88教案网

你的位置: 教案 > 高中教案 > 导航 > 2018高考数学必考知识点:不等式的性质

高中不等式教案

发表时间:2020-11-24

2018高考数学必考知识点:不等式的性质。

一名优秀负责的教师就要对每一位学生尽职尽责,教师要准备好教案,这是教师的任务之一。教案可以让学生更好的吸收课堂上所讲的知识点,帮助授课经验少的教师教学。那么怎么才能写出优秀的教案呢?急您所急,小编为朋友们了收集和编辑了“2018高考数学必考知识点:不等式的性质”,仅供参考,欢迎大家阅读。

2018高考数学必考知识点:不等式的性质

中考数学很多同学都想考高分,只有掌握好相关知识点才能在考试中取得好成绩,为了帮助大家备考2018年中考数学,下面莲山课件为大家带来2018中考数学必考知识点:不等式的性质,希望对大家中考数学备考有所帮助。
不等式的性质:
①如果xy,那么yy;(对称性)
②如果xy,yz;那么xz;(传递性)
③如果xy,而z为任意实数或整式,那么x+zy+z;(加法原则,或叫同向不等式可加性)
④如果xy,z0,那么xzyz;如果xy,z0,那么xz
⑤如果xy,z0,那么x÷zy÷z;如果xy,z0,那么x÷z
⑥如果xy,mn,那么x+my+n;(充分不必要条件)
⑦如果xy0,mn0,那么xmyn;
⑧如果xy0,那么x的n次幂y的n次幂(n为正数),x的n次幂
或者说,不等式的基本性质有:
①对称性;
②传递性:
③加法单调性:即同向不等式可加性:
④乘法单调性:
⑤同向正值不等式可乘性:
⑥正值不等式可乘方:
⑦正值不等式可开方:
⑧倒数法则。
莲山课件为大家带来了2018中考数学必考知识点:不等式的性质,希望大家能够掌握好这些数学知识点,更多的中考数学知识点请查阅莲山课件。

相关知识

不等式的性质


作为优秀的教学工作者,在教学时能够胸有成竹,高中教师要准备好教案,这是高中教师的任务之一。教案可以更好的帮助学生们打好基础,帮助高中教师营造一个良好的教学氛围。所以你在写高中教案时要注意些什么呢?下面是由小编为大家整理的“不等式的性质”,供大家借鉴和使用,希望大家分享!

不等式的性质教学目标
1.理解不等式的性质,把握不等式各个性质的条件和结论之间的逻辑关系,并把握它们的证实方法以及功能、运用;
2.把握两个实数比较大小的一般方法;
3.通过不等式性质证实的学习,提高学生逻辑推论的能力;
4.提高本节内容的学习,;培养学生条理思维的习惯和认真严谨的学习态度;
教学建议
1.教材分析
(1)知识结构
本节首先通过数形结合,给出了比较实数大小的方法,在这个基础上,给出了不等式的性质,一共讲了五个定理和三个推论,并给出了严格的证实。
知识结构图
(2)重点、难点分析
在“不等式的性质”一节中,联系了实数和数轴的对应关系、比较实数大小的方法,复习了初中学过的不等式的基本性质。
不等式的性质是穿越本章内容的一条主线,无论是算术平均数与几何平均数的定理的证实及其应用,不等式的证实和解一些简单的不等式,无不以不等式的性质作为基础。
本节的重点是比较两个实数的大小,不等式的五个定理和三个推论;难点是不等式的性质成立的条件及其它的应用。
①比较实数的大小
教材运用数形结合的观点,从实数与数轴上的点一一对应出发,与初中学过的知识“在数轴上表示的两个数,右边的数总比左边的数大”利用数轴可以比较数的大小。
指出比较两实数大小的方法是求差比较法:
比较两个实数a与b的大小,归结为判定它们的差a-b的符号,而这又必然归结到实数运算的符号法则.
比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判定它们的差的符号.
②理清不等式的几个性质的关系
教材中的不等式共5个定理3个推论,是从证实过程安排顺序的.从这几个性质的分类来说,可以分为三类:
(Ⅰ)不等式的理论性质:(对称性)
(传递性)
(Ⅱ)一个不等式的性质:
(n∈N,n1)
(n∈N,n1)
(Ⅲ)两个不等式的性质:
2.教法建议
本节课的核心是培养学生的变形技能,练习学生的推理能力.为今后证实不等式、解不等式的学习奠定技能上和理论上的基础.
授课方法可以采取讲授与问答相结合的方式.通过问答形式不断地给学生设置疑问(即:设疑);对教学难点,再由讲授形式解决疑问.(即:解疑).主要思路是:教师设疑→学生讨论→教师启发→解疑.
教学过程可分为:发现定理、定理证实、定理应用,采用由形象思维到抽象思维的过渡,发现定理、证实定理.采用类比联想,变形转化,应用定理或应用定理的证实思路;解决一些较简单的证实题.
第一课时
教学目标
1.把握实数的运算性质与大小顺序间关系;
2.把握求差法比较两实数或代数式大小;
3.强调数形结合思想.
教学重点
比较两实数大小
教学难点
理解实数运算的符号法则
教学方法
启发式
教学过程
一、复习回顾
我们知道,实数与数轴上的点是一一对应的,在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大.例如,在右图中,点A表示实数,点B表示实数,点A在点B右边,那么.
我们再看右图,表示减去所得的差是一个大于0的数即正数.一般地:
若,则是正数;逆命题也正确.
类似地,若,则是负数;若,则.它们的逆命题都正确.
这就是说:(打出幻灯片1)
由此可见,要比较两个实数的大小,只要考察它们的差就可以了,这也是我们这节课将要学习的主要内容.
二、讲授新课
1.比较两实数大小的方法——求差比较法
比较两个实数与的大小,归结为判定它们的差的符号,而这又必然归结到实数运算的符号法则.
比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判定它们的差的符号.
接下来,我们通过具体的例题来熟悉求差比较法.
2.例题讲解
例1比较与的大小.
分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判定差值正负,并根据实数运算的符号法则来得出两个代数式的大小.
解:

例2已知,比较(与的大小.
分析:此题与例1基本类似,也属于两个代数式比较大小,但是其中的x有一定的限制,应该在对差值正负判定时引起注重,对于限制条件的应用经常被学生所忽略.
由得,从而
请同学们想一想,在例2中,假如没有这个条件,那么比较的结果如何?
(学生回答:若没有这一条件,则,从而大于或等于)
为了使大家进一步把握求差比较法,我们来进行下面的练习.
三、课堂练习
1.比较的大小.
2.假如,比较的大小.
3.已知,比较与的大小.
要求:学生板演练习,老师讲评,并强调学生注重加限制条件的题目.
课堂小结
通过本节学习,大家要明确实数运算的符号法则,把握求差比较法来比较两实数或代数式的大小.
课后作业
习题6.11,2,3.
板书设计
§6.1.1不等式的性质
1.求差比较法例1学生
……
例2板演

高二数学期中考解不等式必考知识点


作为杰出的教学工作者,能够保证教课的顺利开展,教师在教学前就要准备好教案,做好充分的准备。教案可以让学生更好的吸收课堂上所讲的知识点,帮助教师能够井然有序的进行教学。教案的内容要写些什么更好呢?小编经过搜集和处理,为您提供高二数学期中考解不等式必考知识点,仅供参考,欢迎大家阅读。

高二数学期中考解不等式必考知识点

1.解不等式问题的分类

(1)解一元一次不等式.

(2)解一元二次不等式.

(3)可以化为一元一次或一元二次不等式的不等式.

①解一元高次不等式;

②解分式不等式;

③解无理不等式;

④解指数不等式;

⑤解对数不等式;

⑥解带绝对值的不等式;

⑦解不等式组.

2.解不等式时应特别注意下列几点:

(1)正确应用不等式的基本性质.

(2)正确应用幂函数、指数函数和对数函数的增、减性.

(3)注意代数式中未知数的取值范围.

3.不等式的同解性

(5)|f(x)|g(x)与-g(x)f(x)0)

(6)|f(x)|g(x)①与f(x)g(x)或f(x)-g(x)(其中g(x)≥0)同解;②与g(x)0同解.

(9)当a1时,af(x)ag(x)与f(x)g(x)同解,当0a1时,af(x)ag(x)与f(x)g(x)同p=

不等式的性质2


不等式的性质2第二课时
教学目标
1.理解同向不等式,异向不等式概念;
2.把握并会证实定理1,2,3;
3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据;
4.初步理解证实不等式的逻辑推理方法.
教学重点:定理1,2,3的证实的证实思路和推导过程
教学难点:理解证实不等式的逻辑推理方法
教学方法:引导式
教学过程
一、复习回顾
上一节课,我们一起学习了比较两实数大小的方法,主要根据的是实数运算的符号法则,而这也是推证不等式性质的主要依据,因此,我们来作一下回顾:
这一节课,我们将利用比较实数的方法,来推证不等式的性质.
二、讲授新课
在证实不等式的性质之前,我们先明确一下同向不等式与异向不等式的概念.
1.同向不等式:两个不等号方向相同的不等式,例如:是同向不等式.
异向不等式:两个不等号方向相反的不等式.例如:是异向不等式.
2.不等式的性质:
定理1:若,则
定理1说明,把不等式的左边和右边交换,所得不等式与原不等式异向.在证实时,既要证实充分性,也要证实必要性.
证实:∵,

由正数的相反数是负数,得
说明:定理1的后半部分可引导学生仿照前半部分推证,注重向学生强调实数运算的符号法则的应用.
定理2:若,且,则.
证实:∵

根据两个正数的和仍是正数,得
∴说明:此定理证实的主要依据是实数运算的符号法则及两正数之和仍是正数.
定理3:若,则
定理3说明,不等式的两边都加上同一个实数,所得不等式与原不等式同向.
证实:∵

说明:(1)定理3的证实相当于比较与的大小,采用的是求差比较法;
(2)不等式中任何一项改变符号后,可以把它从一边移到另一边,理由是:根据定理3可得出:若,则即.
定理3推论:若.
证实:∵,
∴①

∴②
由①、②得
说明:(1)推论的证实连续两次运用定理3然后由定理2证出;
(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;
(3)两个同向不等式的两边分别相减时,就不能作出一般的结论;
(4)定理3的逆命题也成立.(可让学生自证)
三、课堂练习
1.证实定理1后半部分;
2.证实定理3的逆定理.
说明:本节主要目的是把握定理1,2,3的证实思路与推证过程,练习穿插在定理的证实过程中进行.
课堂小结
通过本节学习,要求大家熟悉定理1,2,3的证实思路,并把握其推导过程,初步理解证实不等式的逻辑推理方法.
课后作业
1.求证:若
2.证实:若
板书设计
§6.1.2不等式的性质
1.同向不等式3.定理24.定理35.定理3
异向不等式证实证实推论
2.定理1证实说明说明证实
第三课时
教学目标
1.熟练把握定理1,2,3的应用;
2.把握并会证实定理4及其推论1,2;
3.把握反证法证实定理5.
教学重点:定理4,5的证实.
教学难点:定理4的应用.
教学方法:引导式
教学过程:
一、复习回顾
上一节课,我们一起学习了不等式的三个性质,即定理1,2,3,并初步熟悉了证实不等式的逻辑推理方法,首先,让我们往返顾一下三个定理的基本内容.
(学生回答)
好,我们这一节课将继续推论定理4、5及其推论,并进一步熟悉不等式性质的应用.
二、讲授新课
定理4:若

证实:
根据同号相乘得正,异号相乘得负,得

说明:(1)证实过程中的关键步骤是根据“同号相乘得正,异号相乘得负”来完成的;
(2)定理4证实在一个不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变.
推论1:若
证实:


∴②
由①、②可得.
说明:(1)上述证实是两次运用定理4,再用定理2证出的;
(2)所有的字母都表示正数,假如仅有,就推不出的结论.
(3)这一推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘.这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向.
推论2:若
说明:(1)推论2是推论1的非凡情形;
(2)应强调学生注重n∈N的条件.
定理5:若
我们用反证法来证实定理5,因为反面有两种情形,即,所以不能仅仅否定了,就“归谬”了事,而必须进行“穷举”.
说明:假定不大于,这有两种情况:或者,或者.
由推论2和定理1,当时,有;
当时,显然有
这些都同已知条件矛盾
所以.
接下来,我们通过具体的例题来熟悉不等式性质的应用.
例2已知
证实:由
例3已知
证实:∵
两边同乘以正数
说明:通过例3,例4的学习,使学生初步接触不等式的证实,为以后学习不等式的证实打下基础.在应用定理4时,应注重题目条件,即在一个等式两端乘以同一个数时,其正负将影响结论.接下来,我们通过练习来进一步熟悉不等式性质的应用.
三、课堂练习
课本P7练习1,2,3.
课堂小结
通过本节学习,大家要把握不等式性质的应用及反证法证实思路,为以后不等式的证实打下一定的基础.
课后作业
课本习题6.14,5.
板书设计
§6.1.3不等式的性质
定理4推论1定理5例3学生
内容内容
证实推论2证实例4练习

不等式的性质(2)


作为杰出的教学工作者,能够保证教课的顺利开展,作为高中教师就要根据教学内容制定合适的教案。教案可以让讲的知识能够轻松被学生吸收,帮助高中教师提前熟悉所教学的内容。你知道怎么写具体的高中教案内容吗?小编经过搜集和处理,为您提供不等式的性质(2),相信您能找到对自己有用的内容。

课题:不等式的性质(2)

教学目的:

1理解同向不等式,异向不等式概念;

2理解不等式的性质定理1—3及其证明;

3理解证明不等式的逻辑推理方法.

4通过对不等式性质定理的掌握,培养学生灵活应变的解题能力和思考问题严谨周密的习惯

教学重点:掌握不等式性质定理1、2、3及推论,注意每个定理的条件

教学难点:1理解定理1、定理2的证明,即“a>bb<a和a>b,b>ca>c”的证明这两个定理证明的依据是实数大小的比较与实数运算的符号法则

2定理3的推论,即“a>b,c>da+c>b+d”是同向不等式相加法则的依据但两个同向不等式的两边分别相减时,就不能得出一般结论

授课类型:新授课

课时安排:1课时

教具:多媒体、实物投影仪

教学方法:

引导启发结合法——即在教师引导下,由学生利用已学过的有关知识,顺利完成定理的证明过程及定理的简单应用

教学过程:

一、复习引入:

1.判断两个实数大小的充要条件是:

2.(1)如果甲的年龄大于乙的年龄,那么乙的年龄小于甲的年龄吗?为什么?

(2)如果甲的个子比乙高,乙的个子比丙高,那么甲的个子比丙高吗?为什么?

从而引出不等式的性质及其证明方法.

二、讲解新课:

1.同向不等式:两个不等号方向相同的不等式,例如:ab,cd,是同向不等式异向不等式:两个不等号方向相反的不等式例如:ab,cd,是异向不等式

2.不等式的性质:

定理1:如果ab,那么ba,如果ba,那么ab.(对称性)

即:abba;baab

证明:∵ab∴a-b0

由正数的相反数是负数,得-(a-b)0

即b-a0∴ba(定理的后半部分略).

点评:可能个别学生认为定理l没有必要证明,那么问题:若ab,则和谁大?根据学生的错误来说明证明的必要性“实数a、b的大小”与“a-b与零的关系”是证明不等式性质的基础,本定理也称不等式的对称性.

定理2:如果ab,且bc,那么ac.(传递性)

即ab,bcac

证明:∵ab,bc∴a-b0,b-c0

根据两个正数的和仍是正数,得

(a-b)+(b-c)0即a-c0

∴ac

根据定理l,定理2还可以表示为:cb,baca

点评:这是不等式的传递性、这种传递性可以推广到n个的情形.

定理3:如果ab,那么a+cb+c.

即aba+cb+c

证明:∵ab,∴a-b0,

∴(a+c)-(b+c)0即a+cb+c

点评:(1)定理3的逆命题也成立;

(2)利用定理3可以得出:如果a+bc,那么ac-b,也就是说,不等式中任何一项改变符号后,可以把它从—边移到另一边.

推论:如果ab,且cd,那么a+cb+d.(相加法则)

即ab,cda+cb+d.

证法一:

a+cb+d

证法二:

a+cb+d

点评:(1)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;

(2)两个同向不等式的两边分别相减时,不能作出一般的结论;

三、讲解范例:

例已知ab,cd,求证:a-cb-d.(相减法则)

分析:思路一:证明“a-c>b-d”,实际是根据已知条件比较a-c与b-d的大小,所以以实数的运算性质与大小顺序之间的关系为依据,直接运用实数运算的符号法则来确定差的符号,最后达到证题目的

证法一:∵a>b,c<d

∵a-b>0,d-c>0

∴(a-c)-(b-d)

=(a-b)+(d-c)>0(两个正数的和仍为正数)

故a-c>b-d

思路二:我们已熟悉不等式的性质中的定理1~定理3及推论,所以运用不等式的性质,加以变形,最后达到证明目的

证法二:∵c<d∴-c>-d

又∵a>b

∴a+(-c)>b+(-d)

∴a-c>b-d

四、课堂练习:

1判断下列命题的真假,并说明理由:

(1)如果a>b,那么a-c>b-c;

(2)如果a>b,那么>

分析:从不等式性质定理找依据,与性质定理相违的为假,与定理相符的为真

答案:(1)真因为推理符号定理3

(2)假由不等式的基本性质2,3(初中)可知,当c<0时,<即不等式两边同乘以一个数,必须明确这个数的正负

2回答下列问题:

(1)如果a>b,c>d,能否断定a+c与b+d谁大谁小?举例说明;

(2)如果a>b,c>d,能否断定a-2c与b-2d谁大谁小?举例说明

答案:(1)不能断定例如:2>1,1<32+1<1+3;而2>1,-1<-082-1>1-08异向不等式作加法没定论

(2)不能断定例如a>b,c=1>d=-1a-2c=a-2,b+2=b-2d,其大小不定a=8>1=b时a-2c=6>b+2=3而a=2>1=b时a-2c=0<b+2=3

3求证:(1)如果a>b,c>d,那么a-d>b-c;

(2)如果a>b,那么c-2a<c-2b

证明:(1)

(2)a>b-2a<-2bc-2a<c-2b

4已和a>b>c>d>0,且,求证:a+d>b+c

证明:∵

∴(a-b)d=(c-d)b

又∵a>b>c>d>0

∴a-b>0,c-d>0,b>d>0且>1

∴>1

∴a-b>c-d即a+d>b+c

评述:此题中,不等式性质和比例定理联合使用,使式子形与形之间的转换更迅速这道题不仅有不等式性质应用的信息,更有比例的信息,因此这道题既要重视性质的运用技巧,也要重视比例定理的应用技巧

五、小结:本节课我们学习了不等式的性质定理1~定理3及其推论,理解不等式性质的反对称性(a>bb<a=、传递性(a>b,b>ca>c)、可加性(a>ba+c>b+c)、加法法则(a>b,c>da+c>b+d),并记住这些性质的条件,尤其是字母的符号及不等式的方向,要搞清楚这些性质的主要用途及其证明的基本方法

六、课后作业:

1.如果,求不等式同时成立的条件.

解:

2.已知,求证:

证:∵∴

又∵∴0∴

∵且

3.已知比较与的大小.

解:-

当时∵即

∴∴

当时∵即

∴∴

4.如果求证:

证:∵∴∴

∵∴∴

七、板书设计(略)

八、课后记: