88教案网

你的位置: 教案 > 小学教案 > 导航 > 小学六年级数学比例尺教案

小学六年级数学比教案

发表时间:2021-11-25

小学六年级数学比例尺教案。

教学内容:课本第54页例1、例2;练一练;《作业本》第24页。

教学目标:

1、理解比例尺的意义,会根据图上距离和实际距离求比例尺;会根据图上距离和比例尺求出实际距离。

2、理解比例尺的应用,能解决简单的实际问题。

教学重点:比例尺的意义

教学难点:用方程求实际距离

教具准备:中国、浙江地图

教学过程:JaB88.COm

一、引入:

同学们,你们会画长方形吗?

现在请大家在本子上画一个长20米,宽8米的长方形你能吗?怎么办?

我们在绘制地图和其它平面图形的时候,要把实际距离缩小(或扩大)一定的倍数后再画到纸上,这时就要涉及到一种新的知识——比例尺。

二、教学新课:

1、出示例1。一条步行街,长240米,在平面图上用12厘米的线段来表示。求图上距离和实际距离的比。

(1)根据题意,写出比。

(2)单位不同,要化成相同单位以后,再化简比。

12厘米:240米

=12厘米:24000厘米

=12:24000

=1:2000(或)

2、揭示比例尺的意义。

(1)图上距离和实际距离的比,叫做比例尺。

图上距离:实际距离=比例尺

或:=比例尺

为了计算方便,通常把比例尺写成前项(或后项)是1的比。

上题中的比例尺可以写为:

由上面关系式,已知其中两个条件,能否求出第三个关系式?(请学生说出其它两个关系式)

3、教学例2。

在比例尺是1∶30000000的地图上量得上海到北京的距离是3.5厘米,上海到北京的实际距离大约是多少千米?

(1)思考:怎样根据比例尺的数量关系求出实际距离。

(2)请学生试一试,有几种不同的方法?(做后对照书本。)

(3)如不用方程解可怎么做?

4、试一试。P55

三、巩固练习:

练一练1、2、3、4题

四、小结。

1、这节课我们学习了什么?

2、划出书中概念。

3、熟记三个数量关系。

五、《作业本》第24页。

编辑推荐

北师大版六年级数学下册《比例尺》教案


教学目标:

1.结合具体情境,认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。

2.运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些问题。

3.进一步体会数学与日常生活的密切联系。

教学重点:目标1、2。

教学难点:目标2。

教学过程:

活动一、创设情境,引入新知

笑笑家新买了一套房子,爸爸拿回了新房子的平面图,现在让我们也一起看看吧。

1.出示平面图。

2.观察图,说说从图中知道了什么?

3.思考:比例尺1:100是什么意思?

(1)独立思考。

(2)同伴交流。

(3)汇报。

得出:比例尺表示图上距离与实际距离的比。1:100的含义是图上1厘米的线段表示实际100厘米。

4.量一量平面图中笑笑卧室的长是( )厘米,宽是( )厘米。笑笑卧室实际的长是( )米,宽是( )米,面积是( )平方米。直接提出“笑笑卧室实际的面积是多少平方米?

(1)学生四人小组合作完成。

(2)汇报交流。

强调:必须先求出实际的长和宽,然后再算出实际的面积。

5.笑笑家的总面积是多少平方米?

(1)学生独立完成。

(2)集体订正。

6.在父母卧室南墙正中有一扇宽为2米的窗户,在平面图标出来。

(1)理解题意。

(2)独立思考、交流方法,即要根据比例尺和实际距离先求出平面距离,然后再在图中标出。

(3)进行计算。

7.笑笑在本子上画自己卧室的平面图,她用8厘米表示自己卧室的长。

(1)图上1厘米表示的实际距离是多少厘米?

(2)她画的平面图的比例尺是多少?

活动二、试一试

1.小明家在北京,他和妈妈要到上海去旅游。算一算两地之间的实际距离大约是( )千米。

(1)理解题意,独立思考。

(2)交流自己的想法。

(3)进行计算。

活动三、练一练

1.完成32页第2题。

(1)独立完成。

(2)汇报交流。

(3)提出问题。

2.一张地图上,用3厘米表示实际距离600米,求这张地图的比例尺。

(1)独立计算。

(2)汇报,全班交流。

(3)说说自己的想法。

活动四、实践活动

1.找一张中国地图,量一量,算一算。

(1)量出北京和台北之间的距离是( )厘米,它们之间的实际距离大约是( )千米。

(2)量出乌鲁木齐和上海之间的距离是( )厘米,它们之间的实际距离是( )千米。

2.找一张中国地图,用▲表出你家乡的大致位置。

(1)估一估在地图上你的家乡与北京的距离大约是( )厘米,实际距离大约是( )千米。

(2)放暑假时,你打算从( )到( )去旅游,两地之间的实际距离大约是( )千米。

3.量一量你的卧室的长和宽,以及一些家具的长和宽,然后以1:100的比例尺画出你卧室的平面图。

学生可以在家长的帮助下,在家里完成。

课后小结:说说你今天的收获和问题。

北京版六年级下册《比例尺》数学教案


北京版六年级下册《比例尺》数学教案

教学目标:

1.使学生理解比例尺的含义,能正确说明比例尺所表示的具体意义。

2.认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。

3.理解比例尺的书写特征。

教学重点:

比例尺的意义。

教学难点:

将线段比例尺改写成数值比例尺。

教学过程:

一、引入

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?

请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。

二、教学比例尺的意义。

1.什么是比例尺(自学书上内容,学生交流汇报)

出示图例1

在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2.介绍数值比例尺

让学生看图。

“我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000 ,表示图上距离1厘米相当于实际距离100000000厘米。

3.介绍线段比例尺

还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。”

4.介绍放大比例尺

出示图例2

“在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。“

学生看图,“你知道比例‘2:1’表示什么意思吗?这也是一个比例尺,图上距离与实际距离的比是2:1

比较这个比例尺与上面的比例尺有什么相同点,什么不同点。

相同点:都表示图上距离与实际距离的比。

不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。

5.总结

比例尺书写特征。

(1)观察:比例尺1:100000000

比例尺1/5000000

比例尺2:1

(2)看一看,比例尺书写形式有什么特征。

为了计算方便,通常把比例尺写成前项或后项是1的比。

6.比例尺的化简和转化

“我们再看一下北京地图上的这个线段比例尺,这里图上距离:实际距离=1厘米:50千米,你会把这个线段比例尺转化成数值比例尺吗?”

说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。

“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作

“50千米等于多少厘米?”学生回答后,教师把50千米改写成5000000厘米。

“现在单位统一了,是多少比多少,怎样化简?”

图上距离:实际距离=1:5000000

教师出示比例尺不同的地图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。

最后教师指出

①比例尺与一般的尺不同,这是一个比,不应带计量单位。

②求比例尺时,前、后项的长度单位一定要化成同级单位。如10厘米:10米,要把后项的米化成

③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。

三、巩固练习

1.做一做。

过程要求

(1)学生独立完成。(要求写出数值比例尺)

(2)同学之间互相交流。

(3)汇报交流结果。

2.完成课文练习八第1~3题。让学生完成第48页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“1”。

四、课堂小结

(本课要点:1.比例尺的意义;2.线段比例尺和数值比例尺的互化;3.注意单位名称的改写,如把千米和厘米的换算就是扩大或缩小100000倍的关系。)

苏教版六年级下册《认识比例尺》数学教案


苏教版六年级下册《认识比例尺》数学教案

教学目标:

1、使学生理解比例尺的意义,学会求比例尺。

2、使学生经历比例尺产生过程和探究比例尺应用的过程提高学生解决实际问题的能力。

3、结合情境使学生体验到数学与生活的密切联系进一步激发学生学习数学的兴趣。

教学重点:

理解比例尺的概念,根据比例尺的意义求出比例尺。

难点:

从不同角度理解比例尺的意义。

教学内容:

一、情景导入,明确比例尺用途。

师:同学们,我国国土面积有多大?(960万平方公里)

大家知道吗?我国的国土面积居世界第三位。这么大的面积,我可以现在就展示出来,大家相信吗?(大屏)我是怎样做到的呢?(缩小)在现实生活中有时根据需要把图形放大或缩小若干倍再画到图纸上。那么大家猜猜:这张图把中国领土缩小了多少倍?(100000000)

二、归纳概念。

师:1:100000000中的1表示什么?(图上距离) 那么,100000000呢?(实际距离) 这两个距离是以什么形式出现的呢?(比) 我们赋予这个比一个新的名称------比例尺。(板书课题) 那么,比例尺怎么求呢??图上距离:实际距离=比例尺(板书) 我们还可以把它写成比的形式。(板书)

理解1:100000000的意义。(图上距离1厘米,表示实际距离100000000厘米。) 同桌互说。出示习题。

师:比例尺是一个大家族,他们是一对孪生兄弟。左面的这个比例尺也可以写成分数形式。由于他们是数字组成的,我们称他们为数值比例尺。右面的这个比例尺所表示的意思是图上距离1厘米,实际距离50千米。也可以用它(大屏)表示。他们是由线段组成的,我们称为线段比例尺。在画线段比例尺的时候要注意线段的长度要是1厘米。在最后面的数字末尾加一个单位名称。

师:在生产中,有时由于机器零件比较小,需要把实际尺寸扩大一定的倍数以后再画到图纸上。

师问:你知道2:1是什么意思吗?(图上距离2厘米,表示实际距离1厘米) 你发现了什么?前项大于后项。 这个图形比实际的要大。(比例尺前项比后项大时,就表示放大。)

师:请看大屏,仔细观察这2个比例尺,你发现了什么??(总有一个数字是1) (小结:为了计算方便,通常把比例尺写成前项或后项是1的比。)

三、讲解例题。

1、出示例题,指名读题。

2、结合公式“比例尺=图上距离:实际距离”列式

3、强调:比例尺在计算的时候要统一单位。比例尺没有单位名称。

四、习题练习。

1、做一做 一栋楼房东西方向长40m,在图纸上的长度是50cm。这幅图纸的比例尺是多少?

2、填空

(1)( )和( )的比叫做这幅图的比例尺。

(2)通常把比例尺写成前项或后项为( )的比。

(3)比例尺分( )比例尺和( )比例尺两种。

(4)比例尺 表示图上1cm的距离代表实际距离( )km,转化成数值比例尺是( )。

3、判断

(1)所有的比例尺的前项都是1。( )

(2)一幅图的比例尺应根据图纸的大小来确定。( )

(3)一幅图的比例尺是8:1,这幅图所表示的实际距离大于图上距离。( )

(4)地图上量得5cm的距离表示实际400m的距离,这幅地图的比例尺是1:80。( )

(5)一幅地图的比例尺是1:500000厘米。( )

(6)比例尺就是一把尺子。( )

4、请你根据地图中的数值比例尺标出线段比例尺。

5、团结路的实际距离是1800m。

(1)量一量团结路上在图上的距离,求出这幅图的比例尺。

(2)将这幅图的比例尺用线段比例尺表示出来。

6、七星瓢虫的实际长度是5mm。量出下图七星瓢虫的长度,求这幅图的比例尺。

7、附加题

用1:1000 000,1:6000 000,1:250 000,1:100这四种比例尺画同一种物体,哪一种比例尺绘制的图比较大? 总结:这节课你有什么收获? 数学是需要大家探索的学科,希望大家多多发现问题,多多解决问题。

2025年六年级数学下册《认识比例尺》教案


内容:人教版六年级下册认识比例尺(课本第48、49页)

教材分析:

本节内容是在比的基础上 的,教材首先说明为什么要确定图上距离与实际距离的比,明确它的意义,并给出比例尺的概念,再结合两幅地图比例尺,介绍数值比例尺和线段比例尺,又通过一个机器的放大图纸,让学生认识把实际距离放大的比例尺如何表示。最后说明为了计算方便,通常把比例尺写成前项或后项为1的比。例1教学线段比例尺改写成数值比例尺,为后面比例尺的计算作铺垫。

教学目标:

1、知识与技能:使学生认识比例尺的含义,掌握求比例尺的方法,并能用以解决简单的求比例尺的实际问题。

2、过程与方法:通过小组合作研讨,实践操作,培养学生的合作意识和创新思维能力。

3、情感态度价值观:体验数学与生活的联系,培养用数学眼光观察生活的习惯。

教学重点:理解比例尺的意义。

教学难点:能熟练解答比例尺的有关问题。

教学准备:多媒体课件、直尺、地图

教学过程:

一、情景引入,激发兴趣

师:北京是我国的首都,同学们,2008年北京奥运会取得了巨大成功,中国的悠久历史,灿烂文化,众多的名胜古迹,感受一下我们祖国的美丽!

师:今天老师把我们的祖国和首都北京搬进了课堂。(课件出示:数值比例尺为1:100000000的中国地图和线段比例尺为 的北京地图)你们知道我们的大中国和北京是如何画在这么小的地图上吗?

生:把它缩小。

师:老师可以利用地图和手中的一把直尺很快地告诉大家任意两地之间的实际距离,你想知道哪两地之间的距离呢?请出题考考老师。

生1:我想知道北京到上海之间的实际距离

生2:我想知道我们合肥到北京的实际距离

(师用地图量出地图中北京到上海、合肥到北京的图上距离,很快回答学生的问题)

师:同学们可能有这样的疑问,老师凭借这把直尺是如何知道两地之间的实际距离的呢?你们想知道其中的奥秘吗?

(设计意图:数学应该来源于生活,我在创设情景时把中国和北京搬进课堂,激发了学生的好奇心,又调动了学生探究新知的积极性)

二、揭示课题,提出疑问

师:其实老师仅靠手中的直尺是量不出两地之间的实际距离的,还需要用地图上的比例尺来帮忙。

今天这节课我们就来认识比例尺。(板书:认识比例尺)

师:关于比例尺,你想了解什么呢?

生1:什么叫比例尺?

生2:怎样求比例尺?

生3:比例尺是尺吗?

生4:比例尺有几种形式?

(设计意图:揭示本节课题,让处于对新知好奇的学生提出自己的疑问,带着问题有目的性地学习)

三、 实验对比,得出概念

师:为了解决同学们提出的疑问,我们来做一个实验。

师:我这有一条3米长的线段,你能把它画到自己的练习本上吗?你准备用图上几厘米来表示实际3米?请画在纸上。

展示学生的画图结果。

小组的同学互相讨论自己是怎么画的。

生1:我用1厘米表示实际3米。

生2:我用3厘米表示实际3米。

师:图上画的1厘米,3厘米叫“图上距离”,3米叫“实际距离”。

(设计意图:把3米长的线段画在本子上,让学生在动手实践过程中初步感受到比例尺的意义,为后面理解与把握“比例尺”的意义奠定基础)

师:为了看出图上距离和实际距离的关系,我们可以用比的形式来表示。(由于图上距离和实际距离的单位不同,要把不同单位化成相同单位)下面请各小组求出图上距离与实际距离的比。

展示学生求的比。

师:这些比的前项代表什么?后项又代表什么呢?

生:前项代表图上距离,后项代表实际距离。

师:谁能说说1:300 和 1:100表示什么意思?

生答

师:像这样的比叫做比例尺,课件出示比例尺的定义。

师:根据比例尺的定义,你能得出求比例尺的方法吗?(讨论)

生:图上距离:实际距离=比例尺或图上距离/实际距离=比例尺

师:各小组设计的比例尺不一样,为什么?按哪一个比例尺画出的线段长,哪个比例尺画出的线段短?为什么?

小组的同学互相讨论。

用1:300 或1/300 和 1:100或1/100 等比的形式表示的比例尺叫数值比例尺。它们也可以表示成 和

课件出示:中国地图上“比例尺1:100000000”表示的意义是什么?

师:你们发现1:100 1:300 1:100000000这些比例尺都是把实际距

离怎么样?

生:缩小

师:老师这儿有一个机器上的小零件,你们觉得它怎么样?

生:很小

师:这么小的零件如何把它画在图纸上。

生:把它放大

师:很好!课件出示机器零件的放大图纸。

师:你知道图中2:1表示什么吗?

生:图中2厘米表示实际的1厘米。

师:你们发现这些数值比例尺有什么相同和不同的地方吗?

相同点:

生1:前项表示图上距离,后项表示实际距离。

生2:比的前项或后项为1

不同点: 新 课标 第 一网x kb 1.com

生:1:100 1:300 1:100000000是把实际距离缩小,2:1是把实际距离放大

师:为了计算方便,通常把比例尺写成前项或后项为1的比。

出示课本第49页的“做一做”,指名板演,集体订正。

(设计意图:学生通过独立思考、讨论与交流得出比例尺的意义,并学会了怎样求比例尺,从中体会探索的乐趣)

四、 探讨数值比例尺和线段比例尺的互化

呈现北京市地图让生找出“比例尺 ”

师:这种表示方法叫线段比例尺,表示图上距离1厘米相当于地面上50千米的实际距离。

师:如何把这幅地图的线段比例尺改成数值比例尺?

小组的同学互相讨论尝试改写。师板书例1.

师:谁能说说改写时要注意什么?

师生共同小结。课件出示:(1)图上距离与实际距离的单位不同,要把不同单位化成相同单位,50千米改写成用厘米作单位的量时,50后面应补5个0(2)比例尺是一个比,不带单位名称(3)比的前项为1

师:怎样把数值比例尺改写成线段比例尺呢?

呈现课本第53页的第1题。学生独立做,集体订正。师强调实际距离的单位要改写成所要求的单位。

(设计意图:将数值比例尺与线段比例尺的互化安排在一起教学,便于学生比较,让学生在尝试性地改写、练习中理解并掌握。)

五、巩固练习,深化概念

1、我会判断

(1)比例尺是一种测量长度的尺子 ( )

(2)一副图的比例尺是80:1,表示把实际距离扩大80倍 ( )

(3)比例尺的后项一定比前项大 ( )

(4)把线段比例尺 改写成数值比例尺是1:8000000 ( )

2、教师黑板的长为3米,在图纸上的长为3厘米,求这幅图纸的比例尺。

3、精密仪表上的一个零件4毫米,量得在设计图纸上的长度是8厘米,求这幅图纸的比例尺。

(设计意图:这些练习,既巩固新知,又让学生体验思维的乐趣,既沟通数学与生活的联系,又培养了学生应用数学知识的能力,充分调动了学生学习的积极性)

六、课堂小结

通过这节课的学习,你有什么收获?你认为自己的表现如何?给自己打打分。

七、布置学生填质疑卡

八、作业 课本练习八的第2、3题

比例尺的应用

教学目标

1、知识与技能目标:联系学生的生活实际,理解比例尺的意义。根据比例尺的意义解决实际问题。

2、过程与方法目标:在师生、生生的交流活动中,体会比例尺在实际生活中的运用。结合实际,经历提出问题、分析问题、解决问题的过程,初步学会数学的思维方式,培养问题意识和解决问题的能力。

3、情感态度目标:让学生经历和体验用所学的知识解决实际生活中问题的乐趣,感受到比例尺的实用性和科学的探索方法,培养学生读图、用图以及小组合作的意识,增强学好数学的信心。培养学生热爱家乡,合作学习的情感。

教学重点:能按给定的比例尺求相应的实际距离。

教学难点:比例尺在生活实际中的运用

教学过程:

一、复习引入:

1 、复习比例尺的意义:

刚才老师了解到同学们的五一安排非常丰富,其实在我们学校周围也有许多美丽的景点。老师给同学们带来了一幅地图,你能看到什么?还能看到什么?(观察的非常细致)比例尺1:10000你是怎么理解的?你还了解比例尺的哪些知识?

预设生1:图上一厘米表示实际中的一万厘米,实际距离是图上距离的一万倍。

2:图上距离/实际距离=比例尺。(板书)

3:同样的知道(比例尺)、(图上距离))我们就可以求(实际距离)

那么知道 (比例尺)、(实际距离)我们就可以求(图上距离)

也就是说知道其中的两个量,我们就可以求出第三个量.()

2、揭示课题。

大家对比例尺有了深刻的了解,其实比例尺在我们生活中有着广泛的应用。今天,我们就一起来研究比例尺的应用。(贴出课题)

二.教学求实际距离.

1、求东门小学到铁塔寺的实际距离。

下面,我们就带上比例尺,进行一次地图上的旅行吧。现在我们从东门小学出发到铁塔寺。

(1)出示课件:

仔细观察所以信息,你能提出哪些数学问题?

预设一:生提:图上距离是多少? (测量)

预设二:从东门小学到铁塔寺实际距离大约多少米?(评:真了不起,这个问题很有价值,我们可以共同研究一下!)

仔细观察所有信息与问题, 要求从东门小学到铁塔寺的实际距离,我们就必须先知道什么? 老师给同学们也提供了同样的地图,请你想一想、量一量、算一算,求出从我们东门小学到铁塔寺的实际距离。

生做,师巡视

汇报交流:

师:谁愿意来说说你的想法?

方法一:方程。

说说你为什么这样列式?

使用这种方法还有什么要提醒大家的吗?

刚才我们根据比例尺的数量关系,利用比例尺的意义直接解决了这个问题。

其他同学还有不同方法吗?

方法二:生:“4÷1/10000”求出的是实际距离。我们组是这样想的:因为“图上距离∶实际距离=比例尺”,在这里图上距离是比的前项,相当于除法中的被除数;实际距离是比的后项,相当于除法中的除数;比例尺相当于图上距离和实际距离的商。而“除数=被除数÷商”,所以可以推出“实际距离=图上距离÷比例尺”,我们组就是根据这种关系求实际距离的。

这种方法也不错。

方法三:我们组是这样想的:根据比例尺“1∶10000”推出实际距离是图上距离的10000倍,所以从学校到铁塔寺的实际距离可用“4×10000”求出,求出结果之后,因为单位不统一,所以还要把实际距离的单位转化为“米”,随即问:怎么列式?(教师板书)

2、比较几种算法。

同学们,很会观察,很会思考。从不同角度,想出多种方法解决了同一个问题。

这些方法中,你更欣赏哪一种?为什么?

教师小结:我们的数学就是那么奇妙,在变与不变之间存在着一定得规律。虽然方法看似不同,但都是利用比例尺的意义来灵活解答的。

3、练习:先量出铁塔寺到济宁人民公园的图上距离,再算出实际距离大约是多少米?

游览了古老的铁塔寺,让我们再一起去从新修建的济宁人民公园逛逛!

仔细观察所有信息,

想一想,要求从铁塔寺到济宁人民公园的时间?我们必须先求什么?

运用我们刚才研究的知识能解决这个问题吗 做在练习本上。

学生独立做,师巡视

生1:(方程)师:怎么想的?

生2:计算

师小结:同学们真了不起,自己解决了这个问题。根据比例尺的意义解决了地图旅行中的问题。其实在我们生活中比例尺的应用还有很多,看一下这两道题,先仔细读题,想一想,做在练习本上。

三、巩固练习。

1、基本练习

出示:按1:1000的比例尺做出的邮电大楼模型,高为16.8厘米,邮电大楼的实际高度是多少米?师读题

独立完成。

按10:1的比例尺放大的手表截面图,图中的表盘的直径是20厘米,这个表盘的实际直径是多少厘米?

学生独立解答; 汇报交流。

2、提高练习:

课前的谈话中,老师了解到同学们有的想到济宁周边游玩。

出示:课件 你能帮助他们解决这个问题吗?

想一想,再做出来。

生读

汇报:两种方法

观察这两种方法,你想说些什么?

3、老师还了解到,有的同学想到省内给地走走,看这是我们山东省的一幅地图。 自己设计出你的出游路线,算一算行程。

四、回顾小结:

在我们课本八十七页,运用我们今天所学知识就能帮助你更加科学合理的安排你的旅程。

祝愿大家能够渡过一个愉快的五一假期。

北师大版六年级下册《比例尺》数学教案


北师大版六年级下册《比例尺》数学教案

教学目标

(一)知识教学点

感受并理解比例尺的意义,会计算图上距离和实际距离,并能解决相关的实际问题。

(二)能力训练点

①、培养学生发现问题、分析问题、解决问题能力;

②、在实际应用中感受数学、亲近数学,培养学生学习数学的兴趣;

③、辩证唯物主义的初步渗透。

教学重点 比例尺的应用。

教学难点 比例尺的实际意义。

教学过程

一、设置教学情境,感受比例尺

(一)画画比比

1、  估计黑板的长和宽:教室前的这块黑板同学们熟悉吗?

请你估计一下黑板的长和宽。

2、  丈量黑板的长和宽:(板书:黑板实际长3.5米,宽1.5米)

3、  画黑板:你能照样子把黑板画在本子上吗?(师巡视)

4、  质疑:这么大的黑板,为什么能画在这么小的一张纸上呢?(长和宽按一定的比例缩小了。)

[评析:“照样子画黑板”是同学们美术课上再熟悉不过的举动,但以此为本节课的开始,让学生在不知不觉中体会到了比例尺,实为教者的匠心之笔!]

5、挑两个黑板图(一个画得不像一个画得较像)出示:

(a)、评价:

①谁画得更像一点?

②分析图A画得不像原因可能是什么?(长和宽缩小的比例不一样。)

(b)、师生合作,算一下长和宽分别缩小了多少倍?得数保留整数。(屏幕显示)

图上长7厘米,长缩小:350÷7=50  图上长5厘米,长缩小:350÷5=70

宽1.5厘米,宽缩小:150÷1.5=100  宽2.5厘米,宽缩小:150÷2.5=60

(c)、点拨:从上面计算结果来看图A长和宽缩小的比例差距较大(即比例失调),所以看上去画得不像;而图B长和宽缩小的比例接近,所以看上去画得较像。

[评析:实践出真知!让学生分析画得“像与不像”使学生真真切切地感受到了比例尺的作用,以此激发学生学习比例尺的兴趣。]

(二)再画再比

1、想一想怎样画得更像?(长和宽缩小的比例要保持相同。)

2、课件展示准确的平面图:

3、请你帮老师算算长和宽分别缩小多少倍?

图上长3.5厘米缩小:350÷3.5=100  宽1.5厘米缩小:150÷1.5=100

4、小结:当长和宽缩小的倍数相同时,黑板的平面图就十分逼真!由此可见,为了能反映真实的情况,画图时必须要有个统一的标准,这个统一的标准就是比例尺。(板书:比例尺)

[评析:从画黑板--提出问题到“比比谁画得像”--分析问题再到“如何画得更像”--解决问题。教者均是置学生于熟悉的生活背景下,感受并理解比例尺意义,体现了数学的生活性。]

二、结合实际,理解比例尺

(一)说一说

①、讲授:课件中的长方形是按缩小100倍来画的,我们就说这幅图的比例尺是1﹕100。

②、谁来说说比例尺1﹕100表示什么?(图上距离是实际距离的一百分之一;实际距离是图上距离的一百倍;图上距离1厘米表示实际距离100厘米等等)。

③、图A、图B长和宽比例尺各是多少?分别表示什么?

小结:一幅图一般只有一个比例尺,当长和宽的比例尺不一样时,所画黑板就会失真。

④、用自己话说说什么叫做比例尺?怎样计算比例尺?

小结:图上距离与实际距离的比叫做比例尺;比例尺通常写成前项是1的比。

(二)算一算

①、下图是我校附近的平面图(屏幕同时显示),新华五村菜场距我校直线距离约300米,可在这幅图上只画了3厘米,这幅图的比例尺是多少?

评讲:你是如何算得?结果是多少?(1﹕10000)要注意些什么?

②、从1﹕10000这一比例尺上,你能获取那些信息?

板书:图上距离是实际距离的一万分之一;实际距离是图上距离的一万倍;图上距离1厘米表示实际距离10000厘米等等。

[评析:比例尺是一个实用性很强的知识点,教师在帮助学生理解比例尺意义时,运用实例让学生“说一说”、“算一算”,口脑并用,从多角度多方位理解比例尺的实际含义,为下面多种角度计算实际距离、图上距离打下知识准备。]

三、联系实际,应用比例尺

(一)求图上距离

1、还是在这幅图上,现在要标上区委,估计一下我校离区委直线距离有多远?(400米)你看在这幅图上要画多长?

①、独立思考,试试看,如感觉有困难小组内小声讨论。

②、评讲:你是怎么想的?还可以怎么算?你觉得要注意些什么?

方法一:400米=40000厘米 方法二:400米=40000厘米

40000÷10000=4(厘米)  40000×1/10000=4(厘米)

方法三:10000厘米=100米 方法四:用比例解(略)等等

400 ÷100=4(厘米)

小结:求图上距离可以用乘法计算,也可以用除法计算,关键是理解的角度不一样。

③、如何画?自己画画看。(按上北下南左西右东常规去画,注意方向。)

[评析:“怎样计算图距和实距?”教者一改以往根据比例尺计算方法去死套公式(图距=实距×比例尺;实距=图距÷比例尺)的做法,也一改教材中“烦琐”的比例解法,而是借助于学生对比例尺的多角度理解,不把知识点“讲死”,让学生灵活的选择解决方法,很好的体现了新课标的理念--以人为本,即让不同的学生学不同的数学,让不同的学生得到不同的发展。

2、练一练:

区委东北是我区闹市区--十村,已知区委和十村实际距离是2.5千米,在这图上应画多长?如何画?自己画画看。(课件演示)

3、画一画:

①、请准确地画出教室前黑板的平面图。(怎样画才算准确?)

②、评讲:你是如何画的?方法一:自己定一个比例尺算出图上长和宽然后画;方法二:在原有图上以长的比例尺为比例画出宽;方法三:在原有图上以宽的比例尺为比例画出长。

(二)求实际距离

1、 西厂门在区委的东南面,(课件演示)量得图上距离是9厘米,如何算实际距离?有几种算法?

①、独立思考;

②、合作交流;

③、讲评算理。

(略)

2、练习:南钢宾馆在区委西南(课件演示)量得图上距离是18厘米,如何算实际距离?

[评析:用学生熟悉的生活场景--大厂区各地名,采取学生感兴趣的活动--画“地图”联系实际应用比例尺意义计算图距和实距,使学生对数学倍感亲切,感觉数学就在我们身边,突出的体现了数学的生活性。]

(三)新课延伸

1、 南京距大厂40千米,画在这幅图上要画多少厘米?

①、独立列式计算(400厘米)。

②、要画400厘米,你有何感觉?(太长画不下)

③、画不下怎么办?(调整比例尺)

④、说说你的调整方案?

[评析:一石激起千层浪!在矛盾冲突中培养学生发现问题、分析问题、解决问题的能力,同时达到使学生跳出大厂看“比例”的目的。]

2、请拿出标有南京上海的地图,找出比例尺并说说意义。

①、同座位间合作算出实际距离。

②、一辆汽车从南京早上9﹕00从南京出发赶往上海,要赶下午2﹕00的飞机,如果车速是每小时80千米,问能否赶及?为什么?

2、五一长假是旅游的黄金季节,请同学们采访一下听课的老师,最向往哪个大城市,然后根据地图帮老师算出实际距离,再告诉被采访的老师。

[评析:很有创意!采访老师,就地取材增加课的参与度;学生下位采访,体现课的开放性,培养学生解决实际问题能力的同时培养学生的交际能力。使课堂教学内容得到了再延伸!]

四、课堂总结,回顾比例尺(略)

点击查看更多:小学数学教案

提醒:

最新小升初政策、最新奥数试题、最全小学语文知识点

尽在“”微信公众号

六年级比例尺的教学反思(集锦6篇)


作为大家敬仰的人民教师,要对每一堂课认真负责。为了不消耗上课时间,就需要有一份完整的教学计划。这样不仅拉进了学生与自己的距离,还让学生学到了知识,你们知道那些比较有创意的教学方案吗?由此,有请你读一下以下的“六年级比例尺的教学反思(集锦6篇)”,欢迎大家借鉴与参考,希望对大家有所帮助。

六年级比例尺的教学反思 篇1

本节课是在特岗教师培训时在上前城小学做的一节课。比例尺的教学在本校试讲了效果不错,但是异校上课差异性就较强,学生的学习习惯、方法都不熟悉,这节课让我感觉力不从心,学生是启而不发,所以感受也颇深,现就反思如下:

1、这堂课总体学生积极性没调动起来,我感觉这跟异校教师教学有很大的关系,学生反应也很慢显得课堂很沉闷,特别是让学生小组讨论时学生参与的很少,大部分学生都只是呆坐着。

2、本节课的导入我选用了生活中的例子以脑筋急转弯的形式导入,目的在于导出图上距离和实际距离,这样的设计既放松了心情又为本新课的教学做了铺垫。这一环节我感觉不足的是应该从这个就引导学生探索图上距离与实际距离的关系,这样上可能效果会更好些。

3、在画线段图揭示比例尺的意义时,浪费了很多时间,这样就会感觉前部分的教学不紧凑,学生的表现也比较懒散。在这部分教学中出现了一个不足,比例尺的书写形式没强调,放在课的最后强调好像效果不是很好。在本节课中,图上距离与实际距离的比,学生写出1:10也有学生用分数表示,当时强调了分数形式的读法,但是学生在后面又出现读十分之一时我没及时强调,所以这块我引导的不是很好,还需要在下节课中继续强调读法。

4、在认识线段比例尺时,我选用了自学的方式,体现了学生学习的自主性。

本节课时间没把握好,导致课时量有些少,本课还设计了两个练习还没来得及出示,总体感觉本节课我的教学不是很成功。

六年级比例尺的教学反思 篇2

《比例尺》这一知识是在学生已经掌握了化简比以及比例的知识的基础上进行教学的。我在设计教学环节时,仔细分析了教材的设计意图,同时又思考如何将概念教学恰到好处的与学生的生活实际联系起来。反思整个教学过程,我认为成功的关键有以下几点:

1、在生活中引入新课。

现代学习心理学认为,知识并不能简单地由教师或其他人“传授”给学生,而只能由每个学生依据自己已有的知识和经验主动地加以“建构”。在引入阶段,我选取了学生们非常熟悉的典型的感知材料,画出一个标准篮球场长28米宽15米的平面图让学生动手操作画一画,问学生是怎么画的。

2、在情境中引出课题。

生举例生活中的这种情况,举例说明在生活中把实物图扩大或缩小的情况?我在根据生的回答出示最熟悉的缩小了点中国地图和北京交通线路平面图。出示两副图的全貌。让学生去发现。平面图形的大小与比例有着密切的联系,进而让学生提出本节课研究哪些有关比例尺的学习知识,针对学生们提出的问题,进一步有侧重点的确定这节课的教学重难点。

3、自学书得出概念。

出示导学提纲

(1)什么叫比例尺?怎样求比例尺?

(2)比例尺有哪几种?

(3)学习比例尺有什么作用?

(4)比例尺与我们学具袋里的尺相同吗?

在汇报交流时,恰当的传授知识。这一环节让学生充分总结出比例尺的定义,认识缩小比例尺,针对学生们得到的很多结论,我将他们的课堂充满了探索的气息。

4、在自学中学到知识。

在学生理解了比例尺的概念和作用后,怎样求比例尺和图上距离这一部分知识教简单。因此我比较注重培养学生的自学能力,大胆的放手让学生自己学习,自己思考,自己与其他学生交流,在交流中学到新的知识。

5、孩子的想法是获得知识的源泉。

通过创设生活情景,使学生始终处于动手操作、动脑思考的状态,解决了线段比例尺和数值比例尺的转化,让学生从中体会到成功的喜悦.同时鼓励学生用不同的方法去解答,以此培养学生思维的灵活性.这样让孩子在获得知识的同时,培养了能力,通过本节课让学生真真切切的感受到生活中有数学,生活中处处有数学,提高了学生学数学用数学的意识。

有了以上的铺垫教学,在已知比例尺、实际距离求图上距离,或是已知比例尺、图上距离求实际距离时,就简单多了。比如已知比例尺、图上距离求实际距离时,孩子们很多人都根据比例尺,来分析图上距离和实际距离之间的倍数关系,然后用比例尺的意义列出比例式。

本节课的教学内容量大,导致学生的练习时间偏少。

“冰冻三尺非一日之寒”,作为一个数学老师,我会不断地探索适合学生的教学模式。一节课是否上得好,并不是因为这位老师上得有多精彩,而是因为学生真正掌握了才是真的好。

六年级比例尺的教学反思 篇3

15:34:24 《比例尺》是北师大版小学数学六年级下册第二单元中的教学内容。本节课的主要内容是学习比例尺的相关知识,是在学生已经学习了比以及比例的有关知识的基础上进行教学的。比例尺这一内容对学生来说比较陌生、抽象,离实际生活较远,不易让学生直观的理解。这节课的教学目标是:1、结合具体情境,体会产生比例尺产生的必要性,理解比例尺的意义,能看懂线段比例尺,学会求平面图的比例尺和根据比例尺求出图上距离或实际距离。2、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题,进一步体会数学与日常生活的密切联系。

我在设计教学环节时,仔细分析了教材的设计意图,同时又思考如何将概念教学恰到好处的与学生的生活实际联系起来。在上课伊始,呈现了两个同学画的教室平面图,让学生讨论哪一幅画得合理,从而初步体会“只有图上距离和实际距离的比都相等,画的图才比较合理。”。然后又呈现了一幅画得合理而且标有比例尺的平面图,为理解比例尺的意义提供了支撑,并体会比例尺的实际意义。

在探究新知这一环节中,我考虑到比例尺的概念和怎样求比例尺这一部分知识较简单,况且六年级学生已经具备一定自学能力,课前安排学生自学教材21页和22页上面的内容以及搜集了比例尺,学生在汇报搜集到的比例尺时直接板书在黑板上然后看着比例尺来说一说比例尺的意义。学生基本都能根据比例尺说出它所表示的意义,但是可能由于没有把意义板书出来的缘故,有部分学生对于单位的换算不是很清楚,导致之后在做题时后进生容易把单位是厘米还是米(或者千米)弄错。

在概括比例尺公式的这一环节,在学生的自学单上让学生先尝试去求比例尺,课堂上再让学生来汇报。在学生汇报完之后我急于让学生进行巩固练习,没有及时的对比例尺的关系式进行强化加深,导致部分学生没有真正理解比例尺的意义,对如何求比例尺也不是很清楚,课堂氛围开始沉闷。

有了以上的铺垫教学,在已知比例尺、实际距离求图上距离,或是已知比例尺、图上距离求实际距离时,就简单多了。用图上距离和比例尺求实际距离我选取书本22页试一试的第一个问题,在这个问题上,有些学生根据理解这个比例尺的意义(图上距离1厘米相当于实际34000000厘米)来解决问题,也有部分同学根据前一课《比例的应用》来解决问题。用实际距离和比例尺求图上距离这个问题,我选取的是教材第21页左下角的问题,但考虑到时间原因没有让学生在图中画出东北方向的社区活动中心,只让他们求图上距离。在求这两个问题时,大部分学生都是根据比例尺,来分析图上距离和实际距离之间的倍数关系,然后列乘法算式来做,所得结果再进行单位的换算。少部分选择用方程来解答,还有个别学生利用三者之间的乘除法关系来求,求实际距离用图上距离除以比例尺。

纵观整节课还存在几个比较严重的问题:教师的课堂评价语言很少比较单一,对于学生的回答没有及时的进行反馈;课堂氛围不够活跃。对于一些后进生来说,知识点多,理解起来比较慢,掌握起来还有些难度。本节课的教学时间把握得不好,因为,理解比例尺的`意义是教学重点,所以课堂上让学生说比例尺的意义占用的时间多了,导致相应的习题没有完成,学生的练习时间偏少。

“冰冻三尺非一日之寒”,作为一个数学老师,我会不断地探索适合学生的教学模式。一节课是否上得好,并不是因为这位老师上得有多精彩,而是因为学生真正掌握了才是真的好。

六年级比例尺的教学反思 篇4

一、教材分析

1、教学内容、地位和作用

“比例尺”是九年义务教育小学数学第十二册“比例”这一单元第一小节的内容。这部分内容是在学生在对比例的意义有了一定的建构基础以及掌握了比例的基本性质这样背景下进行探索学习的。这部分内容有较强的实际应用价值,它可为学生架起一道数学学习和现实生活之间的桥梁,使他们充分感受到数学的现实意义,从而进一步激发学习兴趣,并为后续学习打下良好的基础。

在教学中,根据新课标要求以及学生的实际,我明确了立足于学生学习、生活体验的总的教学方向。在教学过程中着力引导学生采用与新课程相适应的学习方式,从生活导入、实践探究,学习比例尺的意义,再与生活实际相结合,学习比例尺的应用,最后通过合作研究巩固深化。

2、预想达到的教学目标

知识与技能方面:通过组织学生分析游泳池的平面图,使学生体会到图上距离与实际距离的比,知道图上距离比实际距离就是比例尺。

过程与方法方面:学生通过小组观察、思考、动手、讨论等合作学习,进一步发展了互相合作、协调的能力。

情感、态度与价值观方面:结合学生认知规律,充分发挥信息技术与学科教学整合的功能,激发学生的求知欲望,在具体的探究过程中,培养学生的信息素养以及与人交流、沟通,互动、互助的学习品质。

3、重点和难点

理解比例尺的概念,能正确根据比例尺的意义解决问题。

二、教法、学法

1、充分运用自主、探究、合作学习方式,促进学生的全面发展

在这节课中,我为学生提供了两次自主、探究、合作学习的机会。在这两次探究学习的过程中,由学生独立思考的基础上,再在小组内互相交流自己的发现和解决方法,然后全班交流,此过程让学生的个性思维方法得到了充分的发展,每个同学都能从同学们的汇报交流中获取到自己需要的信息。这样,知识与技能、过程与方法、情感与态度等几个方面都得到了较好的处理,有利于

促进学生的全面发展。

2、注重学生的个性发展教育

在整堂课中,教师为学生提供了广阔的独立思考的开放空间,尊重每一个学生,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识和方法解决问题,学生在此过程中,不仅理解了比例尺的意义,学会了求平面图的比例尺,更重要的是每个人都有独立发展的空间,既有情感的体验、交流,又能培养学生搜集、获取有价值信息的能力,学会解决问题的办法。

三、教学过程设计

(一)、基本训练

通过对长度单位之间的进率的复习,为下面求比例尺时单位的改写打下基础。

(二)、情景引入

首先通过创设一只蚂蚁从仪征车站爬到我们学校只用了10秒钟,这是为什么?这一题让学生联系生活,引出地图。

其次通过引导学生观察两组图使学生明确画地图时是形状没变、大小变了。

最后通过帮老师推荐住房使学生思考住房平面图与实际的房屋之间有什么关系?从而引出今天要学习的内容比例尺

(三)、自主探究,理解比例尺的意义

1、探究比例尺的意义

出示游泳图要求学生按照要求进行学习:(1)、量出上面游泳池平面图的长和宽。(2)分别计算出游泳池平面图的长和宽分别是实际长和宽的几分之几。(3)分别写出游泳池平面图的长和宽分别是实际长和宽的比,并化简。(4)完成后同桌交流。

反馈第(1)个问题时向学生说明什么是图上距离什么是实际距离。反馈第(2)、(3)个问题时向学生强调计算时要注意单位统一。

通过追问:这两个比怎么写,化简后是多少?分别是哪两个数量的比?从而向学生揭示比例尺的意义:我们把图上距离和实际距离的比就叫做这幅图的比例尺。

通过进一步追问:这张游泳池平面图的比例尺是多少?1:1000,还可以写成1/1000。

通过启发:可以怎样求一幅图的比例尺呢?根据学生的回答,教师进行相机板书

2、进一步理解比例尺的实际意义,认识线段比例尺

通过引导使学生弄清楚比例尺表示的实际意义,1:1000的意思是图上1厘米的.线段表示实际距离1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。说明像1:1000这样的比例尺,通常叫做数值比例尺。数值比例尺1:1000还可以用下面这样的形式来表示。进一步指出:像这样的比例尺通常叫做线段比例尺。

通过追问:从这个线段比例尺来看,图上的1厘米表示实际距离多少米?图上的2厘米、3厘米分别表示实际距离多少米?这与1:1000的含义相同吗?

通过完成练一练第一题、练习一第一题进一步巩固理解比例尺的实际意义。

3、师生课堂反思

什么叫比例尺?怎样求比例尺?求比例尺时你想提醒大家注意什么?比例尺有多少种表示方法?(先由学生小结,再由教师补充),使学生明确如下:①比例尺与一般的尺不同,它是一个比,不应带有计量单位;②求比例尺时,前项、后项的长度单位一定要化成相同单位;③通常把比例尺写成前项是“1”的比,有时由于机器零件比较小,这时的比例尺要写成后项是“1”的比。

(四)、运用所学知识解决生活实际问题

引导学生将生活与知识相联系,通过教学例4尝试比例尺的正确求法,随后用求精密零件图的比例尺进一步加深了学生对比例尺意义的理解,同时揭示扩大比例尺和缩小比例尺的特征。

四、存在问题

反思整个教学,也存在一些问题:本节课进行了两次探究,第一次探究比例尺的意义,第二次探究比例尺的实际应用。第一次探究时间比较充分,而第二次探究的时间比较紧张,学生虽基本完成了这个问题,但来不及反馈,导致数学基础知识和基本技能的落实还不够扎实。另外在预设课堂的生成,预设应设置一定的空间,给予一定的弹性,也就是驾驭课堂的能力和应变能力方面,我还要自我加压,不断磨练,提高课堂教学水平。

教学反思

在教学《比例尺》这一内容时,我从教室黑板这一熟悉事物入手,让学生画一画教室黑板的平面图。激发学生兴趣,让学生在动手实践,合作讨论的氛围中逐步发现、认识、了解“比例尺”的意义和方法,学生的学习效果比较好。

(一)让数学在生活情境中建构。

现代学习心理学认为,知识并不能简单地由教师或他人“传授”给学生,应由每个学生依据自己已有的知识和经验主动地加以“建构”。把数学还原于生活,让学生感觉到数学的亲切,体会到数学知识能切切实实地解决生活问题,这样才能提升数学的内在魅力。这堂课中,我从教室黑板这一熟悉事物入手,让学生根据教室黑板的长和宽,试着画一画教室黑板的平面图,亲身体验设计师的感觉。在汇报交流中,让学生根据自己的作品充分总结出比例尺的定义。这一系列的生活情境,使学生切实体会到了数学的应用价值,获得了新知识的丰富意义,同时也完善了原有的认知结构。

(二)让数学在学科整合中滋养。

我们的生活是丰富多彩的,当我们把生活中某一方面的问题进行提炼与加工,上升为数学问题去研究的时候,这时我们所关注的仅仅是其数学方面的因素,而排除了其他因素的干扰。当我们认识清楚这个数学问题以后,又使其回归生活,让学生在实践中运用学过的各方面知识与技能解决问题,进一步发展、深化对这一问题的认识,实现认识上的第二次飞跃。在教学中,通过对“用比例尺1:1000画出来的地图和1:100画出来的图谁大?为什么?”,再进一步研究“用1:10呢? 1:1、 2:1的比例尺画的平面图和实际大小有何关系呢?我们会用这样的比例尺画地图吗?”这一系列问题层层递进,使学生明白放大比例尺的意义。再通过认识机械图纸、零件图纸......拓宽学生的视野,深化对比例尺的认识,提高了学生的数学应用意识和审美能力。一节课下来,同学们不仅各方面能力得到了锻炼,还深深体会到数学知识在实际应用中并不是孤立的,它总是与其他学科的知识结合在一起成为解决某一问题的手段。

本节课我根据学生原有的知识经验和思维方式积极地去探索并解决问题,达到了培养学生的问题意识。

六年级比例尺的教学反思 篇5

《比例尺》中的内容,是比和比例知识的综合运用之一。这部分内容还是学生学习有关地图、工程图纸计算的启蒙点。另外,这部分知识在生产生活中的应用可谓中流砥柱也!所以,教学时,结合具体情境,使学生认识比例尺,理解比例的意义,能正确说明比例尺所表示的具体意义,能根据比例尺的意义求出比例尺和实际距离意义重大也!

教学重点是理解比例尺的概念,根据比例尺的意义求出比例尺和实际距离。在教学中,我采用了自学教学法,老师适时点拨,注重让学生用动手操作、大胆设想、自主探究、合作交流的方式进行学习。

课后反思如下

一、就地取材,自主探究可取

教室里有现成的中国地图和世界地图,问:中国地图是凭借什么把幅员辽阔的960万平方千米的祖国大地画在了仅80平方分米的图纸上?因为有自学任务在前,学生知道从地图上找比例尺,初步感知比例尺。比例尺的产生过程则以以下方式由学生自主“创造”出来:请学生将学校的旗杆画在一张纸上。旗杆高15米,质疑:按实际长度画能画得下吗?小组合作,教室里瞬间热闹起来,学生不可能按原来的长度画,只有想办法缩小。请学生用一句话说明用1厘米代表了实际的多少米,学生标注。教师巡视,找有代表性的,如“图上厘米相当于实际10米”,“图上1厘米相当实际300厘米”;“用1厘米代表15米”摘抄下标注。这一过程让学生用不同的方式表达自己的想法,为学生供了独立思考的开放空间,关注了学生的个性发展。学习的过程学生印象深刻,兴趣浓厚。我认为学生经历比例尺的产生过程比知道比例尺意义本身更有价值。

二、捕捉生活中的数学信息,让比例知识绚丽多彩

如果我们以学生熟悉的景与物、人与事,学习与生活为载体,必能构建一个良好的教学环境,在生活中捕捉数学信息,提供可体验的学习情境,让学生运用知识解决问题的过程,也是感知数学就在我们的身边的过程。为了让学生更加了解比例尺在绘图时的运用,我收集了学校平面图的一组数据,有教学楼、办公楼、自行车车棚的图上距离和实际距离,分组计算出比例尺。这一设计,不仅及时地巩固了比例尺

的求法,从算出的比例尺都是1 :6000让学生感知:同一幅图里各个角度和点都是按同一个比例尺绘制的。这样学生在体验中感悟,在动手中理解,在讨论中收获,所获取的知识是深刻的,经历的过程是愉快的。

六年级比例尺的教学反思 篇6

“比例尺”是在学生已经掌握了化简比以及比例的知识的基础上进行教学的。这一部分内容对学生来说比较陌生、抽象,难以理解,且与实际生活较远,不易让学生直观的理解。因此我在设计教学环节时,仔细分析了教材的设计意图,同时又思考如何将这样一节概念教学恰到好处的与学生的生活实际联系起来。 反思 整个教学过程,我认为成功的关键是把生活中的鲜活题材引入到数学课堂上,给学生提供一个展示激情、智慧与个性的大舞台,让他们在实践活动中获得多方面发展。

1、在生活中引入新课。现代学习心理学认为,知识并不能简单地由教师或其他人“传授”给学生,而只能由每个学生依据自己已有的知识和经验主动地加以“建构”。在引入阶段,我选取了学生们非常熟悉的典型的感知材料(五副大小不一国旗的平面图),让学生观察这些平面图“什么变了,什么没变?”,进而抓住比例尺的特性:图形的大小可以随意改变,但形状不能改变。

2、在情境中引出课题。老师到房产公司看了房子。出示两套房屋的平面图(大小一样)。老师想买大一点的,你能帮我选择一下吗?学生在帮忙选择的过程中发现很难知道到底是哪个大一点。在学生有争议的时候,出示两套房屋的比例尺,告诉学生老师发现每个平面图下面都有个这样的标志。现在你能帮我选吗?说说你的理由?这样设计的目的是引起学生们对比例尺的注意,及时发现往往针对平面图的大小不能准确的判断实际图形的大小,平面图形的大小与比例尺有着密切的联系,进而让学生提出本节课研究哪些有关比例尺的学习知识,针对学生们提出的问题,进一步有侧重点的确定这节课的教学重难点。

3、在动手操作中得出概念。通过让学生设计制作校园平面图,亲身体验设计师的感觉,让他们在实践中体会如何确定比例尺的大小,如何计算数据,如何作图等。在汇报交流时,恰当的传授知识。这一环节让学生充分总结出比例尺的定义,认识缩小比例尺,针对学生们得到的很多结论,我将他们的作品一一展示给同学们看,课堂充满了探索的气息。

4、在自学中学到知识。在学生理解了比例尺的概念和作用后,怎样求比例尺和图上距离这一部分知识教简单。因此我比较注重培养学生的自学能力,大胆的放手让学生自己学习,自己思考,自己与其他学生交流,在交流中学到新的知识。

值得思考的是:教学数学知识时要从生活生产实际中挖掘教学素材,不能生搬硬套教材。学生是课堂的主人,只有让学生主动的参与到知识的探索过程中,才能取得更好的效果,老师在整个过程中只是组织者和引导者,用饱满的热情参与到课堂中来,用激情带动感染学生的学习热情。

小学六年级数学解比例教案


教学内容:课本第69页例2、3;练一练;《作业本》第31页。

教学目标:理解解比例的意义,掌握解比例的方法,能正确地解比例。

教学重点:解比例的基本方法与依据。

教学难点:解比例的方法

教学过程:

一、复习:

1、什么叫比例?

2、什么是比例的基本性质?

3、怎样检查两个比是否成比例?

二、新授:

1、先请学生心里想好一个比例(数目简单些),如2:3=4:6,只告诉其他同学其中的三项,让大家猜一猜还有一个数字是什么?

2、根据比例的基本性质,如已知比例中的任何三项,就可以求出另一个未知项。

3、求比例中的未知项,叫做解比例。

4、例2解比例:

30∶12=45∶χ

解:30χ=12×45…………根据是什么?

χ=………不先求积,先约分比较简便。

χ=18

5、例3解比例=

①请学生独立尝试;

②注意格式;

③反馈练习。

6、试一试。

三、巩固练习:

1、解比例:(练一练第1题第一竖行)

2、练一练第2题

3、补充:χ∶0.8=3∶1.2

四、小结:

这节课学习了什么?

五、《作业本》第31页。

2025年北师大版六年级下册《比例尺》数学教案


《比例尺》教案

教学目标:

1、知识与技能:使学生理解比例尺的意义,学会求比例尺、实际距离和图上距离。

2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。

3、情感态度与价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。

教学重点:

理解比例尺的意义,根据比例尺的意义求比例尺、实际距离和图上距离。

教学难点:

运用比例尺的有关知识,学会解决生活中的一些实际问题。

教学准备:多媒体课件。

教学过程:

一、展示目标,引入本课。

二、探究新知,意义建构

1、看一看

下面几幅地图的比例尺分别是多少。①中华人民共和国这幅地图的比例尺是多少?(1:6000000)②安庆市这幅地图的比例尺是多少?(1:2500000)③笑笑家的平面图按照一定的比例画在纸上,这幅平面图的比例尺是多少?(1:100)

2、说一说

(1)比例尺1:100表示什么意思呢?

生:图上1厘米长的线段表示实际距离100厘米。

(2)在比例尺1:2000的地图上,图上距离1厘米,表示实际距离(2000)厘米。

(3)在比例尺1:40000的地图上,实际距离是图上距离的(40000)倍。

3、议一议

(1)什么是比例尺呢?

图上距离和实际距离的比,叫做比例尺。

(2)比例尺怎样表示呢?

比例尺=图上距离:实际距离或比例尺=图上距离/实际距离(板书:比例尺=图上距离:实际距离:)

(3)比例尺有什么特征呢?

①比例尺与一般的尺子不同,它是一个比,不带计量单位;②图上距离和实际距离的单位是统一的;③比例尺的前项,一般应化简成“1”,如果写成分数的形式,分子也是“1”。

【意图】数学概念不是老师灌输给学生的,而是在学生有了感性认识之后,自己总结和概括出来的,自己发现特征的,不仅知其然,还要知其所以然,学生只有经历知识和概念的形成过程,才能真正理解。

三、拓展延伸,巩固新知

1、有时,比例尺的图上距离比实际距离大。一个精密零件的长度只有3.5毫米,画在一张图纸上是70毫米,这幅设计图纸的比例尺是多少?

70:3.5=700:35=20:1

答:这幅设计图纸的比例尺是20:1。

2、有的地图上的比例尺用线段来表示。小明家在学校的正西方,到学校的实际距离是900米。你有办法找到小明家在图上的位置吗?1厘米相当于实际距离300米。(在学校正西方向900米。)

3、这位老师从广州坐飞机到北京开会,实际距离是多少千米呢?

32×6000000=192000000(厘米)192000000厘米=1920(千米)

答:广州到北京实际距离是1920千米。

五、总结新课,整理知识

通过今天的学习,你有什么收获呢?

板书设计:比例尺

比例尺=图上距离:实际距离

实际距离=图上距离×1厘米表示的实际距离

图上距离=实际距离÷1厘米表示的实际距离

认识比例尺


为了使每堂课能够顺利的进展,所以大多数老师都会选择制定一份教学计划。在上课时遇到各种教学问题都能够快速解决,那你有没有为了一个问题而去做过一份教案呢?小编收集整理了一些认识比例尺,欢迎您参考,希望对您有所助益。

1、创设情境,让学生明确比例尺的用途。

由于学生在生活中对比例尺认识较少并且感受枯燥,所以我在课前拍摄学生照片,利用信息技术做成缩小或扩大的效果,课上展示让学生观察自己照片的变化。接着又介绍现实生活当中,根据需要有时要把实际距离缩小或扩大若干倍以后再画到图纸上的例子。如缩小实例有:中国地图、某个学校平面图。扩大实力有:手表图。通过这些情境的创设,让学生明确比例尺的用途。

2、通过观察、测量、设计平面图的体验过程,使学生理解比例尺的意义。

在学生发现生活中缩小与扩大例子的基础上,我组织学生当设计师进行测量教室周围物品、设计平面图,在体验中发现实际距离长和宽同时缩小相同的倍数就得到了图上距离,进一步引导学生又发现自己画的平面图的图上距离长和宽与实际距离长和宽的比也是相同的,通过说一说对课桌面1比10的理解,抓住了比例尺的意义进行教学。然后又强调了比例尺图上距离、实际距离一般用厘米做长度单位及统一单位的问题。最后,学生计算自己设计平面图的比例尺并说明其意义,更深的理解了比例尺的意义。

3、联系生活实际,让学生在实践中运用。

数学来源于生活,又作用于生活。课堂教学应该体现小课堂,大社会的理念,为此,在学生充分理解了比例尺的概念后,我创设了春游情境给学生看图片和地图,求比例尺和实际距离。在布置课外作业时,我又力求体现了开放性强,联系学生生活实际的特点,让他们调查数据求图上距离并画出来。这些设计培养了学生学数学,用数学的意识,体会到了数学的内在价值。

小学六年级数学反比例的意义教案


教学内容:课本第83页例1、2;练一练;《作业本》第37页。

教学目标:

1、理解反比例的意义和反比例关系,掌握反比例的数学表达式,会正确地判断两种量是否成反比例。

2、通过教学,培养学生深入观察、主动探究、发展规律的能力。

教学重点:理解反比例的意义

教学难点:判断是否成反比例

教学关键:回忆正比例意义的教学过程,来帮助接受反比例的意义与判断

教具准备:投影片

教学过程:

一、复习,导入。

1、师:我们乘坐在一辆以每小时45千米的速度行驶的汽车内,此时你觉得哪两种量成正比例的?说明理由。

2、出示:一个长方形,宽和长的情况如下:

宽(厘米)

1

2

3

4

5

6

……

长(厘米)

15

10

7.5

6

5

30

……

(1)观察:①这里的“宽与长”是否相关联?

②这里的“宽与长”是否成正比例?理由呢?

(2)师:不妨在表中找一下,有没有一定的量?

生:“宽与长的乘积”相等。

师:这节课我们就要来研究这种情况下两种量的又一种关系,即反比例。

二、教学反比例的意义、性质。

1、将复习2改为“面积相等的长方形”,四人组讨论这里两种量变化的情况。

2、汇报、归纳,得出:

长×宽=长方形的面积(一定)

3、出示例2:加工一批零件,每小时加工的个数和所需时间如下表。

每小时加工数

60

30

20

15

10

……

加工时间(小时)

8

16

24

32

48

……

(1)由学生观察,独立分析题中两种数量的关系。

(2)反馈(2至3名学生说)

每小时加工数与加工时间是两种相关联的量,加工的时间随着每小时加工数的变化而变化,每小时加工数扩大(或缩小)几倍,加工时间反而缩小(或扩大)几倍,并且加工的总数都是300。即

每小时加工数×加工时间=加工零件总数(一定)

4、比较两个例题,得出两种相关联的量共同的变化情况,揭示反比例的意义和性质。

学生自学P85、86各自然段。

指名说说成反比例的两种量必须有什么特点?关系式?

(两种相关联的量,如果一种量扩大(或缩小)几倍,另一种量反而缩小(或扩大)相同的倍数,这两种量叫做成反比例的量,它们的关系叫做反比例关系。用式子表示为

x×y=k(一定)

三、运用意义,判断两种量是否成反比例。

1、练一练1、2口答反馈。

2、练一练3,口头回答。要求说理完整,

3、出示:食品厂有一批糖果,总重量一定,每袋所装的克数和所装的袋数是不是成反比例的量,并说明理由。

4、举例:两种量成反比例的量。

5、已知A和B成反比例,填写下表。

A

8

15

20

60

B

12

8

4

四、总结:你知道什么情况下的两种量成反比例?

你觉得反比例与正比例的最大不同在什么地方?

五、《作业本》p37.

[浙版第十二册36]反比例的意义

教学内容:课本第83页例1、2;练一练;《作业本》第37页。

教学目标:

1、理解反比例的意义和反比例关系,掌握反比例的数学表达式,会正确地判断两种量是否成反比例。

2、通过教学,培养学生深入观察、主动探究、发展规律的能力。

教学重点:理解反比例的意义

教学难点:判断是否成反比例

教学关键:回忆正比例意义的教学过程,来帮助接受反比例的意义与判断

教具准备:投影片

教学过程:

一、复习,导入。

1、师:我们乘坐在一辆以每小时45千米的速度行驶的汽车内,此时你觉得哪两种量成正比例的?说明理由。

2、出示:一个长方形,宽和长的情况如下:

宽(厘米)

1

2

3

4

5

6

……

长(厘米)

15

10

7.5

6

5

30

……

(1)观察:①这里的“宽与长”是否相关联?

②这里的“宽与长”是否成正比例?理由呢?

(2)师:不妨在表中找一下,有没有一定的量?

生:“宽与长的乘积”相等。

师:这节课我们就要来研究这种情况下两种量的又一种关系,即反比例。

二、教学反比例的意义、性质。

1、将复习2改为“面积相等的长方形”,四人组讨论这里两种量变化的情况。

2、汇报、归纳,得出:

长×宽=长方形的面积(一定)

3、出示例2:加工一批零件,每小时加工的个数和所需时间如下表。

每小时加工数

60

30

20

15

10

……

加工时间(小时)

8

16

24

32

48

……

(1)由学生观察,独立分析题中两种数量的关系。

(2)反馈(2至3名学生说)

每小时加工数与加工时间是两种相关联的量,加工的时间随着每小时加工数的变化而变化,每小时加工数扩大(或缩小)几倍,加工时间反而缩小(或扩大)几倍,并且加工的总数都是300。即

每小时加工数×加工时间=加工零件总数(一定)

4、比较两个例题,得出两种相关联的量共同的变化情况,揭示反比例的意义和性质。

学生自学P85、86各自然段。

指名说说成反比例的两种量必须有什么特点?关系式?

(两种相关联的量,如果一种量扩大(或缩小)几倍,另一种量反而缩小(或扩大)相同的倍数,这两种量叫做成反比例的量,它们的关系叫做反比例关系。用式子表示为

x×y=k(一定)

三、运用意义,判断两种量是否成反比例。

1、练一练1、2口答反馈。

2、练一练3,口头回答。要求说理完整,

3、出示:食品厂有一批糖果,总重量一定,每袋所装的克数和所装的袋数是不是成反比例的量,并说明理由。

4、举例:两种量成反比例的量。

5、已知A和B成反比例,填写下表。

A

8

15

20

60

B

12

8

4

四、总结:你知道什么情况下的两种量成反比例?

你觉得反比例与正比例的最大不同在什么地方?

五、《作业本》p37.

小学六年级数学按比例分配的应用教案


教学内容:课本第63页例2;练一练;《作业本》第28页。

教学目标:进一步理解按比例分配的意义,巩固解答按比例分配的基本方法,并能应用按比例分配解决简单的实际问题。

教学重点:在连比中按比例分配应用题的特征与解答方法

教学难点:理解连比(三部分比)的意义与分数应用题的关系

教学关键:理解连比(三部分比)的意义

教学过程:

一、基本练习:

1、你可以想到什么?

(1)某班男、女生人数比是5∶4;

(2)柳树、杨树棵数比是1∶6;

(3)科技书和故事书比是5∶4。

2、练习:

(1)学校有故事书80本,故事书和科技书的本数之比是2∶3,科技书有多少本?

(2)改编1题中的故事书80本为科技书有80本。

分析:每题有多种不同的解法,想想你能列出几种不同的解法?

二、新授

1、出示例2:一种混凝土,由水泥、沙子和石子按2∶3∶5拌制而成。要配制这种混凝土6000千克,需要水泥、沙子和石子各多少千克?

(1)想:2∶3∶5叫做水泥、沙子和石子这三种量的连比。意思是这种混凝土里水泥占2份,沙子占3份,石子占5份。

(2)学生尝试解答。

(3)反馈、讲评。

2、试一试:一种青铜,内含铜88份,锡10份,锌2份。要炼制这种青铜400吨,需要铜、锡、锌各多少吨?

3、补充:一个长方体的棱长总和是24厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?

三、练一练。P64。

四、课堂小结。

这堂课与上堂课有什么不同吗?你学会了什么?

五、《作业本》第28页。

小学六年级数学反比例的意义的教案


反比例的意义

教学内容:教材第99~102页例1~例3。

教学要求:

1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

教学重点:认识反比例关系的意义。

教学难点:掌握成反比例量的变化规律及其特征。

教学过程:

一、铺垫孕伏:

1.正比例关

系的意义是什么?怎样用字母表示这种关系?

判断两种相关联量成不成正比例的关键是什么?

2.下面哪两种量成正比例关系?为什么?

(1)时间一定,行驶的速度和路程。

(2)数量一定,单价和总价。

3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

4.引入新课。

如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

二、自主探究:

1.教学例2。

出示例2某运输公司要运一批300吨的货物。让学生计算并完成填表任务。

每天运的数量(吨)1020304050……

所需的天数

在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。

指名学生口答讨论的结果,得出:

(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)

2.教学例1

出示例1。

请同学们按照刚才学习例4的方法,自己学习例1,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积比变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?

3.概括反比例的意义。

(1)综合例1、例2的共同点。

提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?

(2)概括反比例意义。

例1、例2里两种相关联的量,它们是什么关系的量呢?请同学们看第101页1~3自然段。说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:x×y=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。

4.具体认识。

(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

例2里的两种量成反比例关系吗?为什么?

(2)提问:看两种相关联的量成不成反比例,关键要看什么?

(3)判断。

现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

5.教学例3。

出示例3,看书自学,小组讨论,集体交流。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?

三、巩固练习

用刚才我们说的判断方法来做几道题。

1.做"练一练"。

指名学生口答,说明理由。(可以写出数量关系式看一看)

2.下题两种相关联量成不成反比例?为什么?

一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

3.做练习十二第1题。

四、课堂小结

这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

五、课堂作业

练习十二第2~4题。

小学六年级数学正比例的意义的教案


教学内容:

教学要求:

1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据正比例的意义判断两种相关联的量成不成正比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学重点:认识正比例关系的意义。

教学难点:掌握成正比例量的变化规律及其特征。

教学过程:

一、复习铺垫

1.说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2.引入新课。

上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)

二、自主探究:

1.教学例1。

出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让学生观察表里两种量变化的数据,思考:

(1)表里有哪两种数量,这两种数量是怎样变化?

(2)长方形的面积随着那种量的变化而变化的?你能看出它们变化的特点吗?

(3)分别找出面积与款项对应的数,面积与宽的比各是几比几?比值各是多少?

引导学生进行讨论,得出:

(1)表里的两种量是长方形的宽与面积(长与面积)。宽与面积(长与面积)是两种相关联的量,(板书:两种相关联的量)面积随着宽(长)的变化而变化。

(2)宽(长)扩大,面积也扩大;宽(长)缩小,面积也缩小。

(3)可以看出它们的变化规律是:面积与宽(面积与长)比的比值总是一定的。(板书:面积和宽比的比值一定)因为面积和宽(面积与长)对应数值比的比值都是5(2)。提问:这里比值5(2)是什么数量?谁能说出它的数量关系式?板书:面积/宽=长(一定)面积/长=宽(一定)想一想,这个式子表示的是什么意思?(把上面板书补充成:长一定时,面积和宽比的比值一定宽一定时,面积和长比的比值一定)

2.教学例2。

出示例2。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?你是怎样发现的?你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成单价一定时,总价和数量比的比值一定)

3.概括正比例的意义。

(1)综合例1、例2的共同点。

提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)

(2)概括正比例关系的意义。

像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第95页最后连个自然段。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢?指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子=k(一定)来表示。

4.教学例3学生看书自学,小组讨论,集体交流。

(1)数量与时间是不是两种相关联的量?

(2)数量与时间有什么关系?他们的比值是谁?比值是不是不变的?

(3)判断数量与时间是不是成正比例?

5.完成97页练一练。

三、巩固练习

1.(1)提问:例l里有哪两种相关联的量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?

2.做练习十一第1题。

让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的正比例的意义,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。

3.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?

一种苹果,买5千克要10元。照这样计算,买15千克要30元。

四、课堂小结

这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?关键是列出关系式,看是不是比值一定。

五、家庭作业

练习十一第2~6题。