88教案网

你的位置: 教案 > 初中教案 > 导航 > 绝对值与相反数3

小学奥数教案

发表时间:2020-10-06

绝对值与相反数3。

每个老师不可缺少的课件是教案课件,规划教案课件的时刻悄悄来临了。需要我们认真规划教案课件工作计划,这样我们接下来的工作才会更加好!你们会写适合教案课件的范文吗?请您阅读小编辑为您编辑整理的《绝对值与相反数3》,欢迎大家阅读,希望对大家有所帮助。

课题:2.4绝对值与相反数(3)
教学目标:
1.知道一个数的绝对值与这个数本身或它的相反数有什么关系;
2.会利用绝对值比较两个有理数大小;
3.在具体进行两个负数的大小比较中,培养推理论证能力,体会数形结合与转化的思想方法.
教学重点:知道一个数的绝对值与这个数本身或它的相反数有什么关系;会利用绝对值比较两个有理数大小.
教学难点:会利用绝对值比较两个有理数大小.
教学过程:
一、议一议:
1.根据绝对值与相反数的意义填空:
(1)|2.3|=,=,|6|=;
(2)|-5|=,|-10.5|=,|-|=;
-5的相反数是______,-10.5的相反数是______,-的相反数是______;
(3)|0|=______,0的相反数是______.
2.(1)任意说出一个负数,并说出它的绝对值、它的相反数.
(2)一个数的绝对值与这个数本身或它的相反数有什么关系?
3.(1)2与3哪个大?这两个数的绝对值哪个大?
(2)-1与-4哪个大?这两个数的绝对值哪个大?
(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?
(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?
二、展示交流
活动一、探究一个数的绝对值与这个数本身或它的相反数之间的关系
小组讨论:
1.一个数的绝对值一定与这个数本身相等吗?
2.一个数的绝对值一定与它的相反数相等吗?
3.举例说明一个数的绝对值与这个数本身或它的相反数有什么关系?
活动二、探究两个有理数的大小与这两个数的绝对值的大小有什么关系
议一议:
1.数轴上的点的大小是如何排列的?
2.两个数比较大小,绝对值大的那个数一定大吗?
3.比较下列两个数的大小
(1)与;(2)-3.5与-4.6;

(3)-|-与-(-2).

三、课堂反馈
1.-2的符号是______,绝对值是______;3.5的符号是______,绝对值是______.
2.符号是“+”,绝对值是6的数是______.
3.符号是“-”,绝对值是4.3的数是______.
4.一个数绝对值是3,这个数是;
一个数的绝对值是它本身,这个数是;
一个数的绝对值是它的相反数,这个数是.
5.计算:(1)|-+|-=;(2)|-3|-|-2.5|=.
6.比较下面有理数的大小并且说明理由.
(1)-0.7与-1.7;(2)-与-0.273;
(3)+(-5)与-(-3).

7.用“<”将各数从小到大排列起来:(直接写出结论,不必说明理由)
-4,+(-),-(-1.5),0,|-3|
wWw.JAB88.COM

课堂作业:课本P29习题2.4第5,7题

相关阅读

绝对值与相反数


老师会对课本中的主要教学内容整理到教案课件中,到写教案课件的时候了。将教案课件的工作计划制定好,才能够使以后的工作更有目标性!你们清楚有哪些教案课件范文呢?为满足您的需求,小编特地编辑了“绝对值与相反数”,欢迎阅读,希望您能够喜欢并分享!

课题:2.4绝对值与相反数(2)
教学目标:
1.使学生能理解相反数的意义,能求出已知数的相反数;
2.使学生能根据相反数的意思进行化简.
教学重点:会求一个已知数的相反数
教学难点:相反数意义的理解:
教学过程:
一、议一议:
1.如图,观察数轴上点A、点B的位置及它们到原点的距离,你有什么发现?
2.观察下列各对有理数,你发现了什么?请与同学交流.
5与,2.5与,与,π与-π.
符号不同、绝对值相同的两个数互为相反数,其中一个是另一个的相反数.例如5与-5互为相反数,其中5是-5的相反数,-5是5的相反数,π的相反数是-π.
0的相反数是0.
练习:求3、-4.5、47的相反数.
二、利用相反数的意义化简一个数的符号
表示一个数的相反数,可以在这个数的前面添一个“-”号.如-5的相反数可以表示为-(-5),而我们知道-5的相反数是5,所以-(-5)=5.
一般的,a的相反数是-a,-a的相反数是a,即-(-a)=a.
三、展示交流
1.求7、-8.5、的相反数.
2.求下列各数的相反数:8,-7,0,3.4,-5.9,︱-3︱

3.化简:
(1)-(+3)(2)+(-1.5)(3)+(+5)

(4)-(-12)(5)-[-(+3.2)](6)-[-(-3.2)]

四、课堂反馈
1.在-3、+(-3)、-(-4)、-(+2)中,负数的个数有()
A、1个B、2个C、3个
2.在+(-2)与-2、-(+1)与+1、-(-4)与+(-4)、-(+5)与+(-5)、-(-6)与+(+6)、+(+7)与+(-7)这几对数中,互为相反数的有()
A、6对B、5对C、4对D、3对
3.数轴上,若A、B表示互为相反数,A在B的右侧,并且这两点的距离为8,则这两点所表示的数分别是_______和_______.
4.化简:
(1)-(-100);(2)-(-5);(3)+(+);
(4)+(-2.8);(5)-(-7);(6)-(+12)

5.请在数轴上画出表示3、-2、-3.5及它们相反数的点,并分别用A、B、C、D、E、F来表示
(1)把这6个数按从小到大的顺序用<连接起来;
(2)点C与原点之间的距离是多少?点A与点C之间的距离是多少?

课堂作业:习题2.42、3
教学反思:

相反数和绝对值


每个老师不可缺少的课件是教案课件,规划教案课件的时刻悄悄来临了。将教案课件的工作计划制定好,新的工作才会如鱼得水!你们会写一段适合教案课件的范文吗?考虑到您的需要,小编特地编辑了“相反数和绝对值”,仅供参考,欢迎大家阅读。

内容1.2.3相反数、绝对值课时本学期第课时日期
本单元第课时
主备人复备人



标1、知道相反数的概念,并会在已知的有理数中,借助数轴识别互为相反的数。
2、会求已知数及字母的相反数。
3、正确理解互为相反数的几何意义和代数意义。
4、理解绝对值的意义。
5、熟记绝对值的性质,会求一个数的绝对值。
6、已知一个数的绝对值利用绝对值的定义能求这个数。
7、用绝对值知识解决实际问题。
重点
难点利用相反数、绝对值的性质求一个有理数的相反数、绝对值。
理解绝对值的几何意义。
教学流程及内容师生活动复备标注
一、自学与思考:请认真仔细通读课本10—11页相反数的内容。通过自学争取解决以下问题:
1、符合什么条件的两个数是相反数?0的相反数是什么?
2、在相反数的定义中“只有”的准确含义是什么?
3、数轴上到原点的距离相等的点有几个?它们是什么关系?
4、怎样表示a的相反数?
5、比一比:看谁通过自己自学能提出自己更新的见解?
6、做课本11页练习。
二、认真仔细通读课本第11—12页的内容,通过自学争取独立解决以下问题:
1、读第一段,回答两辆汽车行驶路程的远近相同吗?-10与10的联系和区别是什么?
2、完成并熟记:a的绝对值是指—————————————————————,记作
由此可知,正数的绝对值是————,负数的绝对值是——————,0的绝对值是————。即当a0时,∣a∣=;
当a0时,∣a∣=;当a=0时,∣a∣=。
3、一个数的绝对值是什么样的数?举例说明。
4、请你通过思考提出一个有助于理解本课知识的问题,让同学解答。
5、课本12页练习
三、训练与提高:
相反数提高性练习:
⑴观察数轴,发现A、B在原点的_____边和______边,但它们与原点的距离都等于______。则A、B为_________。
⑶、画一个数轴,请在你的数轴上标出—2、2、1.5、—1.5、0.5、—0.5、0;你发现了什么?
⑷、如果a的相反数是2008,则a等于_________。
⑹、如果m的相反数是m,则m=_________。
⑺、化简下列各数:
—(—0)=—(+6)=—(+5)=
—(—0.7)=—(—99)=—(+6.7)=
—(—8)=—(+4.1)=—〔—(+7)〕=
问题:化简中你有什么好方法吗?括号内的“—”与括号外的“—”意义一样吗?
思考:你会化简—[—(—a)]与—{—[—(+a)]}吗?
⑻、若2x+1是—9的相反数,求x的值?
学生先快速按要求阅读课本,,自学本章的基本考点,然后后在组内交流疑难问题。
教师深入学生中,了解学生自学情况,接受学生的质疑,并指导个别学生复习收集学生存在的共同问题,及时点拨。
教师巡视,关注学生的学习情况。

课本练习每题找2学生板演,其余独立完成后对照板演查缺补漏。教师针对学生问题点拨。

能力提升题教师用课件出示问题,学生独立现场完成,随时发现问题,师生共同及时矫正

绝对值提高性练习:
(1)、下列各式不正确的是()
A、|-5|=5B、-|5|=-|-5|C、|-5|=|5|D、-|-5|=5
(2)、填空:+3的符号是,绝对值是;
-3的符号是,绝对值是;
符号是正,绝对值是7的数是;
符号是负,绝对值是7的数是;
绝对值是13的数是。
(3)、根据以下条件求值∣a∣+∣b∣
①a=-3,b=0②a=1.7,b=-2.3
⑴正数的相反数是___________;⑵负数的相反数是_________;⑶0的相反数是___________;⑷相反数等于它本身的数______;⑸相反数大于它本身的数是_______;
⑹相反数小于它本身的数是_________。
(4)、填空:如果∣x∣=0,那么x=;如果∣x∣=9,那么x=。
(5)、如果∣a-3∣=0则∣a+2∣=
(6)、绝对值小于5的整数是
(7)、下列说法不正确的是()
A、-3表示的点到原点的距离是|-3|
B、一个有理数的绝对值一定是正数
C、一个有理数的绝对值一定不是负数
D、互为相反数的两个数的绝对值一定相等。
(8)、选择下列说法正确的:
A、-a一定是负数B、-∣a∣一定是非正数
C、∣a∣一定是正数D、-∣a∣一定是负数
(9)、∣a∣=∣b∣,则a与b有什么关系?
作业:15页3、4
教学反思: