88教案网

你的位置: 教案 > 小学教案 > 导航 > 苏教版六年级上册数学《比的基本表性质和化简比 》教案(二)

小学数学六年级教案比

发表时间:2021-11-05

苏教版六年级上册数学《比的基本表性质和化简比 》教案(二)。

《比的基本性质教学设计》教学设计

教学内容:

苏教版小学六年级上册数学教材第45 、46页内容及练习十一第4-7题。

教学目标:

1、理解比的基本性质。

2、利用比的基本性质正确化简比。

过程与方法:

1、利用知识的迁移,使学生领悟并理解比的基本性质。

2、通过学生的自主学习,掌握化简比的方法并会化简比。

情感态度和价值观:

1、培养学生的抽象概括能力,渗透转化的数学思想。

2、初步渗透事物是普遍联系的辩证唯物主义的思想,

教学重点:理解比的基本性质。

教学难点:利用比的基本性质正确化简比。

教学过程:

听算练习:

求比值:2:0.5 4:1 20:5 200:50

90:60 9:6 3:2 0.3:0.2

两个同学板演:写出过程。

(设计意图:加强基础训练,巩固求比值的练习,为本节课比的基本性质做铺垫。)

汇报答案时强调求比值是用比的前项除以后项,所得的商。

新授:

观察黑板上的算式,你有什么发现:

学生的发现:前面四个比的比值相等,后面四个比的比值相等。

板书算式: 2:0.5 = 4:1 = 20:5 = 200:50 = 4

(2×2) :(0.5×2) (20×10):(5×10)

90:60 = 9:6 = 3:2 = 0.2:0.3 = 1.5

(90÷10):(60÷10) (3÷10):(2÷10)

观察第一组比,他们的比值是相等的,前项和后项有什么变化?

以前两个比和后两个比为例,找同学说出自己的发现。

教师添加板书,渗透格式的书写。

让学生多说自己的发现,从①到③,从①到④,从②到④等,

然后小结规律:比的前项和后项同时乘同一个数,比值不变。

观察第二组比,发现规律:方法同上。

比的前项和后项同时除以同一个数(0除外),比值不变。

(有分数的基本性质做定势,0除外这个关键点学生不会忘记,在这里只须问一句为什么?就可以将这个要点突破)

将上面两个规律综合小结:

比的前项和后项同时乘或除以同一个数(0除外),比值不变。这叫做比的基本性质。

出示课题:(比的基本性质)

(设计意图:分数的基本性质在五年级下册刚刚学过,是教材的重要内容,约分通分都用到分数的基本性质,学生记忆很深刻,故没在课前复习分数基本性质。)

(有直观的等式作媒介,有分数的基本性质做迁移,通过比值相等,观察比的前项后项的变化规律,学生很容易发现规律,并且语言的组织应该没有问题。根据学生的年龄特点也为了突破教材的重难点,这里需要学生多观察、多说,充分理解比的基本性质。教师补充板书,渗透化简比的格式规范)

理解概念,找出关键词。

利用比的基本性质做出准确判断:

① 8:10 =(8+10):10+10 = 18:20 ( )

② 12:16=(12÷6):(16 ÷ 4)= 2:4 ( )

③ 0.8:1=(0.8×10):(1×10)=8:10 ( )

④ 比的前项乘3,要使比值不变,比的后项应除以3。

(设计意图:第一道题考察"同乘"这个关键词,这里是同加一个数,比值是变化的;第二个考察"同一个数"这个关键词,前项后项同时除的不是一个数,第一个除的是6,第二个除的是4,因此比值也是变化的;第三道题是正确的;第四道考察的是同乘和同除。此处的练习是为了巩固比的基本性质,突破本节课的重点与难点。)

学习了比的基本性质,你联想到了我们以前学过的那部分知识?

学生很容易想到这些内容,比的基本性质,商不变性质。联系旧知,形成系统的知识体系。我们刚刚学过分数、除法、比的联系,他们的性质能联系在一起也就不足为奇了。

问:比的基本性质在数学上有什么用途?(约分、通分)

商不变的性质有什么用途?(1.2÷0.3 500÷10 )

那么我们刚刚学过的比的基本性质有什么用途呢?

学生已经预习过,故学生应该知道利用比的基本性质可以化简比。

观察黑板上的两组等式,哪一个比最简单?学生回答,教师板书:

像1:4 3:2这样的比叫做最简整数比。

请学生举出最简比的例子,多找几个学生回答,

学生在举例的同时加深了对最简整数比的认识。

由学生总结。最简整数比的特点:

学生总结,教师板书。1、比的前项后项必须都是整数。2、比的前项后项必须是互质数。

以后我们写出的比应该都化简成最简整数比。

化简比:

出示例题:"神州"五号搭载了两面联合国旗,一面的长是15厘米,宽是10厘米,另一面长是180厘米,宽是120厘米。写出这两面旗长与宽的比,并化成最简整数比。

学生口答写出比: 15:10 180:120

由于学生已经预习,因此化简的过程教给孩子。尝试练习,找同学板演:

汇报,学生讲解化简过程,教师规范化简格式。

化简分数比: 1/6 : 2/9 7/12 :3/8

化简小数比: 0.5:0.4 0.75:0.25

这部分内容的学习交给孩子自己,发挥学生的主体作用,学生尝试练习,学生讲解。最后让学生讨论化简整数比,分数比,小数比的方法。

化简整数比时,比的前项和后项同时除以它们的最大公因数。

化简分数比时,比的前项和后项同时乘分母的最小公倍数。

化简小数比时,先把小数比化成整数比,然后再化成最简比。

(设计意图:这一环节的教学充分发挥学生的主体作用,把课堂还给孩子,同时也检查孩子的预习效果,最后小结方法,渗透最优化的数学思想)

小结本节课的收获:

三、巩固练习:

1、等比接龙:

2:3=20:30=4:6=200:300=( )=( )=( )=( )

100:50=40:20=( )=( )= ( )=( )

2、一项工程,甲单独做12天完成,乙单独做10天完成,甲乙所用时间比是( ),工效比是( )。

3、甲是乙的1.2倍,甲与乙的比是( )。

4、甲是乙的1又1/4倍,甲与乙的比是( )。

提醒:

小学数学试题、知识点、学习方法

尽在“”微信公众号

扩展阅读

苏教版六年级上册《比的基本性质》数学教案


苏教版六年级上册《比的基本性质》数学教案

第三单元 分数除法

第8课时 比的基本性质

教学内容:

课本第55页例9、例10和“练一练”,练习九第5-8题。

教学目标:

1、使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。

2、通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使

学生认识事物之间都是存在内在联系的。

教学重点:

理解比的基本性质。

教学难点:

正确应用比的基本性质化简比。

课前准备:

多媒体课件

教学过程:

一、复习导入

1、填空。

师:除法、分数和比之间有什么联系?

2、做复习题。

师:第一题你这样做根据的是什么?(商不变的性质)它的内容是什么?第二题呢?

3.导入课题。

我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)

二、学习新课

1、教学例9比的基本性质。

(1)学生填表

(2)提问:联系商不变的性质和分数的基本性质这两个性质想一想:在比中又有什么规律可循?

(3)师生共同总结比的基本性质:

比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变.

(4)师:你觉得哪些词语比较重要?

0除外你怎样理解?

2、教学例10应用比的基本性质化简比。

我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。

出示:把下面各比化成最简单的整数比。

(1)12:18 (2) 5/6:3/4 (3)1.8:0.09

(1)让学生试做第(1)题。

师:你是怎么做的?6和12、18有着怎样的关系?

引导学生小结出整数比化简的方法:(演示课件出示)用比的前后项分别除以它们的最大公约数,使比的前后项是互质数。

(2)化简第(2)题。

师:这个比的前、后项是什么数?(分数)我们已经会化简整数比了,那么你能不能利用比的基本性质把分数比先化成整数比呢?

(3)引导学生小结出分数比化简的方法:(演示课件出示)比的前、后项同时乘以它们的分母的最小公倍数,就可以把分数比转化成整数比,进而化简成最简单的整数比。

(4)化简第(3)题。

师:想一想如何化简小数比呢?

让学生独立在书上化简,指名板演

师:那么应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?

三、巩固练习

1、把“练一练”第1题填完整。

2、“练一练”第2题。

指名板演,其余练习,完成后集体核对。

3、做练习九第7、8题。

4、出示选择

(1)1千米∶20米=( )

A 1∶20 B 1000∶20 C 5∶1

(2)做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是( )

A 20∶21 B 21∶20 C 7∶10

四、课堂总结

师:通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

五、布置作业

练习九第5、6题。

教学反思:

人教版六年级上册《比的基本性质》数学教案


众所周知,一位优秀的老师离不开一份优质的教案。通常大家都会准备一份教案来辅助教学。从而在之后的上课教学中井然有序的进行,那你们知道有哪些优秀的小学教案吗?以下是小编为大家精心整理的“人教版六年级上册《比的基本性质》数学教案”,仅供参考,希望可以帮助到您。

人教版六年级上册《比的基本性质》数学教案

第4单元 比

第2课时 比的基本性质

【教学内容】

教材50、51页及练习十一的4-8题

【教学目标】

知识与技能:

1.理解比的基本性质.

2.正确应用比的基本性质化简比.

过程与方法:

培养抽象概括能力;

情感、态度与价值观;

渗透转化的数学思想。

【教学重难点】

重点:理解比的基本性质,正确的化简比。

难点:正确应用比的基本性质化简比。

【导学过程】

⊙复习铺垫

1.什么叫两个数的比?(两个数的比表示两个数相除)

2.比与分数、除法有什么关系?(引导学生明确:比相当于分数、相当于除法;比的前项相当于……可以结合算式或表格回答)

3.商不变的性质和分数的基本性质各是什么?[商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变]

设计意图:回顾比的意义和商不变的性质以及分数的基本性质,理清比与分数、除法的关系,为探究比的基本性质做好铺垫。

⊙探究新知

1.导入新课。

(1)课件出示:

(2)这三个分数的大小相等吗?为什么?(相等,因为它们的分数值都是0.75)

(3)还有其他方法可以证明它们的大小相等吗?怎样证明?(有,根据分数的基本性质, 和 都可以化成 ,所以它们的大小相等;根据分数和除法的关系以及商不变的性质也可以证明这三个分数的大小相等)

(4)在除法中有商不变的性质,在分数中有分数的基本性质,那么在比中是否也有类似的性质呢?这节课我们就来探究一下比的基本性质。(板书课题)

2.探究比的基本性质。

(1)把 改写成比的形式。(引导学生汇报并用课件展示: =3∶4; =6∶8; =12∶16)

(2)探讨这三个比之间的关系,用算式表示出来,并说明理由。(3∶4=6∶8=12∶16,比值都是0.75)

(3)观察、比较、发现。

观察每个比的前项和后项的变化过程及规律。(结合学生的汇报,用课件展示相关内容)

6÷8=(6×2)÷(8×2)=12÷16

↓ ↓ ↓

规律:比的前项和后项同时乘相同的数,比值不变。

6∶8=(6÷2)∶(8÷2)= 3∶ 4

↓ ↓ ↓

6÷8=(6÷2)÷(8÷2)=3 ÷ 4

规律:比的前项和后项同时除以相同的数,比值不变。

(4)归纳总结。

①试用一句话概括上面三个比的变化规律。(比的前项和后项同时乘或除以相同的数,比值不变)

②讨论:同时乘或除以的相同的数可以是0吗?为什么?(不可以是0,因为除以0没有意义)

③归纳总结比的基本性质。

比的前项和后项同时乘或除以相同的数(0除外),比值不变。

设计意图:先提出问题,调动学生思考问题的积极性,再由提出的问题,引发横向思维,建立各知识点间的联系,最后通过观察、比较、思考、发现,逐渐完善比的基本性质,帮助学生养成比较完善的思维习惯。

3.应用比的基本性质。

(1)探究整数比的化简方法。

①PPT课件出示教材50页例1(1)小题:“神舟”五号搭载了两面联合国旗,一面长15 cm,宽10 cm,另一面长180 cm,宽120 cm,这两面联合国旗长和宽的最简单的整数比分别是多少?

②明确什么是最简单的整数比。[前项和后项是互质数(只有公因数1)的比叫最简单的整数比]

③探究15∶10和180∶120的化简方法。

除以前项和后项的最大公因数:

15∶10

=(15÷5)∶(10÷5)

=3∶2

180∶120

=(180÷60)∶(120÷60)

=3∶2

小结:化简整数比,可以把比的前项和后项同时除以它们的最大公因数。(板书:整数比的化简)

(2)探究分数比和小数比的化简方法。

①PPT课件出示教材51页例1(2)小题:把下面各比化成最简单的整数比。

0.75∶2

②探究分数比的化简方法。(引导学生说出:要根据比的基本性质,把它的前项和后项同时乘它们分母的最小公倍数18,才能化成最简单的整数比)

A.用乘最小公倍数的方法B.用求比值的方法

=3∶4 =3∶4

③探究小数比的化简方法。(引导学生说出:要根据比的基本性质,把它的前项和后项同时乘相同的数,使它们转化成整数比。如果这时还不是最简单的整数比,要再除以前项和后项的最大公因数,化成最简单的整数比)

先化成整数比,再化简。

0.75∶2

=(0.75×100)∶(2×100)

=75∶200

=(75÷25)∶(200÷25)

=3∶8

小结:用求比值的方法化简分数比时,要注意化简比与求比值的不同,无论是分数比的化简还是小数比的化简,化简比的结果仍要写成比的形式,而不能写成小数或整数的形式。(板书:分数比的化简,小数比的化简)

(3)总结。

化简比的依据是比的基本性质,化简比的方法不是唯一的,要注意的是,化简后仍是比的形式。

设计意图:在弄清比的基本性质的基础上,引导学生探索各类比的化简方法,结合实例,总结出各类比的化简方法,培养学生的概括能力。

⊙巩固练习

1.判断。

(1)比的前项和后项同时乘或除以相同的数,比值不变。()

(2)4∶0.25化简后的结果是16。()

(3)从学校走到图书馆,小明用了8分钟,小红用了10分钟,小明和小红的速度比是4∶5。()

2.填空。

16∶200=()∶()=()∶()=

()∶()=()∶()=()∶()。

(独立尝试后交流,汇报时说明理由,第2题答案不唯一,只要和16∶200的比值相等就是正确的)

3.完成教材51页“做一做”。

⊙课堂总结

本节课你有什么收获?

⊙布置作业

教材53页4、5题。

板书设计

比的基本性质

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

小学六年级数学比的基本性质教案


教学内容:课本第50页例2;练一练;《作业本》第22页。

教学目标:

1、理解并掌握比的基本性质,知道“最简单的整数比”,会根据比的基本性质将比化成最简单的整数比。

2、培养学生自主迁移、自主构建知识的能力。

教学重点:比的基本性质和化简比

教学过程:

一、准备练习:

1、求下列各比的比值。

12:201:1:1.5:2.5

2、在()里填上适当的数。

⑴=()÷()=():()

⑵====

(第1题:分数与除法的关系;第2题:分数的基本性质)

3、复习比与除法、分数的关系。(完成上堂课的表格)

二、教学新课:

1、引入。

分数基本性质是怎样的?除法的商不变性质又怎么说?根据分数、除法和比的关系,你能猜出比的基本性质应该是怎样的呢?

(1)学生试着叙述。

(2)反馈小结。

分数基本性质、除法的商不变性质中的都有“0除外”,为什么?比的基本性质要不要也加上这个条件?应该怎么说才最完整呢?

2、看书验证自己的猜想。P50页。

3、什么是最简单的整数比?

(1)下面哪些是整数比?哪些整数比最简单?为什么?

6:1012:210.3:0.40.25:1

3:54:73:4:

(2)教师小结:

像3:5、4:7、3:4等这些整数比,比的前项和后项都是整数,而且这两个数是互质数,,我们称这样的比为“最简整数比”,化成最简整数比简称“化简比”。

4、教学例2。化简比。

(1)应用比的基本性质可以把比化成整数比。

自学课本P50、51例2、例3)

(2)小结:

①整数比化简的方法是把比的前项和后项同时都除以它们的最大公约数。

②分数比化简的方法是先把前、后项同时都乘以分母的最小公倍数。

(3)试一试。

三、巩固练习:练一练

四、小结:

今天你学会了什么?比和比值的区别怎样?(比值是一个数,可以用分数、小数、整数来表示;而比必须清楚的看出比的前项和后项,只能用比的形式表示。)

五、《作业本》第22页。

苏教版数学六年级上册教案 比的意义


教学目标

1. 使学生结合实例,理解比的意义,知道比的前项和后项,会正确地读、写两个数的比,会求比值。了解比和分数、除法之间的联系,会把比改写成分数的形式。

2. 在解决实际问题的过程中,了解比在日常生活中的广泛应用,体会数学与生活的联系,培养对数学学习的兴趣。

教学重点

理解比的意义,比和分数、除法之间的联系。

教学过程

一、 创设问题情境,引入比

电脑出示三幅长方形的画(标出每一幅的长和宽)。

谈话:这里有三幅不同形状的画,你们觉得哪幅画的形状看起来最舒服、最美观?(学生都认为第二幅比较美观)三幅画画的都是美丽的海滨,为什么同学们都认为第二幅比较美观呢?(第一幅和第三幅画要么太长,要么太窄,长和宽的比例不合适)这三幅画长和宽的长度不同,所以给人的感觉就不一样,你知道可以怎样来表示每幅画长和宽的关系吗?(第一幅画长是宽的2倍,宽是长的1/2……)

提问:还可以怎样表示它们的关系?

过渡:是的,我们还可以用比来表示每一幅画长和宽的关系。今天这节课我们就来认识比。

二、 自主活动,认识比

1. 用比表示两个同类量的相除关系。

(1)讲解:像第一幅画长是宽的2倍,也可以表示为:长和宽的比是2比1,记作2 ∶ 1,“∶”是比号。宽是长的1/2也可以表示为:宽和长的比是1 ∶ 2。你能说一说怎样用比表示第二幅画、第三幅画长和宽的关系吗?

学生分别用比表示另外两幅画的长和宽的关系。

(2)出示一瓶××牌洗洁液,用实物投影放大洗洁液的使用说明。

谈话:在日常生活中,我们经常用比表示两个数量之间的关系。如:这瓶洗洁液,上面的使用说明就是用比来表示的。

指说明中1∶4的图,提问:这里浅色部分和深色部分分别表示什么?你知道1 ∶ 4是表示什么意思吗?(表示洗洁液和水的比是1 ∶ 4,就是1份洗洁液要加4份水的意思,洗洁液的体积是水的1/4)

再问:那么水和洗洁液的比是几比几?表示什么意思?

师生共同讨论1 ∶ 8和1 ∶ 1的含义。

2. 用比表示两个不同类量的相除关系。

谈话:通过刚才的学习,同学们对比有了初步的认识。下面我们再看一幅图(出示图:一堆梨,下面标有2千克,共3元;一堆苹果,下面标有3千克,共6元)。

提问:根据图中的信息,你知道梨的单价是多少元吗?

根据学生回答,板书:单价=总价÷数量。

讲解:像这样总价和数量之间的关系也可以用比来表示,梨的总价和数量的比是3 ∶ 2,表示总价除以数量。

提问:你能用比来表示苹果的总价和数量之间的关系吗?

这里的6 ∶ 3表示什么意思?(表示总价除以数量)

3. 理解比的意义。

谈话:根据上面的例子,你能说一说什么叫两个数的比吗?

小结:两个数相除又叫做两个数的比。

4. 自学课本。

提问:关于比,你还想了解哪些知识?下面请同学们带着这些问题自学课本第53页,再和小组里的同学互相说一说,你知道了什么?

反馈:通过自学,你又了解了哪些知识?

师生共同讨论下面的问题:

(1)比由哪几部分组成,分别叫什么?比的后项能为0吗?为什么?

(2)什么叫比值?怎样求比的比值?

(3)比和除法、分数有什么联系?

(4)比还可以写成怎样的形式?

小结:(略)

三、 巩固练习,深化理解

1. 完成“练一练”第1、2题。

学生完成填空后,让学生说一说每个比所表示的意思。

2. 完成“练一练”第3题。

学生改写后,再读一读,并分别指出每一个比的前项和后项。

3. 小强和爸爸身高的比。

出示:小强的身高是1米,他爸爸的身高是 173厘米。写出小强和他爸爸身高的比。

学生练习后,组织交流,并说一说为什么小强和他爸爸身高的比不能写成1 ∶ 173。

4. 糖水的甜度。

出示:两杯糖水,并标出糖和水质量的比,第一杯是1 ∶ 20,第二杯是1 ∶ 25。

提问:你知道哪杯水甜吗?为什么?

出示:第三杯中糖4克,水100克。

谈话:这杯糖水和刚才的哪一杯一样甜?先想一想,再和同桌说一说你是怎样比较的。

提问:根据第一杯糖和水质量的比是1 ∶ 20,你能说出第一杯中糖和糖水质量的比吗?

四、 课堂总结

提问:今天我们共同学习了什么?你们有什么收获?还有什么问题吗?

五、 课外延伸

出示课始的三幅画,谈话:还记得我们一开始出示的三幅画吗?为什么大家都认为第二幅比较美观呢?你能算出这幅画长和宽的比值吗?(学生算出长和宽的比值大约是0.618)其实呀,这里面还藏着许多奥秘呢,同学们想了解吗?

课件播放短片,介绍黄金比。

谈话:其实,在我们的身边就有很多的黄金比,如我们经常见到的长方形纸的长和宽的比,等等。同学们如果有兴趣,可以在课后再去研究。

苏教版数学六年级上册教案 认识比


教材简析:

这部分内容主要教学比的意义、比与分数、除法的关系。例1、例2教学认识比的意义。认识比时,主要利用学生对两个数量之间关系的已有认识,先引导学生分别认识同类量的比(例1)和不同类量的比(例2),并逐步抽象出比的意义。进而引导学生根据比的意义以及分数与除法的关系,主动探索比与分数、除法的关系,自我完善认知结构。在例1、例2随后的“试一试”、“练一练”中,教材都尽可能为学生提供自主探索和尝试的机会,尝试通过学生的独立思考进一步感受比的意义,并主动探索比与分数、除法的关系。

练习十三中的5个练习题分别从不同的角度对比的意义、比值以及相关知识间的联系进行了合理操练,且形式多样,目的明确。

可以看出教材这样有序的编排、呈现内容,不仅有利于学生在新旧知识之间建立起合适的联系,而且有利于学生主动参与探索活动,并在活动中全面准确的理解比的意义,构建起对比、除法、分数三者之间完整的认知结构。

教学目标:

1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。

重点:理解比的意义

难点:理解比与分数、除法的关系

教学准备:多媒体课件、挂图、小黑板

教学过程:

一、谈话导入

1、谈话:今天这节课,老师要和同学们一起学习“比”的知识。(板书:比)关于比,你想了解一些什么?(学生可能回答:什么是比?学了“比”有什么用?数学上的“比”与生活中的“比”一样吗?……)

2、教师根据学生的回答进行引发:对,生活中也有“比”,比如一场足球赛的比分是2∶0,它与数学上的“比”一样吗?老师希望通过今天的学习,我们自己来找到这些问题的答案好吗?

设计意图:

开门见山式的揭示课题显的简洁明确,导入通过学生对学习内容的相关议论,引导学生产生了解比、认识比的心理需求,为本课的学习对象创设一个良好的研究氛围。

二、教学例1

(一)、呈现例1挂图:妈妈早晨准备了2杯果汁和3杯牛奶。

1、 利用旧知进行比较:

(1)图中提供了2个数量:2杯果汁和3杯牛奶。根据这两个数量,我们怎样来对果汁和牛奶的杯数进行比较?(根据学生回答,教师整理板书:)

相差关系{牛奶比果汁多1杯 倍数关系{果汁的杯数相当于牛奶的2/3

果汁比牛奶少1杯 牛奶的杯数相当于果汁的3/2

(2)小结:同学们,我们已经知道两个数量相比较,既可以用减法比较两个数量之间相差多少,也可以用除法或分数来表示两者之间的倍数关系。今天我们认识的比就是专门对这后一种关系进行的研究。

2、“比”的教学:

(1)(指板书:)“果汁的杯数相当于牛奶的2/3”。我们还可以说成“果汁与牛奶杯数的比是2比3(出示)”。想一想,“牛奶的杯数相当于果汁的3/2”。还可以怎样说?(出示:牛奶与果汁杯数的比是3比2。)

3、“比”的读写:

(1)师介绍:2比3怎么写呢?我们一起来看:2比3记作2∶3(板书:2∶3,先写2,再在中间写上两个小圆点,读作“比”,注意与语文中的“冒号”不同,最后写3。一起来写一写,读一读。)

(2)指导学生写:3比2怎么写呢?谁来写一写?

(3)介绍名称:刚才我们写在中间的两个小圆点(∶)是比号(板书:比号),比号前面的数叫做比的前项,比号后面的数叫做比的后项。(板书:前项 后项)

(4)谁来说一说:2∶3这个比中,比的前项是几?比的后项是几?在3∶2这个比中,2是比的什么?3是比的什么?

4、比是有序概念

(1)同学们看一看,刚才的比的前项是2,这儿的2怎么又是比的后项了呢?

(2)对!颠倒两个数量的位置,就会得出另一个比,它的意义也就不同。因此大家在叙述的时候,一定要说清楚是哪个数量与哪个数量在比,不可颠倒顺序。

设计意图:

例1的教学首先抓住了两个环节:首先通过已有知识与经验使学生认识到用减法可以表示两个数量的相差关系,用分数或除法可以表示两个数量之间的倍数关系,而这里认识的比则专门框定于后一种情况,这样可使教学建立在一个清晰的前提条件下。其次又重点引导学生认识比,使学生体会到比是对两个数量进行比较的又一种数学方法。在介绍比的各部分名称后,结合两个比的前后项的“不同”巧妙帮助学生明确比是一个有序的概念,这样的教学安排符合学生的认知规律,也显得层次清晰,条理有序。

(二)、完成试一试

(出示安利瓶)在日常生活中,我们经常用比表示两个数量之间的关系,比如这瓶洗洁液,上面的使用说明就是用比来表示的。(呈现“试一试”)

(1)指图中的1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?

(2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?

(3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)

设计意图:

通过引导学生参与讨论洗洁液与水体积之间关系的表示方法,使学生初步体会到比与除法、分数之间的内在联系。既利于后面教学比、分数、除法三者之间的关系,也有利于加深学生对比的意义的认识。

三、教学例2

(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。(呈现例2)

1、 想一想,我们怎样求两人的速度?

2、 2、学生计算答案,汇报填表。

3、明确:因为速度=路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程÷时间。)

4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)

(二)、理解比的意义

1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比与什么有关?两个数的比表示什么呢?(板书:两个数的比 两个数相除)

2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)

设计意图:

例2通过教学两个不同类量的比,使学生进一步完善对比的认识。一方面通过题中的填表,使学生初步体会到速度是路程与时间比较的结果,再通过用比表示这一关系重点启发学生用自己的话来说一说,在描述比的意义时重点强调了比与除法的关系,在通过学生与教师的互动互说,共同领悟中使学生对比的意义有一个本质的理解。

(三)、认识“比值”、及与“比”的区别:

1、在900∶15这个比中,比的前项是几?后项是几?比的前项除以后项的商是几?

我们把比的前项除以后项所得的商叫做比值。算算900∶15这个比的比值是几?

2、想一想,900∶20这个比的比值是多少?这两个比值60、45也就表示什么?

3、 你能说出例1中的各个比的比值分别是多少吗?

4、 讨论:同学们觉得比与比值的区别在哪里?

(比表示两个数相除的一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)

设计意图:

比与比值是互相联系而又有区别的两个概念,在学生初步认识比值后就对这两个概念进行比较既有利于学生对两个概念的的理解和掌握,又为后继教学区分两种容易混淆的题型“化简比”和“求比值”奠定了基础。

(四)、“试一试”

1、 完成“试一试”:(学生独立完成,指名板演)

2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的前项,再写横线表示比,最后写后项,仍应读作3比2。)

(五)、比、除法和分数的关系

1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是0吗?(根据学生的汇报填表)

相互关系

区别

前项

比号(:)

后项

比值

除法

分数

2、比的后项为什么不能是0?

设计意图:

高年级同学已经具有一定的探究解题能力,“试一试”后通过两个问题的讨论,帮助学生进一步明确比与分数、除法的关系。交流汇报时,也能根据学生的汇报顺序来指导教学,充分发挥学生的主观能动性,使学生对比的认识更加透彻,认知结构得以进一步完善。

四、巩固练习

1、 完成“练一练”的1、2、3小题。

2、 判断题。

(1)3/4只能读作四分之三。 ( )

(2)比的后项不能是零。 ( )

(3)可可的身高是1米,她爸爸的身高是178厘米,可可和她爸爸身高的比是1∶178。 ( )

3、 完成练习十三的第3、4题。

4、 糖水的甜度

(1)(出示:两杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)

你知道哪一杯水更甜吗?为什么?

(2)(出示第三杯糖水,标出糖4克,水100克。)

你知道这杯糖水和刚才的哪一杯一样甜?先想一想,再与同桌交流,说说你是怎样比较的?

(3)根据第一杯糖和水质量的比是1∶20,你能说出第一杯糖与糖水质量的比吗?

5、 知识介绍:

同学们,其实比在我们生活中的应用是非常广泛的。你听说过着名的“黄金比吗?”(课件介绍“黄金比”)。

设计意图:

练习的设计层次清楚,形式活泼,沟通了知识间的内在联系,使学生经历了运用所学知识解决实际问题的过程,精美的课件展示“黄金比”令人赏心悦目。这个过程既帮助学生加深了对比的意义的理解,又积累了丰富的数学活动经验,大大拓展了学生的知识面,提高了数学思考能力。】

五、总结:

今天我们学习了什么?你们有什么收获吗?还有什么问题吗?

六、布置作业:P72练习十三的1、2、3、5

苏教版六年级上册《比的意义》数学教案


苏教版六年级上册《比的意义》数学教案

第三单元 分数除法

第7课时 比的意义

教学内容:

课本第53--54页例7、例8和“练一练”,练习九第1-4题。

教学目标:

1、使学生理解比的意义,学会比的读写法,认识比的前项、比号和后项。

2、掌握求比值的方法,会正确求比值。

3、弄清比同除法、分数的关系,明白比的后项不能是零的道理,同时懂得事物之间是相互联系的。

教学重点:

比的意义和求比的方法。

教学难点:

理解比的意义。比同除法、分数的区别是教学的另一个难点。

课前准备:

课件

教学过程:

一、谈话引入

出示例7实物图

提问:“2杯果汁”和“3杯牛奶”这两个数量之间有什么样的关系?你会用哪些方法表示它们的关系?

相差关系 倍数关系

二、导入新课

今天这节课,我们要在对两个数量用除法比较的基础上,来学习一种新的数学比较方法--比。(板书课题)

1、教学比的意义。

(1)师:2÷3是哪个量和哪个量比较?

师述:用新的一种数学比较方法,可以说成果汁和牛奶杯数的比是2比3。

(2)3÷2求得又是什么,又可以怎样说?

(3)小结:现在我们知道谁是谁的几倍或几分之几,又可以说成谁和谁比。

指出:两个数的比是有顺序的。因此,在用比表示两个数量的关系时,一定要按照叙述的顺序,正确表达是那个数量与那个数量的比,不能颠倒两个数的位置。

(4)出示试一试。

提问:图中的四个比分别表示什么含义?

讨论:如果把内中溶液里的洗洁液看作1份,水分别可以看作几份?

2、教学例8。

出示例题后,让学生填表。

提问:小军和小伟的速度是怎样求出来的?

900:15表示什么?900:20又表示什么?

明确:900:15是小军走的路程与时间的比,就是小军走这段山路的速度;900:20是小伟走的路程与时间的比,就是小伟走这段山路的速度。

3、学习比的写法和各部分称及求比值的方法。

(1)师:以上我们学习了比的意义,在数学中,比还有这样的记法。

教师示范写比,提醒学生注意观察。

(2)师说明:中间的“:“叫做比号,读的时候直接读比。

(3)师:比的各部分名称是什么呢?请大家看书p53的中间内容。

(4)提问:比各部分的名称,并板书。

4.除法、分数之间的关系。

项目 相互关系 区别

比 前项 :(比号) 后项 比值

两个数的关系

除法 被除数 ÷(除号) 除数 商 一种运算

分数 分子 -(分数线) 分母 分数值 一种数

结合展示学生整理的表格,小结:

⑴比与除法、分数是有联系的:比的前项相当于除法中的衩除数,相娄于分数中的分子;比的后项相当于除法中的除数,相当于分数中的分母;比值相当于除法中的商,相当于分数中的分数值。

⑵比与除法、分数是有区别的:比表示两个数的关系,除法是一种运算,分数是一个数。

提问:比的后项可以是”0“吗?为什么?说说你的相法。

三、巩固深化

1.完成”练一练“第1-3题。

学生独立完成,直接填写在书上,完成后集体讲评。

2.练习九1、2、4题。

学生独立填写在书上,完成后交流核对。

四、课堂总结

通过今天的学习,你有什么收获呢?

五、布置作业

练习九第3题。

教学反思:

六年级上册数学比的应用教案11篇


教案课件既关系到教学步骤,也关系到教学的课程标准,每位老师都要用心的考虑自己的教案课件。教案是教师不断提高教育教学水平的有效方法,如何做好教案课件的编写呢?这份“六年级上册数学比的应用教案”是我潜心制作而成的希望您喜欢,欢迎阅读我们希望您喜欢我们的内容并收藏我们的网站!

六年级上册数学比的应用教案(篇1)

一、填空

1、两个数()又叫做两个数的()。

2、9比5记作(),()是前项,()是后项,比值是()。

3、如果A∶B=C,那么A是比的(),B是比的(),C是比的()。

4、4∶5=();8/7=()∶()

5、某班有男生25人,女生20人。

(1)男生人数与女生人数的比是()。

(2)男生人数占全班人数的()男生人数与全班人数的比是()。

(3)女生人数占全班人数的(),女生人数与全班人数的比是()。

6、4∶5的前项扩大4倍,要使比值不变,后项应增加()。

7、圆周长与它的面积的比是()∶()

二、判断

1、比值是0.8的比只有一个。()

2、一个比的比值是4.2,如果它的前项和后项同时乘5,比值还是4.2。()

3、除数不能为0,分母不能为0,比的后项也不能为0。()

4、4∶20化成最简单的整数比是5。()

5、比的前项加上2,后项也加上2,比值不变。()

6、3/5可以读作五分之三,也可以读作三比五。()

7、配制一种盐水,在200克水中加入20克盐,盐和盐水的比是1∶10。()

8、若甲数与乙数的比是3∶4,则乙数是甲数的4/3倍。()

三、应用题

1、公园里柳树和杨树的棵数比是5∶3,柳树和杨树一共有40棵。柳树和杨树各有多少棵?

列式:_______________________()

答:柳树有()棵;杨树有()棵。

六年级上册数学比的应用教案(篇2)

教学目标

1.在学生学习了解答一个数是另一个数的百分之几的应用题的基础上,学习求一个数比另一个数多(或少)百分之几的应用题,使学生初步掌握分析方法,能够正确解答此类应用题。

2.进一步提高学生分析、比较、解答应用题的能力,培养认真审题的好习惯。

教学重点和难点

掌握求一个数比另一个数多(或少)百分之几这类应用题的分析方法;能够正确地进行列式。

教学过程设计

(一)复习准备

1.解答一个数是另一个数的百分之几用什么方法?(用除法)

2.解答一个数是另一个数的百分之几的应用题,关键是什么?(找应用题中的标准量,也就是单位1,谁是标准量,谁就做除数。)

3.口答,只列式不计算。(用投影出示)

(1)5是4的百分之几?4是5的百分之几?

(2)甲数是50,乙数是40,甲数比乙数多多少?甲数比乙数多的数是乙数的百分之几?

(3)甲数是48,乙数是64,甲数比乙数少多少?甲数比乙数少的数是甲数的百分之几?

4.板书应用题。

一个乡去年计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?

分析:通过读题,在这道题中,谁是标准量?

你是从哪句话中找出来的?应怎样列式呢?

如果将这道题的问题变为实际造林比原计划多百分之几?,应该怎样分析解答呢?这就是我们这节课要继续研究的比较复杂的百分数应用题。

板书课题:百分数应用题

(二)学习新课

1.出示例3。

例3一个乡去年计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?

(1)学生默读题。

(2)例3与复习题4比较,有什么异同?

(两道题条件相同,问题不同。)

问题不同在哪儿?

(复习题4求的是实际造林是计划造林的百分之几,例3是求实际造林比原计划多百分之几。)

教师在例3中用红笔画出多字。

(3)在这道题中,谁是单位1?是从哪句话中找到的?

教师用双引号画出单位1。

(4)求实际造林比原计划造林多百分之几是什么意思?学生分组讨论。

(意思是:实际造林比原计划多的公顷数是原计划的百分之几?)

板书:多的公顷数是计划的百分之几?

(5)根据多的公顷数是计划的百分之几这句话,怎样列文字表达式?

板书:多的计划的

(6)怎样列式计算呢?

板书:

(14-12)12

=212

0.167

=16.7%

答:实际造林比原计划多16.7%。

问:14-12是在求什么?

问:为什么除以12,而不除以14呢?

(7)还有其它的解法吗?(学生讨论)

汇报讨论结果:

板书:

1412-1

1.167-1

=0.167

=16.7%

答:实际造林比原计划多16.7%。

问:1412得到的是什么?再减去1又得到什么?

2.把例3中的问题改为原计划造林比实际造林少百分之几?

问:你怎样理解原计划造林比实际造林少百分之几这句话的?

问:谁做单位1?(实际公顷数)

问:怎样用文字算式表达?

板书:少的实际的

问:怎样列式计算?

投影订正:

(14-12)14

=214

0.143

=14.3%

答:原计划造林比实际造林少14.3%。

问:14-12得到什么?为什么再除以14呢?

问:还有不同的解法吗?

板书:1-1214

问:为什么例3与改变后的题得数不同?(单位1不同。)

问:这两道题有什么相同之处?(解题思路完全一样。)

3.把例3的一个条件改变。

一个乡去年计划造林12公顷,实际造林比原计划多2公顷。实际造林比原计划多百分之几?

(1)学生独立思考解答。

(2)指名说解题思路。

(3)板书算式:

多的公顷数计划的

2120.167=16.7%

答:实际造林比原计划多16.7%。

问:此题和例3相比较,哪儿相同,哪儿不同?(条件不同,问题相同,解题思路相同。)

4.把3题的问题稍作改变。

一个乡去年计划造林12公顷,实际造林比原计划多2公顷。原计划造林比实际造林少百分之几?

(1)学生只列式不计算。

(2)说解题思路。

板书:少的实际的

2(12+2)

(三)课堂总结

今天我们学习了什么知识?解决这类题的关键是什么?

师述:今天我们学习了求一个数比另一个数多(或少)百分之几的应用题。解决这类题的关键就是要找准单位1,然后根据问题列出文字算式来帮助大家列式计算。

(四)巩固反馈

1.分析下面每个问题的含义,然后列出文字表达式。

(1)今年的产量比去年的产量增加了百分之几?

(2)实际用电比计划节约了百分之几?

(3)十月份的利润比九月份的利润超过了百分之几?

(4)1999年电视机的价格比1998年降低了百分之几?

(5)现在生产一个零件的时间比原来缩短了百分之几?

(6)第二季度的产值比第一季度提高了百分之几?

(7)十一月份比十月份超额完成了百分之几?

(8)男生人数比女生人数多百分之几?

2.在练习本上只列式不计算。(投影出示)

(1)某校有男生500人,女生450人。男生比女生多百分之几?

(2)某校有男生500人,女生450人。女生比男生少百分之几?

(3)一种机器零件,成本从2.4元降低到0.8元。成本降低了百分之几?

(4)某工厂计划制造拖拉机550台,比原计划超额了50台。超额了百分之几?

3.判断题。

男生比女生多20%,女生就比男生少20%。()

课堂教学设计说明

本节课是在学生学习了一个数是另一个数的百分之几的基础上进行的。教学时抓住这一知识的连接点以旧引新,使学生很自然地由旧知识过渡到新知识。两个知识点连成一线,融会贯通。在新课教学中引导学生思考求比一个数多(或少)百分之几的题的解题思路,培养学生的分析能力。在教学方法上采取一题多变的方法,让学生在比较、区别中理解数量之间的关系,提高学生的辨别能力和思维水平。

六年级上册数学比的应用教案(篇3)

设计说明

本节课的内容属于百分数的具体应用,是实际生活中人们经常接触到的事例。学习本节课的目的是进一步提高学生运用百分数知识解决实际问题的能力,体会数学与日常生活的密切联系。

在本节课的教学设计中,采用课内外学习相结合的形式,先让学生自己去银行进行调查,了解有关储蓄方面的知识,并结合实例让学生理解本金、利率、利息等概念,掌握利息的计算方法,然后运用公式计算利息,通过分析、比较、讨论、归纳等活动,进一步巩固利息的计算方法,最后通过质疑和总结,加深学生对知识的理解。在整个教学过程中,要教育学生学会合理理财,养成勤俭节约的好习惯。

课前准备

教师准备:PPT课件、课堂活动卡

学生准备:学情检测卡、学生到银行调查年利率并制成利率表及了解有关储蓄的知识

教学过程

⊙谈话导入

1.谈话。

师:同学们,每年大家都会积攒不少零花钱吧。这些零花钱你们是怎么安排的?

引导学生说出将积攒的零花钱存入银行。人们将暂时不用的钱存入银行,既可以支援国家建设,又对个人有好处。

2.汇报课前调查的内容。

师:同学们在课前进行了调查,谁能说一说你了解到了哪些有关储蓄的知识?

学生自由发言,可能汇报的内容有很多,如储蓄的种类,储蓄的意义,储蓄卡、国债和教育储蓄不收利息税等。

3.导入新课:这节课我们就来共同学习有关储蓄的知识。(板书课题)

设计意图:这一环节从学生熟悉的现实情境中寻找数学题材导入新课,不但可以提高学生的学习兴趣,还可以使所要学习的数学问题具体化、形象化,使学生觉得数学问题是那么的鲜活,从而形成问题意识。

⊙探究新知

1.创设情境,引出例题。

(课件出示教材96页例题)

(1)300元存一年,到期时有多少利息?

(2)如果淘气把300元存为三年期的,到期时有多少利息?

引导学生认识本金、年利率、利息。

2.教师明确。

年利率是一年利息占本金的百分之几。

利息=本金×利率×时间。

六年级上册数学比的应用教案(篇4)

教学目标:

1.经历整理、分析、编题的过程,强化分数应用题单位1对应分率=对应数量的结构特征;

2.学会正确、熟练地解答分数应用题,提高学生分析问题和解决问题的能力,丰富分数应用题的解题策略;

3.通过现实的有挑战性的问题,提高学习的自信,让每一个人获得成功的体验。

教学重点:

经历整理、分析、编题的过程,强化分数应用题单位1对应分率=对应数量的结构特征;

学会正确、熟练地解答分数应用题,提高学生分析问题和解决问题的能力,丰富分数应用题的解题策略;

教学过程:

一、自主准备,注重学生已有的学习起点。

展示学生数学复习小报,分析重难点。

1.同学们,今天我们要来复习分数的运算,之前我们做了调查,同学们都写出了自己觉得最简单的分数应用题和最难的分数应用题,不同的同学写出不同的题,今天这节课我们就一起来讨论。

二、知识梳理,注重知识之间的联系

1.出示条形统计图(见右图)

请同学们说说从图中你能得到哪些信息?

哪些含有分率的信息?35

5女生是男生的3

2男生比女生少5

2女生比男生多3板书:男生是女生的

2.出示两条信息:男生:30人;女生50人。男

(回答中可追问:①你能看出男生有几份?女生有几份?②谁为单位1?)

提出学习要求:请选择其中任意几个信息,提出一个数学问题,编成一道应用题,并列式。(学生独立完成)

3.小组交流编题的结果

交流要求

⑴小组交流:说出自己编写的不同题目,在相同的题目上做记号,并试着解答别人编写不同题目;

⑵整理记录:在编写最多的这张纸上进行整理补充,做好记录;

⑶准备汇报:以记录最完整的这张为发言稿。

(出示小组交流要求后,要求学生默看半分钟后,教师可做小小的提问,使学生明确交流要求。)

4.小组反馈交流结果

(先大致了解编写题目的个数,从最少的小组开始进行汇报,教师进行补充。)

5.教师出示本学期所学分数应用题类型

⑴看看老师编的题目中有你们没有的题目吗?

①男生15人,男生比女生少

②22,女生几人?30(1-)5522女生25人,男生比女生少,男生几人?50(1-)5522男生15人,女生比男生多,女生几人?30(1+)3322女生25人,女生比男生多,男生几人?50(1+)3333男生15人,男生是女生的,男女生共多少人?30+155555男生15人,女生是男生的,男女生共多少人?30(1+)33

⑵这些就是本学期主要学的几种分数应用题的类型。学了这么多的分数应用题,你发现它们之间的相同点和不同点吗?说说看。

⑶得到分数应用题的最基本结构单位1对应分率=对应数量(以上面6题中的任意两题为例来理解正向、逆向应用题的不同处)

三、方法多样,注重解题策略的指导

问题:小红看一本书,第一天看了多少页?

1.请你用自己的方式来解答。

2.提出要求。(如果有一位同学不会,他看了你的解题过程就明白了,所以每一个人都要把自己想的过程写完整,要求能将解题过程讲给不会做的同学听。)

3.学生反馈。(学生可以通过线段图、对应关系、解方程(方程是数量关系的正向思考)、草图等方法进行解题)1,第二天看了50页,还剩下一半没看完。这本书共有3

(预设:学生会提出用方程这么麻烦的,教师可以顺便提一下方程是数量关系的正向思考,在复杂和较复杂的解题过程中会比逆向思考更容易理解。)

四、教师小结

今天,通过复习,我们从简单的信息中,却发现了那么多新的信息,又从新的信息中得到了这么多类型的题目,但在归纳中,我们却又发现其实分数应用题就是这么一个简单的结构。我们在平时的解题中,要学会灵活运用这种结构来进行解题。

六年级上册数学比的应用教案(篇5)

设计说明

本节课呈现的是笑笑家的家庭支出情况,所以课前让学生了解生活中有关百分数的知识,以激发学生的学习兴趣,让学生在调查的过程中,接触到更多的实际生活中的百分数,认识到数学在生活中的广泛应用。在教学过程中,利用教材提供的情境,使学生从中了解百分数与现实生活的联系。让学生在讨论、交流解题过程与方法的过程中提高学习数学的兴趣和积极性,同时在讨论、交流中拓展学生的思维,让学生综合运用所学知识解决实际问题的能力得到提高。

课前准备

教师准备PPT课件课堂活动卡

学生准备课前收集的生活中有关百分数的知识

教学过程

⊙直接导入

前面的学习,我们已经体会到了百分数与现实生活的密切联系。请同学们想一想,生活中还有哪些方面能用到百分数?

设计意图:开门见山,直接导入,既让学生瞬间回顾了前面所学的知识,又为本节课的学习制造了一个积极动脑的'气氛,让学生能快速地进入到探究新知的学习中来。

⊙自学探究

课件出示例题。

笑笑家20xx年食品支出总额占家庭总支出的55%,其他支出总额占家庭总支出的45%。食品支出比其他支出多620元。笑笑家的家庭总支出是多少元?

师:例题呈现的就是生活中用到百分数的事例,请同学们自由读题,理解题意。

1.自学指导。

(1)尝试画线段图分析题意,找出等量关系。

(2)选择合适的方法解决问题。

(3)你还有其他的方法吗?

2.学生独立探索解题方法,教师巡视指导。

3.引导学生对比教材93页的方法,梳理自己的解题思路。

4.与同桌交流自己的解题方法。

5.展示解题过程。

(1)指名板演解题过程。

方法一解:设笑笑家20xx年的总支出是x元,那么食品支出是55%x元,其他支出是45%x元。

55%x-45%x=620

10%x=620

x=6200

方法二620÷(55%-45%)

=620÷10%

=6200(元)

答:笑笑家的家庭总支出是6200元。

(2)其他学生提出自己的疑问。

预设

生1:为什么设笑笑家的总支出是x元?

生2:“55%-45%”表示什么意思?

生3:为什么用“620÷(55%-45%)”呢?

设计意图:通过自学指导学生独立探索解题方法;给学生充分的自学空间,利于学生发散思维的培养;解决问题后对照教材,不仅能验证自己的解题思路是否正确,而且也完善了自己的思考过程,与同桌的交流更优化了自己的思考过程。

六年级上册数学比的应用教案(篇6)

一、说教材

教学内容:

我讲授的内容是义务教育课程标准小学数学六年级上册《比的应用》第一课时,主要就是按比例分配问题。按比例分配是把比的知识应用于解决相关的实际问题的一个课例。即把一个数量按照一定的比进行分配。它是在学生学习了比与分数的联系,已掌握“平均分”和“分数应用题”的基础上进行教学的延伸。这样安排符合学生的思维习惯,方便于学生对知识的迁移,也有利于加强知识间横向和纵向的联系,为今后学习正比例知识埋下伏笔。

教学目标:

(1)知识方面:使学生理解按比例分配的意义;掌握按比例分配应用题的特征及解题方法.

(2)能力方面:培养学生观察、归纳和语言表达能力及分析问题、解决问题的能力。

教学重点:

1、理解按一定的比来分配一个数量。

2、根据题中所给的比。掌握各部分占总量的几分之几,能熟练的用乘法求各部分量。

教学难点:

正确分析,灵活解决按比分配的实际问题。

二、说学情

对于按比例分配问题学生在以往的学习生活过程中曾经遇到过,

甚至解决过,每个学生都有一定的体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。

三、说教法和学法

教师努力去营造一个愉快、和谐、民主的课堂气氛,激发学习兴趣,调动学生学习的主动性,形成和谐的课堂气氛,从而有效地引导学生主动探讨新知识。

本课采取小组合作、交流探索的学习形式,引导学生主动与他人合作交流。并学会比较、分析、归纳、综合,获得数学知识与技能的方法,尽可能结合学生的生活经验,为学生提供现实情景和活跃的情趣,贴近学生的思维调动区,让学生自主探究、合作交流,体会数学与生活的联系。

教学过程:

第一个环节:创设情境,初步感知。

新课标提出:通过学生关注和感兴趣的实例作为认识的背景,激发学生的求知欲,使得学生感受到数学就在自己的身边,感受到数学来源于生活,生活离不开数学。所以我设计了如下问题:一班30人,二班20人。把这些橘子分给1班和2班。怎样分合理?

这个环节让学生说出分的方法(平均分和按人数来分),进而引出课题——《比的应用》。这样使学生意识到抽象的数学知识可以在现实生活中找到活生生的原型,“现实生活中蕴含着大量的数学信

息”,感受到生活经验数学化与数学经验生活化。有利于学生掌握知识的发展变化与延伸,为分散难点起着积极的迁移作用。

第二个环节:探索方法,建立模型。

1、出示课本情境图。如果把这筐橘子按3:2分,怎么去分?

教师引导:在这儿分橘子时,3:2表示什么意思?让学生说说。(一班最少分3个时,二班分2个)。接着往下分,怎么去分呢?同桌互相讨论。汇报,师生填表。从表格中的数据,你发现了什么?(大班分的橘子数扩大到原来的几倍,二班分的橘子数也扩大到原来的几倍。不管怎么分,每次都按3:2来分的。)

2、出示课本主题图。如果把140个橘子按3:2来分,怎么去分?

因为有了前面分橘子的基础。学生很快就会完成表格。这就是列表法解数学题。

3、利用课件帮助理解、掌握分配问题的结构特点。

接下来引导学生分析题中数量关系:题目要分配什么?按照什么分配?

重点思考讨论:从3:2这个比中,你能知道什么?接下来鼓励小组合作尝试多种方法解答,重点理解按比分配的方法。

2、小结:按比分配的应用题有什么结构特点?怎样解答这样的应用题?

这样设计为学生提供自主探索的空间。所以在教学中可以灵活地依据提出的方法调换教学顺序,并引导学生掌握两种不同的解题方法。安排学生的小组讨论方式能使学生一开始就畅所欲言,把几种不

同思路比较和联系起来,在理解的基础上才能更好的掌握方法,并注意培养学生的检验能力。

第三个环节:多层训练,形成技能。

练习是数学课堂教学一个重要环节,我设计的练习题力求做到从易到难,由浅入深,有层次,有坡度,新旧知识融合恰当,形成技能技巧,开拓思维,发展能力,达到练习的预期目的。

1、基础练习

2、提升练习

数学源于生活,用于生活。所以我设计了《营养搭配》这么一道题用以拓展延伸。这一环节着重培养学生发现问题,解决问题的能力。同时也使学生明白,数学来源于生活,生活也离不开数学。并及时的进行思想教育。让学生都有一个健康的身体。

第四个环节:回顾整理,反思提升

你学会了什么知识?掌握了哪些方法?

这样做既检验了效果,又体现了课堂教学的整体性,从而培养学生的概括和口头表达能力。

六年级上册数学比的应用教案(篇7)

教学内容:

北师大小学数学六年级上册二单元第28页第29页百分数应用(三)

教学目标:

1、进一步加强对百分数的意义的理解,并能根据百分数的意义列方程解决实际问题。

2、提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。

教学重点:

加强对百分数的意义的理解,根据百分数的意义列方程解决实际问题。

教学难点:

根据百分数的意义列方程解决实际问题。

教具准备:

幻灯

教学过程:

一、导入

来一个小调查:说一说你家的生活水平,贫困、温饱、小康还是富裕?用什么可以衡量出你家的生活水平?谁来介绍一下恩格尔系数。

简单地说,恩格尔系数就是一个百分率,食品支出占总支出的百分率,如果这个家庭的恩格尔系数越大,就说明这个家庭的经济越困难。恩格尔系数越小,,就说明这个家庭经济越富裕。恩格尔系数可以衡量一个国家和地区人民的生活水平,看来数学在生活中的价值真是不可估量!

20xx年,国家利用恩格尔系数在某地区进行了一次调查。

复习题:20xx年某地区有74户家庭迈入小康,占被调查家庭总数的37%,被调查家庭一共是多少户?

你能帮他们算一算吗?

生在黑板板书,说说等量关系,被调查家庭总数的37%是74户,要求家庭总数,列方程,也就是x的37%=74,计算:74除以它所对应得百分率,就是被调查家庭总数,这道题其实就是已知一个数的百分之几是多少求这个数的应用题。

板书:已知一个数的百分之几是多少求这个数的应用题。

我们用什么方法解决这类题?方程或除法,今天我们继续研究这样的应用题。

二、家庭消费

1、(幻灯)这是笑笑家的调查表:(家庭消费情况)

年份1985年1995年20xx年

食品支出总额占家庭总支出的百分比65%58%50%

其他支出总额占家庭总支出的百分比35%42%50%

比较这个家庭情况的有关数据,你发现了什么?

生齐读表。语速,1985年食品支出

发现:笑笑家从1985年往后,食品支出总额占家庭总支出的百分比越来越小,恩格尔系数越小,她家越富裕。

为什么食品支出占总支出的百分比和其他支出占总支出的百分比相加为1?

因为食品支出和其他支出和起来就是总支出。

2、在1985年,笑笑家食品支出比其他支出多210元。你知道这个家庭这一年的总支出是多少元吗?

要解决这个问题,需要表格中的哪些条件?

板书:1985年笑笑家食品支出占总支出的65%,其他支出占总支出的35%,食品支出比其他支出多210元,总支出多少元?

反馈:谁来分析一下:210元是具体的量,65%和35%都表示两个量的倍比关系,这两个关系句中,食品支出和其他支出都在和谁比?借助线段来分析,这条线段表示总支出(板书:总支出),食品支出和其他支出如何表示?整体和部分,在一条线段上,食品支出占总支出的65%(板书),其他支出占总支出的35%(板书),因为食品支出比其他支出多210元,在食品支出中去掉和其他支出同样多的部分(直尺比划其他支出长度,量出),这是食品支出比其他支出多的部分(板书:食品支出比其他支出多),多了210元(板书:210元)。求总支出(板书:?元),动笔尝试解决。生板书。三种方法同时板书。

①看这个方程,说一说等量关系,生:食品支出-其他支出=210元,再说一遍,食品支出就是什么?总支出的65%,其他支出就是总支出的35%,也就是总支出的65%-总支出的35%=210元,列方程,65%x-35%x=210

关键是从这句话中找到等量关系食品支出-其他支出=210元列方程。

②看这个方程,生:210元表示食品支出比其他支出多的部分,食品支出占总支出的65%,其他支出占总支出的35%,所以食品支出比其他支出多了总支出的30%(板书:总支出的30%),也就是总支出的30%是210元,一个数的30%是210,就用这个数乘30%=210。所以:总支出*30%=210,30%怎么来的?

解:设这个家庭85年的总支出是x元。

(65%-35%)x=210

关键是找到总支出的30%是210元,再列方程用总支出乘这个百分率=210。,这个百分率是210元所对应的百分率。

其实这两个方程也是有联系的,什么联系?(运用乘法分配律的逆用可以推出它,括号可千万别忘了。)

③幻灯:因为总支出的30%是210元,(65%-35%)x=210已知一个数的30%是210,可以用这个数乘30%=210,求这个数,根据除法的性质,用积除以一个因数等于另一个因数,210(65%-35%)

(65%-35%)这个百分率是210所对应的百分率,用210元除以它所对应的百分率得到总支出,除法就是由这个方程推出的。括号不写行吗?(幻灯:表格)

3、(表)到20xx年,笑笑家也进入了小康生活,食品支出和其他支出都分别占了总支出的50%,(你们分析猜想一下,其他支出中都有哪些支出?)旅游、教育、穿衣、消遣这些项合起来是其他支出,笑笑家教育支出占总支出的20%,食品和教育支出一共是6300元,这一年总支出多少元?

解决这道题还需要表格中哪些条件?食品支出占家庭总支出的50%。

板书:20xx年笑笑家食品支出占家庭总支出的50%,教育支出占总支出的20%,食品支出和教育支出一共6300元,总支出多少元?

这道题和第一题有什么异同?都知道两项占总支出的百分比,都在与总支出比较,第一题告诉两项的差,这道题告诉两项的和,都求总支出,你会算吗?尝试画线段并解决(生板书线段、解法)

反馈:因为都在与总支出比,这条线段表示总支出(板书:总支出),食品支出和教育支出如何表示?整体和部分,在一条线段上,食品支出是总支出的50%(板书:食品支出是总支出的50%),教育支出是总支出的20%(板书),食品支出和教育支出共6300元,(板书:6300元)。求总支出(板书:?元),

对比:这三道题有什么异同吗?它们都是已知一个数的百分之几是多少求这个数的应用题,这两题和复习题有不同吗?怎样解决这类题?

三、练一练

1、(幻灯练习)来看,1995年其他支出比食品支出少760元,这个家庭的总支出是多少元?还需要用到哪些条件?画线段并解决(幻灯反馈)。(表格)

2、笑笑家越来越富裕,而且从题中可以看出,他们很重视对自身及孩子的教育,所以,生活好了,笑笑却从不乱花钱,她会科学、合理的消费。

20xx年笑笑的压岁钱是这样用的,买作文书刊花了一半的压岁钱,用25%购买日常用品,()捐赠贫困地区,10%存入银行,捐赠贫困地区的钱和买作文书刊的钱共195元,她共有多少压岁钱?

我们的生活水平在逐步提高,与此同时,我们也应该注重物质消费与精神消费协调发展,注重个人内在修养,要学会科学消费。

四、课堂总结

通过今天的学习你有什么收获?

解答较复杂的已知一个数的百分之几是多少求这个数的应用题的方法是什么?根据这样的条件找等量关系列方程解答,也可以找到它对应的百分率列方程或用除法计算,解题过程中,可以借助线段帮我们分析。

五、作业设计

(1)请计算你家现在的恩格尔系数。

(2)访问你的家长(爸爸或妈妈),了解他们小时候的情况,计算出当时的恩格尔系数。

(3)比较两个数据,请你写出自己的想法。

板书设计:

较复杂的已知一个数的百分之几是多少求这个数的应用题

六年级上册数学比的应用教案(篇8)

【教学内容】

新世纪小学数学六年级上册第55页

【教材分析】

数学教学内容应该是与现实密切联系的数学,能够在实际中得到应用的数学,即现实的数学。新世纪小学数学六年级上册《比的应用》这部分教学内容,恰恰具备了这样的特点,应该说它是学生对比的完整认识的重要组成部分。

之前,除法、分数的认识,为学生认识比搭建了坚实的台阶,比的意义和化简比的学习,为比的应用铺平了道路,平均分方法的掌握和对平均分结果特点的理解为学生能够自主研究比的应用提供了策略上的可能。而且比的应用的研究,也将为学生后续知识正比例的学习积累重要的感性经验。

【学习目标】

1、知识与技能

(1)能运用比的意义解决按照一定的比进行分配的实际问题。

(2)通过动手操作和数形结合等方式进一步体会比的意义,发展应用意识。

2、过程与方法

(1)经历问题解决的过程,体验解决问题策略的多样性,并选择适合自己的方法

最终解决问题。

(2)通过动手操作、合作探究,相互交流,发展问题解决能力、合作交流能力和创新能力。

3、情感态度与价值观

(1)在问题解决过程体验成功的喜悦,对数学产生良好的情感。

(2)在探究活动过程中感悟数学文化的魅力。

【教学准备】

小旗,水杯、水、筷子,课件

【教学过程】

一、情境引入

奥运圣火已经点燃,奥运盛会即将在北京召开,我想我们每一个人都希望为奥运会贡献自己的力量。今天我们也做一回奥运小使者,把奥运精神带进幼儿园。现在我们有一些印有奥运会会徽的小旗想要送给幼儿园的小朋友。

[设计意图]渗透爱国主义思想教育。

1.幼儿园有两个班,要把这些小旗分给这两个班,你觉得怎么分比较合理呢?为什么?

学生可能的答案:人数相同的情况下平均分,因为这样每个人分到的会同样多。

2.经调查,大班有30人,小班有20人,这回如果我们还把这些小旗平均分给这两个班,你觉得还合理吗?为什么?

学生可能的答案:不合理,因为每个人分到的就不一样多了。

怎么分合理呢?请你静静地想一想,先和同桌说一说,再和全班同学说说你的想法。

学生可能的答案:按人数比30:20=3:2进行分配。

3、3:2表示什么意思?

[设计意图]使学生体会按比分的必要性以及初步沟通按比分与平均分的关系。

二、问题解决活动1:合作研究怎样按3:2这个比来分配

为了研究方便,老师给大家提供了一些小旗。

(一)合作研究

1.合作要求:两个同学一组分工合作,每分一次,就详细记录下当次分给大班和小班小旗的面数,直到分完为止。(提示:记录时,不累计上次分得的小旗面数)

大班

小班

第一次

第二次

第三次

第四次

第五次

大班分得()面小旗

小班分得()面小旗

2.学生合作研究

3.教师组织反馈交流

u老师在巡视的过程中,收集约三种不同的分法,分步展示在投影上。

u四人一组交流讨论要求

(1)在组长带领下逐一分析每种分法,你们能理解这些分法吗?你有什么想法?你还想提出什么问题?

(2)观察、比较这几种分法,你能发现什么?

插问:你觉得分一次至少需要多少面小旗?为什么?

也就是可以把5面小旗按3:2进行分配,那这一次是把几面小旗按3:2进行分配的呢?

学生可能出现的方法预设:

分法1:每次分给大班3面,分给小班2面。

表扬:认真有耐心,十二次。

分法2:根据比的基本性质分,分的次数明显减少。

表扬:很会动脑筋,在分的过程中及时进行了调整。

分法3:先按人数分给大班30面,分给小班20面,余下的再按比分。

表扬:很会联系实际情况,这种分法在实际生活中非常实用。

[设计意图]本环节的设计意图有五个,其一,虽然是六年级的学生,但是动手操作的过程是必不可少的,因为逐次分配具有一定的实用价值。记录单能够恰好的保留学生最初的思维轨迹。其二,培养学生的动手操作能力、合作能力、问题解决能力。其三,让经历问题解决的过程,探索按比分的不同策略。其四,培养学生的语言表达能力、反思能力,倾听习惯,使学生在交流中获得方法的丰富和能力的提高。其五,培养学生的观察、比较、分析、综合能力

(二)验证

1.问题:大班和小班分得面数的比是不是3:2?你是怎么知道的?

大班

小班

分得小旗的总面数

人数

平均每人分到小旗的面数

30:20=3:2=36:24

2.师生一起小结:

(1)平均每人分到的小旗同样多吗?

(2)把这些小旗按大班和小班的人数比来分配是合理的分法吗?

(3)虽然不知道小旗的总面数,但是大家动手分一分,是否就能成功的把这些小旗按3:2进行分配?

[设计意图]正式打通人数比与小旗面数比之间的关系,深化比的意义。使学生初步体会按比分的本质:即每个单位分到同样多。

(三)当我们知道总数的情况下的按比分配

1.问题:如果有180面小旗,你打算怎样按3:2进行分配?你能想到几种方法?

2.四人一组交流,说说你想到的方法。课件配合演示

学生可能的答案:

方法1:按比逐次分配。

方法2:先求出一份是多少面小旗,再根据大、小班分别所占的份数,求出各应分得多少面

小国旗。

方法3:把比转化成分数,利用分数的意义求出大班和小班分到的小国旗的面数

3.小结:当我们知道总数的情况下,既可以逐次分一分,也可以算一算。可采用的方法就更多了。平均分能理解为按比分吗?按怎样的比分呢?

三、问题解决活动2:体验比的应用的广泛性

(一)问题情境

因为同学们表现得太出色了,老师带来了一个小礼物想要送给大家。请同学们认真倾听。边听边观察思考,你能发现什么?

(二)师生活动

1、看《小星星》演奏的视频

学生可能发现了水的体积和空着部分的容积竟然存在着一个比。

2、出示如下信息:

杯子的容积:320ml,杯子装满水敲击出的声音为1.

音阶

杯水的体积与空着部分的容积的比

2

29:3

3

25:7

4

23:9

5

37:27

6

1:3

3、提问:29:3表示什么意思?。

4、算一算2这个音所需的水量。

5、每位同学选择一个自己喜欢的音,计算出所需水量。

6、教师组织反馈交流

7、倒水演奏

8、小结:比与音乐的关系最早是由古希腊的著名数学家毕达哥拉斯首先发现的,老师认为你们真的很了不起,是今天课堂上里最闪亮的小星。

[设计意图]通过比与音乐的关系,拓宽学生的数学视野,体验比的应用的广泛性,培养学生的数感,感悟数学文化的魅力。

四、问题解决活动3(拓展练习):用数形结合的方法,加深对比的意义的理解。

(一)情境与问题

花坛设计稿征集启示:

某小区修建了一个36平方米的正方形大花坛,决定在花坛中栽种菊花、兰花和月季,两种花卉的种植面积的比是2:3:4,每种花卉的种植面积是多少平方米?请设计出栽种的方法,并画出示意图?(菊花用黄色,兰花用蓝色,月季用红色)

(二)师生活动

1.提问:2:3:4表示什么意思?。

2.学生计算并根据比设计花坛。

3.教师组织反馈交流。

4.教师小结。

五、总结

今天的学习,你有哪些收获和感受?

1、通过这节课的学习你对比有了哪些新的认识?

2、把一些事物按一定的比分的时候,可以用哪些策略?

3、你在生活中还能找到比的应用的例子吗?

【我的思考】

一、经历问题解决过程,体验策略多样性,感悟数学文化魅力

随着社会的进步,科学技术的发展,义务教育的全面实施以及数学科学自身的发展,许多国家和地区都对数学课程进行了不同程度的改革,但是都几乎无一例外的把问题解决作为数学课程的重要目标之一。当学生面对实际问题或非常规问题时,能够主动利用数学的思想方法,努力的寻找解决问题的策略,并力图最终使问题得到解决。这种能力将会在学生步入社会时,使他迅速的调整和适应新的环境。所以它也成为我们新《数学课程标准》的焦点。

使学生经历问题解决的过程,不仅是能力培养的需要,还是一种心理发展的需要。每个孩子都具备解决问题的潜力并渴望能够在解决问题时获得成功。不能不说,问题解决的过程将使孩子面对智慧和心理的双重考验,但同时也会从中获得双方面的提升。

二、六年级的学生,还需要分一分吗

这个问题也曾经不断的困扰我。但经过一段时间的研究后,我终于彻悟,在这里分一分与算一算具有同等地位。首先说按比分的策略我认为基本有两大类:(1)不数出总数,按比逐次分配,直至分完,结果即为按比分配的结果。(2)先数出总数,通过计算得出按比分的最终结果,在经过一次分配完成。而且第一种方法在不知总数又不方便得到总数的情况下很有实用价值。因此我设计了给幼儿园两个人数不同的班怎样合理分配小国旗的问题情境,让学生在具体的情境中进行实际操作探究,从而解决问题。

分一分使学生切身体验到了比的意义深化过程。因为学生每一次都是在按人数比分配小国旗,每一次分得小国旗的面数比都是3:2,最后两班分别共分得小国旗面数的比也是3:2,成功地完成了人数比到小国旗面数比的深化,突破了教学难点。

3、拓宽学生的数学视野,感悟数学文化的魅力。

不是每个人都能成为数学家,但应当使每一个公民都在一定的程度上学会数学地思考,即要实现数学教育发展学生数感的目的。当我们遇到可能与数学有关的问题时,一个数感发展好的学生能够自然地、有意识地把问题与数学联系起来,或者试图进一步用数学的观点和方法来处理和解释。这也就是主动地、自觉地甚至自动化地把数学应用于实际生活的思维过程。

古希腊的著名哲学家、数学家毕达哥拉斯首先发现了比与音乐的关系,他比任何人更早地把一种看来好像是质的现象声音的和谐量化。为此我设计了怎样利用比的知识,使玻璃杯敲出美妙音乐的有趣地问题解决活动。期望在这个活动中,让学生体验到比与音乐之间奇妙的联系。通过拓展学生的数学视野,让学生体会到世界上所有的事物,都可以成为他们发现数学元素和研究数学问题的题材。

【网络研讨与评论】

编写组特约指导教师教材编委、特级教师钱守旺的主要评论:

l这部分内容,新世纪小学数学教材的设计是有特色的。如果没有给出总数,怎样按3:2这个比来分配呢?面对这样的问题,很自然,学生首先要去理解这个3:2是什么意思呢?

l看了你的设计、又听了你的说课,我觉得前半部分设计还是比较好的。尤其是刚开始的引入部分,比较自然、新颖;操作活动的设计可能也更便于孩子操作。

l后半部分,活动:杯琴的活动建议演奏不必太做大。出于时间方面的考虑,把它做为数学文化介绍给孩子们就可以。如果做大,会占用很长时间。数学文化的渗透应适度,不要占时太长;教学应更多关注中、下的学生,不应过于重视形式上的东西,强化更基础的东西会更关注多数学生的发展。做为第一课时,应有一些基本的练习,书上的一些题目应穿插在我们的课堂教学当中。

l课堂热闹并不等于教学效果好,现在很多老师总是一味求新,其实这是一种偏差。

l尽可能在第一课时不要出现连比。

l这节课有两个方面还应该进一步地突出:那就是比与原来的平均分、还要联系比与分数之间的关系。

网友六年级的评论:

1.使学生经历了探索解决问题策略的过程。

2.课程设计由浅入深,循序渐进,符合学生的认知规律。

3.操作活动的设计使学生在体会数学与生活密切联系的同时,激发了学生浓厚的学习兴趣。

网友林志杰的评论:

在这里,我感受到了政治、经济、文化中心的人才果然很有深度不管在教学教学水平还是在教研方面以及个人能力方面。

网友生洁的评论:

我非常喜欢送奥运小红旗这个活动,在数学教学中也体现了我们的政治人文,与生活结合非常紧密.音乐与比的关系这个活动非常新颖,相信学生都会喜欢,而且从此激发他们学习和探究的兴趣。

网友尚待解答的困惑:

l如果有学生仅停留在平均分的水平上。教师该怎么引导他按3:2分?

l比的性质没有学,会不会影响比的应用?

l百分数和比是不是数?

六年级上册数学比的应用教案(篇9)

说教材:

《比的应用》是人教版六年制小学数学第十一册的内容,是在学生理解了分数与比的联系,掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,它是“平均分”问题的发展,掌握了按比例分配的解题方法,不仅能有效地解决生活、生产中把一个数量按照一定的比进行分配的问题,也为今后学习“比例”“比例尺”奠定良好的基础。

说教学目标:

从《数学课程标准》、四个关注点以及学生的认知特点出发,我将本课的教学目标确立为:

1、知识目标:使学生理解按比例分配的意义。

2、技能目标:在探索学习的过程中使学生掌握按比例分配问题的特征,能运用按比例分配的知识解决生活中的实际问题。培养学生收集信息、处理信息的运用知识解决问题的实际能力。

3、情感目标:创设民主和谐的学习氛围,培养学生自主探究、团结合作的意识和喜欢数学、热爱生活的情感。

教学重、难点:

理解按比例分配应用题的结构特征和解题方法。

教学理念

所谓:“教学有法而无定法,贵在得法”。因此教学中要因势利导,采用合理的教法,教给学法,掌握学法,学会用法。因此本课的教学法我总体归纳为两点:

1、创设情境,为自主探究形成氛围

《数学课程标准》指出:数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展自主探索、动手实践、合作交流等活动,激发学生学习数学的兴趣和学好数学的愿望。教学中注重以人为本,高度重视学生自主性、实践能力和创新意识的培养。因此,我挖掘生活素材,寻找数学知识与学生生活有机联系的切入点,让数学内容生活化,以此提高学生学数学和用数学的能力。

2、自主探究,为合作学习创设平台

《数学课程标准》指出:学生的数学学习不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。本课采取自主探究、合作交流的学习形式,引导学生“在沟通比与分数的联系基础上,发现问题、独立思考、提出问题、小组合作、解决问题、交流探究、发现新方法。在与他人交流中选择合适策略,丰富自己数学活动经验过程中,学会分析、比较、归纳、综合,促使数学思想方法的发展,经历数学知识的产生与发展,体验主动参与合作探究,获得新知识的愉悦。让生活走进数学、让学生张扬个性、让体验充满课堂,我们的数学教学就会显得异常现实、精彩而生动。

说过教学流程:

第一个环节:创设情境、初步感知

《数学课程标准》指出:“数学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。”因为学生年龄小,再加上数学知识的的抽象性,他们往往不会为数学的严谨和逻辑的魅力所折服,可他们会因为数学的现实、有趣、而喜欢,在熟悉的情境中学数学使学生最感兴趣;贴近生活学数学,最能调动学生的学习积极性。本课教学设计时,考虑到教材中例2所讲事例较枯燥乏味,离学生生活实际较远,放手让学生自己探索有一定难度。为了创设好学生自主探索的情境,以学生生活中最熟悉的—“蜂蜜水”引入,从让学生猜想、品尝不同甜味蜂蜜,让学生用分数或比提出问题表示三个数量的关系,再让他们口答解决其中的几个问题,沟通比与分数的联系,把发现知识内在联系的机会与权利还给学生。同时老师也以参与者的身份参与提出问题、引出与例2相类似的问题,设置“悬念”导入新课学习。这样,学生的兴趣马上就来了。

第二个环节:自主探索、合作交流

新课程标准同时提出让学生富有个性的学习,强调培养学生的创新意识。创新意识的发展,依托于个性的充分发展。要发展学生个性,就要鼓励学生从多方面,多角度去理解问题。发展个性,创新学习要求教师吃透教材,努力为学生思维活动提供最大限度的伸展空间,让学生有机会充分展示自我,让课堂呈现精彩。

本课探究例题:“配一杯240毫升的蜂蜜水,按照蜂蜜和水的配比是1:5来配,配制这样一杯蜂蜜水,需要蜂蜜和水各多少毫升?”时,放手让学生自己探索解决方法。

通过这个情境,引发学生思考探究,学生已初步了解了按比分配应用题的解题方法。那接下来就可以顺水推舟,指导自学例2、感悟新知.

(进一步理解按比例分配的意义,同时自然的过渡到按比分配应用题的解题方法上。)

第三个环节:融入生活用数学

生活数学不仅是学生学“必需”数学的基础,而且可以极大地丰富学生的现实生活,学生会因为数学学习而感受生活的丰富多彩,感受数学学习的内在魅力。我让学生调查生活中的按比例分配并进行整理,然后汇报交流你眼中的按比分配,接着小组选择大家感兴趣的问题探究,最后,让大家寻求规律进行应用与拓展。从学生的汇报交流,我们可以发现:生活中的教育资源是非常丰富的,只要教师给学生去发现的机会,学生的智力会得到充分的发挥。当学生列出了大量的生活素材后,我也出示了一组生活素材:看来,同学们这次的社会调查的收获可真不小,老师也带了好些素材呢!你能帮助解决这些实际问题吗?请任意选择一个在小组内探究吧!

第四环节:拓展延伸、发展提高

传说古代印度有一位老人,临终前留下遗嘱,要把19头牛分给三个儿子。老大分总数的1/2,老二分总数的1/4,老三分总数的1/5。按印度的教规,牛被视为神灵,不能宰杀,先人的遗嘱更必须遵从。老人死后,三兄弟为分牛一事绞尽脑汁,却计无所出,最后决定诉诸官府。官府一筹莫展,便以“清官难断家务事”为由,一推了之。邻村智叟知道了,说:“这好办!我有一头牛借给你们。这样,总共就有20头牛。老大分1/2可得10头;老二分1/4可得5头;老三分1/5可得4头。你等三人共分去19头牛,剩下的一头牛再还我!”真是妙极了!

同学们,开启你的智慧,利用今天学的方法也来帮老人的三个儿子分一分牛,相信你定会赛过智叟!

第五个环节:质疑总结、反思提高

说一说在这节课中,你有什么收获?还有疑惑吗?你觉得自己表现如何?

(通过评价,帮助学生认识自我,建立自信,促进学生在已有水平的基础上发展,发挥评价的教育功能,使学生认识自我与他人,从而促进自己的再发展。)

六年级上册数学比的应用教案(篇10)

教学目的

1.通过知识迁移使学生掌握求一个数是另一个数的百分之几应用题的结构特征及解题规律。

2.正确列式,掌握计算方法,准确计算。

教学重点

明确单位1,会列关系式。

教学难点

能够根据题中条件找出和关系式中相对应的数量。

教学过程

(一)复习准备

1.什么叫百分数?

2.把下列各数化成百分数。(保留一位小数)

0.75=1.25=0.786=1.7630.9855

3.列式计算,说分析思路。

六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几?

说思路:关键句是占六年级学生人数的几分之几,也就是120人占六年级学生人数的几分之几。和六年级人数相比,六年级人数做单位1,关系式为

已达标人数六年级人数

小结:这是求一个数是另一个数的几分之几的应用题。因为所求的问题是表示两个数量之间的倍数关系,所以用除法计算。关键是找单位1,用单位1做除数。

(二)讲授新课

改变准备题为例题,把几改成百。

例1六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?

1.读题,说出例题与准备题有什么不同?百分数表示什么?(表示两个量之间的倍数关系。)这道题与准备题的解题思路一样吗?

2.说解题思路。(小组互说,集体订正。)

这道题的关键句是占六年级学生人数的百分之几,把问题补充完整,也就是已达到《国家体育锻炼标准》的120人占六年级学生人数的百分之几。和六年级人数比,六年级人数是单位1,做标准量。达到国家体育锻炼标准的120人是和六年级学生人数相比的量。

3.列关系式:

已达到国家体育锻炼标准的人数六年级总人数

4.列式:

(板书)120xx0=0.75=75%

答:占六年级学生人数的75%。

请同学们看计算格式:通常先求出商,用小数表示,然后,再转化成百分数。

问:结果表示什么?为什么没单位名称?

(体育达标的人数与六年级学生人数是倍数关系,所以没有单位名称。)

5.求一个数是另一个数的几分之几与求一个数是另一个数的百分之几的应用题有什么相同点和不同点?

(相同点:应用题的结构特征、数量关系、解题方法都用除法计算;不同点是最后结果,一个用分数表示两数间的倍数,另一个是用百分数表示两数间的倍数关系。)

6.解这类题的关键是什么?

(明确单位1的量;找准与单位1相比的量,用与单位1相比的量除以单位1。)

7.过渡到例2。

百分数还可以叫做什么?(百分率,百分比。)

你在日常生活中,听到过哪些率?(发芽率,出勤率,合格率)

求这些率有什么作用?表示什么意思呢?

师:实行科学种田,为了保证基本苗数量,又避免浪费种子,就要先进行发芽率的试验。求发芽率就是求发芽的种子数占试验种子总数的百分之几。通常用下面的公式计算:

问:率表示什么?(两个数相除的商。)

师:发芽率是百分率的一种,公式本身应该用百分数的形式(%)表示,所以,要100%。

例2某县种子推广站,用300粒玉米种子做发芽试验,结果发芽的种子有288粒。求发芽率。

1.默读题,说已未知条件。

2.什么叫发芽率?(同桌互说)

3.根据发芽率公式,自己列式。集体订正。

问:结果有单位名称吗?为什么?

4.根据发芽率的公式,你们能说出求下列百分率的公式吗?(边说边投影。)

想一想:你能告诉大家一个百分率公式吗?

5.练习:第137页做一做。强调先写公式,再列式计算。(集体订正。)

(三)巩固练习

(投影)

1.一班种树40棵,二班种树48棵,二班种的棵数占一班的百分之几?(集体订正)

4840=120%

为什么不是4048?(一班是单位1,一班种的棵数做除数,二班种的棵数是和一班相比的量,做被除数。)

2.读题,说单位1;列式,说结果。

①2是5的百分之几?

(5是单位1,25=0.4=40%。)

②5是2的百分之几?

(2是单位1,52=2.5=250%。)

③4千米相当于5千米的百分之几?

(5千米是单位1,45=0.8=80%。)

④20分钟是1小时的百分之几?能直接列式吗?先怎么办?

3.以小组为单位说分析思路后,个人在本上列式,集体订正。

①某村前年造林15公顷,去年造林18公顷,是前年造林的百分之几?

②某种录音机原价560元,现价是320元。现价是原价的百分之几?原价是现价的百分之几?

③某生产队割青草200吨,晒成干草后还有120吨。求青草的含水率?

关键要明确,青草含水重量,就是失去的水分,即:青草晒成干草后少的重量。

④某年级一班有男生22人,女生20人。女生占男生的百分之几?男生占女生的百分之几?男生占全班人数的百分之几?

分析第三问,全班人数是单位1,全班人数是男生和女生的总和,所以,除数就是男女生人数的和,列式为:22(22+20)。

问:第三问与前两问有什么区别?

⑤某区绿化环境,前年种花草200公顷,去年比前年多40公顷。前年种花种草是去年的百分之几?

小组讨论分析,谁是单位1,谁是和单位1相比的量?会列式吗?集体订正。

4.根据:24,60两个数编求一个数是另一个数的百分之几的题。

(四)课堂总结

这节课我们学习了什么知识?解题步骤是什么?解题关键是什么?

(求一个数是另一个数百分之几,求百分率。解题步骤是先找重点句,确定单位1。关键找准单位1后,根据关系式找出相对应的数量。)

课堂教学设计说明

1.依据知识的迁移规律,进行了必要的铺垫。根据新课求一个数是另一个数的百分之几的需要,首先复习了百分数的意义,及分数、小数化成百分数的方法,重点突出了准备题,为顺利讲授新课、过渡到新课做了铺垫。

2.引导学生找出新旧知识的异同点,进一步强化了教学的重点。总结出解题思路,掌握解题的关键及步骤。

3.精心设计习题,使知识引向深入。由直接给出关系式中的数量到间接给出关系式的数量,通过智力活动内化,逐步向能力转化。

4.运用迁移规律,以旧引新,调动学生参与新知识学习的积极性,教给学生掌握知识的方法与技能,使学生学会学习。

六年级上册数学比的应用教案(篇11)

一、说教材

1、教学内容:北师大版第十一册分数、百分数、比的综合应用练习课

2、教学目标

(1)通过联想理清分数、百分数、比之间互为相通的数量关系;

(2)学会辨析分数、百分数、比之间互为相通的数量关系进行编题、解题,激活学生思维的灵活性和发散性,从而提高学生的解题能力和思维能力;

(3) 沟通分数、百分数、比之间互为相通的数量关系,激发学生学习数学的兴趣。

3、教学重点、难点:

通过联想理清数量关系,并学会辨析数量关系进行编题、解题。

二、说教法和学法

整堂课始终贯彻“学生为主体,教师为主导”的训练思维为主线的原则。

1、自主探索,寻求方法。

让学生充分自主探索,寻求解答思路和方法。

2、设计教法,体现主体。

整堂课的设计,时时考虑到以学生为主体,教师只是个领路人。并注重到学生间的相互合作和交流,做到互相评议,各抒已见,取长补短,共同提高。

3、分层练习,注重发展。

练习有层次,由尝试练习到发展练习,再巩固练习和应用练习,层层递进。

三、 说教学过程:

(一)导入:

游戏——用四个数字让学生展开联想,激活课堂气氛,做好思维铺垫。

(二)展开:

1、 出示:

男生:

女生:

2、 说明:这表示某一个班的男生、女生的人数统计图。谁能说说这幅图中男生、女生之间的数量关系吗?(提示学生从不同的角度来说)

3、 同桌之间互相说说——学生个人发表意见——小结:同学们的表现很好,这些关系差不多涵盖了小学阶段所有的分数、百分数、比的关系。

4、 你能不能加入一个条件,提出一个问题使他成为应用题呢?

生说——辨析——修正——练习

5、 变换条件和问题再行练习。

(三)拓展练习

请把下题划线句子改变说法(不改变题目意思)并用多种方法解答:

养鸡场鸡比鸭多2/7。鸭有140只,鸡有多少只?

苏教版六年级上册《树叶中的比》数学教案


苏教版六年级上册《树叶中的比》数学教案

第三单元 分数除法

第14课时 树叶中的比

教学内容:

课本第66--67页。

教学目标:

1、通过观察、测量、计算、比较、分析等活动,初步发现虽然树叶的大小各不相同,但长和宽的比值比较接近。

2、初步感受自然现象中蕴含的简单规律,培养用数学眼光观察生活的意识和能力,增强对数学学习的兴趣。

课前准备:

每个小组采集一种树叶(10片)

教学重点:

利用比的知识探究树叶长与宽之间的比例关系。

教学难点:

运用规律解决实际问题。

教学过程:

一、创设情境,提出问题

1、情境导入。

谈话:课前大家收集了很多树叶,仔细观察一下采集的树叶,看看每种树叶有什么特点,小组里互相说说看。

2、观察比较。

出示一些常见树叶。

引导:看看它们的大小形状是怎样的,不同树叶的大小、形状区别在哪里,同种树叶的大小、形状又有怎样的关系?

观察后小组讨论。

交流,板书: 不同树叶形状一般不同,同一种树叶形状是相似的。

同一种树叶形状相似,从数学角度看,反映出什么特点呢?

通过今天的学习大家会有很多收获的

3、揭示课题。

4、提出问题。

怎么样可以知道每种树叶长和宽的比呢?怎么样比较这些树叶长和宽的比呢?说说你的想法。

明确:先测量树叶的长和宽,再比较长和宽的比值。 指出:测量、计算、比较是我们研究数学常用的好方法。

二、动手实践、自主发现

1、举例介绍树叶的长和宽。

谈话:动手实践之前,我们先要弄清楚树叶的长和宽指的是什么?

结合书上66页的图,你能向大家解释一下吗?

2、动手实践。

活动要求:

(1)4人一组,每组测量2种不同的树叶,组长分工。

(2)每人测量10片同一种树叶的长和宽,并算出长和宽的比值(保留一位小数)填在67页的表里。

(3)计算出你测量的树叶的长和宽的比值的平均数。

(4)在小组里交流各自测量到的树叶的长和宽的比值的平均数。

(5)将测量和计算的结果与相应树叶对照,看看树叶的长短宽窄和比值有什么关系,在小组里说说你的发现。

3、学生操作实践,记录数据并进行相应计算。

4、组织比较交流。

(1)你测量的是哪种树叶,比较每片树叶的长和宽的比值,你有什么发现?

指出:同一种树叶的长和宽的比值都比较接近(板书)。虽然大小可能不同,但形状是相似的。

(2)如果不是同一种树叶,对照它们的比值和长短宽窄,你对形状和比值大小之间的关系有什么发现吗?说说你的发现。

如果不同树叶的长和宽的比值比较接近,它们的形状会怎么样呢?

指出:不是同一种树叶的长和宽的比值不同,所以形状也不同。(板书:不同树叶的长和宽的比值一般不同)但如果比值接近,它们的形状也是相似的。

长和宽的比值越小,树叶显得宽一些,比值越大,树叶就越狭长。

5、实际运用。

猜猜老师采集的几种树叶:

1号树叶:长和宽的比的2:1

2号树叶:长和宽的比是7:1

3号树叶:长和宽的比是10:9

学生猜测、它们各是什么树叶,说说你是怎么猜的?

三、课堂总结

谈话:今天我们上了一节有趣的数学实践活动课,探究树叶中的比,通过这次实践活动,你知道了树叶中的哪些奥秘?我们在怎样发现的?你还有什么体会?教学反思:

人教版六年级上册《比的应用》数学教案


在上课时老师为了能够精准的讲出一道题的解决步骤。在上课前要仔细认真的编写一份全面的教案。让同学们很好的吸收课堂上所讲的知识点,那么教案怎样写才好呢?小编收集整理了一些人教版六年级上册《比的应用》数学教案,仅供您在工作和学习中参考。

人教版六年级上册《比的应用》数学教案

第4单元 比

第3课时 比的应用

【教学内容】

第54--56页“比的应用”及练习十二。

【教学目标】

过程与方法:能运用比的意义解决按照一定的比进行分配的实际问题。

情感、态度与价值观:进一步体会比的意义,感受比在生活中的广泛应用,提高解决问题的能力。

知识与技能:培养学生运用数学解决生活中问题的能力。

【教学重难点】

重点:利用比的知识解决相关实际问题。

难点:根据题中所给的比,掌握各部分量占总数量的几分之几,能

熟练地用乘法求各部分量。

【导学过程】

【自主预习 】

1、我们在教学中学过平均分,平均分的结果有什么特点?在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。

2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充问题并解答)___________________________________________________________

【新知探究】

1、阅读例2主题图,再用自己的话表述题意,说说稀释液是怎么配制的?

想一想“浓缩液和水的体积1:4”,是什么意思?

就是说在500ml的稀释液,浓缩液占1份,水的体积占4份,一共是5份,浓缩液占稀释液的5分之1,水的体积占稀释液的5分之4。

2、自己动笔,尝试用不同的方法解决问题,你想出了几种?每一种的解题思路是什么?

3、对照课本,比较两种解法的联系与区别,你更喜欢哪一种?并把例题解答过程中的空白处填完整。

4、对得数进行检验,并思考:这道题中完整的检验包含几个方面?

检验的方法有两种:

一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;

二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4

5、练一练:P55练习十二题1、2、3题。

6、学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,

二班有45人,三班有48人。三个班各应栽树多少棵?

___________________________________________________________

【知识梳理】

本节课你学习了哪些知识?

【随堂练习】

1、完成练习十二的第4、8题

2、练习十二的第7题

人教版六年级上册《比的意义》数学教案


相信很多老师都希望自己的课堂上同学们能够积极的与自己互动。这时就需要自己去精心研究如何做一份学生爱听老师爱讲的教案。才能有计划、有步骤、有质量的完成教学任务,那么一份优秀的教案应该怎样写呢?下面是小编为大家整理的“人教版六年级上册《比的意义》数学教案”,仅供参考,希望能为您提供参考!

人教版六年级上册《比的意义》数学教案

第4单元 比

第1课时 比 的 意 义

【教学内容】

教材48、49页及练习十一的1-3题

【教学目标】

知识与技能:

1.理解并掌握比的意义,会正确读写比。

2.记住比各部分的名称,并会正确求比值。

3.理解并灵活掌握比与分数、除法之间的联系与区别。

过程与方法:

培养比较、分析和抽象概括能力。

情感、态度与价值观

培养学生合作交流表达等能力。

【教学重难点】

重点:比的意义

难点:比和除法、分数的关系。

【 导学过程】:

【 自主预习】

1.分数和除法有什么联系?

2.除数能否为零?分数的分母能否为零?

3、自学教材43、44页的内容并回答问题。

(1)什么是比?比是什么?什么叫比?谁和谁比?

(2)长是宽的几倍,宽是长的几分之几?

15÷10求的是什么?是这面旗的什么和什么比较?

长是多少?宽是多少?

长和宽比也就是几和几比?

【新知探究】

小组讨论交流,说说自己的想法:

1、用除法可以来表示两个量之间的关系,我们也可以用“比”来表示。也就是说一个量是另一个量的几倍或几分之几也可以说成两个量的比。

2、 一辆汽车2小时行90千米

这里已知哪两个数量?可以求出哪个数量?怎样求?

说明:90÷2=45(千米)用除法求出了这辆车的速度,它表示路程和时间之间的关系。我们还可以用( )来表示路程和时间之间的关系,把它说成路程和时间的比是( )比( )。

90÷2表示什么?还可以怎么说?

3、讨论①除法中的运算符号是“除号”,表示比的符号是什么呢?写作什么?

②5比3写作什么?各部分的名知称是什么?

③试写3比5、90比2,并说出比的前项、后项。

④比的前项和后项之间有什么关系?(相除的关系)

⑤什么是比值?如何求?比值可以是什么数?

4、我们在写比时,要注意谁和谁比,谁是比的前项,谁是比的后项,次序不能颠倒。

2、求比值的方法是:用( )除以( )所得的商是( ),它可以是( ),也可以是( ),还可以是( )。

3、观察,你能发现比、除法、分数三者之间的联系吗?

4、比的后项能为“0”吗?为什么?

【知识梳理】

本节课你学习了哪些知识?

【随堂练习】

1、用分数的形式表示下面两个比。

3∶5= 90∶2 =

2.完成教材的做一做。

3.求出下面各比的比值。

0.375∶0.875= 0.25∶ 0.75 = 2.6∶3.9=

4、完成 教材练习十一的1-3题 。

苏教版六年级下册《比例的基本性质》数学教案


苏教版六年级下册《比例的基本性质》数学教案

教学目标:

1、使学生认识比例的“项”以及“内项”和“外项”。

2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

3、通过自主学习,让学生经历探究的过程,体验成功的快乐。

教学重、难点:理解并掌握比例的基本性质;引导观察,自主探究发现比例的基本性质。

教学过程:

一、创设情境,教学比例的基本知识。

1、复习:

师:什么叫比例?下面每组中的两个比能否组成比例?出示:

1/3∶1/4和12∶9  1∶5和0.8∶4  7∶4和5∶3  80∶2和200∶5

学生根据比例的意义进行判断,教师结合回答板书:

1/3∶1/4=12∶9  7∶4≠5∶3 1∶5=0.8∶4  80∶2=200∶5

2、认识比例各部分的名称

(1)介绍“项”:组成比例的四个数,叫做比例的项。

(2)3 :5 = 18 :30 学生尝试起名。

师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。

3 :5 = 18 :30

内项

外项

(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?

出示:3/5=18/30

(4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

师:刚才,你们是根据比例的意义先求出比值再作出判断的。老师不是这样想的,可很快就判断好了,想知道其中的秘密吗?告诉你们,老师是运用了比例的基本性质进行判断的。

二、教学例4

1、提问:你能根据图中的数据写出比例吗?

(1)引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。

(2)引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?

2、学生先独立思考,再小组交流,探究规律。

(板书:两个外项的积等于两个内项的积。)

3、验证:是不是任意一个比例都有这样的规律?

⑴课件显示复习题(4组):

1/3∶1/4和12∶9;

1∶5和0.8∶4;

7∶4和5∶3;

80∶2和200∶5

学生验证。

⑵学生任意写一个比例并验证。

教师将学生所举比例故意写成分数形式,追问:哪两个是内项,哪两个是外项,让学生算出积并结合回答板书。通过交*连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交*相乘,结果相等。

师:老师也写了一个比例(板书:3∶2=5∶4),怎么两个外项的积不等于两个内项的积!你们发现的规律可能是有问题的。

引导学生得出:你举的例子从反面证明了我们发现的规律是正确的。因为3∶2和5∶4这两个比是不能组成比例的。只有在比例中,两个外项的积等于两个内项的积。

师:很有道理!同学们很会观察,很会猜想,很会验证,自己发现了比例的基本性质。

板书:在比例中,两个外项的积等于两个内项的积。这叫做比例的基本性质。

⑶如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成什么。

(4)完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

读书P44页,勾画

5、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

6、比例的基本性质的应用

(1)比例的基本性质有什么应用?

(2)做“试一试”:出示“3.6 :1.8和0.5 :0.25”。

A、先假设这两个比能组成比例

:让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:3.6 :1.8和0.5 :0.25能组成比例吗? 根据比例的基本性质,能判断两个比能不能组成比例吗?

b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

C、根据比例的基本性质判断组成的比例是否正确。

三、综合练习:

1、完成练一练

(1)学生尝试练习。

(2)交流讨论。使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。

2、在(  )里填上合适的数。

1.5:3=( ):4

12:( )=( ):5

先让学生尝试填写,再交流明确思考方法。

3、补充一组灵活训练题:

A、如果让你根据“2×9=3×6”写出比例,你行吗?你能写出多少个呢?

B、你能用“3、4、5、8”这四个数组成比例吗?若能,请把组成的比例写出来。

C、你能从3、4、5、8中换掉一个数,使之能组成比例吗?

四、全课小结:

同学们真行!不仅探索发现了比例的基本性质,还能自觉地运用比例的基本性质,去判断两个比能否组成比例,去求比例中的未知项。

能告诉我比例的基本性质是什么吗?你觉得学了它有什么用处?

五、课堂作业。

1、做练习十第1、3题

2、独立完成2、4题

板书设计:

比例的基本性质

3 :5 = 18 :30

内项

外项

6:4=3:2 4:6=2:3  4:2=6:3 3:6=2:4

3×4=6×2

a:b=c:d ad=bc

在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

人教版六年级数学上册第四单元《比》教案(二)


众所周知,一位优秀的老师离不开一份优质的教案。老师需要做好课前准备,编写一份教案。这样可以有效的提高课堂的教学效率,那你们知道有哪些优秀的小学教案吗?小编收集整理了一些“人教版六年级数学上册第四单元《比》教案(二)”,希望对您的工作和生活有所帮助。

人教版六年级数学上册第四单元《比》教案(二)

一、教学内容

比的基本性质。(教材第50页)

二、教学目标

1.掌握比的基本性质。

2.理解知识间的内在联系,渗透类比思想。

三、重点难点

重难点:理解并掌握比的基本性质。

教学过程

一、复习引入

1.复习问答。

师:什么叫比和比值?(点名学生回答)

师:比和分数、除法有什么关系?

引导学生回忆比和分数、除法的关系,可以结合算式或表格回答。

师:商不变的规律和分数的基本性质各是什么?

引导学生回忆商不变的规律:被除数和除数同时乘或除以相同的数(0除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

2.2/6,4/12,8/24这三个分数的大小相等吗?为什么?(课件出示题目)

引导学生根据分数的基本性质思考,发现都能化简为1/3。

3.引出新课。

师:在除法中有商不变的规律,在分数中有分数的基本性质,那么在比中是否也有类似的性质呢?这节课我们就来探究一下比的基本性质。(板书课题:比的基本性质)

二、学习新课

1.启发引导,发现问题。

把6/8,12/16改写成比的形式。(课件出示题目,点名学生回答)

师:这两个比相等吗?

引导学生通过求比值得出两个比相等。学生回答后,教师板书:

6∶8=6÷8=6/8=3/4

12∶16=12÷16=12/16=3/4

6∶8=12∶16=3∶4。

师:从左往右或从右往左观察这两个比,你发现什么变了?

引导学生发现比的前项、后项都发生了变化。

2.观察比较,发现规律。

(1)利用比和除法的关系来研究比中的规律。

组织学生将比转化成除法,通过商不变的规律来认识比中的规律。

①6∶8=12∶16

学生讨论交流,汇报结果,根据学生的汇报,课件演示:

6÷8 =(6×2)÷(8×2)= 12÷16

↓ ↓ ↓

6∶8=(6×2)∶(8×2)=12∶16

师:认真观察,你能用一句话概括其中的规律吗?

引导学生得出规律:比的前项和后项同时乘相同的数,比值不变。

②6∶8=3∶4。

学生讨论交流,汇报结果,根据学生的汇报,课件演示:

6 ∶8=(6÷2) ∶(8÷2)=3 ∶4

↑ ↑ ↑

6 ÷8=(6÷2) ÷(8÷2)=3 ÷4

师:同样地,你能用一句话概括其中的规律吗?

引导学生得出规律:比的前项和后项同时除以相同的数,比值不变。

(2)利用比和分数的关系来研究比中的规律。

组织学生独立思考探究。(教师巡视,进行个别辅导,指名汇报)

3.归纳总结,概括规律。

(1)师:刚才我们根据比和除法、分数的关系进行探究,发现比也存在着一种规律,谁能把其中的规律总结出来呢?

组织学生独立思考后小组内交流。

引导学生初步归纳得出:比的前项和后项同时乘或除以相同的数,比值不变。

(2)师:相同的数是什么数都行吗?同时乘或除以0可以吗?

引导学生根据比与分数、除法的关系得出相同的数不可以是0。

(3)引导学生完整归纳总结比的基本性质。(板书性质)

三、巩固反馈

1.完成教材第53页“练习十一”第4题。(点名学生回答,并说一说同乘或除以几)

第4题:(1)98∶100 (2)12∶100

(3)110∶100

(课件出示题目,学生独立完成,教师订正)

2.7∶12的前项增加14,要使比值不变,后项应该加上 24 。

3.5∶6的后项增加24,要使比值不变,前项应乘 5 。

四、课堂小结

通过本节课的学习,你知道比的基本性质是什么吗?

板书设计

比的基本性质

6∶8=6÷8=6/8=3/4

12∶16=12÷16=12/16=3/4

6∶8=12∶16=3∶4

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

教学反思

1.本堂课是一节充分体现以学生为主的课。教学中,由“除法中商不变的规律”和“分数的基本性质”就能自然而然地联想到是否也存在着“比的基本性质”。对此,不能束缚学生的思维,而是顺从学生的思维规律,鼓励他们大胆猜想,并通过举例、论证等方法小心验证,最后准确地得出“比的基本性质”。

2.我的补充:

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

备课资料参考

典型例题准备

【例题】甲数与乙数的比是3∶4,乙数与丙数的比是6∶7,甲数与丙数的比是多少?甲数、乙数与丙数三个数的连比是多少?

分析:甲数∶乙数和乙数∶丙数中的乙数是同一个量,但在每个比中所占的份数不同,可以根据比的基本性质将乙数所占份数化成相同。甲数∶乙数=3∶4,乙数∶丙数=6∶7,可以将乙数所占的份数化为4和6的最小公倍数。

解答:甲数∶乙数=3∶4=(3×3)∶(4×3)=9∶12

乙数∶丙数=6∶7=(6×2)∶(7×2)=12∶14

所以甲数∶丙数=9∶14,甲数∶乙数∶丙数=9∶12∶14。

解法归纳:解决连比问题,主要运用转化方法,根据比的基本性质把同种量转化成相同的份数。

相关知识阅读

奇妙的8∶11

人们都见到过稻麦一类的农作物,在快要收割的时候,它们顶着沉甸甸的穗子,支持着饱满穗子的却是一根空心的茎。为什么一根空心的茎会有这样大的能耐呢?

科学家根据材料力学理论推算:一根空心管子的内径和外径之比,如果是8∶11的话,最不容易弯曲。生物界在进化过程中,为了求得生存,动物的骨、植物的茎等都选择空心,而且不论粗细如何,内径和外径之比大约都是8∶11,这不是奇妙的巧合,而是大自然优胜劣汰的结果。科学家就利用这个数据,为人类造福。例如水泥制成的空心电线杆、自行车的车身架等,都是利用这个数据,以达到耗费最少的材料而获得最强的坚固性的目的。

点击查看更多:六年级数学上册教案

提醒:

扫码关注回复“教案”

获得上下册教案资料!

苏教版六年级上册数学教案汇总


苏教版六年级上册数学教案汇总

第一单元 长方体和正方体《长方体和正方体的认识》《展开与折叠》《长方体和正方体的表面积(1)》《长方体和正方体的表面积(2)》《体积与容积(1)》《体积与容积(2)》《长方体和正方体的体积(1)》《长方体和正方体的体积(2)》《相邻体积单位间的进率》《练习课》《整理与练习(1)》《整理与练习(2)》点击下一页查看更多《表面涂色的正方体》第二单元 分数乘法《分数与整数相乘》《分数乘法的实际问题(1)》《分数乘法的实际问题(2)》《分数与分数相乘》《分数连乘与实际问题》《练习课》《倒数的认识》《整理与练习(1)》《整理与练习(2)》第三单元 分数除法《分数除以整数》《整数除以分数》点击下一页查看更多《分数除以分数》《分数除法实际问题》《练习课》《分数连除和乘除混合》《比的意义》《比的基本性质》《练习课》《按比例分配的实际问题》《练习课》《整理与练习(1)》《整理与练习(2)》《树叶中的比》点击下一页查看更多第四单元 解决问题的策略《解决问题的策略(1)》《解决问题的策略(2)》《练习课》第五单元 分数四则混合运算《分数四则混合运算》《练习课》《稍复杂的分数乘法实际问题(1)》《稍复杂的分数乘法实际问题(2)》《练习课》第六单元 百分数《百分数的意义和读写》《练习课》《百分数与小数的互化》《百分数与分数的互化》点击下一页查看更多《求一个数是另一个数的百分之几》《百分率》《求一个数比另一个数多(或少)百分之几》《练习课》《纳税》《利息》《折扣》《练习课》《解决稍复杂的百分数问题(1)》《解决稍复杂的百分数问题(2)》点击下一页查看更多《练习课》《整理和复习(1)》《整理和复习(2)》《互联网的普及》第七单元 整理与复习《数的世界(1)》《数的世界(2)》《数的世界(3)》《图形王国》《应用广角》点击下一页查看更多