88教案网

你的位置: 教案 > 初中教案 > 导航 > 初二数学知识点梳理:分式方程的定义

小学方程的教案

发表时间:2020-12-01

初二数学知识点梳理:分式方程的定义。

初二数学知识点梳理:分式方程的定义

含义:分母中含有未知数的方程叫做分式方程。
分式方程的解法:
①去分母{方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时。不要忘了改变符号};
②按解整式方程的步骤(移项,若有括号应去括号,注意变号,合并同类项,系数化为1)求出未知数的值;
③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).
一般地验根,只需把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根,否则这个根就是原分式方程的根。若解出的根是增根,则原方程无解。如果分式本身约分了,也要代进去检验。JaB88.Com

分式方程的定义
分式方程是方程中的一种,且分母里含有未知数的(有理)方程叫做分式方程,等号两边至少有一个分母含有未知数。
分式方程特征:
①一是方程
②二是分母中含有未知数。
因此整式方程和分式方程的根本区别就在于分母中是否含有未知数。
分式方程的应用
列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
列分式方程解应用题的一般步骤是:
①找等量关系(审):理解题意,弄清具体情境中的已知量与未知量以及它们之间的基本关系;
②设:设未知数,用含x(或其他字母)表示某个未知数,由该未知数与其他数量的关系,写出表示相关量的式子;
③列:找出相等关系,列出分式方程;
④解:解这个分式方程;
⑤检验:双重检验,先检验是否为增根,再检验是否符合题意;
⑥答:写出答案。
例题
南宁到昆明西站的路程为828KM,一列普通列车和一列直达快车都从南宁开往昆明。直达快车的速度是普通快车速度的1.5倍,普通快车出发2H后,直达快车出发,结果比普通列车先到4H,求两次的速度.
设普通车速度是x千米每小时则直达车是1.5x
由题意得:
828/x-828/1.5x=6,
(828×1.5-828)/1.5x=6,
414/1.5=6x,
x=46,1.5x=69
答:普通车速度是46千米每小时,直达车是69千米每小时。
无解的含义:
1.解为增根。
2.整式方程无解。(如:0x不等于0.)
用分式解应用题的常见题型:
(1)行程问题有路程、时间和速度三个量,其关系式是路程=速度×时间,一般式以时间为等量关系。
(2)工程问题有工作效率、工作时间和工作总量三个量,其关系式是工作总量=工作效率×工作时间。
(3)增长率问题,其等量关系式是原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量。

相关知识

初二数学分式方程导学案


$15.3分式方程(一)导学案
备课时间201(3)年(9)月(22)日星期(日)
学习时间201()年()月()日星期()
学习目标1.理解分式方程的意义.
2.了解解分式方程的基本思路和解法.
3.理解解分式方程时可能无解的原因,并掌握解分式方程的验根的方法。
4.在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。
学习重点解分式方程的基本思路和解法。
学习难点理解解分式方程时可能无解的原因。
学具使用多媒体课件、小黑板、彩粉笔、三角板等
学习内容
学习活动设计意图
一、创设情境独立思考(课前20分钟)
1、阅读课本P150~151页,思考下列问题:
(1)什么是分式方程?解分式方程的基本思想是什么?
(2)解分式方程为什么必须检验?
2、独立思考后我还有以下疑惑:
二、答疑解惑我最棒(约8分钟)
甲:
乙:
丙:
丁:同伴互助答疑解惑
$15.3分式方程(一)导学案
学习活动设计意图
三、合作学习探索新知(约15分钟)
1、小组合作分析问题
2、小组合作答疑解惑
3、师生合作解决问题
【1】解一元一次方程的步骤是什么?
【2】解方程:
【3】问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?
分析:设水流的速度是v千米/时.
◆填空:(1)轮船顺流航行速度为20+v千米/时,逆流航行速度为20--v千米/时.
(2)顺流航行100千米所用时间为小时;
(3)逆流航行60千米所用时间为小时;
(4)根据题意可列方程为.
【4】议一议方程特征:
◆分式方程的意义:分母中含有未知数的方程叫分式方程.
【5】想一想方程x+(x+1)=是不是分式方程?
◆归纳确定是不是分式方程,主要是看是否符合分式方程的概念,方程中含有分式,并且分母中含有未知数,像

在学生完成填空的过程中,教师关注学生能否把实际问题转化成数学问题,能否找到相等关系列出方程,基础较差的学生对于该题的理解是否有困难,应加以适当的指导。

$15.3分式方程(一)导学案
学习活动设计意图
这样的方程才属于分式方程.由此可知:有理方程包含整式方程和分式方程,分式方程可以转化整式方程.
【6】做一做在方程①=8+,②=x,
③=,④x-=0中,是分式方程的有()
A.①和②B.②和③C.③和④D.①和④
【7】讨论怎样解方程
◆归纳上述解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解,所乘的整式通常取方程中出现的各分母的最简公分母。
【8】解分式方程的方法:
(1)在方程的两边同乘最简公分母,就可约去分母,化成整式方程
(2)解分式方程的解的两种情况:
①所得的根是原方程的根、②所得的根不是原方程的根,是原方程的增根:在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根
(3)产生增根的原因:在把分式方程转化为整式方程时,分式的两边同时乘以了零
(4)验根:把求得的根代入最简公分母,看它的值是否为零。使最简公分母值为零的根是增根。鼓励学生寻求解决问题的办法,引导学生将分式方程转化为整式方程,学生自然会想到去分母来实现这种转变。
(1)让学生自己解这个方程,并让学生说明方法,并验证
(2)你能结合解法,归纳出解分式方程的基本思路和做法吗?

$15.3分式方程(一)导学案
学习活动设计意图
【9】解分式方程的一般步骤:
(1)去分母,在方程的两边都乘最简公分母,约去分母,化成整式方程;――化整
(2)解这个整式方程;――解整
(3)把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。——验根
四、归纳总结巩固新知(约15分钟)
1、知识点的归纳总结:
【1】分母中含有未知数的方程叫分式方程.
【2】解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解,所乘的整式通常取方程中出现的各分母的最简公分母。
【3】解分式方程的解的两种情况:
①所得的根是原方程的根、②所得的根不是原方程的根,是原方程的增根:在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根
【4】产生增根的原因:在把分式方程转化为整式方程时,分式的两边同时乘以了零
【5】验根:把求得的根代入最简公分母,看它的值是否为零。使最简公分母值为零的根是增根。
【6】解分式方程的一般步骤:
(1)去分母,在方程的两边都乘最简公分母,约去分母,
$15.3分式方程(一)导学案
学习活动设计意图
化成整式方程;――化整
(2)解这个整式方程;――解整
(3)把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。——验根
【7】归纳

2、运用新知解决问题:(重点例习题的强化训练)
【例1】解方程:
【练习】课本P150页练习
五、课堂小测(约5分钟)
六、独立作业我能行
1、独立思考$15.3分式方程(二)工具单
2、练习册
七、课后反思:
1、学习目标完成情况反思:

$15.3分式方程(一)导学案
学习活动设计意图
2、掌握重点突破难点情况反思:

3、错题记录及原因分析:
自我评价
课上1、本节课我对自己最满意的一件事是:

2、本节课我对自己最不满意的一件事是:

作业独立完成()求助后独立完成()
未及时完成()未完成()
五、课堂小测(约5分钟)
(1)(2)

$15.3分式方程(二)导学案
备课时间201(3)年(9)月(22)日星期(日)
学习时间201()年()月()日星期()
学习目标1.理解分式方程的意义.
2.了解解分式方程的基本思路和解法.
3.理解解分式方程时可能无解的原因,并掌握解分式方程的验根的方法。
4.在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。
学习重点解分式方程的基本思路和解法。
学习难点理解解分式方程时可能无解的原因。
学具使用多媒体课件、小黑板、彩粉笔、三角板等
学习内容
学习活动设计意图
一、创设情境独立思考(课前20分钟)
1、阅读课本P~页,思考下列问题:
(1)课本P151页例1你能独立解答吗?
2、独立思考后我还有以下疑惑:

二、答疑解惑我最棒(约8分钟)
甲:
乙:
丙:
丁:同伴互助答疑解惑
$15.3分式方程(二)导学案
学习活动设计意图
三、合作学习探索新知(约15分钟)
1、小组合作分析问题
2、小组合作答疑解惑
3、师生合作解决问题
【1】什么是分式方程?
【2】解分式方程的基本思想是什么?
【3】解分式方程应注意什么问题?为什么?
四、归纳总结巩固新知(约15分钟)
1、知识点的归纳总结:
2、运用新知解决问题:(重点例习题的强化训练)
例1.解方程:
例2.解方程:
【练习1】课本P152页练习(写到书上)
【练习2】课本P154页习题15.3第2题(写到书上)
五、课堂小测(约5分钟)
六、独立作业我能行
1、独立思考$15.3分式方程(三)工具单
2、课本P154页习题15.3第1题(写作业本上)
七、课后反思:
1、学习目标完成情况反思:

$15.3分式方程(二)导学案
学习活动设计意图
2、掌握重点突破难点情况反思:
3、错题记录及原因分析:
自我评价
课上1、本节课我对自己最满意的一件事是:

2、本节课我对自己最不满意的一件事是:

作业独立完成()求助后独立完成()
未及时完成()未完成()
五、课堂小测(约5分钟)
(1)(2)

$15.3分式方程(三)导学案
备课时间201(3)年(9)月(22)日星期(日)
学习时间201()年()月()日星期()
学习目标1.会分析题意找出等量关系.
2.会列出可化为一元一次方程的分式方程解决实际问题.
3.经历探索应用分式方程解决实际问题的过程,掌握分析问题解决问题的能力,学会把所学知识应用到实际生活的方法.
4.懂得任何事物之间是相互联系的,理论来源于实践,能用所学的知识服务于我们的生活。
学习重点利用分式方程组解决实际问题.
学习难点列分式方程表示实际问题中的等量关系.
学具使用多媒体课件、小黑板、彩粉笔、三角板等
学习内容
学习活动设计意图
一、创设情境独立思考(课前20分钟)
1、阅读课本P152~页,思考下列问题:
(1)课本P152页例3你能独立解答吗?
2、独立思考后我还有以下疑惑:
二、答疑解惑我最棒(约8分钟)
甲:
乙:
丙:
丁:同伴互助答疑解惑
$15.3分式方程(三)导学案
学习活动设计意图
三、合作学习探索新知(约15分钟)
1、小组合作分析问题
2、小组合作答疑解惑
3、师生合作解决问题
【1】列方程解决实际问题的方法和步骤
审设找列解验答
【2】思考:列分方程解决实际问题的方法和步骤是什么?
【3】解分式方程的具体步骤是什么?
四、归纳总结巩固新知(约15分钟)
1、知识点的归纳总结:
【1】列方程解决实际问题的方法和步骤
审设找列解验答
【2】解分式方程应用题必须双检验:
(1)检验方程的解是否是原方程的解;
(2)检验方程的解是否符合题意.
2、运用新知解决问题:(重点例习题的强化训练)
【例1】两个工程队共同参加一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。哪个队的施工速度快?
※分析:甲队一个月完成总工程的,设乙队如果单独施工1个月能完成总工程的,那么甲队半个月完成总工程的,乙队半个月完成总工程的,两队半个月完成总工
$15.3分式方程(三)导学案
学习活动设计意图
程的+。
等量关系为:甲、乙两个工程总量=总工程量
则有++=1
※分析:本题是一道工程问题应用题,基本关系是:
工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.
等量关系是:甲队单独做的工作量+两队共同做的工作量=1
【练习】课本P154页练习教师板书解答、检验过程
五、课堂小测(约5分钟)
六、独立作业我能行
1、独立思考$15.3分式方程(四)工具单
2、练习册
七、课后反思:
1、学习目标完成情况反思:

2、掌握重点突破难点情况反思:

3、错题记录及原因分析:

$15.3分式方程(三)导学案
学习活动设计意图
自我评价
课上1、本节课我对自己最满意的一件事是:

2、本节课我对自己最不满意的一件事是:

作业独立完成()求助后独立完成()
未及时完成()未完成()
五、课堂小测(约5分钟)
◆要在规定的日期内加工一批机器零件,如果甲单独做,恰好在规定的日期内完成,如果乙单独做,则要超过规定如期3天才能完成,现甲、乙两人合作2天后,再由乙单独做,正好按期完成,问规定的日期是多少天?

$15.3分式方程(四)导学案
备课时间201(3)年(9)月(23)日星期(一)
学习时间201()年()月()日星期()
学习目标1.会分析题意找出等量关系.
2.会列出可化为一元一次方程的分式方程解决实际问题.
3.经历探索应用分式方程解决实际问题的过程,掌握分析问题解决问题的能力,学会把所学知识应用到实际生活的方法.新-课-标-第-一-网
4.懂得任何事物之间是相互联系的,理论来源于实践,能用所学的知识服务于我们的生活。
学习重点利用分式方程组解决实际问题.
学习难点列分式方程表示实际问题中的等量关系.
学具使用多媒体课件、小黑板、彩粉笔、三角板等
学习内容
学习活动设计意图
一、创设情境独立思考(课前20分钟)
1、阅读课本P153~页,思考下列问题:
(1)课本P153页例4你能独立解答吗?
2、独立思考后我还有以下疑惑:
二、答疑解惑我最棒(约8分钟)
甲:
乙:
丙:
丁:同伴互助答疑解惑
$15.3分式方程(四)导学案
学习活动设计意图
三、合作学习探索新知(约15分钟)
1、小组合作分析问题
2、小组合作答疑解惑
3、师生合作解决问题
四、归纳总结巩固新知(约15分钟)
1、知识点的归纳总结:
【1】解分式方程的步骤有哪些?每一步你最容易出错在哪些方面?
【2】列方程解应用题的五个步骤是:__________;_______;_______;______;_________。
【3】我们现在所学过的应用题有几种类型?每种类型题的基本公式是什么?
(1)行程问题:基本公式:____________.
而行程问题中又分相遇问题、追及问题.它们常用的公式有哪些?
(2)数字问题
在数字问题中要掌握十进制数的表示法.
(3)工程问题
基本公式:________________________
(4)顺水逆水问题
v顺水=____________;v逆水=________________
2、运用新知解决问题:(重点例习题的强化训练)
【例1】某列列车平均提速v千米/时。用相同的时间,列
$15.3分式方程(四)导学案
学习活动设计意图
车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度是多少?
※分析:这里的字母v,s表示已知数据,设提速前的平均速度为x千米/时,则提速前列车行驶s千米所用的时间为小时,提速后列车的平均速度为(x+v)千米/时,提速后列车行驶(s+50)千米所用的时间为小时。
等量关系:提速前行驶50千米所用的时间=提速后行驶
(s+50)千米所用的时间
列方程得:=
【例2】甲、乙分别从相距36千米的A、B两地同时相向而行.甲从A出发到1千米时发现有东西遗忘在A地,立即返回,取过东西后又立即从A向B行进,这样二人恰好在AB中点处相遇,又知甲比乙每小时多走0.5千米,求二人速度.
根据题意,得
解得x=4.5.经检验,x=4.5是这方程的解.

教师板书解答、检验过程
$15.3分式方程(四)导学案
学习活动设计意图
答:甲速度为5千米/小时,乙速度为4.5千米/小时.
【练习】课本P154~155页习题15.3第3~9题(书上)
五、课堂小测(约5分钟)
六、独立作业我能行
1、独立思考$第十五章分式总复习与小节工具单
2、练习册
七、课后反思:
1、学习目标完成情况反思:

2、掌握重点突破难点情况反思:

3、错题记录及原因分析:
自我评价
课上1、本节课我对自己最满意的一件事是:
2、本节课我对自己最不满意的一件事是:
作业独立完成()求助后独立完成()
未及时完成()未完成()

五、课堂小测(约5分钟)
※甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.

初二数学知识点梳理:统计表


每个老师在上课前需要规划好教案课件,大家在细心筹备教案课件中。只有写好教案课件计划,才能促进我们的工作进一步发展!你们到底知道多少优秀的教案课件呢?以下是小编为大家收集的“初二数学知识点梳理:统计表”但愿对您的学习工作带来帮助。

初二数学知识点梳理:统计表

知识点总结
一、频数分布直方图:
1.频数与频率:每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。
2.频数分布表:运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数。
画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来。
3.频数分布直方图:
(1)当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。
(2)绘制的频数分布直方图的一般步骤:①计算最大值与最小值的差(极差),确定统计量的范围;②决定组数和组距,数据越多,分的组数也应当越多;③确定分点;④列频数分布表;⑤画频数分布直方图。
二、常见的统计图:
常见的统计图有条形统计图、折线统计图、扇形统计图三种,在解决实际问题时,具体选择用哪种统计图,要依据统计图的特点和问题的要求而定。
1.条形统计图:
(1)条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来。条形统计图又分为条形统计图和复式条形统计图。
(2)特点:能够显示每组中的具体数据;易于比较数据间的差别;如果要表示的数据各自独立,一般要选用条形统计图。
(3)绘制方法:①为了使图形大小适当,先要确定横轴和纵轴的长度,画出横轴和纵轴;
②确定单位长度,根据要表示的数据的大小和数据的种类,分别确定两个轴的单位长度,在横纵、纵轴上从零开始等距离分段;③用长短(或高低)不同的直条来表示具体的数量,直条的宽度要适当,每个直条的宽度要相等,直条之间的距离也要相等;④要注明各直条所表示的统计对象、单位和数量,写上统计图的名称、制图日期,复式条形图还要有图例。
2.折线统计图:
(1)折线统计图用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。
(2)特点:折线统计图能够清晰地显示数据增减变化。如果表示的数据是想了解随时间变化而变化的情况,那么就采用折线统计图。
(3)绘制方法:①根据统计资料整理数据;②用一定单位表示一定的数量,画出纵、横轴;③根据数量的多少,在纵、横轴的恰当位置描出各点;④把各点用线段按顺序依次连接起来;
⑤统计图中的数据是不是统计资料整理的数据。
3.扇形统计图:
(1)扇形统计图用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。
(2)特点:扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360的比。如果表示的数据是想了解各数据所占的百分比,那么一般采用扇形统计图。
(3)绘制方法:①先算出个部分数量占总数量的百分之几。
②再算出表示个部分数量的扇形的圆心角的度数。
③取适当的半径画一个圆,并按照上面算出的圆心角的度数在圆里画出各个扇形
④在每个扇形中标明所表示的各个部分数量名称和所占的百分数,并用不同的颜色区别
⑤写上名称和制图日期。
三、各类统计图的优点:
条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
常见考法
(1)列频数分布表,绘制频数分布直方图;
(2)从统计图表中获取信息,完成题目设计的问题;
(3)补全频数分布直方图、统计图,并回答问题;
(4)统计图的绘制和转化。
误区提醒
(1)在做统计时,没有合理选择统计图表;
(2)提取图表中的信息时,不完全,有遗漏;
(3)绘制扇形统计图时,错误判断部分的数量。

初二数学知识点梳理:一元一次不等式的定义


初二数学知识点梳理:一元一次不等式的定义

一元一次不等式的解集:
一个有未知数的不等式的所有解,组成这个不等式的解集。例如﹕
不等式x-5≤-1的解集为x≤4;
不等式x﹥0的解集是所有正实数。
求不等式解集的过程叫做解不等式。
将不等式化为axb的形式
(1)若a0,则解集为xb/a
(2)若a0,则解集为xb/a
一元一次不等式的特殊解:
不等式的解集一般是一个取值范围,但有时需要求未知数的某些特殊解,如求正数解、整数解、最大整数解等,解答这类问题关键是明确解的特征。
不等式的解与解集:
不等式成立的未知数的值叫做不等式的解。如x=1是x+21的解
①不等式的解是指某一范围内的某个数,用它来代替不等式中的未知数,不等式成立。
②要判断某个未知数的值是不是不等式的解,可直接将该值代入等式的左、右两边,看不等式是否成立,若成立,则是;否则不是。
③一般地,一个不等式的解不止一个,往往有无数个,如所有大于3的数都是x3的解,但也存在特殊情况,如|x|≦0,就只有一个解,为x=0
不等式的解集和不等式的解是两个不同的概念。
①不等式的解集一般是一个取值范围,在这个范围内的每一个数值都是不等式的一个解,不等式一般有无数个解。
②不等式的解集包含两方面的意思:
解集中的任何一个数值,都能使不等式成立;解集外的任何一个数值,都不能使不等式成立。(即不等式不成立)
③不等式的解集可以在数轴上直观的表示出来,如不等式x-12的解集是x3,可以用数轴上表示3的点左边部分来表示,在数轴上表示3的点的位置上画空心圆圈,表示不包括这一点。
一元一次不等式的解法:
解一元一次不等式与解一元一次方程的方法步骤类似,只是在利用不等式基本性质3对不等式进行变形时,要改变不等式的符号。
有两种解题思路:
(1)可以利用不等式的基本性质,设法将未知数保留在不等式的一边,其他项在另一边;
(2)采用解一元一次方程的解题步骤:去分母、去括号、移项、合并同类项、系数化为1等步骤。
解一元一次不等式的一般顺序:
(1)去分母(运用不等式性质2、3)
(2)去括号
(3)移项(运用不等式性质1)
(4)合并同类项。
(5)将未知数的系数化为1(运用不等式性质2、3)
(6)有些时候需要在数轴上表示不等式的解集
不等式解集的表示方法:
(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来。
例如:x-1≤2的解集是x≤3。
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解。
用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

一元一次不等式
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:
①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。