环不一定与嘧啶环互补
D.粗细不同,因为嘌呤环与嘧啶环的空间尺寸不同
解析:选A A和G都是嘌呤碱基,C和T都是嘧啶碱基,在DNA分子中,总是A=T,G=C,依题意,用一种长度的塑料片代表A和G,用另一长度的塑料片代表C和T,则DNA的粗细相同。

9.下列有关DNA分子结构的叙述,正确的是()
A.DNA分子是由两条反向平行的脱氧核苷酸长链盘旋而成的规则的双螺旋结构,其基本骨架由脱氧核糖、磷酸和含氮碱基交替排列而成
B.整个DNA分子中,嘌呤数目等于嘧啶数目,所以每条DNA单链中A=T、G=C
C.与DNA分子中的碱基G直接相连的是脱氧核糖和碱基C
D.每个脱氧核糖均只与一个磷酸和一个碱基相连
解析:选C DNA分子双螺旋结构的外侧是磷酸与脱氧核糖交替排列构成的基本骨架,碱基排列在内侧。若DNA分子的一条链上是碱基A,则另一条链上与之配对的一定是碱基T;一条链上是碱基G,则另一条链上与之配对的一定是碱基C,反之亦然。所以,在双链DNA分子中A=T、G=C,但在单链中,碱基A的数目不一定等于碱基T的数目,碱基G的数目也不一定等于碱基C的数目。在一个脱氧核苷酸中,碱基G与脱氧核糖直接相连,两链之间碱基G与碱基C互补配对。每个脱氧核糖均只与一个碱基相连,但除了游离的脱氧核糖只与一个磷酸相连外,其余脱氧核糖均与两个磷酸相连。
10.在一个DNA分子的一条链上,腺嘌呤比鸟嘌呤多40%,两者之和占DNA分子上碱基总数的24%,则这个DNA分子的另一条链上,胸腺嘧啶占该链上碱基数目的()
A.44%B.24%
C.14%D.28%

解析:选D 画出DNA分子简图(如图所示)。依题意,列出等量关系:(A1-G1)/G1=40%→A1=1.4G1①,而在整个DNA分子中:(A1+G1)/200=24%→A1+G1=48②,联立①、②得:A1=28。整个DNA分子中A1=T2,因此正确答案是D。
11.在搭建DNA分子模型的实验中,若有4种碱基塑料片共20个,其中4个C,6个G,3个A,7个T,脱氧核糖和磷酸之间的连接物14个,脱氧核糖塑料片40个,磷酸塑料片100个,代表氢键的连接物若干,脱氧核糖和碱基之间的连接物若干,则()
A.能搭建出20个脱氧核苷酸
B.所搭建的DNA分子片段最长为7碱基对
C.能搭建出410种不同的DNA分子模型
D.能搭建出一个4碱基对的DNA分子片段
解析:选D 每个脱氧核苷酸中,脱氧核糖数=磷酸数=碱基数,因脱氧核糖和磷酸之间连接物是14个,故最多只能搭建出14个脱氧核苷酸。DNA分子的碱基中A=T、C=G,故提供的4种碱基最多只能构成4个C—G对和3个A—T对,但由于脱氧核苷酸之间结合形成磷酸二酯键时还需要脱氧核糖和磷酸之间的连接物,故7碱基对需要的脱氧核糖和磷酸之间的连接物是14+12=26(个)。设可搭建的DNA片段有n碱基对,按提供的脱氧核糖和磷酸之间连接物是14个计算,则有14=n×2+(n-1)×2,得n=4,故能搭建出一个4碱基对的DNA分子片段。
12.现有一待测核酸样品,经检测后,对碱基个数统计和计算得到下列结果:(A+T)∶(G+C)=(A+G)∶(T+C)=1。根据此结果,该样品()
A.无法被确定是脱氧核糖核酸还是核糖核酸
B.可被确定为双链DNA
C.无法被确定是单链DNA还是双链DNA
D.可被确定为单链DNA
解析:选C 由于核酸样品检测得到碱基A、T、C、G,所以该核酸一定是DNA,而不是RNA;据题意可知四种碱基相等,即A=T=G=C,无法确定是单链DNA还是双链DNA。
13.如图表示某大肠杆菌DNA分子结构的片段,请据图回答:

(1)图中1表示________,2表示________。1、2、3结合在一起的结构叫________。
(2)3有________种,中文名称分别是_______________________________。
(3)DNA分子中3与4是通过________连接起来的。
(4)DNA被彻底氧化分解后,能产生含N废物的是________。
解析:图示为DNA片段,1代表磷酸,2是脱氧核糖,3、4代表含氮碱基。两条链之间通过碱基对间的氢键相连。
答案:(1)磷酸 脱氧核糖 脱氧核糖核苷酸 (2)两 鸟嘌呤、胞嘧啶 (3)氢键 (4)含氮碱基
14.如图是DNA分子片段的结构图,请据图回答:
(1)图甲是DNA分子片段的________结构,图乙是DNA分子片段的________结构。
(2)写出图中部分结构的名称:[2]________________、[5]__________________。
(3)从图中可以看出DNA分子中的两条长链是由________和________交替连接的。
(4)碱基配对的方式为:__________与__________配对;__________与__________配对。
(5)从图甲中可以看出,组成DNA分子的两条链的方向是________的,从图乙中可以看出,组成DNA分子的两条链相互盘旋成________的________结构。
解析:(1)从图中可以看出:甲表示的是DNA分子片段的平面结构,而乙表示的是DNA分子片段的立体(空间)结构。(2)图中2表示的是一条脱氧核苷酸长链的片段,而5表示的是腺嘌呤脱氧核苷酸。(3)从图甲的平面结构可以看出:DNA分子中脱氧核糖和磷酸交替连接,排列在外侧构成了基本骨架。(4)DNA分子两条链上的碱基通过氢键连接成碱基对,且有一定规律:A与T配对,G与C配对。(5)从图甲中可以看出,组成DNA分子的两条脱氧核苷酸链是反向平行的;从图乙中可以看出,组成DNA分子的两条脱氧核苷酸链相互盘旋成有规则的双螺旋结构。
答案:(1)平面 立体(或空间) (2)一条脱氧核苷酸长链的片段 腺嘌呤脱氧核苷酸 (3)脱氧核糖 磷酸
(4)A(腺嘌呤) T(胸腺嘧啶) G(鸟嘌呤) C(胞嘧啶) (5)反向 有规则 双螺旋
15.如图为不同生物或同一生物不同器官(细胞)的DNA分子中A+T/G+C的比值情况,据图回答问题:
(1)猪的不同组织细胞的DNA分子碱基比例大致相同,原因是________________________________________________________________________。
(2)上述三种生物中的DNA分子,热稳定性最强的是________。
(3)假设小麦DNA分子中A+T/G+C=1.2,那么A+G/T+C=________。
(4)假如猪的某一DNA分子中有腺嘌呤30%,则该分子一条链上鸟嘌呤含量的最大值可占此链碱基总数的________。
解析:(1)猪的不同组织细胞中DNA分子碱基比例大致相同,是因为它们由同一个受精卵经有丝分裂而来。(2)根据图中数值可判断小麦中G+C所占比例最大,而在A与T之间有两个氢键,G与C之间有三个氢键,所以小麦DNA分子的热稳定性最高。(3)只要是双链DNA分子,A+G/T+C的值均为1。(4)据A+G=T+C=50%,则鸟嘌呤占20%。若所有鸟嘌呤分布在一条链上,则分母缩小一半,一条链上的鸟嘌呤含量最大值可占此链碱基总数的40%。
答案:(1)不同的组织细胞来源于同一个受精卵的有丝分裂 (2)小麦 (3)1 (4)40%