88教案网

你的位置: 教案 > 初中教案 > 导航 > 第七章三角形复习学案

小学三角形教案

发表时间:2020-11-05

第七章三角形复习学案。

第七章三角形复习学案
一、复习目标:
1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线;
2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形;
3、会证明三角形内角和等于1800,了解三角形外角的性质。
4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题
二、复习重、难点:
重点:三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌。
难点:三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计。
三、复习内容:
知识回顾
1、三角形的定义:不在上的三条线段连接而成的平面图形。其表示方法是符号“△”后接着三个顶点字母。三角形是边数最少的多边形。
2、三角形的有关重要线段:
⑴三角形的三边:三角形的两边之和第三边;两边之差第三边;△ABC的三边a、b、c中已知a、b,求c的取值范围是:<c<;其中a表示边,所对的角是,b表示边,所对的角是,c表示边,所对的角是。
⑵三角形的高线、中线、角平分线:①三线都经过顶点;②都是;③除直角三角形的两条高线在三角形的两条边上,钝角三角形的两条高线在三角形,其他各线均在形内;④三条中线、三条角平分线、三条高线均交于一点:锐角三角形的高交于三角形一点,直角三角形的高交于三角形的点,钝角三角形的高的延长线交于三角形一点。⑤三角形的一条中线把三角形分成两个相等的小三角形;⑥三角形的角平分线所分得的两个角。⑦有高就有度的角,三角形的各边与这边上的高的乘积相等,据此可以建立方程解题:如图4中有:ABCF=BC=;
分别画出任意三角形的三条线,并结合图形用符号语言表示图中的数量关系。
3、三角形的稳定性的应用举例:,
四边形的不稳定性的应用举例:。
4、三角形有关的角:⑴内角和等于;
⑵外角:是三角形的一边与另一边的的夹角,外角和等于;⑶内外角关系:三角形的一个外角等于,三角形的外角与与之相邻的内角互为;
5、多边形:
⑴定义:是的几条线段连接而成的平面图形;其表示方法为:多边形ABCDE……应该按图形中的排列顺序书写字母。叫正多边形;
⑵对角线:多边形中不相邻的两个顶点之间的连线。n边形从一个顶点出发有对角线,这些对角线把n边形分成了三角形,n边形共有条对角线;
⑶n边形的内角和等于,正n边形的内角和还可以用×求得;所以可以据此建立方程求边数;
⑷多边形的外角和都等于,正n边形的每个内角度数可以通过
180°-360°÷n求得。
6、镶嵌:顶点之处各角之和为(条件之一),以下举例(主要是正多边形):
⑴能单一镶嵌的正多边有:;
⑵能组合镶嵌的两种正多边形有:。
巩固练习:
[一]认识三角形
1、图中共有()个三角形。
A:5B:6C:7D:8
2、如图,AE⊥BC,BF⊥AC,CD⊥AB,则△ABC中AC边上的高是哪条垂线段。()
A:AEB:CDC:BFD:AF
3、三角形一边上的高()。
A:必在三角形内部B:必在三角形的边上
C:必在三角形外部D:以上三种情况都有可能
4、能将三角形的面积分成相等的两部分的是()。
A:三角形的角平分线B:三角形的中线C:三角形的高线D:以上都不对
5、如图,AD是△ABC的中线,已知△ABD比△ACD的周长大6cm,则AB与AC的差为()。
A:2cmB:3cmC:6cmD:12cm
6、具备下列条件的三角形中,不是直角三角形的是()。A:∠A+∠B=∠CB:∠A=∠B=∠C
C:∠A=90°-∠BD:∠A-∠B=90°
7、一个三角形最多有个直角,有个钝角,有个锐角。
8、△ABC的周长是12cm,边长分别为a,b,c,且a=b+1,b=c+1,
则a=cm,b=cm,c=cm。
9、如图,AB∥CD,∠ABD、∠BDC的平分线交于E,
试判断△BED的形状?

[二]三角形的内、外角和定理及其推论的应用
1、下列说法错误的是()。A:一个三角形中至少有两个锐角
B:一个三角形中,一定有一个外角大于其中的一个内角
C:在一个三角形中至少有一个角大于60°
D:锐角三角形,任何两个内角的和均大于90°
2、一个三角形的外角恰好等于和它相邻的内角,则这个三角形是()。
A:锐角三角形B:直角三角形C:钝角三角形D:不能确定
3、直角三角形两锐角的平分线相交所成的钝角是()。
A:120°B:135°C:150°D:165°
4、△中,,则
5、在△ABC中,∠A=100°,∠B-∠C=40°,则∠B=,∠C=。
6、如图,∠B=50°,∠C=60°,AD为△ABC的角平分线,求∠ADB的度数。

7、如图,∠A=85°,∠B=25°,∠C=35°,求∠BDC的度数。

8、如图,若AB∥CD,EF与AB、CD分别相交于E、F,EP⊥EF,∠EFD的平分线与EP相交于点P,且∠BEP=40°,求∠P的度数.
[三]三角形三边关系的应用
1、以下列线段为边不能组成等腰三角形的是()。
A:、、B:、、C:、、D:、、
2、现有两根木棒,它们的长度分别为40cm和50cm,若要钉成一个三角架,则在下列四根棒中应选取()。
A:10cm的木棒B:40cm的木棒C:90cm的木棒D:100cm的木棒
3、三条线段a=5,b=3,c为整数,从a、b、c为边组成的三角形共有().
A:3个B:5个C:无数多个D:无法确定
4、等腰三角形的两边长为25cm和12cm,那么它的第三边长为cm。
5、工人师傅在做完门框后.为防变形常常像图4中所示的那样上两条斜拉的木条(即图4中的AB,CD两根木条),这样做根据的数学道理是。
[四]多边形的内、外角和定理的综合应用
1、若四边形的四个内角大小之比为1:2:3:4,则这四个内角的大小为。
2、如果六边形的各个内角都相等,那么它的一个内角是。
3、在各个内角都相等的多边形中,一个外角等于一个内角的,则这个多边形的每个内角为度。
4、(n+1)边形的内角和比n边形的内角和大()。
A:180°B:360°C:n×180°D:n×360°
5、n边形的内角中,最多有()个锐角。
A:1个B:2个C:3个D:4个
6、设有一个凸多边形,除去一个内角以外的所有其他内角之和为2570°,则该内角为()。A:90°B:105°C:120°D:130°
6、若多边形内角和分别为下列度数时,试分别求出多边形的边数。
①1260°②2160°
7、已知n边形的内角和与外角和之比为9:2,求n。
8、小华从点A出发向前走10m,向右转36°然后继续向前走10m,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回到点A时共走多少米?若不能,写出理由。
WwW.JAb88.COm

[五]用正多边形拼地板
1、用正三角形和正方形组合能够铺满地面,每个顶点周围有个正三角形和个正方形。
2、任意的三角形、也能铺满平面。
3、如图,平面镶嵌中的正多边形是。
4、下列正多边形地砖中不能铺满地面的正多边形是()。
A:正三角形B:正四边形C:正五边形D:正六边形
5、若铺满地面的瓷砖每一个顶点处由6块相同的正多边形组成,此时的正多边形只能是()。
A:正三角形B:正四边形C:正六边形D:正八边形

延伸阅读

全等三角形全章教案


课题:§11.1全等三角形
课型:新授
教学目标
(一)知识技能:1、了解全等形及全等三角形的概念。
2、理解掌握全等三角形的性质。
3、能够准确辩认全等三角形的对应元素。
(二)过程与方法:1、在图形变换以用操作的过程中发展空间观念,培养几何直觉。
2、在观察发现生活中的全等形和实际操作中获得全等
三角形的体验。
(三)情感态度与价值观:在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
教学重点:全等三角形的性质.
教学难点:找全等三角形的对应边、对应角.
教学方法:讲授法,讨论法,情景导入法
教学准备:多媒体,三角板
预习导航:什么是全等三角形?如何找全等三角形的对应边和对应角?
全等三角形有哪些性质?
教学过程
(一)提出问题,创设情境
出示投影片
:1.问题:你能
发现这两个图形有什么美妙
的关系吗?
这两个图形是完全重合的.
2.那同学们能举出现实生活中能够完全重合的图形的例子吗003F

生:同一张底片洗出的同大小照片是能够完全重合的。
形状与大小都完全相同的两个图形就是全等形.
3.学生自己动手(同桌两名同学配合)
取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样.
4.获取概念
让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、
对应边,以及有关的数学符号.
记作:△ABC≌△A’B’C’符号“≌”读作“全等于”
(注意强调书写时对应顶点字母写在对应的位置上)
(二).新知探究
利用投影片演示
1.活动:将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180得到△DBC;将△ABC旋转180°得△AED.
2.议一议:各图中的两个三角形全等吗?
启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.
3.观察与思考:
寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?
(引导学生从全等三角形可以完全重合出发找等量关系)
得到全等三角形的性质:全等三角形的对应边相等.
全等三角形的对应角相等.
(三)例题讲解
[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角.

1.分析:△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?
将△OCA翻折可以使△OCA与△OBD重合.因为C和B、A和D是对应顶点,所以C和B重合,A和D重合.
∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.
2.总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.
[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.
1.分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来.
2小结:找对应边和对应角的常用方法有:
(2)有公共角的,公共角是对应角.
(3)有对顶角的,对顶角是对应角一对最长的边是对应边,
一对最短的边是对应边.
(4)一对最大的角是对应角,一对最小的角是对应角
(5)全等三角形对应角所对的边是对应边;
两个对应角所夹的边也是对应边.
(6)全等三角形对应边所对的角是对应角;
两条对应边所夹的角是对应角
(四)课堂练习
1、填空
点O是平行四边形ABCD的对角线的交点,△AOB绕O旋转180°,可以与△______重合,这说明△AOB≌△______.这两个三角形的对应边是AO与_____,OB与_____,BA与______;对应角是∠AOB与________,∠OBA与________,∠BAO与________.
2、判断题
1)全等三角形的对应边相等,对应角相等。()
2)全等三角形的周长相等,面积也相等。()
3)面积相等的三角形是全等三角形。()
4)周长相等的三角形是全等三角形。()
(五).课时小结
通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,
并且利用性质可以找到两个全等三角形的对应元素.这也是这节课
大家要重点掌握的.
找对应元素的常用方法有以下几种:
(一)从运动角度看
1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.
2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
3.平移法:沿某一方向推移使两三角形重合来找对应元素.
(二)根据位置元素来推理
1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.
2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
3.有公共边的,公共边是对应边.
4.有公共角的,公共角是对应角.
5.有对顶角的,对顶角是对应角一对最长的边是对应边,
一对最短的边是对应边.
一对最大的角是对应角,一对最小的角是对应角
(六)作业
课本P4习题11.1、复习巩固1.2、综合运用3.
(七)板书设计
§11.1全等三角形
一、概念
二、全等三角形的性质
三、性质应用
例1:(运动角度看问题)
例2:(根据位置来推理)
四、小结:找对应元素的方法
运动法:翻折、旋转、平移.
位置法:对应角→对应边,对应边→对应角.
(八)教学反思:

全等三角形(二)学案


【使用说明与学法指导】
1.课前完成预习案,牢记基础知识,掌握基本题型,时间不超过15分钟。
2.组内探究、合作学习完成《课内探究》不超过20分钟。
3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。
4.人人参与,合作学习,人人都有收获,人人都有进步。
5.带﹡的题要多动脑筋,展示你的能力。

一、学习目标:
1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。
2.掌握全等三角形的性质,并运用性质解决有关的问题。
3.会用符号表示全等三角形及他们的对应元素,培养大家的符号意识。
二、重点难点:运用全等三角形的性质解决相关的计算及证明等问题。
三、学习过程
《课前预习案》
(一)、自主预习课本2—3页内容,回答下列问题:
1、能够______________的图形就是全等图形,两个全等图形的_________和________完全相同。
2、一个图形经过______、______、_________后所得的图形与原图形。
3、把两个全等的三角形重合在一起,重合的顶点叫做,重合的边叫做,重合的角叫做。“全等”用“”表示,读作。
4、如图所示,△OCA≌△OBD,
对应顶点有:点___和点___,点___和点___,点___和点___;
对应角有:____和____,_____和_____,_____和_____;
对应边有:____和____,____和____,_____和_____.

5、全等三角形的性质:全等三角形的相等,相等。
(二)、练一练
1.如图,△ABC≌△CDA,AB和CD,BC和DA是对应边。写出其他对应边及对应角。

2如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边。写出其他对应边及对应角。

(三)、我的疑惑
《课内探究》
1.如图△EFG≌△NMH,∠F和∠M是对应角.在△EFG中,FG是最长边.
在△NMH中,MH是最长边.EF=2.1㎝,EH=1.1㎝,HN=3.3㎝.
(1)写出其他对应边及对应角.
(2)求线段MN及线段HG的长.

2.如图,△ABC≌△DEC,CA和CD,CB和CE是对应边.∠ACD和∠BCE相等吗?
为什么?

3.本节课小结(我的收获)
(1)知识方面:

(2)学习方法方面:

《课后训练》
1.如图所示,若△OAD≌△OBC,∠O=65°,∠C=20°,则∠OAD=.

第1题图第2题图

2.如图,若△ABC≌△DEF,回答下列问题:
(1)若△ABC的周长为17cm,BC=6cm,DE=5cm,则DF=cm
(2)若∠A=50°,∠E=75°,则∠B=
3.如图,△AOB≌△COD,那么∠ABD与∠CDB相等吗?为什么?

全等三角形导学案


§11.2.1三角形全等的条件(一)
教学目标
1.三角形全等的“边边边”的条件.
2.了解三角形的稳定性.
3.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
教学重点
三角形全等的条件.
教学难点
寻求三角形全等的条件.
教学过程
Ⅰ.创设情境,引入新课
已知△ABC≌△A′B′C′,找出其中相等的边与角.
图中相等的边是:.相等的角是:
问题:你能画一个三角形与它全等吗?怎样画?
Ⅱ.导入新课
1.只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形一定全等吗?
2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.
①三角形一内角为30°,一条边为3cm.
②三角形两内角分别为30°和50°.
③三角形两条边分别为4cm、6cm.
学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流.结果展示:
1.只给定一条边时:只给定一个角时:

2.给出的两个条件:一边一内角、两内角、两边.

3.给出三个条件画三角形,你能说出有几种可能的情况吗?
归纳:

已知一个三角形的三条边长分别为6cm、8cm、10cm.你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?
1.作图方法:
2.以小组为单位,把剪下的三角形重叠在一起,发现
3.要是任意画一个三角形ABC,根据前面作法,同样可以作出一个三角形A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.将△A′B′C′剪下,发现两三角形重合.这反映了一个规律:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.
判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS”是证明三角形全等的一个依据.
[例题]如图,△ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架.
求证:△ABD≌△ACD.([分析]要证明全等,可以看这两个三角形的三条边是否对应相等.)
证明:因为D是BC的中点
所以BD=DC
在△ABD和△ACD中
所以△ABD≌△ACD(SSS).
生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.例如屋顶的人字梁、大桥钢架、索道支架等.
Ⅲ.随堂练习
1.如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?
2.课本练习.P8
3.如图四边形ABCD中,AB=CD,AD=BC,你能把四边形ABCD分成两个相互全等的三角形吗?你有几种方法?你能证明你的方法吗?试一试.

Ⅳ.课时小结
本节课我们探索得到了三角形全等的条件,发现了证明三角形全等的一个规律SSS.并利用它可以证明简单的三角形全等问题.
Ⅴ.作业
1.教材第十五页1、
2.课后作业:《创新设计》
Ⅵ.活动与探索
如图,一个六边形钢架ABCDEF由6条钢管连结而成,为使这一钢架稳固,请你用三条钢管连接使它不能活动,你能找出几种方法?