小学一年级数学的教案
发表时间:2021-01-25九年级数学《直线与圆的位置关系》学案沪教版。
九年级数学《直线与圆的位置关系》学案沪教版
1.知识结构
2.重点、难点分析
重点:直线和圆的位置关系的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究“直线和圆的位置关系”的基础.
难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.
3.教法建议
本节内容需要一个课时.
(1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括;
(2)在教学中,以“形”归纳“数”,以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学.
教学目标:
1、使学生理解直线和圆的三种位置关系,掌握其判定方法和性质;
2、通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生
观察、分析和概括的能力;
3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点.
教学重点:直线和圆的位置关系的判定方法和性质.
教学难点:直线和圆的三种位置关系的研究及运用.
教学设计:
(一)基本概念
1、观察:(组织学生,使学生从感性认识到理性认识)
2、归纳:(引导学生完成)
(1)直线与圆有两个公共点;(2)直线和圆有唯一公共点(3)直线和圆没有公共点
3、概念:(指导学生完成)
由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:
(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.
(3)相离:直线和圆没有公共点时,叫做直线和圆相离.
研究与理解:
①直线与圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同.
②直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?
(二)直线与圆的位置关系的数量特征
1、迁移:点与圆的位置关系
(1)点P在⊙O内#FormatImgID_3#d
(2)点P在⊙O上#FormatImgID_4#d=r;
(3)点P在⊙O外#FormatImgID_5#dr.
2、归纳概括:
如果⊙O的半径为r,圆心O到直线l的距离为d,那么
(1)直线l和⊙O相交#FormatImgID_6#d
(三)应用
例1、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么?
(1)r=2cm;(2)r=2.4cm;(3)r=3cm.
学生自主完成,老师指导学生规范解题过程.
解:(图形略)过C点作CD⊥AB于D,
在Rt△ABC中,∠C=90°,
AB=
,
∵
,∴AB·CD=AC·BC,
∴JAb88.COM
(cm),
(1)当r=2cm时CDr,∴圆C与AB相离;
(2)当r=2.4cm时,CD=r,∴圆C与AB相切;
(3)当r=3cm时,CD
练习P105,1、2.
(四)小结:
1、知识:(指导学生归纳)
2、能力:观察、归纳、概括能力,知识迁移能力,知识应用能力.
(五)作业:教材P115,1(1)、2、3.
探究活动
问题:如图,正三角形ABC的边长为6
厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数.
略解:由正三角形的边长为6
厘米,可得它一边上的高为9厘米.
①∴当⊙O的半径r=9厘米时,⊙O在移动中与△ABC的边共相切三次,即切点个数为3.
②当0
扩展阅读
九年级数学直线与圆的位置关系2
直线于圆的位置关系
说课设计(第一课时)
扶沟县柴岗一中翟凤霞
一、教材分析:
(一)教材的地位和作用:直线与圆的位置关系是在学习了点与圆的位置关系的基础上进行的,为后面的圆于圆的位置关系做了铺垫,起着承上启下的作用。
(二)教学目标:根据课程标准的要求和本节教材的特点,结合九年级学生已有的认知的基础,空间观念和逻辑思维能力,我确定如下目标:
知识目标
1.理解直线与圆有相交,相切,相离三种位置关系。
2.了解切线的概念,探索切线与过切点的直径之间的关系。
能力目标
1.经历探索直线与圆的位置关系的过程,培养学生的探索能力。
2.理解直线与圆的三种位置关系,通过观察得出“圆心到直线的距离d与半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的转化。
情感目标
创设问题情境,激发学生好奇心,体验数学活动中的探索与创造,感受数学的严谨和数学结论的正确性,在学习活动中获得成功的体验,通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系,相互转化的。
(三)重点和难点:
本节课的教学重点是:经历探索直线与圆的三种位置关系的过程,归纳总结出直线与圆的三种位置关系。
本节课的教学难点是:探索圆的切线的性质。
二、教法与学法分析
新课程标准》要求课堂教学要充分体现以学生发展为本的精神,因此,在本节课的教学设计中,我采用了“情景问题——学生体验——合作交流”教学模式,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识和基本技能,发展应用数学知识的意识与能力,增强学好数学的愿望和信心。
三、教学过程设计:
活动一:观察图片,引入新课
活动二:实验观察,探索新知
活动三:诱导思维,自主探究
活动四:运用新知,拓展训练
活动五:反思归纳,收获提升
具体教学过程
(一)观察图片,引入新课:
同学们看过海上日出吗?你看,太阳出来了,它穿过海平面,升的越来越高,非常美丽。我们如果把海平面看做一条直线,太阳看作一个圆,由此,你能得出直线与圆的位置关系吗?(设计意图:从人们熟悉的太阳东升西落问题展开,让学生感受生活中反映直线与圆的位置关系的现象,亲身体会到现实生活中的数学知识,增强了学生学习的趣味性。)
板书:直线与圆的位置关系
(二)实验观察,总结归纳
1.这时,让学生在练习本画一个圆,把直尺当直线,移动直尺,观察直线与圆的位置,并在练习本上画出直线与圆的几种不同的位置关系。同时,教师借助微机演示上面的操作,师生共同得出直线与圆的三种位置关系:相离、相切、相交。
2.让学生观察自己所画的图形,与同伴交流讨论直线与圆的三种位置关系的特征,用自己的理解给直线与圆的三种位置关系下个定义。然后师生共同得出:
(1)直线与圆没有交点,称为直线与圆相离。
(2)直线与圆只有一个交点,称为直线与圆相切。
(3)直线与圆有两个交点,称为直线与圆相交。
(设计意图:通过让学生动手操作、观察、探究、思考获取新知,把学习的主动权交给学生,让学生养成自主探究思考的习惯,培养学生的合作交流意识。)
3.类比点与圆的位置关系的性质和判定,引导学生探索直线与圆的位置关系的性质和判定。利用刚才所画的直线与圆的三种位置关系的图形,分别做出圆心到直线的垂线段,(特别点出:直线与圆相切时,过圆心做直线的垂线,垂足为直线与圆的交点。即切点。)设这个距离为d,圆的半径为r,比较d与r的大小,然后进行小组交流,由学生代表总结性质和判定,然后我通过课件演示让学生体会到由直线与圆的位置关系可以确定数量关系,反过来,知道数量关系也可以确定位置关系,这样既能拓展学生的思维空间,又能调动学生思维的积极性。(设计意图:从数量关系的角度来探讨直线和圆的位置关系,是让学生学会运用数形结合的数学思想解题。通过这一活动,培养学生学会探究的方法,形成良好的研究习惯,培养学生思维的深刻性。)
4.巩固练习,应用新知:
例1已知Rt△ABC的斜边AB﹦8cm,AC﹦4cm。
⑴以点C为圆心作圆,当半径为多长时,AB与⊙O相切?
⑵以点C为圆心,分别以2cm和4cm的长为半径作两个圆,这两个圆与AB分别有怎样的位置关系?
(给学生足够的时间自己探索,教师可巡视班级,观察学生的反应,了解学生对新知识的掌握情况,适时给予帮助和指导。然后让学生通过与同伴讨论交流,给出问题的解答。)
(三)诱导思维,自主探究
提出探究问题:
1.你能举出生活中直线与圆相交、相切、相离的实例吗?(先让学生发表自己的见解,然后借助微机播放生活中的实例,让学生感受到数学来源于生活,又服务于生活。)
2.上图中的三个图形是轴对称图形吗?如果是,你能画出它们的对称轴吗?(让学生在练习本山画图,然后同桌交流结果,教师派代表说出自己的结果,并借助微机展示学生的回答结果。)
3.如图,直线CD与⊙O相切于点A,直径AB与直线CD有怎样的位置关系?说一说你的理由。
给学生时间和空间,让学生分组讨论交流,充分发挥自己的意见。然后每组派代表发言,说出小组探究结果。师生共同得出:
①因为图2是轴对称图形,AB是对称轴,所以沿AB对折图形时,AC与AD重合,因此∠ABD﹦∠BAD﹦90°。
②假设AB与CD不垂直,过点O作一直径垂直于CD,垂足为M,则OM﹤OA,即圆心O到直线CD的距离小于⊙O的半径,因此CD与⊙O相交,这与已知条件“直线CD与⊙O相切”相矛盾,所以AB⊥CD。
由此得出定理:圆的切线垂直于过切点的直径。(板书)
(四)运用新知,拓展训练
1.直线l与半径为r的⊙O相交,且点O到直线l的距离为5,求的取值范围。
2.如图,一枚直径为d的硬币沿着直线滚动一圈,圆心经过的距离是多少?
3.圆的半径为R,圆心O到直线的距离为d,则直线和圆相交==d﹤r,==d﹦r,直线和圆相离==。
4.已知圆的直径为13,设直线与圆心的距离为,①若r﹦5.5,则直线与圆,直线与圆有个公共点;
②若r﹦6.5,则直线与圆,直线与圆有个公共点;
③若r﹦7.5,则直线与圆,直线与圆有个公共点。
④已知⊙O的半径为5cm,圆心O与直线AB的距离为d,若AB与⊙O相交,则的取值范围是。
二、选择
①的半径等于5,点P在直线上,若OP=5,则直线与的位置关系是()
A相离B相切C相交D相切或相交
②设的⊙O的半径为3,点0到直线l的距离为d,若直线l与⊙O至少有一个公共点,则d应满足的条件是()
Ad=3Bd≥3Cd<3Dd﹥3
三、小红家的锅盖坏了,为了配一个锅盖,需要测量锅的直径,而小红家只有长50的直尺,根本不够长,怎么半呢?小红想了想,采取了一下办法:如下图,首先把锅平放在墙角,锅沿刚好靠到两墙,用直尺紧贴墙面量得MA的长,即可求出锅的直径。请你利用下图,说明她这样做的理由。
四、如图,在Rt△ABC中,AC=5,BC=12,⊙O的半径为3。
(1)当圆心O与C重合时,与AB的位置关系怎样?
(2)若点O沿CA移动时,当⊙O与AB相切,切点为E,问此时OC为多长?
(设计意图:利用已讨论出来的圆心到直线的距离与半径之间是数量关系和圆的切线的性质来解决问题。使学生学会发现问题,分析问题并解决问题。培养学生正确运用所学知识的应用能力。并设计梯度习题,逐步攻克,让学生获得成功的体验,增强学习的信心。)
(五)反思归纳,收获提升
1.对同学说你有什么收获
2.对老师说你有什么困惑
(设计意图:总结回顾学习内容,交流收获与不足,让学生养成学习——总结——在学习的良好习惯,有利于让学生理清知识脉络,同时明确本节课学习目标,巩固学习效果。)
3.布置作业
四、教学设计思路:
本节课我首先引导学生观察图片,联系现实生活中的例子,激发学生对探索直线与圆的位置关系是兴趣。然后让学生动手操作,参与学习活动,用运动变化的观点观察直线与圆的位置关系的变化及它们之间的公共点个数的变化情况,在共同合作利用数形结合的方法量化了直线与圆的位置关系的性质和判定。接着通过小组探讨、交流、发现,和老师的引导,点拨,利用圆的轴对称性和反证法得出圆的切线的性质定理。在整个活动中,学生是实践者、探索者、发现者,老师是引导者、启发者、帮助者,把发现的主动权交给学生,让学生成为学习的主人。
九年级《直线与圆的位置关系》学案
九年级《直线与圆的位置关系》学案
教学目标:
1.利用投影演示,动手操作探索直线和圆的运动变化过程,经历直线与圆的三种位置关系得产生过程;
2.在运动中体验直线与圆的位置关系,并观察理解直线与圆的“公共点的个数”的变化,培养猜想、分析、概括、归纳能力.
3.正确判别直线与圆的位置关系,或根据直线与圆的位置关系正确的得出圆心到直线的距离与圆的半径之间的大小关系或直线与圆的公共点的个数.
教学重点:直线与圆的三种位置关系
教学难点:直线与圆的三种位置关系的性质和判定俄正确运用
教学过程:
一、创设情景,引入新课
电脑演示:海上日出
1.观察三幅太阳升起的照片,地平线与太阳的位置关系是怎样的?
2.观察三幅太阳落山的照片,地平线与太阳的位置关系是怎样的?
你发现这个自然现象反映出直线和圆的位置关系有哪几种?
二、探究直线与圆的位置关系
1、动手操作:作一个圆,把直尺边缘看成一条直线.固定圆,平移直尺,
仔细观察,直线和圆的交点个数如何变化?
在学生回答得基础上,教师指出:由直线和圆的公共点的个数,得出直线和圆的三种位置关系:
(1)相交:直线与圆有两个公共点时,叫做直线与圆相交,这时的直线叫做圆的割线;
(2)相切:直线与圆有唯一公共点时,叫做直线与圆相切,这条直线叫做圆的切线,公共点叫做切点;
(3)直线与圆没有公共点时,叫做直线与圆相离.
2、做一做:
2.1直线与圆的位置关系(1)精品教案及反思wbrwbrwbrwbr姜梅娟如图,O为直线L外一点,OT⊥L,且OT=d.请以O为圆心,分别以2.1直线与圆的位置关系(1)精品教案及反思wbrwbrwbrwbr姜梅娟为半径画圆.所画的圆与直线l有什么位置关系?
3、直线与圆的位置关系量化
观察所画图形,你能从d和r的关系发现直线l和圆O的位置关系吗?
2.1直线与圆的位置关系(1)精品教案及反思wbrwbrwbrwbr姜梅娟
学生回答后,教师总结并板书:
如果⊙O的半径w为r,圆心O到直线l的距离为d,,那么:
(1)直线l和⊙O相交2.1直线与圆的位置关系(1)精品教案及反思wbrwbrwbrwbr姜梅娟2.1直线与圆的位置关系(1)精品教案及反思wbrwbrwbrwbr姜梅娟d<r;
(2)直线l和⊙O相切2.1直线与圆的位置关系(1)精品教案及反思wbrwbrwbrwbr姜梅娟2.1直线与圆的位置关系(1)精品教案及反思wbrwbrwbrwbr姜梅娟d=r;
(3)直线l和⊙O相离2.1直线与圆的位置关系(1)精品教案及反思wbrwbrwbrwbr姜梅娟2.1直线与圆的位置关系(1)精品教案及反思wbrwbrwbrwbr姜梅娟d>r;
三、例题分析,课堂练习
例1、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?
(1)r=2cm,(2)r=2.4cm,(3)r=3cm.(此题为课本第49页课内练习第1题的第2小题)
分析:因为题中给出了⊙C的半径,所以解题的关键是求圆心到直线的距离,然后与r比较,确定⊙C与AB的关系.
2.1直线与圆的位置关系(1)精品教案及反思wbrwbrwbrwbr姜梅娟
例2、已知Rt△ABC的斜边AB=8cm,直角边AC=4cm.以点C为圆心作圆,当半径为多长时,AB与⊙C相切?
练习:作业题第2、3题
例3、(即课本的例1)
2.1直线与圆的位置关系(1)精品教案及反思wbrwbrwbrwbr姜梅娟如图,海中有一个小岛P,该岛四周12海里内暗礁.今有货轮四由西向东航行,开始在A点观测P在北偏东60°处,行驶10海里后到达B点观测P在北偏东45°处,货轮继续向东航行.你认为货轮继续向东航行途中会有触礁的危险吗?
分析:要解决这个问题,首先要把它转化为数学问题,画出图形.
要判断货轮是否有触礁危险,关键是看航线与暗礁圆区的位置关系.
练习:在南部沿海某气象站A测得一热带风暴从A的南偏东30°的方向迎着气象站袭来,已知该风暴的速度为每小时20千米,风暴周围50千米范围内将受到影响,若该风暴不改变速度和方向,问气象站正南方60千米的沿海城市B是否会受这次风暴的影响?若不受影响,请说明理由;若受影响,请求出受影响的时间.
四、课堂小结:
这节课我们学习了哪些内容?用到了那些数学思想方法?
五、作业:
《直线与圆的位置关系》学案
《直线与圆的位置关系》学案
直线与圆的位置关系
[教学目标]:
1.依据直线与圆的方程,能熟练求出它们的交点坐标.
2.能通过比较圆心到直线的距离和半径之间的大小关系判断直线和圆的位置关系.
3.理解直线和圆的三种位置关系(相离、相切、相交)与相应的直线和圆的方程所组.
成的二元二次方程组的解(无解、有唯一解、有两组解)的对应关系.
4.能利用直线和圆的方程研究直线与圆有关的问题,提高学生的思维能力.
5.通过直线与圆的位置关系的探究,培养学生观察、分析和概括的能力.
[教学重点]:用解析法研究直线与圆的位置关系.
[教学难点]:学生体会和理解用解析法解决问题的数学方法.
(一)、导入新课
请同学们在图中画出直线,
直线=0
(二)、探究新知:
请大家运用已有的知识,从方程的角度、图形的性质等方面来探究直线与圆的位置关系.
设直线L和圆C的方程分别为:Ax+By+C=0,
方法一:
方法二:
例1、在引例中若有直线与圆相交,请求出直线被圆所截得的弦长
例2、自点A(-1,4)作圆的切线L,求切线L的方程。
变式1:
变式2:
(三)、归纳小结
直线与圆的位置关系(课后作业):
1.判断下列各组中直线与圆的位置关系:
(1),;__________________________;
(2),;___________________;
(3),._____________________.
2.若直线与圆相交,则点与圆的位置关系是.
3.直线和圆交于点,,则弦的垂直平分线方程是.
4.斜率为的直线平分圆的周长,则的方程为
5.(1)求过圆上一点的圆的切线方程;
(2)求过原点且与圆相切的直线的方程.
6.已知过点的直线被圆截得的弦长为,
求直线的方程.
7.已知圆与直线相交于,两点,
为坐标原点,若,求的值.
8.已知过点的直线与圆相交,求直线斜率的取值范围.
9.求半径为,且与直线切于点的圆的方程.
10-.已知圆,直线.
(1)当点在圆上时,直线与圆具有怎样的位置关系?
(2)当点在圆外时,直线具有什么特点?