88教案网

你的位置: 教案 > 初中教案 > 导航 > 九年级数学竞赛从三角形的内切圆谈起强化辅导讲座

小学三角形教案

发表时间:2021-02-15

九年级数学竞赛从三角形的内切圆谈起强化辅导讲座。

每个老师需要在上课前弄好自己的教案课件,大家在用心的考虑自己的教案课件。教案课件工作计划写好了之后,这样接下来工作才会更上一层楼!有没有好的范文是适合教案课件?小编特地为大家精心收集和整理了“九年级数学竞赛从三角形的内切圆谈起强化辅导讲座”,仅供您在工作和学习中参考。

注:设Rt△ABC的各边长分别为a、b、c(斜边),运用切线长定理、面积等知识可得到其内切圆半径的不同表示式:
(1);
(2).
请读者给出证
【例题求解】
【例1】如图,在Rt△ABC中,∠C=90°°,BC=5,⊙O与Rt△ABC的三边AB、BC、AC分相切于点D、E、F,若⊙O的半径r=2,则Rt△ABC的周长为.
思路点拨AF=AD,BE=BD,连OE、OF,则OECF为正方形,只需求出AF(或AD)即可.

【例2】如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,AC、BD相交于N点,连结ON,NP,下列结论:①四边形ANPD是梯形;②ON=NP:③DPPC为定值;④FA为∠NPD的平分线,其中一定成立的是()
A.①②③B.②③④C.①③④D.①④
思路点拨本例综合了切线的性质、切线长定理、相似三角形,判定性质等重要几何知识,注意基本辅助线的添出、基本图形识别、等线段代换,推导出NP∥AD∥BC是解本例的关键.

【例3】如图,已知∠ACP=∠CDE=90°,点B在CE上,CA=CB=CD,过A、C、D三点的圆交AB于F,求证:F为△CDE的内心.
(全国初中数学联赛试题)
思路点拨连CF、DF,即需证F为△CDE角平分线的交点,充分利用与圆有关的角,将问题转化为角相等问题的证明.

【例4】如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AB=BC=1,以AB为直径作半圆O切CD于E,连结OE,并延长交AD的延长线于F.
(1)问∠BOZ能否为120°,并简要说明理由;
(2)证明△AOF∽△EDF,且;
(3)求DF的长.

思路点拨分解出基本图形,作出基本辅助线.(1)若∠BOZ=120°,看能否推出矛盾;(2)把计算与推理融合;(3)把相应线段用DF的代数式表示,利用勾股定理建立关于DF的一元二次方程.

注:如图,在直角梯形ABCD中,若AD+BC=CD,则可得到应用广泛的两个性质:
(1)以边AB为直径的圆与边CD相切;
(2)以边CD为直径的圆与边AB相切.
类似地,三角形三条中线的交点叫三角形的重心,三角形三边高所在的直线的交点叫三角形的垂心.外心、内心、垂心、重心统称三角形的四心,它们处在三角而中的特殊位置上,有着丰富的性质,在解题中有广泛的应用.
【例5】如图,已知Rt△ABC中,CD是斜边AB上的高,O、O1、O2分别是△ABC;△ACD、△BCD的角平分线的交点,求证:(1)O1O⊥CO2;(2)OC=O1O2.
(武汉市选拔赛试题)
思路点拨在直角三角形中,斜边上的高将它分成的两个直角三角形和原三角形相似,得对应角相等,所以通过证交角为90°的方法得两线垂直,又利用全等三角形证明两线段相等.

学力训练
1.如图,已知圆外切等腰梯形ABCD的中位线EF=15cm,那么等腰梯形ABCD的周长等于=cm.
2.如图,在直角,坐标系中A、B的坐标分别为(3,0)、(0,4),则Rt△ABO内心的坐标是.
3.如图,梯形ABCD中,AD∥BC,DC⊥BC,AB=8,BC=5,若以AB为直径的⊙O与DC相切于E,则DC=.(云南省曲靖市中考题)

4.如图,⊙O为△ABC的内切圆,∠C=90°,AO的延长线交BC于点D,AC=4,CD=1,则⊙O的半径等于()
A.B.C.D.
(重庆市中考题)
5.如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为()
A.3cmB.7cmC.3cm或7cmD.2cm
6.如图,△ABC中,内切圆O和边B、CA、AB分别相切于点D、EF,则以下四个结论中,错误的结论是()
A.点O是△DEF的外心B.∠AFE=(∠B+∠C)
C.∠BOC=90°+∠AD.∠DFE=90°一∠B
7.如图,BC是⊙O的直径,AB、AD是⊙O的切线,切点分别为B、P,过C点的切线与AD交于点D,连结AO、DO.
(1)求证:△ABO∽△OCD;
(2)若AB、CD是关于x的方程的两个实数根,且S△ABO+S△OCD=20,求m的值.

8.如图,已知AB是⊙O的直径,BC是⊙O的切线,OC与⊙O相交于点D,连结AD并延长,BC相交于点E.
(1)若BC=,CD=1,求⊙O的半径;
(2)取BE的中点F,连结DF,求证:DF是⊙O的切线;
(3)过D点作DG⊥BC于G,OG与DG相交于点M,求证:DM=GM.
9.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=13cm,BC=16cm,CD=5cm,AB为⊙O的直径,动点P沿AD方向从点A开始向点D以1cm/秒的速度运动,动点Q沿CB方向从点C开始向点B以2cm/秒的速度运动,点P、Q分别从A、C两点同时出发,当其中一点停止时,另一点也随之停止运动.
(1)求⊙O的直径;
(2)求四边形PQCD的面积y关于P、Q运动时间t的函数关系式,并求当四边形PQCD为等腰梯形时,四边形PQCP的面积;
(3)是否存在某时刻t,使直线PQ与⊙O相切,若存在,求出t的值;若不存在,请说明理由.(2002年烟台市中考题)
10.已知在△ABC中,∠C=90°,AC=4,BC=3,CD为AB上的高,Ol、O2分别为△ACD、△BCD的内心,则OlO2=.
11.如图,在△ABC中,∠C=90°,∠A和∠B的平分线相交于P点,又PE⊥AB于点E,若BC=2,AC=3,则AEEB=.
12.如果一个三角形的面积和周长都被一直线所平分,那么该直线必通过这个三角形的()
A.内心B.外心C.圆心D.重心
13.如图,AD是△ABC的角平分线,⊙O过点AB和BC相切于点P,和AB、AC分别交于点E,F,若BD=AE,且BE=a,CF=b,则AF的长为()
A.B.C.D.
14.如图,在矩形ABCD中,连结AC,如果O为△ABC的内心,过O作OE⊥AD于E,作OF⊥CD于F,则矩形OFDE的面积与矩形ABCD的面积的比值为()
A.B.C.D.不能确定
(《学习报》公开赛试题)
15.如图,AB是半圆的直径,AC为半圆的切线,AC=AB.在半圆上任取一点D,作DE⊥CD,交直线AB于点F,BF⊥AB,交线段AD的延长线于点F.
(1)设AD是x°的弧,并要使点E在线段BA的延长线上,则x的取值范围是;
(2)不论D点取在半圆什么位置,图中除AB=AC外,还有两条线段一定相等,指出这两条相等的线段,并予证明.
16.如图,△ABC的三边满足关系BC=(AB+AC),O、I分别为△ABC的外心、内心,∠BAC的外角平分线交⊙O于E,AI的延长线交⊙O于D,DE交BC于H.
求证:(1)AI=BD;(2)OI=AE.

17.如图,已知AB是⊙O的直径,BC是⊙O的切线,OC平行于弦AD,过点D作DE⊥AB于点E,连结AC,与DE交于点F,问EP与PD是否相等?证明你的结论.

18.如图,已知点P在半径为6,圆心角为90°的扇形OAB的AB(不含端点)上运动,PH⊥OA于H,△OPH的重心为G.
(1)当点P在AB上运动时,线段GO、GP、GH中有无长度保持不变的线段?如果有,请指出并求出其相应的长度;
(2)设PH=x,GP=y,求y关于x的函数解析式,并指出自变量x的取值范围;
(3)如果△PGH为等腰三角形,试求出线段PH的长.

相关推荐

九年级数学《三角形的内切圆》学案沪教版


教案课件是老师工作中的一部分,大家在着手准备教案课件了。将教案课件的工作计划制定好,这样我们接下来的工作才会更加好!你们知道适合教案课件的范文有哪些呢?下面的内容是小编为大家整理的九年级数学《三角形的内切圆》学案沪教版,欢迎阅读,希望您能够喜欢并分享!

九年级数学《三角形的内切圆》学案沪教版

1、教材分析
(1)知识结构
(2)重点、难点分析
重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一.
难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好.
2、教学建议
本节内容需要一个课时.
(1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;
(2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学.
教学目标:
1、使学生了解尺规作的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;
2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;
3、激发学生动手、动脑主动参与课堂教学活动.
教学重点:
三角形内切圆的作法和三角形的内心与性质.
教学难点:
三角形内切圆的作法和三角形的内心与性质.
教学活动设计
(一)提出问题
1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个最大的圆?想一想,怎样画?
2、分析、研究问题:
让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义.
3、解决问题:
例1作圆,使它和已知三角形的各边都相切.
引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法.
提出以下几个问题进行讨论:
①作圆的关键是什么?
②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?
③这样的点I应在什么位置?
④圆心I确定后半径如何找.
A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成.
完成这个题目后,启发学生得出如下结论:和三角形的各边都相切的圆可以作一个且只可以作出一个.
(二)类比联想,学习新知识.
1、概念:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.
2、类比:
名称
确定方法
图形
性质
外心(三角形外接圆的圆心)
三角形三边中垂线的交点
(1)OA=OB=OC;
(2)外心不一定在三角形的内部.
内心(三角形内切圆的圆心)
三角形三条角平分线的交点
(1)到三边的距离相等;
(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;
(3)内心在三角形内部.
3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.
4、概念理解:
引导学生理解及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解.使学生弄清“内”与“外”、“接”与“切”的含义.“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”.
(三)应用与反思
例2如图,在△ABC中,∠ABC=50°,∠ACB=75°,点O是三角形的内心.
求∠BOC的度数
分析:要求∠BOC的度数,只要求出∠OBC和∠0CB的度数之和就可,即求∠l十∠3的度数.因为O是△ABC的内心,所以OB和OC分别为∠ABC和∠BCA的平分线,于是有∠1十∠3=(∠ABC十∠ACB),再由三角形的内角和定理易求出∠BOC的度数.
解:(引导学生分析,写出解题过程)
例3如图,△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D
求证:DE=DB
分析:从条件想,E是内心,则E在∠A的平分线上,同时也在∠ABC的平分线上,考虑连结BE,得出∠3=∠4.
从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样考虑到连结BE.于是得到下述法.
证明:连结BE.
E是△ABC的内心
又∵∠1=∠2
∠1=∠2
∴∠1+∠3=∠4+∠5
∴∠BED=∠EBD
∴DE=DB
练习分析作出已知的锐角三角形、直角三角形、钝角,并说明三角形的内心是否都在三角形内.
(四)小结
1.教师先向学生提出问题:这节课学习了哪些概念?怎样作已知?学习时互该注意哪些问题?
2.学生回答的基础上,归纳总结:
(1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念.
(2)利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径.
(3)在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连结内心和三角形顶点”这一辅助线的添加和应用.
(五)作业
教材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题.
探究活动
问题:如图1,有一张四边形ABCD纸片,且AB=AD=6cm,CB=CD=8cm,∠B=90°.
(1)要把该四边形裁剪成一个面积最大的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到0.1cm);
(2)计算出最大的圆形纸片的半径(要求精确值).
提示:(1)由条件可得AC为四边形似的对称轴,存在内切圆,能用折叠的方法找出圆心:
如图2,①以AC为轴对折;②对折∠ABC,折线交AC于O;③使折线过O,且EB与EA边重合.则点O为所求圆的圆心,OE为半径.
(2)如图3,设内切圆的半径为r,则通过面积可得:6r+8r=48,∴r=.

数学竞赛平面几何讲座:三角形的五心


教案课件是老师上课中很重要的一个课件,大家正在计划自己的教案课件了。各行各业都在开始准备新的教案课件工作计划了,未来工作才会更有干劲!你们知道多少范文适合教案课件?以下是小编为大家精心整理的“数学竞赛平面几何讲座:三角形的五心”,仅供参考,欢迎大家阅读。

第五讲三角形的五心

三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心.

一、外心.

三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.

例1.过等腰△ABC底边BC上一点P引PM∥CA交AB于M;引PN∥BA交AC于N.作点P关于MN的对称点P′.试证:P′点在△ABC外接圆上.

分析:由已知可得MP′=MP=MB,NP′=NP

=NC,故点M是△P′BP的外心,点

N是△P′PC的外心.有

∠BP′P=∠BMP=∠BAC,

∠PP′C=∠PNC=∠BAC.

∴∠BP′C=∠BP′P+∠P′PC=∠BAC.

从而,P′点与A,B,C共圆、即P′在△ABC外接圆上.

由于P′P平分∠BP′C,显然还有

P′B:P′C=BP:PC.

例2.在△ABC的边AB,BC,CA上分别取点P,Q,S.证明以△APS,△BQP,△CSQ的外心为顶点的三角形与△ABC相似.

分析:设O1,O2,O3是△APS,△BQP,

△CSQ的外心,作出六边形

O1PO2QO3S后再由外

心性质可知

∠PO1S=2∠A,

∠QO2P=2∠B,

∠SO3Q=2∠C.

∴∠PO1S+∠QO2P+∠SO3Q=360°.从而又知∠O1PO2+

∠O2QO3+∠O3SO1=360°

将△O2QO3绕着O3点旋转到△KSO3,易判断△KSO1≌△O2PO1,同时可得△O1O2O3≌△O1KO3.

∴∠O2O1O3=∠KO1O3=∠O2O1K

=(∠O2O1S+∠SO1K)

=(∠O2O1S+∠PO1O2)

=∠PO1S=∠A;

同理有∠O1O2O3=∠B.故△O1O2O3∽△ABC.

二、重心

三角形三条中线的交点,叫做三角形的重心.掌握重心将每

条中线都分成定比2:1及中线长度公式,便于解题.

例3.AD,BE,CF是△ABC的三条中线,P是任意一点.证明:在△PAD,△PBE,△PCF中,其中一个面积等于另外两个面积的和.

分析:设G为△ABC重心,直线PG与AB

,BC相交.从A,C,D,E,F分别

作该直线的垂线,垂足为A′,C′,

D′,E′,F′.

易证AA′=2DD′,CC′=2FF′,2EE′=AA′+CC′,

∴EE′=DD′+FF′.

有S△PGE=S△PGD+S△PGF.

两边各扩大3倍,有S△PBE=S△PAD+S△PCF.

例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.

分析:将△ABC简记为△,由三中线AD,BE,CF围成的三角形简记为△′.G为重心,连DE到H,使EH=DE,连HC,HF,则△′就是△HCF.

(1)a2,b2,c2成等差数列△∽△′.

若△ABC为正三角形,易证△∽△′.

不妨设a≥b≥c,有

CF=,

BE=,

AD=.

将a2+c2=2b2,分别代入以上三式,得

CF=,BE=,AD=.

∴CF:BE:AD=::

=a:b:c.

故有△∽△′.

(2)△∽△′a2,b2,c2成等差数列.

当△中a≥b≥c时,

△′中CF≥BE≥AD.

∵△∽△′,

∴=()2.

据“三角形的三条中线围成的新三角形面积等于原三角形面积的”,有=.

∴=3a2=4CF2=2a2+b2-c2

a2+c2=2b2.

三、垂心

三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利.

例5.设A1A2A3A4为⊙O内接四边形,H1,H2,H3,H4依次为

△A2A3A4,△A3A4A1,△A4A1A2,△A1A2A3的垂心.求证:H1,H2,H3,H4四点共圆,并确定出该圆的圆心位置.

分析:连接A2H1,A1H2,H1H2,记圆半径

为R.由△A2A3A4知

=2RA2H1=2Rcos∠A3A2A4;

由△A1A3A4得

A1H2=2Rcos∠A3A1A4.

但∠A3A2A4=∠A3A1A4,故A2H1=A1H2.

易证A2H1∥A1A2,于是,A2H1A1H2,

故得H1H2A2A1.设H1A1与H2A2的交点为M,故H1H2与A1A2关于M点成中心对称.

同理,H2H3与A2A3,H3H4与A3A4,H4H1与A4A1都关于M点成中心对称.故四边形H1H2H3H4与四边形A1A2A3A4关于M点成中心对称,两者是全等四边形,H1,H2,H3,H4在同一个圆上.后者的圆心设为Q,Q与O也关于M成中心对称.由O,M两点,Q点就不难确定了.

例6.H为△ABC的垂心,D,E,F分别是BC,CA,AB的中心.一个以H为圆心的⊙H交直线EF,FD,DE于A1,A2,B1,B2,C1,C2.

求证:AA1=AA2=BB1=BB2=CC1=CC2.

分析:只须证明AA1=BB1=CC1即可.设

BC=a,CA=b,AB=c,△ABC外

接圆半径为R,⊙H的半径为r.

连HA1,AH交EF于M.

A=AM2+A1M2=AM2+r2-MH2

=r2+(AM2-MH2),①

又AM2-HM2=(AH1)2-(AH-AH1)2

=AHAH1-AH2=AH2AB-AH2

=cosAbc-AH2,②

而=2RAH2=4R2cos2A,

=2Ra2=4R2sin2A.

∴AH2+a2=4R2,AH2=4R2-a2.③

由①、②、③有

A=r2+bc-(4R2-a2)

=(a2+b2+c2)-4R2+r2.

同理,=(a2+b2+c2)-4R2+r2,

=(a2+b2+c2)-4R2+r2.

故有AA1=BB1=CC1.

四、内心

三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:

设I为△ABC的内心,射线AI交△ABC外接圆于A′,则有A′I=A′B=A′C.换言之,点A′必是△IBC之外心(内心的等量关系之逆同样有用).

例7.ABCD为圆内接凸四边形,取

△DAB,△ABC,△BCD,

△CDA的内心O1,O2,O3,

O4.求证:O1O2O3O4为矩形.

(1986,中国数学奥林匹克集训题)

证明见《中等数学》1992;4

例8.已知⊙O内接△ABC,⊙Q切AB,AC于E,F且与⊙O内切.试证:EF中点P是△ABC之内心.

分析:在第20届IMO中,美国提供的一道题实际上是例8的一种特例,但它增加了条件AB=AC.当AB≠AC,怎样证明呢?

如图,显然EF中点P、圆心Q,BC中点K都在∠BAC平分线上.易知AQ=.

∵QKAQ=MQQN,

∴QK=

==.

由Rt△EPQ知PQ=.

∴PK=PQ+QK=+=.

∴PK=BK.

利用内心等量关系之逆定理,即知P是△ABC这内心.

五、旁心

三角形的一条内角平分线与另两个内角的外角平分线相交于

一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起,

旁心还与三角形的半周长关系密切.

例9.在直角三角形中,求证:r+ra+rb+rc=2p.

式中r,ra,rb,rc分别表示内切圆半径及与a,b,c相切的旁切圆半径,p表示半周.

分析:设Rt△ABC中,c为斜边,先来证明一个特性:

p(p-c)=(p-a)(p-b).

∵p(p-c)=(a+b+c)(a+b-c)

=[(a+b)2-c2]

=ab;

(p-a)(p-b)=(-a+b+c)(a-b+c)

=[c2-(a-b)2]=ab.

∴p(p-c)=(p-a)(p-b).①

观察图形,可得

ra=AF-AC=p-b,

rb=BG-BC=p-a,

rc=CK=p.

而r=(a+b-c)

=p-c.

∴r+ra+rb+rc

=(p-c)+(p-b)+(p-a)+p

=4p-(a+b+c)=2p.

由①及图形易证.

例10.M是△ABC边AB上的任意一点.r1,r2,r分别是△AMC,△BMC,△ABC内切圆的半径,q1,q2,q分别是上述三角形在∠ACB内部的旁切圆半径.证明:=.

(IMO-12)

分析:对任意△A′B′C′,由正弦定理可知

OD=OA′

=A′B′

=A′B′,

O′E=A′B′.

∴.

亦即有

=

==.

六、众心共圆

这有两种情况:(1)同一点却是不同三角形的不同的心;(2)同一图形出现了同一三角形的几个心.

例11.设在圆内接凸六边形ABCDFE中,AB=BC,CD=DE,EF=FA.试证:(1)AD,BE,CF三条对角线交于一点;

(2)AB+BC+CD+DE+EF+FA≥AK+BE+CF.

分析:连接AC,CE,EA,由已知可证AD,CF,EB是△ACE的三条内角平分线,I为△ACE的内心.从而有ID=CD=DE,

IF=EF=FA,

IB=AB=BC.

再由△BDF,易证BP,DQ,FS是它的三条高,I是它的垂心,利用不等式有:

BI+DI+FI≥2(IP+IQ+IS).

不难证明IE=2IP,IA=2IQ,IC=2IS.

∴BI+DI+FI≥IA+IE+IC.

∴AB+BC+CD+DE+EF+FA

=2(BI+DI+FI)

≥(IA+IE+IC)+(BI+DI+FI)

=AD+BE+CF.

I就是一点两心.

例12.△ABC的外心为O,AB=AC,D是AB中点,E是△ACD的重心.证明OE丄CD.

分析:设AM为高亦为中线,取AC中点

F,E必在DF上且DE:EF=2:1.设

CD交AM于G,G必为△ABC重心.

连GE,MF,MF交DC于K.易证:

DG:GK=DC:()DC=2:1.

∴DG:GK=DE:EFGE∥MF.

∵OD丄AB,MF∥AB,

∴OD丄MFOD丄GE.但OG丄DEG又是△ODE之垂心.

易证OE丄CD.

例13.△ABC中∠C=30°,O是外心,I是内心,边AC上的D点与边BC上的E点使得AD=BE=AB.求证:OI丄DE,OI=DE.

分析:辅助线如图所示,作∠DAO平分线交BC于K.

易证△AID≌△AIB≌△EIB,

∠AID=∠AIB=∠EIB.

利用内心张角公式,有

∠AIB=90°+∠C=105°,

∴∠DIE=360°-105°×3=45°.

∵∠AKB=30°+∠DAO

=30°+(∠BAC-∠BAO)

=30°+(∠BAC-60°)

=∠BAC=∠BAI=∠BEI.

∴AK∥IE.

由等腰△AOD可知DO丄AK,

∴DO丄IE,即DF是△DIE的一条高.

同理EO是△DIE之垂心,OI丄DE.

由∠DIE=∠IDO,易知OI=DE.

例14.锐角△ABC中,O,G,H分别是外心、重心、垂心.设外心到三边距离和为d外,重心到三边距

离和为d重,垂心到三边距离和为d垂.

求证:1d垂+2d外=3d重.

分析:这里用三角法.设△ABC外接圆

半径为1,三个内角记为A,B,

C.易知d外=OO1+OO2+OO3

=cosA+cosB+cosC,

∴2d外=2(cosA+cosB+cosC).①

∵AH1=sinBAB=sinB(2sinC)=2sinBsinC,

同样可得BH2CH3.

∴3d重=△ABC三条高的和

=2(sinBsinC+sinCsinA+sinAsinB)②

∴=2,

∴HH1=cosCBH=2cosBcosC.

同样可得HH2,HH3.

∴d垂=HH1+HH2+HH3

=2(cosBcosC+cosCcosA+cosAcosB)③

欲证结论,观察①、②、③,

须证(cosBcosC+cosCcosA+cosAcosB)+(cosA+cosB+cosC)=sinBsinC+sinCsinA+sinAsinB.即可.

练习题

1.I为△ABC之内心,射线AI,BI,CI交△ABC外接圆于A′,

B′,C′.则AA′+BB′+CC′>△ABC周长.

2.△T′的三边分别等于△T的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.

3.I为△ABC的内心.取△IBC,△ICA,△IAB的外心O1,O2,O3.求证:△O1O2O3与△ABC有公共的外心.(

4.AD为△ABC内角平分线.取△ABC,△ABD,△ADC的外心O,O1,O2.则△OO1O2是等腰三角形.

5.△ABC中∠C<90°,从AB上M点作CA,CB的垂线MP,MQ.H是△CPQ的垂心.当M是AB上动点时,求H的轨迹.(IMO-7)

6.△ABC的边BC=(AB+AC),取AB,AC中点M,N,G为重心,I为内心.试证:过A,M,N三点的圆与直线GI相切.

7.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC.

8.已知△ABC的三个旁心为I1,I2,I3.求证:△I1I2I3是锐角三角形.

9.AB,AC切⊙O于B,C,过OA与BC的交点M任作⊙O的弦EF.求证:(1)△AEF与△ABC有公共的内心;(2)△AEF与△ABC有一个旁心重合.

九年级数学竞赛锐角三角函数辅导讲座


老师会对课本中的主要教学内容整理到教案课件中,大家静下心来写教案课件了。只有规划好了教案课件新的工作计划,才能在以后有序的工作!有没有好的范文是适合教案课件?下面是由小编为大家整理的“九年级数学竞赛锐角三角函数辅导讲座”,欢迎大家阅读,希望对大家有所帮助。

【例题求解】
【例1】已知在△ABC中,∠A、∠B是锐角,且sinA=,tanB=2,AB=29cm,
则S△ABC=.
思路点拨过C作CD⊥AB于D,这样由三角函数定义得到线段的比,sinA=,tanB=,设CD=5m,AC=13m,CD=2n,BD=n,解题的关键是求出m、n的值.

注:设△ABC中,a、b、c为∠A、∠B、∠C的对边,R为△ABC外接圆的半径,不难证明:与锐角三角函数相关的几个重要结论:
(1)S△ABC=;
(2).
【例2】如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()
A.B.C.0.3D.
思路点拨由15°构造特殊角,用特殊角的三角函数促使边角转化.

注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形.
(2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换.

【例3】如图,已知△ABC是等腰直角三角形,∠ACB=90°,过BC的中点D作DE⊥AB于E,连结CE,求sin∠ACE的值.
思路点拨作垂线把∠ACE变成直角三角形的一个锐角,将问题转化成求线段的比.

【例4】如图,在△ABC中,AD是BC边上的高,tanB=cos∠DAC,
(1)求证:AC=BD;
(2)若sinC=,BC=12,求AD的长.
思路点拨(1)把三角函数转化为线段的比,利用比例线段证明;
(2)sinC=,引入参数可设AD=12,AC=13.

【例5】已知:在Rt△ABC中,∠C=90°,sinA、sinB是方程的两个根.
(1)求实数、应满足的条件;
(2)若、满足(1)的条件,方程的两个根是否等于Rt△ABC中两锐角A、B的正弦?
思路点拨由韦达定理、三角函数关系建立、等式,注意判别式、三角函数值的有界性,建立严密约束条件的不等式,才能准确求出实数、应满足的条件.

学历训练
1.已知α为锐角,下列结论①sinα+cosα=l;②如果α45°,那么sinαcosα;③如果cosα,那么α60°;④.正确的有.

2.如图,在菱形ABCD中,AE⊥BC于E,BC=1,cosB,则这个菱形的面积为.
3.如图,∠C=90°,∠DBC=30°,AB=BD,利用此图可求得tan75°=.

4.化简
(1)=.
(2)sin2l°+sin22°+…+sin288°+sin289°=.
5.身高相等的三名同学甲、乙、丙参加风筝比赛.三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的),则三人所放的风筝中()
A.甲的最高B.丙的最高C.乙的最低D.丙的最低

6.已知sinαcosα=,且0°α45°则coα-sinα的值为()
A.B.C.D.
7.如图,在△ABC中,∠C=90°,∠ABC=30°,D是AC的中点,则ctg∠DBC的值是()
A.B.C.D.
8.如图,在等腰Rt△ABC中.∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为()
A.B.2C.1D.
9.已知关于的方程的两根恰是某直角三角形两锐角的正弦,求m的值.
10.如图,D是△ABC的边AC上的一点,CD=2AD,AE⊥BC于E,若BD=8,sin∠CBD=,求AE的长.
11.若0°α45°,且sinαconα=,则sinα=.

12.已知关于的方程有两个不相等的实数根,α为锐角,那么α的取值范围是.
13.已知是△ABC的三边,a、b、c满足等式,且有,则sinA+sinB+sinC的值为.
14.设α为锐角,且满足sinα=3cosα,则sinαcosα等于()
A.B.C.D.
15.如图,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是()
A.2B.C.1D.
16.如图,在△ABC中,∠A=30°,tanB=,AC=,则AB的长是()
A.B.C.5D.
17.己在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,且c=,若关于的方程有两个相等的实根,又方程的两实根的平方和为6,求△ABC的面积.
18.如图,已知AB=CD=1,∠ABC=90°,∠CBD°=30°,求AC的长.
19.设a、b、c是直角三角形的三边,c为斜边,n为正整数,试判断与的关系,并证明你的结论.
20.如图,已知边长为2的正三角形ABC沿直线滚动.
(1)当△ABC滚动一周到△AlB1C1的位置,此时A点所运动的路程为,约为(精确到0.1,π=3.14)
(2)设△ABC滚动240°,C点的位置为Cˊ,△ABC滚动480°时,A点的位置在Aˊ,请你利用三角函数中正切的两角和公式tan(α+β)=(tanα+tanβ)÷(1-tanαtanβ),求出∠CACˊ+∠CAAˊ的度数.