小学语文微课教案
发表时间:2021-04-06旋转学案。
每个老师上课需要准备的东西是教案课件,规划教案课件的时刻悄悄来临了。此时就可以对教案课件的工作做个简单的计划,才能规范的完成工作!有没有出色的范文是关于教案课件的?下面是由小编为大家整理的“旋转学案”,欢迎您阅读和收藏,并分享给身边的朋友!
《旋转》第二节中心对称导学案1
主审人:
班级:学号:姓名:
学习目标:
【知识与技能】
1、通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成.
2、掌握成中心对称的两个图形的性质,以及利用两种不同方式来作出中心对称的图形.
【过程与方法】
利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置.
【情感、态度与价值观】
经历对日常生活与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识.
【重点】
中心对称的性质及初步应用.
【难点】
中心对称与旋转之间的关系.
学习过程:
一、自主学习
(一)复习巩固
如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,并写出简要作法.
作法:(1)
(2)
(3)
(4)
即:△DEF就是所求作的三角形,如图所示.
(二)自主探究
1、观察、实验:选择你最喜欢的一幅图,用透明纸覆盖在图上,描出其中的一部分,用大头针固定在O处。旋转180°后,你有什么发现?
(1)(2)(3)
发现:把一个图形绕着某一个旋转,如果他们能够与另一个图形,那么就说这个图形或,这个点叫做,这两个图形中的叫做关于中心的.
2、组内交流
在图5中,我们通过实验知四边形ABCD和四边形A'B'C'D'关于点O对称。
(1)你知道它的对称中心、对称点吗?
(2)连接AA'、BB'、CC'、DD'你有什么发现?
(3)线段AB、BC、CD、DA的对应线段是什么?AB与A'B'的关系是怎样的?四边形ABCD和四边形A'B'C'D'有什么关系?为什么?
(三)、归纳总结:
1、默写中心对称的概念:
2、中心对称的性质:
1)
2)
(四)自我尝试:
(1)、已知点A和点O,画出点A关于点O的对称点A'。
(2)、已知如图△ABC和点O,画出与△ABC关于点O的对称图形A'B'C'。
二、教师点拔
1、中心对称与图形旋转的关系?
2、中心对称与轴对称的区别:wwW.jAB88.cOm
轴对称中心对称
有一条对称轴---()有一个对称中心---()
图形沿对称轴(翻折180°)后重合图形绕对称中心后重合
对称点的连线被对称轴对称点连线经过,且被对称
中心
三、课堂检测
1、已知下列命题:①关于中心对称的两个图形一定不全等;②关于中心对称的两个图形一定全等;③两个全等的图形一定成中心对称,其中真命题的个数是()
A、0B、1C、2D、3
2、下列图形即是轴对称又是中心对称的是()
ABCC
3、已知,△ABC与△DEF成中心对称,请找出它们的对称中心。
4、如图,若四边形ABCD与四边形CEFG成中心对称,则它们的对称中心是______,点A的对称点是______,E的对称点是______.BD∥______且BD=______.连结A,F的线段经过______,且被C点______,△ABD≌______.
4题图
5、如图,点A'是A关于点O的对称点,请作出线段AB关于点O对称的线段A'B'
四、课外拓展
1、如图,在△ABC中,B=90°,C=30°,AB=1,将△ABC绕定点A旋转180°,点C落在C'处,求CC'的长为多少?
2、如图,已知AD是△ABC的中线:
1)画出与△ACD关于D点成中心对称的三角形;
2)找出与AC相等的线段;
3)探索:三角形中AB与AC的和与中线AD之间的关系,并说明理由;
4)若AB=5、AC=3,则线段AD的取值范围为多少?
相关知识
旋转导学案
作为老师的任务写教案课件是少不了的,大家在认真写教案课件了。各行各业都在开始准备新的教案课件工作计划了,我们的工作会变得更加顺利!你们知道哪些教案课件的范文呢?为此,小编从网络上为大家精心整理了《旋转导学案》,供大家参考,希望能帮助到有需要的朋友。
《旋转》第二节中心对称导学案1
主审人:
班级:学号:姓名:
学习目标:
【知识与技能】
1、通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成.
2、掌握成中心对称的两个图形的性质,以及利用两种不同方式来作出中心对称的图形.
【过程与方法】
利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置.
【情感、态度与价值观】
经历对日常生活与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识.
【重点】
中心对称的性质及初步应用.
【难点】
中心对称与旋转之间的关系.
学习过程:
一、自主学习
(一)复习巩固
如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,并写出简要作法.
作法:(1)
(2)
(3)
(4)
即:△DEF就是所求作的三角形,如图所示.
(二)自主探究
1、观察、实验:选择你最喜欢的一幅图,用透明纸覆盖在图上,描出其中的一部分,用大头针固定在O处。旋转180°后,你有什么发现?
(1)(2)(3)
发现:把一个图形绕着某一个旋转,如果他们能够与另一个图形,那么就说这个图形或,这个点叫做,这两个图形中的叫做关于中心的.
2、组内交流
在图5中,我们通过实验知四边形ABCD和四边形A'B'C'D'关于点O对称。
(1)你知道它的对称中心、对称点吗?
(2)连接AA'、BB'、CC'、DD'你有什么发现?
(3)线段AB、BC、CD、DA的对应线段是什么?AB与A'B'的关系是怎样的?四边形ABCD和四边形A'B'C'D'有什么关系?为什么?
(三)、归纳总结:
1、默写中心对称的概念:
2、中心对称的性质:
1)
2)
(四)自我尝试:
(1)、已知点A和点O,画出点A关于点O的对称点A'。
(2)、已知如图△ABC和点O,画出与△ABC关于点O的对称图形A'B'C'。
二、教师点拔
1、中心对称与图形旋转的关系?
2、中心对称与轴对称的区别:
轴对称中心对称
有一条对称轴---()有一个对称中心---()
图形沿对称轴(翻折180°)后重合图形绕对称中心后重合
对称点的连线被对称轴对称点连线经过,且被对称
中心
三、课堂检测
1、已知下列命题:①关于中心对称的两个图形一定不全等;②关于中心对称的两个图形一定全等;③两个全等的图形一定成中心对称,其中真命题的个数是()
A、0B、1C、2D、3
2、下列图形即是轴对称又是中心对称的是()
ABCC
3、已知,△ABC与△DEF成中心对称,请找出它们的对称中心。
4、如图,若四边形ABCD与四边形CEFG成中心对称,则它们的对称中心是______,点A的对称点是______,E的对称点是______.BD∥______且BD=______.连结A,F的线段经过______,且被C点______,△ABD≌______.
4题图
5、如图,点A'是A关于点O的对称点,请作出线段AB关于点O对称的线段A'B'
四、课外拓展
1、如图,在△ABC中,B=90°,C=30°,AB=1,将△ABC绕定点A旋转180°,点C落在C'处,求CC'的长为多少?
2、如图,已知AD是△ABC的中线:
1)画出与△ACD关于D点成中心对称的三角形;
2)找出与AC相等的线段;
3)探索:三角形中AB与AC的和与中线AD之间的关系,并说明理由;
4)若AB=5、AC=3,则线段AD的取值范围为多少?
旋转变换学案
每个老师为了上好课需要写教案课件,大家应该开始写教案课件了。教案课件工作计划写好了之后,才能够使以后的工作更有目标性!有没有好的范文是适合教案课件?小编特地为大家精心收集和整理了“旋转变换学案”,大家不妨来参考。希望您能喜欢!
课题2.4旋转变换授课时间
学习目标知识目标:
1、了解现实生活中的平移。2、理解图形平移变换的概念。
3、理解图形平移变换的性质:即图形平移变换不改变图形的形状、大小和方向;连接对称点的线段平行且相等。4.会按要求做出简单平面图形平移变换后的图形。
能力目标:
通过自学、想象、推理、交流等活动,发展空间观念、推理能力和动手组图的能力.
情感目标:通过小组合作,培养合作交流的习惯。
学习重难点重点:平移变换的概念和性质。
难点:做平移的图形
自学过程设计教学过程设计
看一看
认真阅读教材,记住以下知识:
1、平移变换定义:
2、平移变换的性质:
3、做一做:
1、完成课堂作业部分(写在预习本上)
1、下面的六幅图案中,(2)(3)(4)(5)(6)中的哪个图案可以通过平移图案(1)得到,轴对称得到呢?
2、说说下面的这些运动哪些是平移,那些不是平移,为什么?
你还有哪些地方不是很懂?请写出来。
______________________________________________________________________________________________________________________________________________________________________________________________________预习展示:
下列图形变换各是什么变换?请说明理由。
(1)
(2)
区别:轴对称变换改变了图形的方向,而平移变换不改变图形的方向。
作图:
(1)先把方格纸中的线段AB向上平移3个单位,再向右平移2个单位,请在方格纸上作出经上述两次平移变换后所得的图形。
把ΔABC向右平移6格,画出所得到的ΔA’B’C’。
(2)度量ΔABC与ΔA’B’C’的边、角的大小,你发现了什么?
应用:
1、把长方形ABCD(如图)沿箭头所指的方向平移,使点C落在点C’。求经这一平移变换后所得的像。
作点的平移变换的像是
图形平移变换作图的基本方法
2、画出△ABC沿着线段MN的方向平移后的位置,平移的距离是线段MN的长度;
提示:要正确画出一个图形按要求平移后的新图形,只要先画出关键点的对应点,如线段的端点、三角形的顶点、圆的圆心等等,就很容易画出新图形了
堂堂清:
1、将面积为30cm2的等腰直角三角形ABC向下平移20cm,得到△MNP,则△MNP是三角形,它的面积是cm2
2、“小小竹排水中游,巍巍青山两岸走”,所蕴涵的图形变换是__________变换?
思考:如图所示,是小李家电视机的背景墙面上的装饰板,它是一块底色为蓝色的正方形板,边长18cm,上面横竖各两道红条进行装饰,红条宽都是2cm,问蓝色部分板面面积是多少?
教后反思通过这节课的学习,学生对平移称变换有了一定的了解,并能动手根据平移变换的性质来做图,在么有给定方格纸的情况下学生也能够把图做的出来,培养了学生的动手操作及想象能力。抓住了不同变换的要求及性质后作图就,没有那么难了,学生的接受能力还是比较强的。
图形的旋转导学案
张家港市一中2014—2015学年度第二学期八年级数学导学案
初二班姓名学号
课题:9.1图形的旋转
教学目标:1.经历对生活中旋转现象的观察、分析过程,学会用数学的眼光看待生活中的有关问题;2.通过具体实例的认识旋转,研究、发现旋转的性质;3.经历对具有旋转特征的图形的观察、作图、操作等过程,掌握和熟悉作图的技能。
教学重点难点:探索发现旋转图形的定义以及性质,并能熟练的掌握。怎么样利用旋转的性质作一个图形的旋转图形。
一.课前预习与导学
1.(1)在平面内,将一个图形绕一个_______转动________的角度,这样的图形运动称为图形的旋转。这个定点成为______,旋转的角度称为_________.
(2)旋转前后的图形________(对应线段_____,对应角_______)。
(3)对应点到旋转中心的距离__________。
(4)每一对对应点与旋转中心的连线所成的角彼此______。
(5)如图,画出⊿ABC绕点A逆时针旋转90°后的图形。
2.小组交流合作:
(1)举出生活有关旋转的例子。
(2)选择:①下列现象属于旋转的是()
A.摩托车在急刹车时向前滑动;B.飞机起飞后冲向空中的过程
C.幸运大转盘转动的过程;D.笔直的铁轨上飞驰而过的火车
②在图形旋转中,下列说法错误的是()
A.图形上各点的旋转角度相同;B.旋转不改变图形的大小、形状;
C.由旋转得到的图形也一定可以由平移得到;D.对应点到旋转中心距离相等
(3)指出下图中的旋转、旋转中心、旋转角?
二。课堂研讨:
1.如图,△ABC是等边三角形,点D是BC上一点,△ABD经过旋转后到达△ACD’的位置。(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置?
2.下图是由正方形ABCD旋转而成。(1)旋转中心是______
(2)旋转的角度是______(3)若正方形的边长是1,则C′D=_____
3.旋转作图
(1)画出将线段AB绕点O按顺时针方向旋转1000后的图形。
(2)画出将△ABC绕点C按逆时针方向旋转1200后的对应三角形。
(3)画出△ABC绕点C逆时针旋转90°后的图形.
4.如图,如果正方形CDEF旋转后能与正方形ABCD重合,那么图形
所在的平面上可以作为旋转中心的点共有______个。
5.已知:如图,在△ABC中,∠BAC=1200,以BC为边向形外作等边三角形△BCD,把△ABD绕着点D按顺时针方向旋转600后得到△ECD,若AB=3,AC=2,求∠BAD的度数与AD的长.
6.如右上图:画出AB绕点O旋转后,线段AB的对应线段是A′B′,试确定旋转中心点O的位置.
7.探究:如图3.1-19,Rt△ABC中,∠ACB=90°,
AC=,BC=1,将Rt△ABC绕C点旋转90°后
为Rt△A’B’C’,再将Rt△A’B’C’绕B点旋转
为Rt△A”B”C”使得A、C、B’、A”在同一直线上,
则A点运动到A”点所走的长度为.
三.课堂小结
教学后记:
图形旋转要有三个关键要素:一是旋转的中心,即绕着哪一个点旋转;二是旋转的方向,按顺时针还是逆时针方向旋转;三是旋转的角度。为了突破学生在方格纸上把简单图形按顺时针或逆时针旋转90°这个难点,笔者思考能否将静止的方格图形在学生手中活动起来,让学生看清楚它的完整旋转过程?再用“探究验证”法来检测自己的学习成果。在“操作——验证”这样的过程中逐步建构图形旋转的方法和关键点。
初二数学课堂练习班级姓名学号。
1.如图1所示图形旋转一定角度能与自身重合,则旋转的角度可能是()
A.30°B.60°C.90°D.120°
2.如图2,△ABC按顺时针方向旋转一个角度后成为△A/B/C/,指出图中的旋转中心是()A.A点B.B点C.C点D.B/点
图1
3.如图3,△ABC为等边三角形,D是△ABC内一点,若将△ABD经过旋转后到△ACP位置,则旋转中心是__________,旋转角等于_________度,△ADP是___________三角形.
4.如图4,△ABC与△CDE都是等边三角形,图中的△________和△_______可以绕
点旋转_______度互相得到.
5.如图5,△ABC按逆时针方向转动了80°以后成为△A/B/C/,已知∠B=60度,∠C=55度,那么∠BAC/=度.
6.如图,在等腰直角△ABC中,∠C=900,BC=2cm,如果以AC的中点O为旋转中心,将这个三角形旋转1800,点B落在点B′处,求BB′的长度.
7.按要求分别画出旋转图形:
(1)画△ABC绕O点顺时针方向旋转90°后得到△
(2)把四边形ABCD绕O点逆时针方向旋转90°后得四边形。
8.王虎使一长为4,宽为3的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A翻滚到A2位置时共走过的路径长为