88教案网

你的位置: 教案 > 高中教案 > 导航 > 高一数学应用举例034

小学数学一年教案

发表时间:2020-08-05

高一数学应用举例034。

一名爱岗敬业的教师要充分考虑学生的理解性,作为高中教师就要好好准备好一份教案课件。教案可以让学生能够听懂教师所讲的内容,使高中教师有一个简单易懂的教学思路。那么,你知道高中教案要怎么写呢?下面是小编精心收集整理,为您带来的《高一数学应用举例034》,仅供参考,大家一起来看看吧。

1.2解三角形应用举例第四课时
一、教学目标
1、能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题,掌握三角形的面积公式的简单推导和应用
2、本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。
3、让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验
二、教学重点、难点
重点:推导三角形的面积公式并解决简单的相关题目
难点:利用正弦定理、余弦定理来求证简单的证明题
三、教学过程
Ⅰ.课题导入
[创设情境]
师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。在
ABC中,边BC、CA、AB上的高分别记为h、h、h,那么它们如何用已知边和角表示?
生:h=bsinC=csinBh=csinA=asinCh=asinB=bsinaA
师:根据以前学过的三角形面积公式S=ah,应用以上求出的高的公式如h=bsinC代入,可以推导出下面的三角形面积公式,S=absinC,大家能推出其它的几个公式吗?
生:同理可得,S=bcsinA,S=acsinB
Ⅱ.讲授新课
[范例讲解]
例1、在ABC中,根据下列条件,求三角形的面积S(精确到0.1cm)
(1)已知a=14cm,c=24cm,B=150;
(2)已知B=60,C=45,b=4cm;
(3)已知三边的长分别为a=3cm,b=4cm,c=6cm
分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。
解:略
例2、如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm)?
思考:你能把这一实际问题化归为一道数学题目吗?
本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解。
解:设a=68m,b=88m,c=127m,根据余弦定理的推论,
cosB==≈0.7532
sinB=0.6578应用S=acsinB
S≈681270.6578≈2840.38(m)
答:这个区域的面积是2840.38m。
变式练习1:已知在ABC中,B=30,b=6,c=6,求a及ABC的面积S
提示:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数。
答案:a=6,S=9;a=12,S=18
例3、在ABC中,求证:
(1)
(2)++=2(bccosA+cacosB+abcosC)
分析:这是一道关于三角形边角关系恒等式的证明问题,观察式子左右两边的特点,用正弦定理来证明
证明:(1)根据正弦定理,可设
===k显然k0,所以
左边===右边
(2)根据余弦定理的推论,
右边=2(bc+ca+ab)
=(b+c-a)+(c+a-b)+(a+b-c)=a+b+c=左边
变式练习2:判断满足sinC=条件的三角形形状
提示:利用正弦定理或余弦定理,“化边为角”或“化角为边”(解略)直角三角形
Ⅲ.课堂练习课本第18页练习第1、2、3题
Ⅳ.课时小结
利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状。特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用。
Ⅴ.课后作业
《习案》作业七

扩展阅读

高一数学应用举例033


一名优秀的教师就要对每一课堂负责,作为高中教师准备好教案是必不可少的一步。教案可以让学生们能够在上课时充分理解所教内容,使高中教师有一个简单易懂的教学思路。高中教案的内容具体要怎样写呢?经过搜索和整理,小编为大家呈现“高一数学应用举例033”,相信您能找到对自己有用的内容。

1.2解三角形应用举例第三课时
一、教学目标
1、能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题
2、通过综合训练强化学生的相应能力,让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三。
3、培养学生提出问题、正确分析问题、独立解决问题的能力,并激发学生的探索精神。
二、教学重点、难点
重点:能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系
难点:灵活运用正弦定理和余弦定理解关于角度的问题
三、教学过程
Ⅰ.课题导入
[创设情境]
提问:前面我们学习了如何测量距离和高度,这些实际上都可转化已知三角形的一些边和角求其余边的问题。然而在实际的航海生活中,人们又会遇到新的问题,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问题。
Ⅱ.讲授新课
[范例讲解]
例1、如图,一艘海轮从A出发,沿北偏东75的方向航行67.5nmile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0nmile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01nmile)
学生看图思考并讲述解题思路
分析:首先根据三角形的内角和定理求出AC边所对的角ABC,即可用余弦定理算出AC边,再根据正弦定理算出AC边和AB边的夹角CAB。
解:在ABC中,ABC=180-75+32=137,根据余弦定理,
AC==≈113.15
根据正弦定理,=sinCAB==≈0.3255,
所以CAB=19.0,75-CAB=56.0
答:此船应该沿北偏东56.1的方向航行,需要航行113.15nmile
例2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30m,至点C处测得顶端A的仰角为2,再继续前进10m至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。
解法一:(用正弦定理求解)由已知可得在ACD中,
AC=BC=30,AD=DC=10,ADC=180-4,
=。因为sin4=2sin2cos2
cos2=,得2=30=15,在RtADE中,AE=ADsin60=15
答:所求角为15,建筑物高度为15m
解法二:(设方程来求解)设DE=x,AE=h
在RtACE中,(10+x)+h=30在RtADE中,x+h=(10)
两式相减,得x=5,h=15在RtACE中,tan2==
2=30,=15
答:所求角为15,建筑物高度为15m
解法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得
BAC=,CAD=2,AC=BC=30m,AD=CD=10m
在RtACE中,sin2=------①在RtADE中,sin4=,----②
②①得cos2=,2=30,=15,AE=ADsin60=15
答:所求角为15,建筑物高度为15m
例3、某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?
师:你能根据题意画出方位图?教师启发学生做图建立数学模型
分析:这道题的关键是计算出三角形的各边,即需要引入时间这个参变量。
解:如图,设该巡逻艇沿AB方向经过x小时后在B处追上走私船,则CB=10x,AB=14x,AC=9,
ACB=+=
(14x)=9+(10x)-2910xcos
化简得32x-30x-27=0,即x=,或x=-(舍去)
所以BC=10x=15,AB=14x=21,
又因为sinBAC===
BAC=38,或BAC=141(钝角不合题意,舍去),
38+=83
答:巡逻艇应该沿北偏东83方向去追,经过1.4小时才追赶上该走私船.
评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解
Ⅲ.课堂练习
课本第16页练习
Ⅳ.课时小结
解三角形的应用题时,通常会遇到两种情况:
(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之。
(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解。
Ⅴ.课后作业
《习案》作业六

高一数学应用举例032


1.2解三角形应用举例第二课时

一、教学目标
1、能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题
2、巩固深化解三角形实际问题的一般方法,养成良好的研究、探索习惯。
3、进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力
二、教学重点、难点
重点:结合实际测量工具,解决生活中的测量高度问题
难点:能观察较复杂的图形,从中找到解决问题的关键条件
三、教学过程
Ⅰ.课题导入
提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题
Ⅱ.讲授新课
[范例讲解]
例1、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。
分析:求AB长的关键是先求AE,在ACE中,如能求出C点到建筑物顶部A的距离CA,再测出由C点观察A的仰角,就可以计算出AE的长。
解:选择一条水平基线HG,使H、G、B三点在同一条直线上。由在H、G两点用测角仪器测得A的仰角分别是、,CD=a,测角仪器的高是h,那么,在ACD中,根据正弦定理可得
AC=AB=AE+h=AC+h=+h
例2、如图,在山顶铁塔上B处测得地面上一点A的俯角=54,在塔底C处测得A处的俯角=50。已知铁塔BC部分的高为27.3m,求出山高CD(精确到1m)
师:根据已知条件,大家能设计出解题方案吗?
若在ABD中求CD,则关键需要求出哪条边呢?
生:需求出BD边。
师:那如何求BD边呢?
生:可首先求出AB边,再根据BAD=求得。
解:在ABC中,BCA=90+,ABC=90-,
BAC=-,BAD=.根据正弦定理,=
所以AB==在RtABD中,得BD=ABsinBAD=
将测量数据代入上式,得BD==≈177(m)
CD=BD-BC≈177-27.3=150(m)
答:山的高度约为150米.
思考:有没有别的解法呢?若在ACD中求CD,可先求出AC。思考如何求出AC?

例3、如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15的方向上,行驶5km后到达B处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度CD.

思考1:欲求出CD,大家思考在哪个三角形中研究比较适合呢?(在BCD中)
思考2:在BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长?(BC边)
解:在ABC中,A=15,C=25-15=10,根据正弦定理,
=,BC=≈7.4524(km)CD=BCtanDBC≈BCtan8≈1047(m)
答:山的高度约为1047米
Ⅲ.课堂练习:课本第17页练习第1、2、3题
Ⅳ.课时小结
利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化。
Ⅴ.课后作业
作业:《习案》作业五

高一数学教案:《函数的应用举例》教学设计


高一数学教案:《函数的应用举例》教学设计

教学目标

1. 能够运用函数的性质,指数函数,对数函数的性质解决某些简单的实际问题.

(1) 能通过阅读理解读懂题目中文字叙述所反映的实际背景,领悟其中的数学本,弄清题中出现的量及其数学含义.

(2) 能根据实际问题的具体背景,进行数学化设计,将实际问题转化为数学问题,并调动函数的相关性质解决问题.

(3) 能处理有关几何问题,增长率的问题,和物理方面的实际问题.

2. 通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生分析问题,解决问题的能力和运用数学的意识,也体现了函数知识的应用价值,也渗透了训练的价值.

3. 通过对实际问题的研究解决,渗透了数学建模的思想.提高了学生学习数学的兴趣,使学生对函数思想等有了进一步的了解.

教学建议

教材分析

(1)本小节内容是全章知识的综合应用.这一节的出现体现了强化应用意识的要求,让学生能把数学知识应用到生产,生活的实际中去,形成应用数学的意识.所以培养学生分析解决问题的能力和运用数学的意识是本小节的重点,根据实际问题建立数学模型是本小节的难点.

(2)在解决实际问题过程中常用到函数的知识有:函数的概念,函数解析式的确定,指数函数的概念及其性质,对数概念及其性质,和二次函数的概念和性质.在方法上涉及到换元法,配方法,方程的思想,数形结合等重要的思方法..事业本节的学习,既是对知识的复习,也是对方法和思想的再认识.

教法建议

(1)本节中处理的均为应用问题,在题目的叙述表达上均较长,其中要分析把握的信息量较多.事业处理这种大信息量的阅读题首先要在阅读上下功夫,找出关键语言,关键数据,特别是对实际问题中数学变量的隐含限制条件的提取尤为重要.

(2)对于应用问题的处理,第二步应根据各个量的关系,进行数学化设计建立目标函数,将实际问题通过分析概括,抽象为数学问题,最后是用数学方法将其化为常规的函数问题(或其它数学问题)解决.此类题目一般都是分为这样三步进行.

(3)在现阶段能处理的应用问题一般多为几何问题,利润最大,费用最省问题,增长率的问题及物理方面的问题.在选题时应以以上几方面问题为主.

教学设计示例

函数初步应用

教学目标

1.能够运用常见函数的性质及平面几何有关知识解决某些简单的实际问题.

2.通过对实际问题的 研究,培养学生分析问题,解决问题的能力

3.通过把实际问题向数学问题的转化,渗透数学建模的思想,提高学生用数学的意识,及学习数学的兴趣.

教学重点,难点

重点是应用问题的阅读分析和解决.

难点是根据实际问题建立相应的数学模型

教学方法

师生互动式

教学用具

投影仪

教学过程

一. 提出问题

让学生明确是分段函数的前提条件下,求出定义域为 .(板书)

问题解决后可由教师简单小结一下研究过程中的主要步骤(1)阅读理解;(2)建立目标函数;(3)按要求解决数学问题.

下面我们一起看第二个问题

问题二:某工厂制定了从1999年底开始到2005年底期间的生产总值持续增长的两个三年计划 ,预计生产总值年平均增长率为 ,则第二个三年计划生产总值 与第一个三年计划生

高一数学教案:《函数模型的应用举例》教学设计


高一数学教案:《函数模型的应用举例》教学设计

项目

内容

课题

函数模型的应用举例

(共2课时)

修改与创新

教学

目标

1.培养学生由实际问题转化为数学问题的建模能力,即根据实际问题进行信息综合列出函数解析式.

2.会利用函数图象性质对函数解析式进行处理得出数学结论,并根据数学结论解决实际问题.

3.通过学习函数基本模型的应用,体会实践与理论的关系,初步向学生渗透理论与实践的辩证关系.

教学重、

难点

根据实际问题分析建立数学模型和根据实际问题拟合判断数学模型,并根据数学模型解决实际问题.

教学

准备

教学过程

第1课时

函数模型的应用实例

导入新课

上一节我们学习了不同的函数模型的增长差异,这一节我们进一步讨论不同函数模型的应用.

提出问题

①我市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.

设在甲家租一张球台开展活动x小时的收费为f(x)元(15≤x≤40),在乙家租一张球台开展活动x小时的收费为g(x)元(15≤x≤40),试求f(x)和g(x).

②A、B两城相距100km,在两地之间距A城xkm处D地建一核电站给A、B两城供电,为保证城市安全.核电站距城市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A城供电量为20亿度/月,B城为10亿度/月.

把月供电总费用y表示成x的函数,并求定义域.

③分析以上实例属于那种函数模型.

讨论结果:①f(x)=5x(15≤x≤40).

g(x)=

②y=5x2+(100—x)2(10≤x≤90);

③分别属于一次函数模型、二次函数模型、分段函数模型.

例1一辆汽车在某段路程中的行驶速率与时间的关系如图所示.

(1)求图3-2-2-1中阴影部分的面积,并说明所求面积的实际含义;

(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数skm与时间th的函数解析式,并作出相应的图象.

图3-2-2-1

活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:

图中横轴表示时间,纵轴表示速度,面积为路程;由于每个时间段速度不断变化,汽车里程表读数skm与时间th的函数为分段函数.

解:(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.

阴影部分的面积表示汽车在这5小时内行驶的路程为360km.

(2)根据图,有

这个函数的图象如图3-2-2-2所示.

图3-2-2-2

变式训练

2007深圳高三模拟,理19电信局为了满足客户不同需要,设有A、B两种优惠方案,这两种方案应付话费(元)与通话时间(分钟)之间关系如下图(图3-2-2-3)所示(其中MN∥CD).

(1)分别求出方案A、B应付话费(元)与通话时间x(分钟)的函数表达式f(x)和g(x);

(2)假如你是一位电信局推销人员,你是如何帮助客户选择A、B两种优惠方案?并说明理由.

图3-2-2-3

解:(1)先列出两种优惠方案所对应的函数解析式:

(2)当f(x)=g(x)时,x-10=50,

∴x=200.∴当客户通话时间为200分钟时,两种方案均可;

当客户通话时间为0≤x<200分钟,g(x)>f(x),故选择方案A;

当客户通话时间为x>200分钟时,g(x)点评:在解决实际问题过程中,函数图象能够发挥很好的作用,因此,我们应当注意提高读图的能力.另外,本例题用到了分段函数,分段函数是刻画现实问题的重要模型.

例2人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766~1834)就提出了自然状态下的人口增长模型:

y=y0ert,

其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.

下表是1950~1959年我国的人口数据资料:

年份

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

人数/万人

55196

56300

57482

58796

60266

61456

62828

64563

65994

67207

(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;

(2)如果按表的增长趋势,大约在哪一年我国的人口达到13亿?

解:(1)设1951~1959年的人口增长率分别为r1,r2,r3,…,r9.

由55196(1+r1)=56300,

可得1951年的人口增长率为r1≈0.0200.

同理,可得r2≈0.0210,r3≈0.0229,r4≈0.0250,r5≈0.0197,r6≈0.0223,r7≈0.0276,

r8≈0.0222,r9≈0.0184.

于是,1950~1959年期间,我国人口的年平均增长率为

r=(r1+r2+…+r9)÷9≈0.0221.

令y0=55196,则我国在1951~1959年期间的人口增长模型为

y=55196e0.0221t,t∈N.

根据表中的数据作出散点图,并作出函数y=55196e0.0221t(t∈N)的图象(图3-2-2-4).

图3-2-2-4

由图可以看出,所得模型与1950~1959年的实际人口数据基本吻合.

(2)将y=130000代入y=55196e0.0221t,

由计算器可得t≈38.76.

所以,如果按表的增长趋势,那么大约在1950年后的第39年(即1989年)我国的人口就已达到13亿.由此可以看到,如果不实行计划生育,而是让人口自然增长,今天我国将面临难以承受的人口压力.

变式训练

一种放射性元素,最初的质量为500g,按每年10%衰减.

(1)求t年后,这种放射性元素质量ω的表达式;

(2)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需的时间叫做半衰期).(精确到0.1.已知lg2=0.3010,lg3=0.4771)

解:(1)最初的质量为500g.

经过1年后,ω=500(1-10%)=500×0.91;

经过2年后,ω=500×0.9(1-10%)=500×0.92;

由此推知,t年后,ω=500×0.9t.

(2)解方程500×0.9t=250,则0.9t=0.5,

所以

即这种放射性元素的半衰期约为6.6年.

知能训练

某电器公司生产A型电脑.1993年这种电脑每台平均生产成本为5000元,并以纯利润20%确定出厂价.从1994年开始,公司通过更新设备和加强管理,使生产成本逐年降低.到1997年,尽管A型电脑出厂价仅是1993年出厂价的80%,但却实现了50%纯利润的高效益.

(1)求1997年每台A型电脑的生产成本;

(2)以1993年的生产成本为基数,求1993年至1997年生产成本平均每年降低的百分数.(精确到0.01,以下数据可供参考:=2.236,=2.449)

活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导.

出厂价=单位商品的成本+单位商品的利润.

解:(1)设1997年每台电脑的生产成本为x元,依题意,得

x(1+50%)=5000×(1+20%)×80%,解得x=3200(元).

(2)设1993年至1997年间每年平均生产成本降低的百分率为y,则依题意,得5000(1-y)4=3200,

即1997年每台电脑的生产成本为3200元,1993年至1997年生产成本平均每年降低11%.

课堂小结

本节重点学习了函数模型的实例应用,包括一次函数模型、二次函数模型、分段函数模型等;另外还应关注函数方程不等式之间的相互关系.

活动:学生先思考或讨论,再回答.教师提示、点拨,及时评价.

引导方法:从基本知识和基本技能两方面来总结.

作业

课本P107习题3.2A组5、6.

板书设计

教学反思