小学一年级的数学教案
发表时间:2020-10-06新版初一数学下册第四章变量之间的关系导学案。
第4章知识整合与解题指导
一、知识导航
1、主要概念:变量是;自变量是;因变量是。
2、变量之间关系的三种表示方法:。
其特点是:列表:对于表中自变量的每一个值,可以不通过计算,直接把的值找到,查询方便;但是欠,不能反映变化的全貌,不易看出变量间的对应规律。
关系式:简明扼要、规范准确;但有些变量之间的关系很难或不能用关系式表示。图像:形象直观。可以形象地反映出事物变化的过程、变化的趋势和某些特征;但图像是近似的、局部的,由图像确定因变量的值欠准确。
3、主要数学思想方法:类比和比较的方法(举例说明);数形结合和数学建模思想(举例说明)。
二、学习导航
1、有关概念应用
例1下列各题中,那些量在发生变化?其中自变量和因变量各是什么?
①用总长为60的篱笆围成一边长为L(m),面积为S(m2)的矩形场地;
②正方形边长是3,若边长增加x,则面积增加为y.
2、利用表格寻找变化规律
例2研究表明,固定钾肥和磷肥的施用量,土豆的产量与氮肥的施用量有如下关系:
施肥量
(千克/公顷)03467101135202259336404471
土豆产量
(吨/公顷)15.1821.3625.7232.2930.0339.4543.1543.4640.8330.75
上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?根据表格中的数据,你认为氮肥的使用量是多少时比较适宜?
变式(湖南)一辆小汽车在高速公路上从静止到起动10秒后的速度经测量如下表:
时间/秒012345678910
速度/米/秒00.31.32.84.97.611.014.118.424.228.9
①上表反映了哪两个变量之间的关系?哪个是因变量?
②如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?
③当t每增加1秒时,v的变化情况相同吗?在哪1秒中,v的增加最大?
④若高速公路上小汽车行驶的速度的上限为120千米/时,试估计大约还需要几秒小汽车速度就将达到这个上限?
3、用关系式表示两变量的关系
例3.、①设一长方体盒子高为10,底面积为正方形,求这个长方形的体积v与底面边长a的关系。②设地面气温是20℃,如果每升高1km,气温下降6℃,求气温与t高度h的关系。
变式(江西)如图,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A(平方米)与拉开长度b(米)的关系式是:.
4、用图像表示两变量的关系
例4、(桂林)今年,在我国内地发生了“非典型肺炎”疫情,在党和政府的正确领导下,目前疫情已得到有效控制.下图是今年5月1日至5月14日的内地新增确诊病例数据走势图(数据来源:卫生部每日疫情通报).从图中,可知道:
(1)5月6日新增确诊病例人数为人;
(2)在5月9日至5月11日三天中,共新增确诊病例人数为人;
(3)从图上可看出,5月上半月新增确诊病例总体呈趋势.Jab88.cOM
例5、(陕西)星期天晚饭后,小红从家里出去散步,下图描述了她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.依据图象,下面描述符合小红散步情景的是().
A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了
B.从家出发,到了一个公共阅报栏,看了一会儿报后,
继续向前走了一段,然后回家了
C.从家出发,一直散步(没有停留),然后回家了
D.从家出发,散了一会儿步,就找同学去了,18分钟后才开始返
变式(成都)右图表示甲骑电动自行车和乙驾驶汽车沿相同路线行驶45千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据这个行驶过程中的图象填空:汽车出发小时与电动自行车相遇;电动自行车的速度为千米/时;汽车的速度为千米/时;汽车比电动自行车早小时到达B地.
三、一试身手
1、(贵阳)小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y表示父亲与儿子行进中离家的距离,用横轴表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是()
2、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余
部分的高度y(厘米)与燃烧时间x(小时)
之间的关系如图所示.
请根据图象所提供的信息解答下列问题:
(1)甲、乙两根蜡烛燃烧前的高度分别是,
从点燃到燃尽所用的时间分别是;
(2)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?
3、(2006宿迁课改)小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是()
A.8.6分钟B.9分钟
C.12分钟D.16分钟
4、某机动车出发前油箱内有油42l,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(L)之间的关系如图8所示.
回答问题:(1)机动车行驶几小时后加油?
(2)中途中加油_________L;
(3)已知加油站距目的地还有,车速为,
若要达到目的地,油箱中的油是否够用?并说明原因.
5、在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.
所挂质量
012345
弹簧长度
182022242628
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当所挂物体重量为时,弹簧多长?不挂重物时呢?
(3)若所挂重物为时(在允许范围内),你能说出此时的弹簧长度吗?
6、小明在暑期社会实距活动中,以每千克0.8元的价格从批发市场购进若干千克瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图9所示.请你根据图象提供的信息完成以下问题:
(1)求降价前销售金额y(元)与售出西瓜(千克)之间的关系式;
(2)小明从批发市场共购进多少千克西瓜?
(3)小明这次卖瓜赚子多少钱?
7、如图中的折线ABC是甲地向乙地打长途电话所需要付的电话费y(元)与通话时间t(分钟)之间的关系的图象.
(1)通话1分钟,要付电话费多少元?通话5分钟要付多少电话费?
(2)通话多少分钟内,所支付的电话费不变?
(3)如果通话3分钟以上,电话费y(元)与时间t(分钟)的关系式是,那么通话4分钟的电话费是多少元?
8、如图是某水库的蓄水量v(万米3)与干旱持续时间t(天)之间的关系图,回答下列问题:
(1)该水库原蓄水量为多少万米3?持干旱持续时间10天后,水库蓄水量为多少万米3?
(2)若水库的蓄水量小于400万米3时,将发生严重干旱警报,请问:持续干旱多少天后,将发生严重干旱警报?
(3)按此规律,持续干旱多少天时,水库将干涸?
9、(成都市)某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x分钟,两种方式的费用分别为元和元.
(1)写出、与x之间的关系式;
(2)一个月内通话多少分钟,两种移动通讯费用相同?
(3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些?
延伸阅读
第四章生物之间的食物关系
作为老师的任务写教案课件是少不了的,大家在用心的考虑自己的教案课件。只有规划好了教案课件新的工作计划,才能促进我们的工作进一步发展!你们会写多少教案课件范文呢?为了让您在使用时更加简单方便,下面是小编整理的“第四章生物之间的食物关系”,欢迎您参考,希望对您有所助益!
第四章生物之间的食物关系
第一节食物链
一.教学目标
1、知识目标(1)了解生物间普遍存在摄食与被食的关系。
(2)知道什么是食物链。
2、能力目标(1)通过分组活动,培养学生分析和综合的能力,会画一些简单的食物链。
(2)通过方案设计,查阅资料等培养学生运用知识解决问题的能力。
3、感态度与价值观目标
(1)建立自然界的事物是普遍联系的科学自然观。
(2)培养学生探究食物链的兴趣,初步形成主动参与社会决策的意识。
二.学情分析
教学重点(1)指导学生认识自然界中食物链,建立食物链的概念。
(2)培养学生自我建构知识的能力。
教学难点设计一个生物防治的方案。
教学准备(1)每组的游戏卡片和线,针等。
(2)相关的CAI课件。
三.教学过程
程序教师活动学生活动设计意图
导入新课(1)CAI展示“螳螂捕蝉,黄雀在后”等谚语图片。
(2)想一想:生物间存在什么关系?(1)说出图片所描述的谚语。
(2)思考回答:吃与被吃。创设情境,激发学习欲望。
分析农田中的生物(1)播放CAI:屏幕上出现稻田和草地,稻田里呱呱叫的青蛙,草地里活蹦乱跳的蚂蚱和“闲庭信步”的鸡,一条黑蛇窜来窜去。突然,一只鹰从高空俯冲而下,以迅雷不及掩耳之势向蛇扑去。观看动画,思考画面上出现了哪些动植物?发现哪些有趣的现象?进入情境,做好探究活动的准备。
(2)组织学生分组活动:
A.将画面上出现的动植物名称写在卡片上,每种多写一些。
B.按照你发现的现象进行卡片“接龙”。学生分组活动,比一比哪组进行的“接龙”多。让学生动一动,培养探究食物链的兴趣,明确任务,协作学习。
(3)指导学生将卡片“接龙”写下来。“”表示捕食关系,写到最后一种生物才叫完整。记录本小组的卡片“接龙”并汇报。如:青草鸡鹰让学生写一写,感性上升到理性。
(4)引导学生分析问题:
A.像这6种生物那样,彼此间串联起来的食物关系像什么?
B.你所连的食物链各有几个环节?
C.位于不同环节的动物所吃食物有何不同?
D.比较这几条食物链,你还发现了哪些共性问题?A.建立“食物链”的概念。
B.观察出一般3~5个环节。
C.查阅信息库,了解动物的食性分三类。
D.讨论归纳出各种食物链一般所具有的特点。让学生议一议,培养学生从点到面分析问题的系统思维。
分析食谱中的生物(1)在上述CAI展现的农田生态系统中引入“人”,并配以字幕:
民以食为天,食物从何处来?观看思考。让学生找一找,关注人自身,体会人与自然的关系。
(2)指导学生探究:你的午餐从哪里来?A.列出某一顿午餐吃过的各种食物。
B.分类思考其中哪些食物来源于植物?哪些来源于动物?
(3)在学生探究的基础上,CAI展示与人有关的食物来源。连出包括人在内的食物链,并汇报展示。
(4)CAI展现丰富多彩的食品,展现信息库中的“生态农业”。思考人于动物获取食物方式的根本区别何在?请谈谈你的认识。学生明确人是靠劳动获得食物的。很早人们就懂得了农业,用各种方式改造植物,办起绿色工厂,利用食物链知识造福人类。
设计生物防治方案(1)CAI展现含啄木鸟、猫头鹰在内的食物链场景。
(2)说明1只啄木鸟1年能啄食3000多条害虫,1窝猫头鹰可消灭1000多只老鼠,相当于从老鼠嘴里夺回1吨粮食。从中你得到什么启发?
(3)你还知道那些生物的天敌?
(1)找出画面中的食物链并表示出来。
(2)思考回答。懂得自然界的动物都互有天敌,保护好这些相生相克的食物链关系对人类大有好处。
(3)举出生活生产实践中“巧借天兵”的事例。挖掘学生已有的知识基础,培养学生从直觉思考问题的顿悟思维。
(4)如果放鸡治菜虫可行吗?分析此方法的不合理性,从而明确设计方案应注意的问题。培养学生从反面分析问题的逆向维和从不同角度思考问题的发散思维。
(5)指导分组设计:松毛虫的生物防治方案。小组分工合作,各负其责。培养学生理论联系实际的能力。
(6)组织学生进行方案发布,并进行评价。方案展示,学习他人的研究方法和思路。学会表达、评价,取长补短。
总结(1)评价:采取不同学习方法获取更多知识。
(2)能将“螳螂捕蝉,黄雀在后”的食物链补充完整吗?(1)自我评价本节学习的收获和不足。
(2)写出谚语中的食物链。
(3)完成DIY。学习延伸
第二节错综复杂的食物关系
一.教学目标
1、知识目标:(1)了解生物间的食物关系是错综复杂的。
(2)知道什么是食物网。
2、能力目标:(1)学会分析资料,进行语言表达。
(2)学会将理论知识与生活实际相联系。
3、情感态度与价值目标:
(1)加深对生物与环境关系的认识,形成热爱自然、保护生物的情感。
(2)关注与生物有关的社会问题,具有社会责任感。
二.学情分析
教学重点:指导学生学会分析资料,讨论当生态系统中的某一成分数量变化,其他生物的数量会发生什么变化,带来什么样的后果。
教学难点:指导学生观察理解第67页示意图,弄清物质和能量沿着食物链和事物网流动。
课时安排:1课时
三.教学过程
师:中国有句成语“螳螂捕蝉,黄雀在后”,那同学们有没有想过:黄雀是否仅以螳螂为食?螳螂是否也仅以蝉为食?
生:它们并不是只吃一种生物,一种动物可以吃多种生物。
师:在生态系统中,各种生物之间的食物关系并不仅仅是形成一条条简单的食物链。一种动物可以吃多种生物,例如,鸟可以吃稻子,也可以吃昆虫;一种生物也可以被多种动物所吃,例如,鸟可以被鹰吃,也可以被蛇吃。因此,在同一个生态系统中,各种生物之间形成了错综复杂的食物关系。
师:组织学生分组活动,将食物链中相同的生物重叠起来,构建食物网。
生:分组活动,比一比哪组同学画的食物网完整。
师:引导学生分析问题,像这样各条食物链相互交叉连接起来,形成的网状结构叫什么?
师:建立食物网的概念。
指导学生看书上66页的图,做书上的讨论题
师:在生态系统中,食物链和食物网不仅反应了生物之间通过食物而形成的复杂联系,同时还反应了物质和能量在这个生态系统中流动的情况。
师:讲述能量在食物网中的流动规律:从绿色植物开始流向植食性动物,再流向肉食性动物。
生:举例分析食物链中能量的流动情况。
生:阅读“野味”和“打狼”两则资料,完成后面的讨论题。
师:小结在生态系统中,处在每一个环节上的生物都很重要,并且它们之间有着紧密的联系。如果一种生物消失,就会使整个食物链中断,从而影响整个食物链和食物网,甚至危及生态系统的平衡与稳定。如果人类活动过多地干预某一部分,整个生态系统就会失衡,导致人类自食其果,我们每个同学都要树立人与自然和谐发展的观点。
组织学生讨论目前社会上存在的一些不良行为。
生:讨论科技人员将饲养的虎、狼等放回森林,这么做,对森林中的食物网和森林生态系统有影响吗?
师:将饲养的虎、狼等放回森林,对森林中的食物网和生态系统有影响。
师:在农业生产中,运用生态学的原理,将食物链的知识运用于传统的农业生产,取得了丰厚的经济效益;还利用有害生物的天敌来控制和消灭有害生物。
生:阅读信息库的有关内容
初一数学上册第四章几何图形初步导学案
作为老师的任务写教案课件是少不了的,大家正在计划自己的教案课件了。各行各业都在开始准备新的教案课件工作计划了,才能更好的在接下来的工作轻装上阵!你们清楚教案课件的范文有哪些呢?以下是小编为大家收集的“初一数学上册第四章几何图形初步导学案”仅供参考,希望能为您提供参考!
第四章图形认识初步
课题4.1.1认识几何图形(1)
【学习目标】:1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;
2、能由实物形状想象出几何图形,由几何图形想象出实物形状;
3、能识别一些简单几何体,正确区分平面图形与立体图形。
【重点难点】:识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。
【导学指导】
一、知识链接
同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的图形。图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。
二、自主探究
1.几何图形
(1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界;
(2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题:
从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?
我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。
注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。
2.立体图形
思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?
长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。
想一想
生活中还有哪些物体的形状类似于这些立体图形呢?
思考:课本118页图4.1-4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。
3.平面图形
平面图形的概念
线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
思考:课本118页图4.1-5的图中包含哪些简单的平面图形?
请再举出一些平面图形的例子。
长方形、圆、正方形、三角形、……。
思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系?
立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;
立体图形中某些部分是平面图形。
【课堂练习】:
课本119页练习
【要点归纳】:
1、
2、平面图形与立体图形的关系:
立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;
立体图形中某些部分是平面图形。
【拓展训练】
1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.
其中属于立体图形的是()
A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥
【总结反思】:
课题4.1.1几何图形(2)
【学习目标】:1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看;
2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形;
【学习重点】:识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形新-课-标-第-一-网
【学习难点】:画出从正面、左面、上面看正方体及简单组合体的平面图形
【导学指导】
一、知识链接
多媒体演示庐山景观,请学生背诵苏东坡《题西林壁》并说说诗中意境。
横看成岭侧成峰,
远近高低各不同。
不识庐山真面目,
只缘身在此山中。
从数学的角度来理解是什么意思呢?
二、自主探究
1.说一说:分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(出示实物)
2.画一画:长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(出示实物)
这样,我们将立体图形转化成了平面图形
3.探究活动1:从正面、左面、上面观察得到的平面图形你能画出来吗?
小组合作学习,动手画一画,并进行展示
探究:分别从正面、左面、上面观察课本119页图4.1-8这个图形,分别画出得到的平面图形。
【课堂练习】:
课本120页练习1
【要点归纳】:1.本节课我们主要学习了什么?
2.本节课我们有哪些收获?
【拓展训练】
1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()
2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。
【总结反思】:
课题4.1.1几何图形(3)
【学习目标】:1.能直观认识立体图形和展开图,了解研究立体图形方法。
2.通过观察和动手操作,经历和体验平面图形和立体图形相互转换的过程,培养动手操作能力,初步建立空间观念,发展几何直觉。
【学习重点】:了解基本几何体与其展开图之间的关系,体会一个立体按照不同方式展开可得到不同的平面展开图。
【学习难点】:正确判断哪些平面图形可以折叠为立体图形;某个立体图形的展开图可以是哪些平面图形
【导学指导】
一、知识链接
我们把一些像墨水瓶盒、粉笔盒这样的纸盒沿它的表面适当剪开,可以展平成平面图形。这样的平面图形叫做相应立体图形的展开图。
你知道长方体、圆柱、圆锥和三棱柱的展开图是什么样子的吗?想象一下。
二、自主探究
(一)、立体图形的展开
1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?
思考:请你指出上面展开图各部分与几何体的哪一部分相对应?
2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,
以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。
(二)、立体图形的折叠
探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?
凭想象回答,回答不出来的,就把它画在纸片上,剪下来折叠。
做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?
【课堂练习】:
课本121页练习2
【要点归纳】:1.我知道了什么?
2.我学会了什么?
3.我发现了什么?
【拓展训练
1.下列图形中,不是正方体的表面展开图的是()
A.B.C.D.
2.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()
A.和
B.谐
C.沾
D.益
【总结反思】:
课题4.1.2点、线、面、体
【学习目标】:(1)了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面;
(2)了解几何图形构成的基本元素是点、线、面、体及其关系,能正确判定由点、
面、体经过运动变化形成的简单的几何图形;
【学习重点】:正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系。
【学习难点】:探索点、线、面、体运动变化后形成的图形。
【导学指导】
一、温故知新
1.出示一个长方体模型,请同学们认真观察。
2.回答问题:这个长方体有几个面?面与面相交成了几条线?线与线相交成几个点?
二、自主探究
1.经过学生的独立思考,然后在小组中进行交流,在小组讨论中,评价并修正自己的结论。(教师进行巡视,及时给予指导,教师对学生分布的答案作鼓励性评价)。
2.几何体的概念
(1)长方体是一个几何体,我们还学过哪些几何体?
_______________________________________________________________________;
(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?
这些面有什么区别?
3.面的分类
通过对上面问题的解决,得出面的分类:____面和___面。
面与面相交成线,线有___线和____线;线与线相交成_____;
4.点、线、面、体
教师指导学生看课本第121~122页内容,观察图片能发现什么结论?
点、线、面、体的关系:点动成_____,线动成___________,面动成________。
请你再举出生活中的一些实例:
5.点、线、面、体与几何图形关系.
指导学生阅读课本第123页内容,总结出点、线、面、体与几何图形的关系
几何图形都是由_______________________组成的,________是构成图形的基本元素。
【课堂练习】
课本第122页练习1、2;
【要点归纳】:
1.本节课我们主要学习了什么?
2.本节课我们有哪些收获?
【拓展训练】:
1.人在雪地上走,他的脚印形成一条_______,这说明了______的数学原理;
2.体是由_______围成的,面和面相交形成_______,线和线相交形成______;
3.点动成________,线动成______,面动成_______;
4.将三角形绕直线L旋转一周,可以得到如下图所示立体图形的是()
ABCD
【总结反思】:
课题4.2直线、射线、线段(1)
【学习目标】:1.能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,能用几何语言描述直线性质;
2.会用字母表示直线、射线、线段,会根据语言描述画出图形;
【重点难点】:理解并掌握直线性质,会用字母表示图形和根据语言描述画出图形;
【导学指导】
一、知识链接
1.在小学已经学过了直线、射线、线段.请你画出一条直线、一条射线、一条线段?
直线射线线段
2.填写下列表格:
端点个数延伸方向能否度量
线段
射线
直线
二、自主探究
1、直线的性质
(1)如果你想将一根细木条固定在墙上,至少需要几个钉子?操作一下,试试看。
答:
(2)经过一个已知点的直线,可以画多少条直线?请画图说明。
答:O
(3)经过两个已知点画直线,可以画多少条直线?请画图试试。
答:AB
猜想:如果将细木条抽象成直线,将钉子抽象为点,你可以得到什么结论?
直线的基本性质:
经过两点有条直线,并且条直线;
简述为:
举例说明直线的性质在日常生活中的应用:
(1)在挂窗帘时,只要在两边钉两颗钉子扯上线即可,这是因为
(2)建筑工人在砌墙时拉参照线,木工师傅锯木板时,用墨盒弹墨线,都是根据
(3)你还能从生活中举出应用直线的基本性质的例子吗?试试看:
2、直线有两种表示方法:①用一个小写字母表示;②用两个大写字母表示。
平面上一个点与一条直线的位置有什么关系?
①点在直线上;②点在直线外。
当两条直线有一个共公点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
3、射线和线段的表示方法:
如图。显然,射线和线段都是直线的一部分。
图①中的线段记作线段AB或线段a;图②中的射线记作射线OA或射线m。
注意:用两个大写字母表示射线时,表示端点的字母一定要写在前面。
思考:直线、射线和线段有什么联系和区别?
【课堂练习】
1.下列给线段取名正确的是()
A.线段MB.线段mC.线段MmD.线段mn
2.如图,若射线AB上有一点C,下列与射线AB是同一条射线的是()
A.射线BAB.射线AC
C.射线BCD.射线CB
3.下列语句中正确的个数有()
①直线MN与直线NM是同一条直线②射线AB与射线BA是同一条射线
③线段PQ与线段QP是同一条线段
④直线上一点把这条直线分成的两部分都是射线.
A.1个B.2个C.3个D.4个
4.课本129页练习
【要点归纳】:
通过本节课的学习你有什么收获?
【拓展训练】:
1.如图,线段AB上有两点C、D,则共有条线段。
2.变形题:往返于甲、乙两地的客车中途要停靠三个车站,有多少种不同的票价?要准备多少种不同的车票?
【总结反思】:
课题4.2直线、射线、线段(2)
【学习目标】:1、会用尺规画一条线段等于已知线段;
2、会比较两条线段的长短;
3、理解线段中点的概念,了解“两点之间,线段最短”的性质。
【学习重点】:线段的中点概念,“两点之间,线段最短”的性质是重点;
【学习难点】:画一条线段等于已知线段是难点。
【导学指导】
一、温故知新
1、过A、B、C三点作直线,小明说有三条,小颖说有一条,小林说不是一条就是三条,你认为的说法是对的。
二、自主学习
问题:现有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长?
上面的实际问题可以转化为下面的数学问题:
已知线段a,画一条线段等于已知线段。
1.作一条线段等于已知线段
现在我们来解决这个问题。
作法:
(1)作射线AM
(2)在AM上截取AB=a。
则线段AB为所求。
应用:已知线段a、b,求作线段AB=a+b。
解:(1)作射线AM;
(2)在AM上顺次截取AC=a,CB=b。
则AB=a+b为所求。
做一做:作线段AB=a-b。
2、比较两条线段的长短
两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?
我们先来回答下面的问题。
怎样比较两个同学的身高?
一是用尺子测量;二是站在一起比(脚在同一高度)。
如果把两个同学看成两条线段,那么比较两条线段就有两种方法。
(1)度量法:用刻度尺分别量出两条线段的长度从而进行比较。
(2)把一条线段移到另一条线段上,使一端对齐,从而进行比较,我们称为叠合法。(如图)
AB<CDAB>CDAB=CD
3、线段的中点及等分点
如图(1),点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点;
记作AM=MB或AM=MB=1/2AB或2AM=2MB=AB。
如图(2),点M、N把线段AB分成相等的三段AM、MN、NB,点M、N叫做线段AB的三等分点。类似地,还有四等分点,等等。
4、线段的性质
请同学们思考课本131页的思考?
结论:
两点所连的线中,
简单地说成:___________________________________
你能举出这条性质在生活中的一些应用吗?
两点间的距离的定义:___________________________________
注意:距离是用“数”来度量的,它是线段的长度,而不是线段本身。
【课堂练习】
1、课本131页练习1、2
2、在直线上顺次取A、B、C三点,使AB=4㎝,BC=3㎝,点O是线段AC的中点,则线段OB的长是〔〕
A、2㎝B、1.5㎝C、0.5㎝D、3.5㎝
3、已知线段AB=5㎝,C是直线AB上一点,若BC=2㎝,则线段AC的长为
【要点归纳】:
1、画一条线段等于一条已知线段。
2、怎样比较两条线段的长短?
3、线段的性质是什么?
4、什么是两点间的距离?
【拓展训练】:
1、把弯曲的河道改直后,缩短了河道的长度,这是因为;
2、已知,如图,AB=16㎝,C是BC的中点,且AC=10㎝,D是AC的中点,E是BC的中点,求线段DE的长。
【总结反思】:
课题4.3.1角
【学习目标】:1、在现实情景中,理解角的概念,掌握角的表示方法;
2、认识角的度量单位:度、分、秒,学会进行简单的换算和角度的计算。
【重点难点】:角的表示和角度的计算是重点;角的适当表示是难点。
【导学指导】
一、知识链接
观察课本136页图4.3.1;思考问题:
如图,时钟的时针与分针,棱锥相交的两条棱,直尺相交的两条边,给我们什么平面图形的形象?
二、自主学习
1.角的定义1:有__________________的两条射线组成的图形叫做角。
这个公共端点是角的________,这两条射线是角的__________。
∠AOB;
②用一个大写字母表示:∠O;
③用一个希腊字母表示:∠a;
④用一个阿拉伯数学表示:∠1。
思考:用适当的方法表示下图中的每个角:
演示:把一条射线由OA的位置绕点O旋转到OB的位置,如图(1)
射线开始的位置OA与旋转后的位置OB组成了什么图形?
角。
3.角的定义2:角也可以看作由一条射线绕着它的端点旋转面形成的图形。
如图(2),当射线旋转到起始位置OA与终止位置OB在一条直线上时,形成_____角;
如图(3),继续旋转,OB与OA重合时,又形成________角;
思考:平角是一条直线吗?周角是一条射线吗?为什么?
4、角的度量
阅读课本137页;填空:
1周角=_____0,1平角=_____0;
10=____′,1′=_____′′;
如∠a的度数是48度56分37秒,记作∠a=48056′37′′。
度、分、秒是常用的角的度量单位,以度、分、秒为单位的角的度量制,叫做角度制,
注意:角的度、分、秒与时间的时、分、秒一样,都是60进制,
计算时,借1当成60,满60进1。
例计算:(1)53028′+47035′;(2)17027′+3050′;(学生自己完成)
【课堂练习】:
课本138页1、2。
【要点归纳】:
1、什么是角、平角、周角?
2、怎么表示角?
3、角的度量单位是什么?它们是如何换算的?
【拓展训练】:
1、(37.145)0=度分秒;98030′18′′=度。
2、下午2时30分,钟表中时针与分针的夹角为〔〕
A、900B、1050C、1200D、1350
3、如图,A、B、C在一直线上,已知1=53°,2=37°;CD与CE垂直吗?
【总结反思】:
课题4.3.2角的比较与运算
【学习目标】:1、会比较两个角的大小,能分析图中角的和差关系;
2、理解角平分线的概念,会画角平分线。
【重点难点】:角的大小比较和角平分线的概念是重点;从图形中观察角的和差关系是难点。
【导学指导】
一、知识链接
回顾线段大小的比较,,怎样比较图中线段AB、BC、CA的长短?
(1)度量法;(2)叠合法。
AB<AC<BC
那么怎样比较∠A、∠B、∠C的大小呢?
二、自主学习
1、比较角的大小
(1)度量法:用量角器量出角的度数,然后比较它们的大小。
(2)叠合法:把两个角叠合在一起比较大小。
教师演示:
(1)∠AOB<∠AOB′;(2)∠AOB=∠AOB′;(3)∠AOB>∠AOB′。
2、认识角的和差
思考:如图,图中共有几个角?它们之间有什么关系?
图中共有3个角:∠AOB、∠AOC、∠BOC。它们的关系是:
∠AOC=∠AOB+∠BOC;
∠BOC=∠AOC-∠AOB;
∠AOB=∠AOC-∠BOC
3、用三角板拼角
探究:借助三角尺画出150,750的角。
一副三角板的各个角分别是多少度?___________________________________
学生尝试画角。
你还能画出哪些角?有什么规律吗?
还能画出___________________________________
规律是:凡是的倍数的角都能画出。
4、角平分线
在一张纸上画出一个角并剪下,将这个角对折,使其两边重合.想想看,折痕与角两边所成的两个角的大小有什么关系?
如图(1)
角的平分线:从一个角的_____出发,把这个角分成_______的两个角的射线,叫做这个角的平分线。类似地,还有角的三等分线等。如图(2)中的OB、OC。
OB是∠AOC的一平分线,可以记作:
∠AOC=2∠AOB=2∠BOC或∠AOB=∠BOC=。
5、例题学习
例1如图,O是直线AB上一点,∠AOC=53017′,求∠BOC的度数。
例2把一个周角7等分,每一份是多少度的角(精确到分)
【课堂练习】:
课本140-141页1、2、3。
【要点归纳】:
1、角的大小比较的方法和角的和差关系;
2、用一副三角板画角;
3、角的平分线及表示。
【拓展训练】:
1、如图,O为直线AB上一点,射线OD、OE分别平分∠AOC、∠BOC,求∠DOE的度数。
【总结反思】:
课题:余角和补角(1)
【学习目标】在具体的现实情境中,认识一个角的余角和补角;
【重点难点】正确求出一个角的余角和补角。
【导学指导】
一、知识链接
思考:
(1)在一副三角板中同一块三角板的两个锐角和等于多少度?
(2)如图1,已知∠1=61°,∠2=29°,那么∠1+∠2=。
(3)如图2,已知点A、O、B在一直线上,∠COD=90°,那么∠1+∠2=。
二、自主探究
1.互为余角的定义:
思考:
(1)如图3,已知∠1=62°,∠2=118°,那么∠1+∠2=
(2)如图4,A、O、B在同一直线上,∠1+∠2=
2.互为补角的定义:
问题1:以上定义中的“互为”是什么意思?
问题2:若∠1+∠2+∠3=180°,那么∠1、∠2、∠3互为补角吗?
3.新知应用:
例1:若一个角的补角等于它的余角4倍,求这个角的度数。
例2:如图,∠AOC=∠COB=90°,∠DOE=90°,A、O、B三点在一直线上
(1)写出∠COE的余角,∠AOE的补角;
(2)找出图中一对相等的角,并说明理由;
【课堂练习】:
课本141页练习1、2、3;
【要点归纳】:
【拓展训练】:
1、一个角的余角比它的补角的还少,求这个角的度数。
2、若和互余,且:=7:2,求、的度数。
【总结反思】:
课题:余角和补角(2)
【学习目标】:1、掌握余角和补角的性质。
2、了解方位角,能确定具体物体的方位。
【重点难点】掌握余角和补角的性质;方位角的应用;
【导学指导】
一、知识链接
1.70°的余角是,补角是;
2.∠a(∠a90°)的它的余角是,它的补角是;
二、自主学习
1.探究补角的性质:
例3、如图,∠1与∠2互补,∠3与∠4互补,∠1=∠3,那么∠2与∠4相等吗?为什么?
分析:(1)∠1与∠2互补,∠2等于什么?∠2=1800-,
∠3与∠4互补,∠4等于什么?∠4=1800-。
(2)当∠1=∠3时,∠2与∠4有什么关系?为什么?
∠2=∠4(等量减等量,差相等)
上面的结论,用文字怎么叙述?
补角的性质:等角的相等。
2.探究余角的性质:
如图∠1与∠2互余,∠3与∠4互余,如果∠1=∠3,那么∠2与∠4相等吗?为什么?
余角性质:等角的相等
3.方位角:
(1)认识方位:
正东、正南、正西、正北、东南、
西南、西北、东北。
(2)找方位角:
乙地对甲地的方位角;甲地对乙地的方位角
例4:如图.货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线。
(师生共同完成)
【课堂练习】:
1、和都是的补角,则;
2、如果,则的关系是,
理由是;
3、A看B的方向是北偏东21°,那么B看A的方向()
A南偏东69°B南偏西69°C南偏东21°D南偏西21°
4、在点O北偏西60°的某处有一点A,在点O南偏西20°的某处有一点B,则∠AOB的度数是()A100°B70°C180°D140°
【要点归纳】:补角的性质:
余角的性质:
【拓展训练】:
1.如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E在一条直线上,且∠2=∠4,
请说出∠1与∠3之间的关系?并试着说明理由?
【总结反思】:
课题第四章图形认识初步复习(两课时)
【复习目标】:1.直观认识立体图形,掌握平面图形(线段、射线、直线)的基本知识;
2.掌握角的基本概念,能利用角的知识解决一些实际问题。
【复习重点】:线段、射线、直线、角的性质和运用
【复习难点】:角的运算与应用;空间观念建立和发展;几何语言的认识与运用。
【导学指导】
一、知识结构
二、回顾与思考
1、下面是我们学习过的一些数学名词,你能用自己的语言简短地描述它们吗?
立体图形平面图形展开图
两点间的距离余角补角
2、与以前相比,你对直线、射线、线段和角有什么新的认识?
3、直线的性质:
经过两点有一条直线,并且只有一条直线。即:__________确定一条直线。
4、线段的性质和两点间的距离
(1)线段的性质:两点之间,_______________。
(2)两点间的距离:连接两点的_______________,叫做两点间的距离。
5、线段的中点及等分点的意义
(1)若点C把线段AB分为________的两条线段AC和BC,则点C叫做线段的中点。
角的概念
1、角的定义和表示
(1)有_______________的两条射线组成图形叫做角。这是从静止的角度来定义的。
由一条射线绕着_______________旋转而成的图形叫做角。这是从运动的角度来定义的。
(2)角的表示:
①用三个大写字母表示;②用一个大写字母表示;③用阿拉伯数字或希腊字母表示。
2、角的度量
10=60′;1′=60′′.
3、角的比较
比较角的方法:度量法和叠合法。
4、角的平分线
从一个角的顶点出发,把这个角分成________的两个角的射线,叫做这个角的平分线。
表示为
∠AOC=∠COB
或∠AOC=∠COB=1/2∠AOB
或2∠AOC=2∠COB=∠AOB
5、余角和补角
(1)定义:如果两个角的和等于______,就说这两个角互为余角。
如果两个角的和等于______,就说这两个角互为补角。
注意:余角和补角是两个角之间的关系;只与数量有有关,而与位置无关。
(2)余角和补角的性质:
同角(等角)的余角相等。
同角(等角)的补角相等。
6、方位角
三、例题导引
1如右图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,画出从不同方向看到的平面图形。
2.(1)如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点,求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由。
(3)若C在线段AB的延长线上,且满足ACBC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由。
3如图,∠AOB是直角,∠AOC=50°,ON是∠AOC的平分线,OM是∠BOC的平分线。
(1)求∠MON的大小;
(2)当∠AOC=时,∠MON等于多少度?
(3)当锐角∠AOC的大小发生改变时,∠MON的大小也会发生改变吗?为什么?
【课堂练习】
一、选择题:
1、下列说法正确的是()
A.射线AB与射线BA表示同一条射线。B.连结两点的线段叫做两点之间的距离。
C.平角是一条直线。D.若∠1+∠2=900,∠1+∠3=900,则∠2=∠3;
2、5点整时,时钟上时针与分钟之间的夹角是〔〕
A.210°B.30°C.150°D.60°
3、如图,射线OA表示〔〕
A、南偏东700B、北偏东300
C、南偏东300D、北偏东700
4、下列图形不是正方体展开图的是〔〕
5、若∠A=20°18′,∠B=20°15′30″,∠C=20.25°,则〔〕
A.∠A>∠B>∠CB.∠B>∠A>∠C
C.∠A>∠C>∠BD.∠C>∠A>∠
二、填空题:
6、38°41′的余角等于_____,123°59′的补角等于_____;
7、根据下列多面体的平面展开图,填写多面体的名称。
(1)__________,(2)__________,(3)_________。
8、互为余角的两个角之差为35°,则较大角的补角是_____;
9、45°52′48″=_________度,126.31°=____°____′____″;
25°18′÷3=__________;
10、如图,已知CB=4,DB=7,D是AC的中点,
则求AC的长度。
11、如图①直线l表示一条笔直的公路,在公路两旁有两上村庄A和B,要在公路边修建一个车站C,使车站C到村庄A和B的距离之和最小,请找出村庄C点的位置,并说明理由。
【拓展训练】
1.如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.
(1)指出图中∠AOD的补角,∠BOE的补角;
(2)若∠BOC=68°,求∠COD和∠EOC的度数;
(3)∠COD与∠EOC具有怎样的数量关系?
2、观察下列图形,并阅读图形下面的相关文字:
猜想:(1)5条直线最多有几个交点?6条直线呢?
(2)n条直线相交最多有几个交点
【总结反思】:
第四章图形认识初步检测试卷(满分100分)
班级姓名成绩
一、填空题(每空4分,共40分)
1.圆柱的侧面展开图是;
2.已知与互余,且,则为;
3.如果一个角的补角是,那么这个角的余角是________;
4.乘火车从站出发,沿途经过个车站可到达站,那么在两站之间最多共有________种不同的票价;
5.如图,若是中点,是中点,若,,_________。
6.要在墙上固定一根木条,至少要个钉子,根据的原理是。
7.________度________分;8.________;
9.小明每天下午5:30回家,这时分针与时针所成的角的度数为____度。
二、选择题(每题4分,共20分)
10.下列判断正确的是()
A.平角是一条直线B.凡是直角都相等
C.两个锐角的和一定是锐角D.角的大小与两条边的长短有关
11.下列哪个角不能由一副三角板作出()
A.B.C.D.
12.若,则∠α与∠β的关系是()
A.互补B.互余C.和为钝角D.和为周角
13.平面上A、B两点间的距离是指()
A.经过A、B两点的直线B.射线ABC.A、B两点间的线段
D.A、B两点间线段的长度
14.一个立体图形的三视图如图所示,那么它是()
A.圆锥B.圆柱
C.三棱锥D.四棱锥
三、解答题:(共40分)
15.根据下列要求画图:(10分)
(1)连接线段AB;
(2)画射线OA,射线OB;
(3)在线段AB上取一点C,在射线OA上
取一点D(点C、D不与点A重合),画直
线CD,使直线CD与射线OB交于点E。
16、如图所示的几何体是由5个相同的正方体搭成的,请画出它的主视图、左视图和俯视图(9分)
17.如图所示,点O是直线AB上一点,OE,OF分别平分∠AOC和∠BOC,若∠AOC=68°,则∠BOF和∠EOF是多少度?(9分)
18.(1)如下图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的的长度.
(2)在(1)中,如果AC=acm,,其它条件不变,你能猜出MN的长度吗?请你用一句简洁的话表述你发现的规律.
(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6cm,BC=4cm,点C在直线AB上,点M、N分别是AC、BC的中点,求MN的长度。”结果会有变化吗?如果有,求出结果。(12分)
变量之间的关系导学案
每个老师需要在上课前弄好自己的教案课件,大家在用心的考虑自己的教案课件。是时候对自己教案课件工作做个新的规划了,才能更好的在接下来的工作轻装上阵!适合教案课件的范文有多少呢?以下是小编收集整理的“变量之间的关系导学案”,欢迎您阅读和收藏,并分享给身边的朋友!
第四章变量之间的关系
§4.1小车下滑的时间
学习目标:通过分析小车在斜坡上下滑时高度与时间数据之间的联系,使学生体会小车下滑时间随着高度变化而变化,从而了解变量、自变量和因变量的意义,了解可以用列表示两个变量之间的关系,培养学生分析问题的能力与归纳思维的能力。
学习重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。
学习难点:对表格所表达的两个变量关系的理解。
一、预习
(一)、预习书P96~P97
(二)、思考:什么是变量?什么是自变量?什么是因变量?
(三)、预习作业:
1、课堂上,学生对概念的接受能力与老师提出概念的时间(单位:分)之间有如下关系:
时间/分02101213141624
接受能力4347.85959.859.959.85947.8
(1)表中反映了哪两个变量之间的关系,哪个是自变量?哪个是因变量?
(2)根据表中的数据,你认为老师在第____分钟提出观念比较适宜?说出你的理由.
二、学习过程:
(一)要点引导
1、在一个变化过程中数值保持不变的量叫做______可以取不同数值的量叫做______,如果一个量随着另外一个量的变化而变化,那么把这个量叫做______,另一个量叫做______.
2、本节是通过______形式来表示两个变量之间的关系的.
(二)例题
例1王波学习小组利用同一块木板,测量了小车从不同高度下滑的时间.他们得到如下数据:
支撑物高
度/厘米102030405060708090100
小车下滑
时间/秒4.233.002.452.131.891.711.591.501.411.35
(1)支撑物高度为70厘米时,小车下滑时间是多少?
(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?
(3)h每增加10厘米,t的变化情况相同吗?
(4)估计当h=110时,t的值是多少,你是怎样估计的?
变式:一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表:
时间(秒)012345678910
速度
(米/秒)00.31.32.84.97.611.014.118.424.228.9
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?
(3)当t每增加1秒时,v的变化情况相同吗?在哪1秒钟内,v的增加最大?
(4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?
(三)拓展:
1、如图,是一个形如六边形的点阵,它的中心是一个点,算第一层;第二层每边两个点;第三层每边有三个点,依此类推:
(1)填写下表:
层数123456……
该层的点数……
所有层的点数……
(2)每层点数是如何随层数的变化而变化的?所有层的总点数是如何随层数的变化而变化的?
(3)此题中的自变量和因变量分别是什么?
(4)写出第n层所对应的点数,以及n层的六边形点阵的总点数;
(5)如果某一层的点数是96,它是第几层?
(6)有没有一层,它的点数是100?为什么?
2、下表是明明商行某商品的销售情况,该商品原价为560元,随着不同幅度的降价(单位:元),日销量(单位:件)发生相应变化如下表:
降价(元)5101520253035
日销量(件)780810840870900930960
(1)上表反映了哪两个变量之间的关系?其中那个是自变量,哪个是因变量?
(2)每降价5元,日销量增加多少件?请你估计降价之前的日销量是多少?
(3)如果售价为500元时,日销量为多少?
(四)回顾小结:
总结本节所学的知识,从表格中获取信息;用表格表示变量之间的关系;对变化趋势进行预测。
§4.2用关系式表示的变量间的关系
学习目标:1、经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。
2、能根据具体情景,用关系式表示某些变量之间的关系。
3、能根据关系式求值,初步体会自变量和因变量的数值对应关系。
学习重点:1、找问题中的自变量和因变量。
2、根据关系式找自变量和因变量之间的对应关系。
学习难点:根据关系式找自变量和因变量之间的对应关系。
一、预习
(一)、预习书:P100~P101
(二)、思考:确定关系式的步骤?
(三)、预习作业:
1、会议厅共有30排座位,第一排有20个座位,后排每排比前一排多一个座位.
(1)你知道第九排有多少个座位吗?第26排呢?
(2)每排的座位数y可用排数x来表示吗?
(3)可不可能某一排的座位数是52?为什么?
二、学习过程:
(一)要点引导
1、通过表格可表示两个变量之间的关系,本节中利用_______也可表示两个变量之间的关系.
2、确定关系式的步骤:先找出题目中关于________与________的相等关系,再用________的代数式表示________
3、半径为R的圆面积S=________,当R=3时,S=________
方法小结:
1、涉及到图形的面积或体积时,写关系式的关键是利用面积或体积公式写出等式;
2、一定要将表示因变量的字母单独写在等号的左边;
3、已知一个变量的值求另一个变量的值时,一定要分清已知的是自变量还是因变量,千万不要代错了.
(二)例题
例1、如图,底边BC上的高是6厘米,当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.
(1)在这个变化过程中,自变量、因变量各是什么?
(2)如果三角形的底边长为x(厘米),那么三角形的面积y(厘米)可以表示为_________
(3)当底边长从12厘米变化到3厘米时,三角形的面积从____厘米变化到____厘米
变式1、如图,已知梯形的上底为x,下底为8,高为4.
(1)求梯形面积y与x的关系;
(2)用表格表示,当x从3到7(每次增加1)时,y的相应值;
(3)当x每增加1时,y如何变化?
(4)当y=50时,x为多少?
(5)当x=0时,y等于多少?此时它表示的是什么?
例2、将若干张长为20cm、宽为10cm的长方形白纸,按下图所示的方法粘合起来,粘合部分的宽为2cm.
(1)求4张白纸粘合后的总长度;
(2)设x张白纸粘合后的总长度为ycm,写出y与x之间的关系式;
(3)并求当x=20时,y的值
变式2、声音在空气中传播的速度y(米/秒)与气温之间有如下关系:
(1)在这一变化过程中,自变量是________、因变量是________;
(2)当气温时,声音速度y=________米/秒;
(3)当气温时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放烟花所在地约相距________米;
(三)拓展
1、如图,在中,已知,边AC=4cm,BC=5cm,点P为CB边上一动点,当点P沿CB从点C向点B运动时,的面积发生了变化.
(1)在这个变化过程中,自变量和因变量各是什么?
(2)如果设CP长为,的面积为,则y与x的关系可表示为__________;
(3)当点P从点D(点D为BC的中点)运动到点B时,则的面积从______变到______
(四)回顾小结:
自变量和因变量之间的关系;根据关系式找出与自变量相应的因变量的数值。
§4.3用图象表示的变量间关系
学习目标:1、经历从图象中分析变量之间关系的过程,进一步体会变量之间的关系。
2、结合具体情境,理解图象上的点所表示的意义。
3、能从图象中获取变量之间关系的信息,并能用语言进行描述。
学习重点:结合具体情境,理解图象上的点所表示的意义。
并能从图象中获取变量之间关系的信息,
学习难点:能从图象中获取变量之间关系的信息,并能用语言进行描述。
一、预习
(一)、预习书:P103~P105
(二)、思考:用图像表示变量之间的关系时,水平方向的数轴(横轴)上的点表示什么?,竖直方向的数轴上的点表示什么?
(三)、预习作业:
1、如图,是某地某年月平均气温随时间变化的图像.请回答下列问题:
(1)二月份平均气温是______,十月份平均气温______;
(2)这一年中,月平均气温最高的是______月,温度大约是______;
(3)月平均最高气温与最低气温大约相差______
(4)月平均最高气温为的月份是______月,它可能是______季节;
(5)上述变化中,自变量是______,因变量是______;
(6)估计明年一月份的平均气温会低于吗?
二、学习过程:
(一)要点引导
1、图像是表示________之间关系的一种方法,它的特点是更________、更________地反映了因变量随自变量变化的情况.
2、用图像表示变量之间的关系时,通常用水平方向的数轴(横轴)上的点表示________,用竖直方向的数轴(纵轴)上的点表示________
(二)例题
例1、某山区今年6月中旬的天气情况是:前5天小雨,后5天暴雨,那么反映该地区某河流水位变化的图像大致是()
ABCD
变式1、为节约用水,利民学校冲厕水箱经改造后,当水箱水满后就按一定的速度放掉水箱的一半水,随后立即按一定的速度注水,等水箱的水满后,又立即按一定的速度放掉水箱一
般的水,下面的图像可以刻画水箱的存水量v(立方米)与放水或注水时间t(分钟)之间的关系的是()
ABCD
例2、新成药业集团研究开发了一种新药,在实验药效时发现,如果儿童按规定剂量服用,那么2小时的时候血液中含药量最高,接着逐步衰减,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当儿童按规定剂量服药后:
(1)何时血液中含药量最高?是多少微克?
(2)A点表示什么意义?
(3)每毫升血液中含药量为2微克以上时在治疗疾病时是有效的,那么这个有效期是多长?
(4)你建议该儿童首次服药后几小时再服药?为什么?
变式2、如图,是表示某天小明上学从家到学校时,离家的距离与时间的关系的图像。
(1)小明从家到学校有多远?他一共用了多长时间到校?
(2)中途小明停下来子啊路边的商店买了一些练习本,图中那一段曲线表示这一过程?
(3)你能想象小明从离家到第4min时的情况吗?
(三)拓展
1、王大爷带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价出售一些后,又降价出售,售出土豆的千克数x与他手中持有的钱数y(含备用零钱)的关系如图所示。根据图像回答下列问题:
(1)王大爷自带的零钱是多少?
(2)降价前他每千克土豆出售的价格是多少?
(3)降价后他按每千克0.4元将剩余土豆售完,
这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?
2、如图中的折线ABC是甲地向乙地打长途电话所需要付的电话费y(元)与通话时间t(分钟)之间的关系的图像。
(1)通话1分钟,要付电话费多少元?通话5分钟要付多少电话费?
(2)通话多少分钟以内,所支付的电话费不变?
(3)如果通话3分钟以上,电话费y(元)与时间t(分钟)的关系式是,那么通话4分钟的电话费是多少元?
(四)回顾小结
图象是表示变量之间关系的又一种方法,它的特点是非常直观。
§4.4速度的变化
学习目标:通过速度随时间变化的实际情境,进一步经历从图中分析变量之间关系的过程,加深对图象表示的理解,进一步发展从图象中获得信息的能力及有条理地进行语言表达的能力。
学习重点:通过速度随时间变化的实际情境,能分析出变量之间关系。
学习难点:现实中变量的变化关系,判断变化的可能图象。
一、预习
(一)、预习书:P107~P108
(二)、思考:每一个图像反映了什么样的变化过程?
(三)、预习作业:
1、如图,是某人骑自行车的行驶路程s(千米)与行驶时间t(时)的函数图像,下列说法不正确的是()
A.从0时到3时,行驶30千米
B.从1时到2时匀速前进
C.从1时到2时原地不动
D.从出发地到1时与从2时到3时的行驶速度相同
二、学习过程:
(一)要点引导
1、观察右图回答下列问题:
(1)a代表物体从____________开始____________运动;
(2)b代表物体________________运动;
(3)c代表物体________________运动;
(4)a表示的速度________d表的速度(填“”、“=”或“”)
2、观察右图回答下列问题:
(1)a代表物体____________运动;
(2)b代表物体____________;
(3)c代表物体______运动直至回到______;
(二)例题
例1、汽车在行驶的过程中,速度往往是变化的。下面的图像表示一辆汽车的速度随时间变化而变化的情况。
(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?
(2)汽车在哪些时间段保持匀速行驶?时速分别是多少?
(3)出发后8分到10分之间可能发生了什么情况?
(4)用自己的语言大致描述这辆汽车的行驶情况。
变式1(1)一列火车从青岛站出发,加速行驶一段时间开始匀速行驶。过了一段时间,火车到达下一个车站。乘客上下车后,火车又加速,一段时间后再次开始匀速行驶,下面可以近似地刻画出火车在这段时间内的速度变化情况的图是下图中的()C.D.
(2)小李骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路返回b千米(ba),再前进c千米,则他离起点的距离s与时间t的关系示意图是()
例2、小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图所示)
(1)图像表示了哪两个变量的关系?哪个是自变量?哪个是因变量?
(2)10时和13时,他分别离家多远?
(3)他到达离家最远的地方时什么时间?离家多远?
(4)11时到12时他行驶了多少千米?
(5)他可能在哪段时间内休息,并吃午餐?
(6)由他离家最远的地方返回时的平均速度是多少?
变式2、
(1)如图,是自行车行驶路程与时间的关系图,则整个行驶过程的平均速度是()
A.20B.40C.15D.25
(2)如图所示,OA、BA分别表示甲、乙两名学社运动的路程与时间的关系图像,图中S和t分别表示运动路程和时间,根据图像判断快者的速度比慢者的速度每秒快()
A.2.5mB.2mC.1.5mD.1m
(三)拓展
1、某单位急需用车,但又不准备买车,他们准备和一家个体车主或一家国有出租车公司签订租车合同,合同中规定所付月租金的多少与出租车每月行驶的距离有关。下图表示出租车每月行驶的距离与所付月租金的关系,(表示个体车主,表示国有出租车)观察图像回答下列问题
(1)每月行驶路程在什么范围内时租国有公司的车合算?
(2)租个体车主的车,租来的车如果没有行驶,是否也要缴租金?缴多少租金?租国有公司的车呢?
(3)每月行驶路程等于多少时,租两家车的费用相同?
(4)如果这个单位估计每月行驶的路程2300米,那么这个单位租哪家的车合算?
2、甲、乙两地相距80千米,A骑自行车,B骑摩托车沿相同路线由甲地到乙地行驶,两人行驶的路程y(千米)与时间x(时)的关系如图所示,请你根据图像回答或解决下面的问题:
(1)谁出发较早?早多长时间?谁到达乙地较早?早多长时间?
(2)两人在途中行驶的速度分别是多少?
(3)请你分别求出表示自行车和摩托车行驶过程的路程y(千米)与时间x(小时)的关系。
(四)回顾小结
要学会分析图象,用图象解析现实变化着的量的关系,并要从图象中获得信息有条理地进行语言表达出来。
第4章知识整合与解题指导
一、知识导航
1、主要概念:变量是;自变量是;因变量是。
2、变量之间关系的三种表示方法:。
其特点是:列表:对于表中自变量的每一个值,可以不通过计算,直接把的值找到,查询方便;但是欠,不能反映变化的全貌,不易看出变量间的对应规律。
关系式:简明扼要、规范准确;但有些变量之间的关系很难或不能用关系式表示。图像:形象直观。可以形象地反映出事物变化的过程、变化的趋势和某些特征;但图像是近似的、局部的,由图像确定因变量的值欠准确。
3、主要数学思想方法:类比和比较的方法(举例说明);数形结合和数学建模思想(举例说明)。
二、学习导航
1、有关概念应用
例1下列各题中,那些量在发生变化?其中自变量和因变量各是什么?
①用总长为60的篱笆围成一边长为L(m),面积为S(m2)的矩形场地;
②正方形边长是3,若边长增加x,则面积增加为y.
2、利用表格寻找变化规律
例2研究表明,固定钾肥和磷肥的施用量,土豆的产量与氮肥的施用量有如下关系:
施肥量
(千克/公顷)03467101135202259336404471
土豆产量
(吨/公顷)15.1821.3625.7232.2930.0339.4543.1543.4640.8330.75
上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?根据表格中的数据,你认为氮肥的使用量是多少时比较适宜?
变式(湖南)一辆小汽车在高速公路上从静止到起动10秒后的速度经测量如下表:
时间/秒012345678910
速度/米/秒00.31.32.84.97.611.014.118.424.228.9
①上表反映了哪两个变量之间的关系?哪个是因变量?
②如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?
③当t每增加1秒时,v的变化情况相同吗?在哪1秒中,v的增加最大?
④若高速公路上小汽车行驶的速度的上限为120千米/时,试估计大约还需要几秒小汽车速度就将达到这个上限?
3、用关系式表示两变量的关系
例3.、①设一长方体盒子高为10,底面积为正方形,求这个长方形的体积v与底面边长a的关系。②设地面气温是20℃,如果每升高1km,气温下降6℃,求气温与t高度h的关系。
变式(江西)如图,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A(平方米)与拉开长度b(米)的关系式是:.
4、用图像表示两变量的关系
例4、(桂林)今年,在我国内地发生了“非典型肺炎”疫情,在党和政府的正确领导下,目前疫情已得到有效控制.下图是今年5月1日至5月14日的内地新增确诊病例数据走势图(数据来源:卫生部每日疫情通报).从图中,可知道:
(1)5月6日新增确诊病例人数为人;
(2)在5月9日至5月11日三天中,共新增确诊病例人数为人;
(3)从图上可看出,5月上半月新增确诊病例总体呈趋势.
例5、(陕西)星期天晚饭后,小红从家里出去散步,下图描述了她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.依据图象,下面描述符合小红散步情景的是().
A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了
B.从家出发,到了一个公共阅报栏,看了一会儿报后,
继续向前走了一段,然后回家了
C.从家出发,一直散步(没有停留),然后回家了
D.从家出发,散了一会儿步,就找同学去了,18分钟后才开始返
变式(成都)右图表示甲骑电动自行车和乙驾驶汽车沿相同路线行驶45千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据这个行驶过程中的图象填空:汽车出发小时与电动自行车相遇;电动自行车的速度为千米/时;汽车的速度为千米/时;汽车比电动自行车早小时到达B地.
三、一试身手
1、(贵阳)小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y表示父亲与儿子行进中离家的距离,用横轴表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是()
ABCD
2、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余
部分的高度y(厘米)与燃烧时间x(小时)
之间的关系如图所示.
请根据图象所提供的信息解答下列问题:
(1)甲、乙两根蜡烛燃烧前的高度分别是,
从点燃到燃尽所用的时间分别是;
(2)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?
3、(2006宿迁课改)小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是()
A.8.6分钟B.9分钟
C.12分钟D.16分钟
4、某机动车出发前油箱内有油42l,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(L)之间的关系如图8所示.
回答问题:(1)机动车行驶几小时后加油?
(2)中途中加油_________L;
(3)已知加油站距目的地还有,车速为,
若要达到目的地,油箱中的油是否够用?并说明原因.
5、在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.
所挂质量
012345
弹簧长度
182022242628
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当所挂物体重量为时,弹簧多长?不挂重物时呢?
(3)若所挂重物为时(在允许范围内),你能说出此时的弹簧长度吗?
6、小明在暑期社会实距活动中,以每千克0.8元的价格从批发市场购进若干千克瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图9所示.请你根据图象提供的信息完成以下问题:
(1)求降价前销售金额y(元)与售出西瓜(千克)之间的关系式;
(2)小明从批发市场共购进多少千克西瓜?
(3)小明这次卖瓜赚子多少钱?
7、如图中的折线ABC是甲地向乙地打长途电话所需要付的电话费y(元)与通话时间t(分钟)之间的关系的图象.
(1)通话1分钟,要付电话费多少元?通话5分钟要付多少电话费?
(2)通话多少分钟内,所支付的电话费不变?
(3)如果通话3分钟以上,电话费y(元)与时间t(分钟)的关系式是,那么通话4分钟的电话费是多少元?
8、如图是某水库的蓄水量v(万米3)与干旱持续时间t(天)之间的关系图,回答下列问题:
(1)该水库原蓄水量为多少万米3?持干旱持续时间10天后,水库蓄水量为多少万米3?
(2)若水库的蓄水量小于400万米3时,将发生严重干旱警报,请问:持续干旱多少天后,将发生严重干旱警报?
(3)按此规律,持续干旱多少天时,水库将干涸?
9、(成都市)某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x分钟,两种方式的费用分别为元和元.
(1)写出、与x之间的关系式;
(2)一个月内通话多少分钟,两种移动通讯费用相同?
(3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些?