88教案网

你的位置: 教案 > 高中教案 > 导航 > 高三物理《万有引力与航天》教材分析

高中美术万能教案

发表时间:2021-02-18

高三物理《万有引力与航天》教材分析。

一名优秀的教师在教学时都会提前最好准备,作为教师就要在上课前做好适合自己的教案。教案可以让学生更好的消化课堂内容,帮助教师掌握上课时的教学节奏。那么,你知道教案要怎么写呢?下面是小编为大家整理的“高三物理《万有引力与航天》教材分析”,欢迎您参考,希望对您有所助益!

高三物理《万有引力与航天》教材分析

考点16万有引力与航天
考点名片
考点细研究:要点:以万有引力定律为基础的行星、卫星匀速圆周运动模型及其应用;双星模型、估算天体的质量和密度等;以开普勒三定律为基础的椭圆运行轨道及卫星的发射与变轨、能量等相关内容;万有引力定律与地理、数学、航天等知识的综合应用。
备考正能量:高考对本考点的命题比较固定,基本是一个选择题,个别省份有填空题和计算题出现。考点内容与人造卫星、载人航天、探月计划等热点话题密切联系,考查的频率也越来越高,应密切关注。

一、基础与经典
1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()
A.太阳位于木星运行轨道的中心
B.火星和木星绕太阳运行速度的大小始终相等
C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方
D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积
答案C
解析由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A错误。火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B错误。根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C正确。对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D错误。
2.关于万有引力定律,下列说法正确的是()
A.牛顿提出了万有引力定律,并测定了引力常量的数值
B.万有引力定律只适用于天体之间
C.万有引力的发现,揭示了自然界一种基本相互作用的规律
D.地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳的万有引力大小是相同的
答案C
解析万有引力存在于一切物体间,B错误;牛顿提出万有引力定律,卡文迪许测定了万有引力恒量,A错误;万有引力是自然界的一种基本相互作用,它与距离的平方成反比,故C正确,D错误。
3.a、b、c、d是在地球大气层外的圆形轨道上运行的四颗人造卫星。其中a、c的轨道相交于P,b、d在同一个圆轨道上,b、c轨道在同一平面上。某时刻四颗卫星的运行方向及位置如图所示。下列说法中正确的是()

A.a、c的加速度大小相等,且大于b的加速度
B.b、c的角速度大小相等,且小于a的角速度
C.a、c的线速度大小相等,且小于d的线速度
D.a、c存在在P点相撞的危险
答案A
解析由图可知:ra=rcab,A正确。G=m=mω2r=ma,可知,B、C错误;a、c周期相同,故不可能同时到达同一位置,D错误。
4.(多选)如图所示,近地人造卫星和月球绕地球的运行轨道可视为圆。设卫星、月球绕地球运行周期分别为T卫、T月,地球自转周期为T地,则()

A.T卫T月
C.T卫r同r卫,由开普勒第三定律=k可知,T月T同T卫,又同步卫星的周期T同=T地,故有T月T地T卫,选项A、C正确。
5.研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时。假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比()
A.距地面的高度变大B.向心加速度变大
C.线速度变大D.角速度变大
答案A
解析根据G=m2r可知r=,若T增大,r增大,h=r-R,故A正确。根据a=可知,r增大,a减小,B错误。根据G=可得v=,r增大,v减小,C错误。ω=,T增大,ω减小,D错误。
6.某行星和地球绕太阳公转的轨道均可视为圆,每过N年,该行星会运行到日地连线的延长线上,如图所示。该行星与地球的公转半径之比为()

A.B.
C.D.
答案B
解析地球公转周期T1=1年,设T2为行星的公转周期,每过N年,行星会运行到日地连线的延长线上,即地球比该行星多转一圈,有N-N=2π,解得:T2=年,故行星与地球的公转周期之比为;由G=mr得:=,即rT,故行星与地球的公转半径之比为,B正确。
7.(多选)“神舟九号”飞船与“天宫一号”成功对接,在飞船完成任务后返回地面,要在A点从圆形轨道进入椭圆轨道,B为轨道上的一点,如图所示,关于“神舟九号”的运动,下列说法中正确的有()

A.在轨道上经过A的速度小于经过B的速度
B.在轨道上经过A的速度小于在轨道上经过A的速度
C.在轨道上运动的周期小于在轨道上运动的周期
D.在轨道上经过A的加速度小于在轨道上经过A的加速度
答案ABC
解析“神舟九号”飞船在轨道上经过远地点A的速度小于经过近地点B的速度,选项A正确;飞船从圆形轨道进入椭圆轨道,需要在A点减速,选项B正确;由开普勒第三定律=k可知,轨道半长轴越长周期越长,轨道上的周期小于轨道上的运动周期,选项C正确;a=可知,rA不变,所以在轨道上经过A的加速度等于在轨道上经过A的加速度,选项D错误。
8.(多选)设同步卫星离地心的距离为r,运行速率为v1,加速度为a1;地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球的半径为R,则下列比值正确的是()
A.=B.=C.=D.=
答案BD
解析地球同步卫星的角速度和地球赤道上的物体随地球自转的角速度相同,由a1=ω2r,a2=ω2R可得,=,B项正确;对于地球同步卫星和以第一宇宙速度运动的近地卫星,由万有引力提供向心力,即m=;m=,得=,D项正确。
9.(多选)宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称为双星系统。在浩瀚的银河系中,多数恒星都是双星系统。设某双星系统A、B绕其连线上的O点做匀速圆周运动,如图所示。若,则()

A.星球A的质量一定大于B的质量
B.星球A的线速度一定大于B的线速度
C.双星间距离一定,双星的质量越大,其转动周期越大
D.双星的质量一定,双星之间的距离越大,其转动周期越大
答案BD
解析设双星质量分别为mA、mB,轨道半径为RA、RB,两者间距为L,周期为T,角速度为ω,由万有引力定律可知:=mAω2RA,=mBω2RB,又有RA+RB=L,可得=,G(mA+mB)=ω2L3。由知,mAvB,B正确。由T=及G(mA+mB)=ω2L3可知C错误,D正确。
10.(多选)在太阳系中有一颗半径为R的行星,若在该行星表面以初速度v0竖直向上抛出一物体,上升的最大高度为H,已知该物体所受的其他力与行星对它的万有引力相比较可忽略不计。根据这些条件,可以求出的物理量是()
A.太阳的密度
B.该行星的第一宇宙速度
C.该行星绕太阳运行的周期
D.卫星绕该行星运行的最小周期
答案BD
解析由v=2gH,得该行星表面的重力加速度g=
根据mg=m=mR,解得该行星的第一宇宙速度v=,卫星绕该行星运行的最小周期T=,所以B、D正确;因不知道行星绕太阳运动的任何量,故不能算太阳的密度和该行星绕太阳运动的周期,所以A、C错误。
二、真题与模拟
11.20xx·全国卷]关于行星运动的规律,下列说法符合史实的是()
A.开普勒在牛顿定律的基础上,导出了行星运动的规律
B.开普勒在天文观测数据的基础上,总结出了行星运动的规律
C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因
D.开普勒总结出了行星运动的规律,发现了万有引力定律
答案B
解析行星运动的规律是开普勒在第谷长期观察行星运动数据的基础上总结归纳出来的,并不是在牛顿运动定律的基础上导出的,但他并没有找出行星按这些规律运动的原因,A、C错误,B正确。牛顿发现了万有引力定律,D错误。
12.20xx·江苏高考](多选)如图所示,两质量相等的卫星A、B绕地球做匀速圆周运动,用R、T、Ek、S分别表示卫星的轨道半径、周期、动能、与地心连线在单位时间内扫过的面积。下列关系式正确的有()

A.TATBB.EkAEkB
C.SA=SBD.=
答案AD
解析卫星做圆周运动,万有引力提供向心力,即G=m=mR2,得v=,T=2π,由于RARB可知,TATB,vAa1a3B.a3a2a1
C.a3a1a2D.a1a2a3
答案D
解析对于东方红一号卫星,在远地点由牛顿第二定律可知=m1a1,即a1=(r1=2060km)。对于东方红二号卫星,由牛顿第二定律可知=m2a2,即a2=(r2=35786km)。因为r1a2,由圆周运动规律可知,对东方红二号卫星:a2=r2,对地球赤道上的物体:a3=R,因为r2R,所以a2a3,综上可得a1a2a3,D正确。
15.20xx·天津高考]我国即将发射“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接。假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()

A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接
B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接
C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
答案C
解析卫星绕地球做圆周运动,满足G=。若加速,则会造成G,卫星将做离心运动,向外跃迁。因此要想使两卫星对接绝不能同轨道加速或减速,只能从低轨道加速或从高轨道减速,C正确,A、B、D错误。
16.20xx·广东高考](多选)在星球表面发射探测器,当发射速度为v时,探测器可绕星球表面做匀速圆周运动;当发射速度达到v时,可摆脱星球引力束缚脱离该星球。已知地球、火星两星球的质量比约为101,半径比约为21。下列说法正确的有()
A.探测器的质量越大,脱离星球所需要的发射速度越大
B.探测器在地球表面受到的引力比在火星表面的大
C.探测器分别脱离两星球所需要的发射速度相等
D.探测器脱离星球的过程中,势能逐渐增大
答案BD
解析由G=m得,v=,则有v=,由此可知探测器脱离星球所需要的发射速度与探测器的质量无关,A项错误;由F=G及地球、火星的质量、半径之比可知,探测器在地球表面受到的引力比在火星表面的大,B项正确;由v=可知,探测器脱离两星球所需的发射速度不同,C项错误;探测器在脱离两星球的过程中,引力做负功,引力势能是逐渐增大的,D项正确。
17.20xx·重庆高考]宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象。若飞船质量为m,距地面高度为h,地球质量为M,半径为R,引力常量为G,则飞船所在处的重力加速度大小为()
A.0B.C.D.
答案B
解析对飞船进行受力分析,可得G=mg,得g=,B项正确。
18.20xx·江苏高考]过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51pegb”的发现拉开了研究太阳系外行星的序幕。“51pegb”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的。该中心恒星与太阳的质量比约为()
A.B.1C.5D.10
答案B
解析行星绕恒星做匀速圆周运动,万有引力提供向心力,由G=mr2,得M=,则该中心恒星的质量与太阳的质量之比=·=3×=1.04,B项正确。
19.20xx·全国卷](多选)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落。已知探测器的质量约为1.3×103kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8m/s2。则此探测器()
A.在着陆前的瞬间,速度大小约为8.9m/s
B.悬停时受到的反冲作用力约为2×103N
C.从离开近月圆轨道到着陆这段时间内,机械能守恒
D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度
答案BD
解析由题述地球质量约为月球质量的81倍,地球半径约为月球半径的3.7倍,由公式G=mg,可得月球表面的重力加速度约为地球表面重力加速度的,即g月=1.6m/s2,由v2=2g月h,解得此探测器在着陆瞬间的速度v≈3.6m/s,选项A错误;由平衡条件可得悬停时受到的反冲作用力约为F=mg月=1.3×103×1.6N≈2×103N,选项B正确;从离开近月圆轨道到着陆这段时间,由于受到了反冲作用力,且反冲作用力对探测器做负功,所以探测器机械能减小,选项C错误;由G=m,G=mg,解得v=,由于地球半径和地球表面的重力加速度均大于月球,所以探测器在近月轨道上运行的线速度要小于人造卫星在近地轨道上运行的线速度,选项D正确。
20.20xx·山东高考]如图,拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动。据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动。以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小。以下判断正确的是()

A.a2a3a1B.a2a1a3
C.a3a1a2D.a3a2a1
答案D
解析因空间站建在拉格朗日点,所以月球与空间站绕地球转动的周期相同,空间站半径小,由a=ω2r得a1a2a1,选项D正确。

一、基础与经典
21.宇航员驾驶宇宙飞船到达月球表面,关闭动力,飞船在近月圆形轨道绕月运行的周期为T;接着,宇航员调整飞船动力,安全着陆,宇航员在月球表面离地某一高度处将一质量为m的小球以初速度v0水平抛出,其水平射程为s。已知月球的半径为R,引力常量为G,求:
(1)月球的质量M;
(2)小球开始抛出时离地的高度;
(3)小球落地时重力的瞬时功率。
答案(1)(2)(3)
解析(1)飞船在近月圆形轨道上运动时,月球对飞船的万有引力提供向心力,有G=mR2,
解得月球的质量M=。
(2)小球做平抛运动,水平方向做匀速直线运动,有s=v0t,
竖直方向做自由落体运动,有h=gt2,
在月球表面,小球受到月球的万有引力近似等于重力,有
G=mR2=mg,
联立解得小球开始抛出时离地的高度为h=。
(3)小球落地时速度的竖直分量为v=gt=,
重力的瞬时功率为P=mgv=m·=。
22.如图所示,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间的距离为L。已知A、B的中心和O点始终共线,A和B分别在O点的两侧。引力常量为G。

(1)求两星球做圆周运动的周期。
(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期为T2。已知地球和月球的质量分别为5.98×1024kg和7.35×1022kg。求T2与T1两者的平方之比。(结果保留3位小数)
答案(1)2π(2)1.012
解析(1)A和B绕O点做匀速圆周运动,它们之间的万有引力提供向心力,则A和B的向心力相等,且A、B的中心和O点始终共线,说明A和B组成双星系统且有相同的角速度和周期。设A、B做圆周运动的半径分别为r、R,则有
mω2r=Mω2R,r+R=L,
联立解得R=L,r=L,
对A,根据牛顿第二定律和万有引力定律得
=m2L,
解得T=2π。
(2)由题意,可以将地月系统看成双星系统,由(1)得
T1=2π,
若认为月球绕地心做圆周运动,则根据牛顿第二定律和万有引力定律得
=m2L,
解得T2=2π,
所以T2与T1的平方之比为
===1.012。
二、真题与模拟
23.20xx·天津高考]万有引力定律揭示了天体运行规律与地上物体运动规律具有内在的一致性。
(1)用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果。已知地球质量为M,自转周期为T,万有引力常量为G。将地球视为半径为R、质量均匀分布的球体,不考虑空气的影响。设在地球北极地面称量时,弹簧秤的读数为F0。
a.若在北极上空高出地面h处称量,弹簧秤读数为F1,求比值的表达式,并就h=1.0%R的情形算出具体数值(计算结果保留2位有效数字);
b.若在赤道地面称量,弹簧秤读数为F2,求比值的表达式。
(2)设想地球绕太阳公转的圆周轨道半径r、太阳的半径为RS和地球的半径R三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变,仅考虑太阳和地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?
答案(1)a.=0.98b.=1-
(2)与现实地球的1年时间相同
解析(1)设小物体质量为m。
a.在北极地面G=F0,在北极上空高出地面h处
G=F1,
得=,h=1.0%R时,=≈0.98。
b.在赤道地面,小物体随地球自转做匀速圆周运动,受到万有引力和弹簧秤的作用力,有G-F2=mR,
得=1-。
(2)地球绕太阳做匀速圆周运动,受到太阳的万有引力。设太阳质量为MS,地球质量为M,地球公转周期为TE,有G=M,得TE==,其中ρS为太阳的密度。
由上式可知,地球公转周期TE仅与太阳的密度、地球公转轨道半径与太阳半径之比有关。因此“设想地球”的1年与现实地球的1年时间相同。
24.20xx·云南重点中学联考]有一质量为m的航天器靠近地球表面绕地球做匀速圆周运动(轨道半径等于地球半径),某时刻航天器启动发动机,向后喷气,在很短的时间内动能变为原来的,此后轨道变为椭圆,远地点与近地点距地心的距离之比是21,经过远地点和经过近地点的速度之比为12。已知地球半径为R,地球表面重力加速度为g。
(1)求航天器在靠近地球表面绕地球做圆周运动时的周期T;
(2)求航天器靠近地球表面绕地球做圆周运动时的动能;
(3)在从近地点运动到远地点的过程中航天器克服地球引力所做的功为多少?
答案(1)2π(2)mgR(3)mgR
解析(1)由牛顿第二定律mg=m2R,
解得T=2π。
(2)设航天器靠近地球表面绕地球做圆周运动时的速度为v1,由mg=m,解得Ek1=mv=mgR。
(3)由题意,喷气后航天器在近地点的动能为Ek2=Ek1=mgR,
航天器在远地点的动能为Ek3=Ek2=mgR。
由动能定理得航天器克服地球引力所做的功为
W=Ek2-Ek3=mgR。

相关知识

高三物理《曲线运动万有引力与航天》复习检测


高三物理《曲线运动万有引力与航天》复习检测

一、选择题(本题共13小题,每小题5分,共65分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)
1、在漂流探险中,探险者驾驶摩托艇想上岸休息.假设江岸是平直的,江水沿江向下游流去,水流速度为v1,摩托艇在静水中的航速为v2,原来地点A离岸边最近处O点的距离为d.若探险者想在最短时间内靠岸,则摩托艇登陆的地点离O点的距离为()
A.B.0
C.D.
C[根据运动的独立性与等时性可知,当摩托艇船头垂直江岸航行,即摩托艇在静水中的航速v2全部用来靠岸时,用时最短,最短时间t=,在此条件下摩托艇登陆的地点离O点的距离为x=v1t=.故选C.]
2.如图1所示,小物体A与圆盘保持相对静止跟着圆盘一起做匀速圆周运动,则A受力情况是()

图1
A.重力、支持力
B.重力、向心力
C.重力、支持力、指向圆心的摩擦力
D.重力、支持力、向心力、摩擦力
C[物体在水平面上,一定受到重力和支持力作用,物体在转动过程中,有背离圆心的运动趋势,因此受到指向圆心的静摩擦力,且静摩擦力提供向心力,故A、B、D错误,C正确.]
3.如图2所示是一个玩具陀螺.a、b和c是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()

图2
A.a、b和c三点的线速度大小相等
B.a、b和c三点的角速度相等
C.a、b的角速度比c的大
D.c的线速度比a、b的大
B[a、b、c三点为共轴转动,故角速度相等,B正确,C错误;又由题图知,三点的转动半径ra=rbrc,根据v=ωr知,va=vbvc,故A、D错误.]
4.1.(20xx·温州调研)若已知物体的速度方向和它所受合力的方向,如图所示,可能的运动轨迹是()

C[物体做曲线运动时,轨迹夹在速度方向和合力方向之间,合力大致指向轨迹凹的方向.故C正确,而B不应该出现向下凹的现象,故A、B、D错误.]
5.如图3所示,细线一端固定在天花板上的O点,另一端穿过一张CD光盘的中央小孔后拴着一个橡胶球,橡胶球静止时,竖直悬线刚好挨着水平桌面的边沿.现将CD光盘按在桌面上,并沿桌面边缘以速度v匀速移动,移动过程中,CD光盘中央小孔始终紧挨桌面边线,当悬线与竖直方向的夹角为θ时,小球上升的速度大小为()

图3
A.vsinθB.vcosθ
C.vtanθD.vcotθ
A[将光盘水平向右移动的速度v分解为沿细线方向的速度和垂直于细线方向的速度,而小球上升的速度大小与速度v沿细线方向的分速度大小相等,故可得:v球=vsinθ,A正确.]
6.(20xx·宁波选考模拟)光盘驱动器读取数据的某种方式可简化为以下模式,在读取内环数据时,以恒定角速度方式读取,而在读取外环数据时,以恒定线速度的方式读取.如图4所示,设内环内边缘半径为R1,内环外边缘半径为R2,外环外边缘半径为R3.A、B、C分别为各边缘线上的点,则读取内环上A点时的向心加速度大小和读取外环上C点时的向心加速度大小之比为()

图4
A.B.
C.D.
D[内环外边缘和外环内边缘为同一圆.A与B角速度相等,向心加速度之比为=.B与C线速度相等,向心加速度之比为=,读取内环上A点时的向心加速度大小和读取外环上C点时的向心加速度大小之比为=,选项D正确.]
7.火星的质量和半径分别约为地球的和,地球表面的重力加速度为g,则火星表面的重力加速度约为()
A.0.2gB.0.4g
C.2.5gD.5g
B[星球表面重力等于万有引力,即G=mg,故火星表面的重力加速度与地球表面的重力加速度之比为=×=0.4,故选项B正确.]
8.由我国自主研发的北斗卫星导航系统,空间段计划由35颗卫星组成,包括5颗静止轨道卫星、27颗地球轨道卫星、3颗倾斜同步轨道卫星.目前已经实现了覆盖亚太地区的定位、导航和授时以及短报文通信服务能力,预计到2020年左右,建成覆盖全球的北斗卫星导航系统.关于其中的静止轨道卫星(同步卫星),下列说法中正确的是()

图5
A.该卫星一定不会运动到杭州正上方天空
B.该卫星处于完全失重状态,卫星所在处的重力加速度为零
C.该卫星若受到太阳风暴影响后速度变小,它的轨道半径将变大
D.该卫星相对于地球静止,其运行速度等于地球赤道处自转的线速度
A[根据同步卫星的定义知,它只能在赤道上空,故A项对;卫星处于完全失重状态,重力加速度等于向心加速度,故B错;速度变小后,万有引力大于所需向心力,卫星的轨道半径将变小,C项错;卫星相对地球静止是指角速度等于地球自转角速度,由v=ωr知,其运行速度大于地球赤道处自转的线速度,故D项错.]
9.如图6所示是某课外研究小组设计的可以用来测量转盘转速的装置.该装置上方是一与转盘固定在一起有横向均匀刻度的标尺,带孔的小球穿在光滑细杆上与一轻弹簧相连,弹簧的另一端固定在转动轴上,小球可沿杆自由滑动并随转盘在水平面内转动.当转盘不转动时,指针指在O处,当转盘转动的角速度为ω1时,指针指在A处,当转盘转动的角速度为ω2时,指针指在B处,设弹簧均没有超过弹性限度.则ω1与ω2的比值为()

图6
A.B.
C.D.
B[小球随转盘转动时由弹簧的弹力提供向心力.设标尺的最小分度的长度为x,弹簧的劲度系数为k,则有kx=m·4x·ω,k·3x=m·6x·ω,故有ω1∶ω2=1∶,B正确.]
10.如图7所示,我国的气象卫星有两类,一类是极地轨道卫星——风云一号,绕地球做匀速圆周运动的周期为12h,另一类是地球同步轨道卫星——风云二号,绕地球做匀速圆周运动的周期为24h.下列说法正确的是()

图7
A.风云一号的线速度大于风云二号的线速度
B.风云一号的向心加速度小于风云二号的向心加速度
C.风云一号的角速度小于风云二号的角速度
D.风云一号、风云二号相对地面均静止
A[卫星绕地球做匀速圆周运动:G=mr,可知,风云一号卫星的周期和半径均小于风云二号卫星的周期和半径.根据万有引力提供圆周运动向心力G=m,有卫星的线速度v=,所以风云一号卫星的半径小,线速度大,故A正确;根据万有引力提供圆周运动向心力G=ma,有卫星的向心加速度a=G,风云一号的半径小,向心加速度大于风云二号卫星的向心加速度,故B错误;根据万有引力提供圆周运动向心力G=mω2r,解得:ω=,风云一号的半径小,角速度大于风云二号卫星的角速度,故C错误;风云二号是同步卫星,相对地面静止,而风云一号不是同步卫星,相对地面是运动的,故D错误.]
11.(加试要求)如图8所示,两个倾角分别为30°、45°的光滑斜面放在同一水平面上,两斜面间距大于小球直径,斜面高度相等.有三个完全相同的小球a、b、c,开始均静止于同一高度处,其中b小球在两斜面之间,a、c两小球在斜面顶端.若同时释放,小球a、b、c到达该水平面的时间分别为t1、t2、t3.若同时沿水平方向抛出,初速度方向如图所示,到达水平面的时间分别为t1′、t2′、t3′.下列关于时间的关系错误的是()

图8
A.t1t3t2
B.t1=t1′、t2=t2′、t3=t3′
C.t1′t3′t2′
D.t1t3t2.当平抛三小球时,小球b做平抛运动,竖直方向运动情况同第一种情况;小球a、c在斜面内做类平抛运动,沿斜面向下方向的运动同第一种情况,所以t1=t1′、t2=t2′、t3=t3′.故选D.]
12.(20xx·台州市调研)如图9所示,一小物块以大小为a=4m/s2的向心加速度做匀速圆周运动,半径R=1m,则下列说法正确的是()

图9
A.小物块运动的角速度为2rad/s
B.小物块做圆周运动的周期为2πs
C.小物块在t=s内通过的位移大小为m
D.小物块在πs内通过的路程为零
A[因为a=ω2R,所以小物块运动的角速度ω==2rad/s,周期T==πs,选项A正确,B错误;小物块在s内转过,通过的位移为m,在πs内转过一周,通过的路程为2πm,选项C、D错误.]
13.(加试要求)如图10所示为游乐园中空中转椅的理论示意图.长度不同的两根细绳悬挂于同一点,另一端各系一个质量相同的小球,使它们在同一水平面内做圆锥摆运动,则两个圆锥摆相同的物理量是()

图10
A.周期B.线速度的大小
C.绳的拉力D.向心力
A[对其中一个小球受力分析,如图,受重力、绳子的拉力,由于小球做匀速圆周运动.故合力提供向心力;
将重力与拉力合成,合力指向圆心,由几何关系得,合力:F=mgtanθ①由向心力公式得到:F=mω2r②设球与悬挂点间的竖直高度为h,由几何关系,得:r=htanθ③由①②③三式得,ω=,与绳子的长度和转动半径无关;又由T=,故周期与绳子的长度和转动半径无关,故A正确;由v=ωr,两球转动半径不等,故线速度不同,故B错误;绳子拉力:FT=,故绳子拉力不同,故C错误;由F=ma=mω2r,两球转动半径不等,故向心力不同,故D错误.]
二、非选择题(本题共4小题,共35分)
14.(7分)(20xx·丽水调研)在“探究平抛运动的运动规律”的实验中,可以描绘出小球平抛运动的轨迹,实验简要步骤如下:

图11
A.让小球多次从________释放,在一张印有小方格的纸上记下小球经过的一系列位置,如图11中a、b、c、d所示.
B.安装好器材,注意使________,记下平抛初位置O点和过O点的竖直线.
C.取下白纸,以O为原点,以竖直线为y轴建立坐标系,用平滑曲线画平抛运动物体的轨迹.
(1)完成上述步骤,将正确的答案填在横线上.
(2)上述实验步骤的合理顺序是________.
(3)已知图中小方格的边长L=1.25cm,则小球平抛的初速度为v0=________(用L、g表示),其值是________.(g取9.8m/s2)
【解析】(1)这种方法,需让小球重复同一个平抛运动多次,才能记录出小球的一系列位置,故必须让小球每次由同一位置静止释放.斜槽末端切线水平,小球才会做平抛运动.(3)由Δx=aT2得两点之间的时间间隔T=,所以小球的初速度v0==2代入数据得v0=0.70m/s.
【答案】(1)同一位置静止斜槽末端切线水平
(2)BAC
(3)20.70m/s
15.(8分)(20xx·湖州市联考)如图12所示,小球以15m/s的水平初速度向一倾角为37°的斜面抛出,飞行一段时间后,恰好垂直撞在斜面上.g取10m/s2,tan53°=,求:

图12
(1)小球在空中的飞行时间;
(2)抛出点距落点的高度.
【解析】如图所示.由几何关系知
β=90°-37°=53°.(1)由图得tanβ==,得飞行时间t=tanβ=2s.(2)高度h=gt2=×10×22m=20m.
【答案】(1)2s(2)20m
16.(9分)如图13为“快乐大冲关”节目中某个环节的示意图.参与游戏的选手会遇到一个人造山谷AOB,AO是高h=3m的竖直峭壁,OB是以A点为圆心的弧形坡,∠OAB=60°,B点右侧是一段水平跑道.选手可以自A点借助绳索降到O点后再爬上跑道,但身体素质好的选手会选择自A点直接跃上水平跑道.选手可视为质点,忽略空气阻力,重力加速度g取10m/s2.

图13
(1)若选手以速度v0水平跳出后,能跳在水平跑道上,求v0的最小值;
(2)若选手以速度v1=4m/s水平跳出,求该选手在空中的运动时间.
【解析】(1)若选手以速度v0水平跳出后,能跳在水平跑道上,则水平方向有hsin60°≤v0t,竖直方向有hcos60°=gt2解得v0≥m/s.(2)若选手以速度v1=4m/s水平跳出,因v1

20xx高考物理《万有引力与航天》材料分析


作为优秀的教学工作者,在教学时能够胸有成竹,教师在教学前就要准备好教案,做好充分的准备。教案可以让学生更好的吸收课堂上所讲的知识点,帮助教师在教学期间更好的掌握节奏。你知道怎么写具体的教案内容吗?为此,小编从网络上为大家精心整理了《20xx高考物理《万有引力与航天》材料分析》,仅供您在工作和学习中参考。

20xx高考物理《万有引力与航天》材料分析

第4节万有引力与航天
考点一|开普勒行星运动定律

1.第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在这些椭圆的一个焦点上.
2.第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积.
3.第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.其表达式为=k,其中a是椭圆轨道的半长轴,T是行星绕太阳公转的周期,k是一个对所有行星都相同的常量。

1.(20xx·余姚调研)关于太阳系中各行星的轨道,以下说法中正确的是()
A.所有行星绕太阳运动的轨道都是椭圆
B.有的行星绕太阳运动的轨道是圆
C.不同行星绕太阳运动的椭圆轨道的半长轴是相同的
D.不同的行星绕太阳运动的轨道都相同
A[八大行星的轨道都是椭圆,A正确,B错误;不同行星离太阳远近不同,轨道不同,半长轴也就不同,C、D错误.]
2.关于行星的运动,下列说法中不正确的是()
A.关于行星的运动,早期有“地心说”与“日心说”之争,而“地心说”容易被人们所接受的原因之一是由于相对运动使得人们观察到太阳东升西落
B.所有行星围绕太阳运动的轨道都是椭圆,且近地点速度小,远地点速度大
C.开普勒第三定律=k,式中k的值仅与中心天体的质量有关
D.开普勒三定律也适用于其他星系的行星运动
B[根据开普勒第二定律可以推断出近地点速度大,远地点速度小,故选项B错误.]
3.(20xx·温州模拟)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()
A.太阳位于木星运行轨道的中心
B.火星和木星绕太阳运行速度的大小始终相等
C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方
D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积
C[太阳位于木星椭圆运行轨道的一个焦点上,不同的行星运行在不同的椭圆轨道上,其运行周期和速度均不相同,不同的行星相同时间内,与太阳连线扫过的面积不相等,A、B、D均错误;由开普勒第三定律可知,C正确.]

考点二|万有引力定律及应用

1.万有引力定律
(1)内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离r的平方成反比.
(2)表达式:F=G
G为引力常量:G=6.67×10-11N·m2/kg2.
(3)适用条件
①公式适用于质点间的相互作用.当两个物体间的距离远大于物体本身的大小时,物体可视为质点.
②质量分布均匀的球体可视为质点,r是两球心间的距离.2.解决天体(卫星)运动问题的基本思路
(1)天体运动的向心力来源于天体之间的万有引力,即
G=man=m=mω2r=m.
(2)在中心天体表面或附近运动时,万有引力近似等于重力,即G=mg(g表示天体表面的重力加速度).3.天体质量和密度的估算
(1)利用天体表面的重力加速度g和天体半径R.
由于G=mg,故天体质量M=,
天体密度ρ===.
(2)通过观察卫星绕天体做匀速圆周运动的周期T和轨道半径r.
①由万有引力等于向心力,即G=mr,得出中心天体质量M=;
②若已知天体半径R,则天体的平均密度
ρ===.

(20xx·浙江10月学考)如图441所示,“天宫二号”在距离地面393km的近圆轨道运行,已知万有引力常量G=6.67×10-11N·m2/kg2,地球质量M=6.0×1024kg,地球半径R=6.4×103km.由以上数据可估算()

图441
A.“天宫二号”质量
B.“天宫二号”运行速度
C.“天宫二号”受到的向心力
D.地球对“天宫二号”的引力
B[根据万有引力定律,F向=F万=G=m,其中m为卫星质量,R为轨道半径,即地球半径与离地高度之和,则已知G、M、R,可得到运行速度v,无法得到卫星质量m,亦无法求得F向、F万.故选B.]

1.嫦娥三号远离地球飞近月球的过程中,地球和月球对它的万有引力F1、F2的大小变化情况是()
A.F1、F2均减小
B.F1、F2均增大
C.F1减小、F2增大
D.F1增大、F2减小
C[根据万有引力定律F=G,可知F1减小、F2增大,故选C.]
2.地球质量大约是月球质量的81倍,一飞行器位于地球与月球之间,当地球对它的引力和月球对它的引力大小相等时,飞行器距月球球心的距离与月球球心距地球球心之间的距离之比为()
A.1∶9B.9∶1
C.1∶10D.10∶1
C[设月球质量为m,则地球质量为81m,地月间距离为r,飞行器质量为m0,当飞行器距月球为r′时,地球对它的引力等于月球对它的引力,则G=G,所以=9,r=10r′,r′∶r=1∶10,故选项C正确.]
3.20xx年12月17日,我国发射了首颗探测“暗物质”的空间科学卫星“悟空”,使我国的空间科学探测进入了一个新阶段.已知“悟空”在距地面为h的高空绕地球做匀速圆周运动,地球质量为M,地球半径为R,引力常量为G,则可以求出()
A.“悟空”的质量
B.“悟空”的密度
C.“悟空”的线速度大小
D.地球对“悟空”的万有引力
C[根据万有引力充当向心力G=m,可求得“悟空”的线速度v=,因无法求出“悟空”的质量,从而无法求出“悟空”的密度和地球对“悟空”的万有引力,选项C正确,A、B、D错误.]
4.对于万有引力定律的表达式,下列说法正确的是()
A.G是引力常量,是人为规定的
B.当r等于零时,万有引力为无穷大
C.两物体受到的引力总是大小相等,与两物体质量是否相等无关
D.r是两物体间最近的距离
C[引力常量G的值是卡文迪许在实验室里用实验测定的,而不是人为规定的,故A错误;当两个物体间的距离趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用,故B错误;力是物体间的相互作用,万有引力同样适用于牛顿第三定律,即两物体受到的引力总是大小相等,与两物体质量是否相等无关,故C正确;r是两质点间的距离,质量分布均匀的球体可视为质点,此时r是两球心间的距离,故D错误.]
5.过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51pegb”的发现拉开了研究太阳系外行星的序幕.“51pegb”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的,该中心恒星与太阳的质量比约为()
A.B.1
C.5D.10
B[根据万有引力提供向心力,有G=mr,可得M=,所以恒星质量与太阳质量之比为==3×2≈1,故选项B正确.]

考点三|宇宙航行、经典力学的局限性

1.卫星的各物理量随轨道半径变化的规律2.三个宇宙速度
(1)第一宇宙速度
v1=7.9km/s,卫星在地球表面附近绕地球做匀速圆周运动的速度,又称环绕速度.
(2)第二宇宙速度
v2=11.2km/s,使卫星挣脱地球引力束缚的最小地面发射速度,又称脱离速度.
(3)第三宇宙速度
v3=16.7km/s,使卫星挣脱太阳引力束缚的最小地面发射速度,也叫逃逸速度.
3.第一宇宙速度的推导
方法一:由G=m得v1==7.9×103m/s.
方法二:由mg=m得
v1==7.9×103m/s.
第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,Tmin=2π=5075s≈85min.
4.宇宙速度与运动轨迹的关系
(1)v发=7.9km/s时,卫星绕地球做匀速圆周运动.
(2)7.9km/sR,所以v7.9km/s,C正确.]
2.关于地球的第一宇宙速度,下列表述正确的是()
A.第一宇宙速度又叫环绕速度
B.第一宇宙速度又叫脱离速度
C.第一宇宙速度跟地球的质量无关
D.第一宇宙速度跟地球的半径无关
A[第一宇宙速度又叫环绕速度,故A正确,B错误;根据定义有G=m,得v=,其中,M为地球质量,R为地球半径,故C、D错误.]
3.某行星有甲、乙两颗卫星,它们的轨道均为圆形,甲的轨道半径为R1,乙的轨道半径为R2,R2R1.根据以上信息可知()
A.甲的质量大于乙的质量
B.甲的周期大于乙的周期
C.甲的速率大于乙的速率
D.甲所受行星的引力大于乙所受行星的引力
C[轨道半径越小,向心加速度、线速度、角速度越大,周期越小,B错,C对;卫星质量不能比较,A错;因为两卫星质量不知道,万有引力也不能比较,D错.]
4.我国成功发射的“神舟”号载人宇宙飞船和人造地球同步通信卫星都绕地球做匀速圆周运动,已知飞船的轨道半径小于同步卫星的轨道半径。则可判定()
A.飞船的运行周期小于同步卫星的运行周期
B.飞船的线速度小于同步卫星的线速度
C.飞船的角速度小于同步卫星的角速度
D.飞船的向心加速度小于同步卫星的向心加速度
A[该卫星的质量为m,轨道半径为r,周期T,线速度为v,角速度为ω,向心加速度为an,地球的质量为M,由万有引力定律得G=m=m=mω2r=man,故T=2π,v=,ω=,an=,因为飞船的轨道半径小于同步卫星的轨道半径,所以飞船的运行周期小于同步卫星的运行周期,飞船的线速度大于同步卫星的线速度,飞船的角速度大于同步卫星的角速度,飞船的向心加速度大于同步卫星的向心加速度,选项A正确,B、C、D错误.]
5.如图444所示,a、b、c三颗卫星在各自的轨道上运行,轨道半径rambmc
D.三个卫星的运行周期为Ta

万有引力理论


作为优秀的教学工作者,在教学时能够胸有成竹,高中教师要准备好教案,这是每个高中教师都不可缺少的。教案可以让讲的知识能够轻松被学生吸收,帮助授课经验少的高中教师教学。你知道如何去写好一份优秀的高中教案呢?以下是小编为大家收集的“万有引力理论”欢迎您阅读和收藏,并分享给身边的朋友!

总课题万有引力与航天总课时第14课时
课题万有引力理论的成就课型新授课



标知识与技能
1、了解万有引力定律在天文学上的应用
2、会用万有引力定律计算天体的质量和密度
3、掌握综合运用万有引力定律和圆周运动学知识分析具体问题的方法
过程与方法
通过求解太阳.地球的质量,培养学生理论联系实际的运用能力
情感态度与价值观
通过介绍用万有引力定律发现未知天体的过程,使学生懂得理论来源于实践,反过来又可以指导实践的辨证唯物主义观点
教学
重点1、行星绕太阳的运动的向心力是由万有引力提供的。
2、会用已知条件求中心天体的质量。
教学
难点根据已有条件求中心天体的质量。
学法
指导自主阅读、合作探究、精讲精练、
教学
准备
教学
设想知识回顾→合作探究→突出重点,突破难点→典型例题分析→巩固知识→达标提升
教学过程
师生互动补充内容或错题订正
任务一知识回顾

1、请同学们回顾前面所学匀速圆周运动的知识,然后写出向心加速度的三种表达形式?

2、上节我们学习了万有引力定律的有关知识,现在请同学们回忆一下,万有引力定律的内容及公式是什么?公式中的G又是什么?G的测定有何重要意义?

任务二合作探究
(认真阅读教材,回答下列问题)
一、“科学真实迷人”
引导:求天体质量的方法一:是根据重力加速度求天体质量,即引力=重力mg=GMm/R2
1、推导出地球质量的表达式,说明卡文迪许为什么能把自己的实验说成是“称量地球的重量”?

2、设地面附近的重力加速度g=9.8m/s2,地球半径R=6.4×106m,引力常量G=6.67×10-11Nm2/kg2,试估算地球的质量。(写出解题过程。)

二、计算天体的质量
(学生阅读教材“天体质量的计算”部分的内容,同时考虑下列问题)
引导:求天体质量的方法二:是根据天体的圆周运动,即其向心力由万有引力提供,
1、应用万有引力定律求解中心天体质量的基本思路是什么?

2、根据环绕天体的运动情况求解其向心加速度有几种求法?

3、应用天体运动的动力学方程——万有引力充当向心力求出的天体质量有几种表达式?各是什么?各有什么特点?

4、应用此方法能否求出环绕天体的质量?为什么?

例题:把地球绕太阳公转看做是匀速圆周运动,平均半径为1.5×1011m,已知引力常量为:G=6.67×10-11Nm2/kg2,则可估算出太阳的质量大约是多少千克?(结果取一位有效数字,写出规范解答过程)

三、发现未知天体
(请同学们阅读课文“发现未知天体”部分的内容,考虑以下问题)
1、应用万有引力定律除可估算天体质量外,还可以在天文学上有何应用?

2、应用万有引力定律发现了哪些行星?

3、怎样应用万有引力定律来发现未知天体的?发表你的看法。(交流讨论)

任务三达标提升
1.地球公转的轨道半径是R1,周期是T1,月球绕地球运转的轨道半径是R2,周期是T2,则太阳质量与地球质量之比是()
A.B.C.D.
2.把太阳系各行星的轨迹近似的看作匀速圆周运动,则离太阳越远的行星,写列说法错误的是()
A.周期越小B.线速度越小C.角速度越小D.加速度越小
3.一颗小行星绕太阳做匀速圆周运动的半径是地球公转半径的4倍,则这颗小行星运转的周期是()
A.4年B.6年C.8年8/9年
4.下面说法错误的是()
A.海王星是人们依据万有引力定律计算出轨道而发现的
B.天王星是人们依据万有引力定律计算出轨道而发现的
C.天王星的运动轨道偏离根据万有引力定律计算出来的轨道,其原因是由于天王星受到轨道外面其他行星的引力作用
D.冥王星是人们依据万有引力定律计算出轨道而发现的
5、(多项选择)利用下列哪组数据,可以计算出地球的质量(已知引力常量G)()
A.已知地球的半径R和地面的重力加速度g
B.已知卫星绕地球做匀速圆周运动的轨道半径r和线速度v
C.已知卫星绕地球做匀速圆周运动的轨道半径r和周期T
D.以上说法都不正确
6、设地球表面重力加速度为g0,物体在距离地心4R(R是地球的半径)处,由于地球的作用而产生的加速度为g,则g/g0为()
A.1B.1/9C.1/4D.1/16
7.假设火星和地球都是球体,火星质量M火和地球质量M地之比为M火/M地=p,火星半径R火和地球半径R地之比为R火/R地=q,那么火星表面处的重力加速度g火和地球表面处的重力加速度g地之比g火/g地等于()
A.p/q2B.pq2C.p/qD.pq
8.通过天文观测到某行星的一个卫星运动的周期为T,轨道半径为r,若把卫星的运动近似看成匀速圆周运动,试求出该行星的质量.

高三物理教案:《万有引力》教学设计


一名爱岗敬业的教师要充分考虑学生的理解性,教师要准备好教案,这是教师需要精心准备的。教案可以让学生们充分体会到学习的快乐,让教师能够快速的解决各种教学问题。那么,你知道教案要怎么写呢?考虑到您的需要,小编特地编辑了“高三物理教案:《万有引力》教学设计”,供大家参考,希望能帮助到有需要的朋友。

一.关于万有引力定律考纲要求

MicrosoftInternetExplorer402DocumentNotSpecified7.8 磅Normal0

主题

内容

要求

万有引力定律

万有引力定律及其应用

环绕速度

第二宇宙速度和第三宇宙速度

经典时空观和相对论时空观

二.教学目标

1.知识与技能:①掌握天上的卫星及“地面”上的物体做圆周运动的向心力的来源不同,理解万有引力向心力和重力间的区别与联系。

②会比较不同绕转天体做圆周运动的参量间的定性关系。

③能建立向心力与圆周运动参量间的定量关系。

2.过程与方法:通过本节学习提升学生对已知知识的整合能力,强化构建知识网络意识,掌握知识的横向和纵深拓展能力和方法。

3.情感态度与价值观:通过一题多变体会物理知识的灵活性,通过总结又可以多题归一,培养学生科学严谨的思维。

三.教学重点与难点:

1.教学重点:明确做圆周运动的向心力的来源及能建立向心力与圆周运动参量间的定性关系。

2.教学难点:掌握天上的卫星及“地面”上的物体做圆周运动的向心力的来源不同。

四.教学过程

(一).复习提问:

1.地球卫星绕地球做圆周运动的向心力由什么力充当?卫星的线速度、角速度、周期、加速度的表达式?

2.重力与万有引力的区别与联系是什么(特别强调在赤道上的物体)?

教师强调:(1)各运动参量表达式成立的条件是F万全部充当向心力才成立。

(2)对于同一中心天体运动参量随轨道半径r变化而变化。

(3)若中心天体不同各运动参量随轨道半径r和中心天体质量M两因素变化而变化。

(二)..典型例题---------赤道平面内的物体的运动

例1.处在赤道平面内的四个物体,卫星a,同步卫星b,近地卫星c,赤道上的物体d,均在赤道平面内做同向的圆周运动;已知地球半径为R,质量为M,自传周期为T0,万有引力常量为G

求:(1)比较四个物体的周期及角速度定性关系?

(2)比较b、c、d三个物体的线速度定性关系及a、b、c三个物体的线

速度定性关系?

(3)比较b、c、d三个物体的加速度定性关系及a、b、c三个物体的加速度定性关系?

拓展1:c卫星的轨道半径近似等于地球半径,已知该星的公转周期为T,求地球的平均密度?

拓展2:求质量为m的物体d所受的重力的大小(考虑地球的自传)?

拓展3:假设第球自转角速度不断增大,当角速度增大多大时,物体d刚好“飘起”?此时物体d的线速度与第一宇宙速度相比大小关系是?此时物体d做圆周运动的周期多大?

拓展4:c卫星的轨道半径近似等于地球半径,c卫星与d物体的线速度相等吗?为什么?

拓展5:c卫星的轨道半径近似等于地球半径为R,a卫星的轨道半径为Ra ,假设某时刻a、c、两卫星在过地心的同一直线上(如图所示)求a卫星至少再经多长时间出现在c卫星的正上方?此位置还在初始位置吗?

拓展6:如果在赤道上插一根很长的旗杆,当人沿旗杆往上爬,在低于同步轨道时此人此时松手人能否绕地球做圆周运动?在同步轨道和高于同步轨道时分别松手人能否绕地球做圆周运动?

随堂练习1:土星外层有一个环,为了判断它是土星的一部分还是土星的卫星群,可以根据环中各层的线速度V与该层到土星中心的距离R之间的关系来判断( )

A.若V∝R,则该层是土星的一部分 B.若V∝R,则该层是土星的卫星群

C.若V2∝1/R,则该层是土星的一部分 D.若V2∝1/R,则该层是土星的卫星群

随堂练习2:某地球同步卫星离地心距离为r,运行速度为v1,加速度为a1,地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球的半径为R,则下列比例式正确的是( )

(三).典型例题---------双星模型

例2“双星系统”有两颗相距较近的恒星组成,每个恒星的半径远小于两星体之间的距离,且双星系统远离其它天体,如图所示连颗星体在相互作用的万有引力作用下绕连线上的O点做匀速圆周运动。现测得两恒星之间的距离为L,质量分别为m1和m2 则可求:

(1)m1与m2做圆周运动的轨道半径r1与r2的大小?

(2)双星m1与m2的线速度?

(3)双星的周期T=?

变形1:“双星系统”有两颗相距较近的恒星组成,每个恒星的半径远小于两星体之间的距离,且双星系统远离其它天体,如图所示连颗星体在相互作用的万有引力作用下绕连线上的O点做匀速圆周运动。现测得两恒星之间的距离为L,公转周期为T ,万有引力常量为G则双星的总质量为_________________.

变形2:宇宙中有A、B两颗天体构成的一个双星系统,它们互相环绕做圆周运动,其中天体A质量大于天体B的质量,假设两星之间存在质量转移,B的一部分质量转移到了A,若双星间的中心距离不变,则发生质量转移前后( )

A.天体A、B之间的万有引力不变 B.天体A、B做圆周运动的角速不变

C.天体A运动半径不变,线速度也不变 D.天体B运动半径变大,线速度也变大

变形3.当MB

习题1:(2010年高考大纲全国卷Ⅰ)如图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间的

距离为L.已知A、B的中心和O三点始终共线,A和B分别在O的两侧.引力常数为G.

(1)求两星球做圆周运动的周期;

(2)在地月系统中,若忽略其他星球的影响.可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T2.已知地球和月球的质量分别为5.98×1024?kg和7.35×1022?kg.求T2与T1两者平方之比.(结果保留3位小数)

教师强调:双星系统一定是两颗质量可以相比的恒星相互绕着旋转的现象,两恒星质量相差较大时就不能看成是双星系统,看成质量小的恒星以质量大的星体为圆心的圆周运动。

迁移一:如图所示是用以说明向心力和质量、半径之间关系的仪器,球P和Q可以在光滑杆上无摩擦地滑动,两球之间用一条轻绳连接,mp=2mQ,当整个装置以ω匀速旋转时,两球离转轴的距离保持不变,则此时()

A.两球的向心力大小相等

B.两球做圆周运动半径RP:RQ=1:2

C.当ω增大时,P球将沿杆向外运动

D.当ω增大时,Q球将沿杆向外运动

迁移二(三星系统):(2006广东卷)宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其它星体对它们的引作用。已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为?R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行。设三颗星质量相等,每个星体的质量均为m

(1).试求第一种情况下,星体运动的线速度和周期

(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?

(四).估测中心天体的质量

Ⅰ.从中心天体本身出发。

例3.一宇航员抵达一半径为R的星球表面后,为了测定该星球的质量M,做如下的实验,取一根细线穿过光滑的细直管,细线一端栓一质量为m的砝码,另一端连在一固定的测力计上,手握细线直管抡动砝码,使它在竖直平面内做完整的圆周运动,停止抡动细直管。砝码可继续在同一竖直平面内做完整的圆周运动。如图所示,此时观察测力计得到当砝码运动到圆周的最低点和最高点两位置时,测力计得到当砝码运动到圆周的最低点和最高点两位置时,测力计的读数差为ΔF。已知引力常量为G,试根据题中所提供的条件和测量结果,求

(1)该星球表面重力加速度;

(2)该星球的质量M。

(3)该星球的第一宇宙速度。

Ⅱ.从环绕天体出发。

例4.已知哪些数据,可以测算地球的质量M,引力常数G为已知( )

A.月球绕地球运动的周期T1及月球中心到地球中心的距离r1.

B.月球绕地球运行的角速度及月球绕地球运行的线速度v2。

C.人造卫星在地面附近的运行速度V3和运行周期T3

D.地球绕太阳运行的速度V4及地球中心到太阳中心距离r4

教师小结求中心天体的质量方法:

Ⅰ.从中心天体本身出发:一般将g作为隐含条件,经常与在该中心天体上的抛体运动、自由落体运动、绳球模型、杆球模型等作为g的载体。

Ⅱ.从环绕天体出发。已知环绕天体的参数可求中心天体的质量不能求绕转天体的质量。

(五).本课小结:重力、万有引力、向心力的知识联系

五.课后作业。

1.行星A有一颗卫星a,行星B有一颗卫星b,A与B的质量之比为2:1,a与b的质量之比为10:1,A与B的半径之比为10:2,两卫星轨道半径之比1:2,则它们的运行周期之比Ta:Tb为( )

A.1:4 B.1:2 C.2:1 D.4:1

2. 关于人造地球卫星,下列说法中正确的是( )

A.运行的轨道半径越大,线速度越大 B.卫星绕地球运行的环绕速率可能等于8km/s

C.卫星的轨道半径越大,周期也越大 D.运行的周期可能等于80分钟

3.人造卫星绕地球作匀速圆周运动,其轨道半径为R,线速度为V,周期为T,若要使该卫星的周期变为2T,可以采取的办法是( )

A.保持半径不变,把线速度变为V/2 B.把轨道半径变为

C.把轨道半径变为2R,线速度变为V/2 D.卫星速率不变把轨道半径半径变为2R

4.设宇航员在月球表面附近高为h处以水平速度v0抛出一物体,经时间t落到月球表面,已知月球半径为R,引力常量为G,忽略月球自转,下列判断正确的是( )

5.已知地球半径R=6.37×106m.地球质量M=5.98×1024Kg,万有引力常量G=6.67×10-11 Nm2/Kg2.试求挂在赤道附近处弹簧秤下的质量m=1Kg的物体弹簧秤的示数多大(地球自转不可忽略)?

思考:不考虑地球自转弹簧秤的示数多大?与考虑自转读数差别大吗?两种情况比较说明什么问题?

6.在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h,速度方向是水平的,速度大小为v0,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力。已知火星的一个卫星的圆轨道的半径为r,周期为T。火星可视为半径为r0的均匀球体。