小学三年级数学教案
发表时间:2020-12-08八年级数学上册第13章轴对称教案4份(新人教版)。
每个老师不可缺少的课件是教案课件,大家在仔细规划教案课件。认真做好教案课件的工作计划,才能规范的完成工作!你们了解多少教案课件范文呢?以下是小编为大家收集的“八年级数学上册第13章轴对称教案4份(新人教版)”仅供您在工作和学习中参考。
课题:第十三章轴对称(一)复习课
教学目标
(一)〔知识与技能〕
1.本章的所有基本概念.2.本章的所有性质.
3.本章的所有基本概念及其性质的应用.
(二)〔过程与方法〕
通过学生的操作和思考,使学生掌握本章的基本概念,并在运用概念及其性质解题的过程中培养学生认真思考的习惯.
教学重点:1.本章的基本概念及性质.2.本章性质的应用.
教学难点:本章性质的理解及其应用.
课教学过程
一、选择题:
1.下列图案是轴对称图形的有().
(A)1个(B)2个(C)3个(D)4个
2.将写有字“B”的字条正对镜面,则镜中出现的会是().
(A)B(B)(C)(D)
3.已知直角三角形中30°角所对的直角边为2㎝,则斜边的长为()
(A)2㎝(B)4㎝(C)6㎝(D)8㎝
4.点M(1,2)关于x轴对称的点的坐标为()
(A)(—1,2)(B)(-1,-2)(C)(1,-2)(D)(2,-1)
5.下列说法正确的是()
A.等腰三角形的高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等
C.等腰三角形一边不可以是另一边的二D.等腰三角形的两个底角相等
6.如图(1),DE是ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,
则EBC的周长为()厘米
A.16B.28C.26D.18
7.等腰三角形的一个角是80°,则它的底角是()图(1)
(A)50°或80°(B)80°(C)50°(D)20°或80°
8.如图(2),是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=8m,∠A=30°,则DE等于()
(A)1m(B)2m
(C)3m(D)4m
图(2)图(3)
9.如图(3),五角星的五个角都是顶角为36°的等腰三角形,则∠AMB的度数为()
(A)144°(B)120°(C)108°(D)100°
10.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是()
(A)75°或15°(B)75°(C)15°(D)75°和30°
二、填空题
1、如图(4),△ABC中,AB=AC,AD⊥BC,BD=5cm,则CD=____________cm.
2、等腰三角形一个底角是30°,则它的顶角是__________度.
3、等腰三角形的腰长是6,则底边长3,周长为______________________.
4、等腰三角形一个外角为50°,则此等腰三角形顶角是________度,底角是________度.
5、如图(5),△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,则图中等腰三角形有_____________个.
6、如图(6),△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为____________.
图(4)图(5)图(6)
7、到三角形各顶点距离相等的点是三角形的交点.
8、在直角坐标系内有两点A(-1,1)、B(3,3),若M为x轴上一点,且MA+MB最小,则M的坐标是________.
三、解答题(第1--6每题6分,第7题10分,共46分)
1、如图,根据要求回答下列问题:解:(1)点A关于x轴对称点的坐标是;点B关于y轴对称点的坐标是;点C关于原点对称点的坐标是;
(2)作出与△ABC关于x轴对称的图形(不要求写作法)
2、等腰△ABC中,∠A=70度,求∠B、∠C的度数.
3、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A,∠ADB的度数.
4、如图,在四边形ABCD中,AB=AD,CB=CD,求证:∠ABC=∠ADC.
5、如图,在△ABC中,∠ACB=90,DE是AB的垂直平分线,∠CAE:∠EAB=4:1.求∠B的度数.
七、教学反思:
一、教材处理
本节内容是轴对称相关知识的复习课,主要内容是复习轴对称及其基本性质,欣赏、体验轴对称在现实生活中的广泛应用。在此基础上,利用轴对称,探索回顾等腰三角形的性质,复习它的判定方法,并进一步复习等边三角形。
二、教法学法
整节课的安排,努力贯彻“学生为主体、教师为主导”的教育原则。教师只是对部分知识的复习加以指导以及对整个教学流程加以控制,其余都让学生自己观察、思考;操作、联想;讨论、口述,这样将有利于每位学生积极动脑、动手、动口、耳闻、目睹,各种器官并用,使全体学生真正成为学习活动的主人。其中动手操作不仅适合二年级学生的年龄特征,更能激发学生的求知欲,使学生处于一种跃跃欲试的求知状态,从而创设良好的求知氛围,这样将有利于学生在教师的引导下去回顾与掌握所学知识。我认为,在经历了亲自探索、讨论交流、相互启迪的过程后,每位学生的自主意识、自主能力都将得到提高,最终将达到提高学生思维品质的教育目的。
精选阅读
八年级数学上册13.1轴对称学案新版新人教版
每个老师上课需要准备的东西是教案课件,大家静下心来写教案课件了。需要我们认真规划教案课件工作计划,才能对工作更加有帮助!你们到底知道多少优秀的教案课件呢?为满足您的需求,小编特地编辑了“八年级数学上册13.1轴对称学案新版新人教版”,仅供参考,欢迎大家阅读。
13.1轴对称
一.学习目标
1.能辨别轴对称图形和两图形成对称,及相互转化;认识对称点;认识中垂线及其性质;会作中垂线。
2.在学习过程中,培养学生的观察能力,动手能力和归纳的思维能力。
3.在活动中感受数学美,在合作中享受快乐,从而激发学生热爱数学的情趣。
二.学习重难点
轴对称和中垂线及成轴对称与中垂线的关系。
三.学习过程
第一课时认识轴对称
(一)构建新知
1.阅读教材58~60页
(1)图13.1-1和13.1-2中,是轴对称图的画出它们对称轴,这些图形的共同特点是_________和___________。
(2)如图,在圆,棱形和平行
四边形中,图①有____条对称轴,
图②有____条对称轴,图③有____条对称轴。
(3)如图,在△ABC和△DEF中,
①△ABC和________成轴对称,若AB=7,DF=,,EF=3,
那么△ABC的周长是_________。
②连接对称点,我们发现对称点的连线段与对称轴的位置关系是____________。
③当我们把△ABC和___________看成一个________时,这个图就是轴对称图。
(二)合作学习
1.画正多边形的对称轴,我们发现正多边形的对称轴数量与______有关系;并等于__________。
(三)课堂学习检查
1.正六边形形是轴对称图形,它的对称轴有()
A.3条B.4条C.5条D.6条
2.下面几何图形中,一定是轴对称图形的有()
A.1个B.2个C.3个D.4个
3.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影
(如图),若再从其余小正方形中任选一个也涂上阴影,使得整
个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有_____个。
4.如图,AB左边是计算器上的数字“5”,若以直线AB为对称轴,
那么它的轴对称图形是数字_______。
5.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图
形的汉字___________________________。
6.上海将在2010年举办世博会.黄浦江边大幅宣传画上
的“2010”如图所示.从对岸看,它在水中倒影所显示的数是______________。
(四)学习评价
(五)课后练习
1.学习指要28~29页
2.教材64~66页1题,2题,3题,4题
第二课时中垂线的性质
(一)构建新知
1.阅读教材61页
(1)如图,线段AC,BD互相垂直平分。
①AC的中垂线是________,BD的中垂线是______。
②图中相等的线段有:________________________________________;全等的三角形有:______________________________________________________。
③图中四边形ABCD是_________图形,BD,AC是____________。
(2)中垂线的性质:_____________上的点到线段两端的距离相等。
(二)合作学习
1.如图,在△ABC中,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,
求△ABD的周长。
(三)课堂检查
1.已知点P在线段AB的垂直平分线上,PA=6,则PB=_________。
2.如图所示,在△ABC中,∠C=90°,AB=16cm,BC的垂直平分线交AB于点D,则点C与点D的距离是_____cm。
3.如图,△ABC中,AB的垂直平分线DE交AB于E,BC于D,连结AD.已知AC=5cm,△ADC的周长为17cm,则BC的长为______cm。
4.如图,D是线段AB,BC的垂直平分线的交点,若∠ABC=50°,则∠ADC的大小是()。
A.100°B.115°C.130°D.150°
5.在△ABC中,AB边的垂直平分线交直线BC于点D,
垂足为点F,AC边的垂直平分线交直线BC于点E,垂足为点G.
(1)若∠BAC=100°,∠DAE=_______;
(2)若∠BAC=а,∠DAE=_______;
(3)若BC=18cm,求△ADE的周长。
(四)学习评价
(五)课后练习
1.学习指要29~30页
2.教材64~66页6题,10题
第三课时中垂线的判定
(一)构建新知
1.阅读教材61页
(1)如图,△ABC中,AD是BC边上的中线,要
使AD是线段BC的中垂线应添加一个条件,这个
条件是__________。
(2)如图,△ABC中,AC=BC,E是CD上的一点,且
EA=EB。
①图中全等的三角形有:________________________________________。
②CD是△ABC的____________;CD是线段AB的________________。
(3)到线段两端距离相等的点,在__________________________上。
(二)合作学习
1.如图,四边形ABCD中,已知BD平分∠ABC,∠A+∠C=180°,BC>BA,求证:点D在线段的垂直平分线上。
(三)课堂检查
1.在锐角△ABC内一点P满足PA=PB=PC,则点P是△ABC()。
A.三条角平分线的交点B.三条中线的交点
C.三条高的交点D.三边垂直平分线的交点
2.如图,AC=AD,BC=BD,则有()。
A.AB垂直平分CDB.CD垂直平分AB
C.AB与CD互相垂直平分D.CD平分∠ACB
3.如图,点E为Rt△ABC斜边AB的中点,D为BC边上的一
点,ED⊥AB,且∠CAD:∠BAD=1:7,则∠BAC=________。
4.如图,D是线段AB、BC垂直平分线的交点,
若∠ABC=150°,则∠ADC=_________。
5.如图,在四边形ABCD中,AD∥BC,E
为CD的中点,连接AE、BE,BE⊥AE,延长
AE交BC的延长线于点F。
(1)求证:FC=AD;
(2)求证:AB=BC+AD。
(四)学习评价
(五)课后练习
1.学习指要31~32页
2.教材64~66页5题,9题
第四课时作垂线和对称轴
(一)构建新知
1.阅读教材62~63页
(1)图13.1-8中,过直线外一点作直线的垂线过程:①定______;②定______;
③定______;④定______。CF是直线AB的_____线,是线段DE的______线。
(2)图13.1-9中,找对称图形的对称轴除了对折的方法外,还有作图的方法:①找任意一组_______点;②作其连线段的_______线。
(3)对称点到对称轴的距离_______。对称轴与对称点连线段的交点是这条线段的_____点。
(4)在线段,射线,直线中是轴对称图形的是:__________________________。
(二)合作学习
1.己知:△ABC和点A1.若△A1B1C1与△ABC关于直线a轴对称(A与A1是对称点)。
(1)画直线a;
(2)△ABC关于直线a的对称图△A1B1C1。
(三)课堂检查
1.如图,已知正五边形ABCDE,请用无刻度的直尺,准
确地画出它的一条对称轴(保留作图痕迹)。
2.如图,一轴对称图形画出了它的一半,请你以点画线
为对称轴画出它的另一半。
3.如图,请你用直尺和圆规作出AB的对称
轴(不写作法,保留作图痕迹)。
4.用刻度尺分别画下列图形的对称轴,可以不用刻度尺上的刻度画的是()。
A.①②B.②③C.③④D.①④
5.观察下图中各组图形,其中不是轴对称的是()。
6.尺规作图,经过直线上一点作这条直线的垂线。
(四)学习评价
(五)课后练习
1.学习指要33~34页
2.教材64~66页7题,8题,11题,12题,13题
八年级数学上册13.1.1轴对称(人教版)
13.1.1轴对称
┃教学过程设计┃
【教学目标】
1.认识轴对称图形的共同特征,能识别简单的轴对称图形及其对称轴,通过实践操作,理解轴对称图形和两个图形成轴对称的区别.
2.经历折叠、剪纸等活动,发展学生的形象思维和空间观念,积累数学活动的经验,在动手实践中学会与人合作、彼此交流.
3.初步获得动手的乐趣和成就感,欣赏并体会对称美,感受轴对称的价值,培养学生热爱生活的情感.
【重点难点】
重点:掌握轴对称图形和两图形关于直线对称的概念,识别轴对称图形和对称轴.
难点:理解轴对称图形和两个图形关于直线对称的区别.
┃教学过程设计┃
教学过程设计意图
一、创设情境,导入新课
师:一次晚会上,主持人出了一道题目:“如何把变成一个真正的等式?”
你知道怎么做吗?
生:挪动第一个数中的2根火柴.
师:这不是火柴搭的,所以没法挪动.学生茫然了.
师:我相信,通过这节课的学习,大家一定能解决这个问题.以学生感兴趣的问题引入,引起学生的兴趣,激起学生的思维.
二、师生互动,探究新知
1.欣赏生活中的轴对称图片.
2.观察特点、形成概念
问题1:这些美丽的图形均来自生活,细心观察之后,你能发现这些图形有什么共同特征吗?用自己的语言描述一下.
师生活动:鼓励学生积极地用自己的语言概括图形的共同特征.课件演示以下两个轴对称图形的重合过程,让学生感受动态过程.
问题2:举出几个生活中具有对称特征的物体,并与同伴交流.
师生活动:给学生一定的思考交流时间,鼓励学生从自己的生活经验出发,列举符合对称特征的物体,并进行广泛交流,进一步体会轴对称图形的特点.
3.类比观察,发现区别
(1)向学生展示几组图案,如:两扇门、两只小脚印等.
(2)观察每组图案,你发现和刚才的轴对称图形是一回事吗?与大家交流.
(3)全等与对称的关系
概念中的“重合”是什么意思?(全等),那么全等的两个图形一定关于某直线对称吗?
学生交流后,课件演示:这两个全等三角形关于某直线对称吗?
(4)轴对称图形和两个图形成轴对称的区别:
认识了轴对称图形,探讨了两个图形关于直线对称的特点,那么轴对称图形和两图形关于直线对称是不是一回事?它们有什么区别和联系?
师生活动:先让学生自由发言,畅谈两个概念的区别和联系,从而进一步体会和明确概念的本质.
最后总结成表格在多媒体展示.
5.探索成轴对称的两个图形的性质
问题:如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN有什么关系?
师生活动:学生尝试回答,并相互补充,最后得出:AA′与MN垂直,BB′,CC′也与MN垂直,同时MN平分线段AA′,BB′,CC′.
追问1:你能说明其中的道理吗?
师生活动:学生独立思考,学生代表汇报,师生共同交流.
追问2:前面的例子说明如果△ABC和△A′B′C′关于直线MN对称,那么,直线MN垂直于线段AA′,BB′,CC′,并且直线MN还平分线段AA′,BB′,CC′.如果将其中的“三角形”改为“四边形”“五边形”……其他条件不变,上述结论还成立吗?
师生活动:教师提出问题,学生独立思考,然后小组交流,学生代表汇报交流结果.
追问3:你能用数学语言概括前面的结论吗?
师生活动:学生尝试概括,并相互补充,得出轴对称的两个图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
6.探索轴对称图形的性质
右图是一个轴对称图形,你能发现什么结论?能说明理由吗?
师生活动:学生回答:直线l垂直于线段AA′,BB′.直线l平分线段AA′,BB′(或直线l是线段AA′,BB′的垂直平分线),并说明理由.
追问:你能用数学语言概括前面的结论吗?
师生活动:学生尝试概括,并相互补充,得出轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.
以生活中尽可能多的丰富实例,让学生欣赏并体会轴对称图形,发展学生的审美能力、鉴赏能力.
学生回忆学过的几何图形,比如线段、角、长方形、等腰三角形、圆等,让学生折一折,看看各有几条对称轴,并让学生明确对称轴是直线,而不是射线或线段,有些图形的对称轴不止一条.
通过让学生亲自体验,使学生进一步体会轴对称现象的特点,了解轴对称图形和两个图形成轴对称的区别,学生理解即可,暂不深究.
从特例出发,让学生经历发现结论,说明结论的过程,体会概念在探索性质中的重要作用.
拓展问题的研究范围,将问题一般化,让学生经历由特殊到一般的探索问题的过程,体会研究问题的一般方法和类比方法
培养学生的抽象概括能力,提高学生对成轴对称的两个图形的性质的认识.
让学生在探索成轴对称的两个图形的性质的基础上,探索轴对称图形的性质,体会类比方法在研究数学问题中的作用.
三、运用新知,解决问题
1.生活中的轴对称图形随处可见,我们每天使用的数字、字母和汉字中也有一些可以看成是轴对称图形,你能识别它们吗?能说出它们的对称轴吗?
(1)下面的数字,哪些是轴对称图形?它们各有几条对称轴?
0123456789
(2)你能发现下列哪些汉字可以看成是轴对称图形吗?
口工用中由水日甲田
2.下列图形是部分汽车的标志,哪些是轴对称图形?
体会生活中无处不在的轴对称现象,第1题共同品味中国文字的对称美,弘扬中国文化.第2题主要让学生体会生活中的一些标志的设计用到轴对称的知识,体会对称的和谐美.
四、课堂小结,提炼观点
这节课……
我学会了……
我还有什么问题……
如果世界没有对称会怎样……学生畅所欲言,培养语言表达及概括能力,本小结学生总结后又给学生提出了一个新的问题,生活中如果没有轴对称会怎样呢?让学生充分体会了数学的实际应用价值.
五、布置作业,巩固提升
教材第64页第1、2题.
【板书设计】
轴对称
1.“轴对称图形”的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线即折痕所在直线就是它的对称轴.
2.两个图形成轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.
【教学反思】
本节内容看似简单,却是今后学习相关知识的重要基础.设计时,内容上基本保留原有教材中的主要资源,设计生活化、情趣化的引入情境,运用多媒体形象展现,引起学生兴趣,激发学生的求知欲.学生的“数学活动”是本节课的教学主线,剪纸和印墨迹试验的设计为学生提供了充分从事数学活动的机会及表达个人感受和想法的平台,使学生充分地感知后,自然地形成本节课的概念.
八年级数学上第15章分式教案4份(新人教版)
§15分式全章小结(2课时)
第一课时综合复习
一、知识结构
二、重要知识与规律总结
(一)概念
1、分式:(A、B为整式,B≠0)
2、最简公分母:各分母所有因式的最高次幂的积.
3、分式方程:分母中含有未知数的方程.
(二)性质
1、分式基本性质:(M是不等于零的整式)
2、幂的性质:
零指数幂:=1(a≠0)
负整指数幂:(a≠0,n为正整数)
科学记数法:a×,1≤|a|<10,n是一个整数.
(三)分式运算法则
分式乘法:将分子、分母分别相乘,即
分式除法:将除式的分子、分母颠倒位置后,与被除式相乘,即
分式的加减:(1)同分母分式相加减:;
(2)异分母分式相加减:
分式乘方:(b≠0)分式开方:(a≥0,b>0)
(四)分式方程解法
1、解题思想:分式方程转化为整式方程.
2、转化方法:去分母(特殊的用换元法).
3、转化关键:正确找出最简公分母.
4、注意点:注意验根.
三、学习方法点拨
1、两个整数不能整除时,出现了分数;类似地,两个分式不能整除时,就出现了分式.因此,整式的除法是引入分式概念的基础.
2、分式的基本性质及分式的运算与分数的情形类似,因而在学习过程中,要注意不断地与分数的情形进行类比,以加深对新知识的理解.
3、解分式方程的思想是把含有未知数的分母去掉,从而将分式方程转化为整式方程来解,这时可能会出现增根,必须进行检验.学习时,要理解增根产生的原因,认识到检验的必要性,并会进行检验.
4、由于引进了零指数幂和负整指数幂,绝对值较小的数也可以用科学记数法来表示.
四、布置作业:课本第158页复习题第1、2、(4)、(5).3、(7)、(8).
第二课时专题讲解
一、分式运算中的常用技巧
分式的运算以分式的概念、分式的基本性质、运算法则为基础,其中分式的加减运算是难点,解决这一难点的关键是根据题目的特点恰当的通分,并以整式变形、因式分解为工具进行计算.分式运算既突出了代数式的运算、变换的基础知识和基本技能,又注重了数学的思想方法,在历年考试中是必考的重点内容之一,若能根据特点灵活选择解法,将会收到事半功倍的效果.
1、约分求值:分母或分子是多项式时,先把分子、分母因式分解后约分求值.
计算:.
解:原式=
2、分步通分,逐步计算:以下题的解法加以说明,该题采用“分步通分法”,先将前两个分式通分,所得结果再与后面的分式通分,达到化繁为简.若一次性全面通分,计算量将非常大.我们在解题时既要看到局部特征,又要有全面考虑.
计算:
解:原式=
3、合理搭配,分组通分:分组通分,可以降低难度,见下题.
已知x=1+,那么=________________.
解析:先将第一、三项通分,然后再与第二项计算,最后代入求值.
二、分式求值中的常用技巧
分式求值在中考中出现频率较高且方法灵活,有时出现条件或所求代数式不易化简变形,当把代数式的分子、分母颠倒后,变形就容易了,这样的问题通常采用倒数法(把分子、分母倒过来)求值,见例1.
例1、已知,求的值.
解:∵,∴x≠0,∴,即.
∴,∴=.
2、活用公式变形求值:若能对公式进行熟练地变形运用,可给解题带来极大方便,见例2.
例2、已知x2-5x+1=0,求的值.
解:由x2-5x+1=0,知x≠0,由此得.
∴
3、设k求值法(也可叫参数法):当已知条件以连等式出现时,可用设k法解题较简便,见例3.
例3、已知:,求的值.
解:设=k,∴b+c=ak,c+a=bk,a+b=ck.
∴b+c+c+a+a+b=ak+bk+ck,
∴2(a+b+c)=k(a+b+c),(a+b+c)(2-k)=0
即k=2或a+b+c=0,代入到=k中.
∴原式=.即原式=或原式=-1.
4、整体代换法:在计算代数式求值问题时,有时可采用整体代入法——即将条件等式(或变形后的条件式)整体代入求值,见例4、例5.
例4、已知,,,求的值.
解:∵,,,
∴,∴=.
∴.
例5、已知a+b=-8,ab=6,化简_________________.
解:∵a+b=-8,ab=6,∴a<0且b<0.
∴原式=
三、布置作业
课本第159页第6、7、9题.
四、教学反思
1、由于上的是复习课,是在学生已经学过的基础上进行巩固知识加强理解,所以我在一开始复习分式的定义时是提问学生,让学生自己复述分式定义,但提问后发现学生理解但不会很好的组织语言表达清楚,所以在复习后面概念的时候我没有再提问学生而是自己阐述,在这个问题处理上有些欠缺。教师在教学过程中应该起到一个组织和引导作用,以学生为主,最大限度调动起学生的自身潜能与积极性,让学生多思考多讨论。
2、在做配套练习的过程中,有个学生回答问题出现概念不清晰的现象,分母是不为0的整式说成了分母是不为0的数。我只是简单的指出了他的错误之处,而没有很好的利用这样一个教学资源深入解释概念,让学生透彻理解整式与数之间的区别和分式的意义。这也体现出教师在教学过程中的现场应变能力,我想在今后的工作学习中要不断的积累经验,同时也需要锻炼自己的反应能力。
3、复习课应该是对旧知识复习整合、重点内容的提升教学过程,我犯了许多新教师容易犯的错误,只是简单的罗列知识点然后巩固做配套练习。一节课下来整个氛围不太活跃,学生的反应也很平淡,思路无起伏。而我也一直站在讲台前控制电脑,除了下去看学生做题情况很少有位置上的变化,显得相对呆板,这也是需要改进的又一方面。