88教案网

你的位置: 教案 > 高中教案 > 导航 > 气体分子动理论

高中体育理论教案

发表时间:2020-11-13

气体分子动理论。

老师会对课本中的主要教学内容整理到教案课件中,到写教案课件的时候了。将教案课件的工作计划制定好,才能够使以后的工作更有目标性!你们清楚有哪些教案课件范文呢?为满足您的需求,小编特地编辑了“气体分子动理论”,欢迎阅读,希望您能够喜欢并分享!

教学目标

知识目标
1、知道气体分子运动的特点.
2、知道分子沿各个方向运动的机会均等,分子速率按一定规律分布,这种规律是一种统计规律.
3、知道气体压强的微观解释以及气体实验定律的微观解释.

能力目标
通过用微观解释宏观,提出统计规律,渗透统计观点,以提高学生分析、综合、归纳能力.

情感目标
通过对气体分子定律以及气体实验定律的微观解释,尤其是统计规律的渗透,让学生体会其在科学研究中的作用.培养学生树立科学的探究精神.

教学建议
用微观的方法解释宏观现象,对学生来说,这是第一次接触,应从实际出发,通过模拟和举例来帮助学生理解统计规律的意义.理解气体压强的产生并解释气体的实验定律是本节的重要内容,也是提高学生分析、综合、归纳能力的有效途径.

教学设计示例

(一)教学总体设计

1、教师应借助物理规律和课件展示,准确讲解,注意启发点拨,以学生自己讨论归纳.

2、学生应积极思考、认真观察、参与讨论、总结规律、解释现象.

教师通过动画模拟引入微观对宏观的解释、渗透统计思维,指导学生观察动画、分析特点,总结统计规律,解释有关现象.

(二)重点·难点·疑点及解决办法

1、重点:气体压强的产生和气体实验定律的微观解释.

2、难点:用统计的方法分析气体分子运动的特点.

3、疑点

(1)气体分子运动与固体、液体分子运动有什么区别.

(2)气体的压强是怎样产生的?它的大小由什么因素决定.

4、解决办法

用小球模拟分子碰撞器壁,联系实际,从实例出发理解气体压强的产生机理,并分析影响气体压强的因素.

(三)教学过程

1、气体分子运动特点(条件允许,可以播放动画进行模拟演示)

在教师引导下得出结论:

①气体分子间距较大

②气体分子充满整个容器空间

③气体分子运动频繁碰撞

④气体分子向各个方向运动的机会均等

分析气体分子运动特点及联系实验得出:

①气体分子间距大,作用力小(可认为没有),所以气体没有一定的形态和体积(由容器决定).

②分子沿各个方向运动的机会均等.

③速率分布是中间大两头小的规律.其速率分布与分子数的关系如图所示.

2、气体压强的微观解释

大量气体分子对器壁频繁碰撞,就对器壁产生一个持续的均匀的压强.器壁单位面积上受到的压力,就是气体的压强.

例如:雨滴撞击雨伞的例子.

再比如:用一小把针刺手心,当针刺的频率很高时,手心的感觉就不是痛一下,而是成为一种连续的均匀的痛感了.

气体的压强与气体的密度和气体分子的平均功能有关.经过实验和理论计算得出:

为气体单位体积内的分子数,E为气体分子的平均动能.

3、对气体实验定律的微观解释

(1)玻意耳定律

(2)查理定律

(3)盖·吕萨克定律

4、总结、扩展

(1)气体分子运动有什么特点?

(2)气体的压强是怎样产生的?它的大小由什么因素决定?

(3)怎样从微观的方法解释气体三实验定律?

5、板书设计

五、气体分子动理论

1、气体分子运动特点

2、对气体压强的微观解释

3、对气体实验定律的微观解释

教学设计示例参考

气体实验定律的微观解释

一、教学目标

1、知识目标:

(1)能用气体分子动理论解释气体压强的微观意义,并能知道气体的压强、温度、体积与所对应的微观物理量间的相关联系.

(2)能用气体分子动理论解释三个气体实验定律.

2、能力目标:通过让学生用气体分子动理论解释有关的宏观物理现象,培养学生的微观想象能力和逻辑推理能力,并渗透“统计物理”的思维方法.

3、情感目标:通过对宏观物理现象与微观粒子运动规律的分析,对学生渗透“透过现象看本质”的哲学思维方法.

二、重点、难点分析

1、用气体分子动理论来解释气体实验定律是本节课的重点,它是本节课的核心内容.

2、气体压强的微观意义是本节课的难点,因为它需要学生对微观粒子复杂的运动状态有丰富的想象力.

三、教具

计算机控制的大屏幕显示仪;自制的显示气体压强微观解释的计算机软件.

四、主要教学过程

(一)引入新课

先设问:气体分子运动的特点有哪些?

答案:特点是:(1)气体间的距离较大,分子间的相互作用力十分微弱,可以认为气体分子除相互碰撞及与器壁碰撞外不受力作用,每个分子都可以在空间自由移动,一定质量的气体的分子可以充满整个容器空间.(2)分子间的碰撞频繁,这些碰撞及气体分子与器壁的碰撞都可看成是完全弹性碰撞.气体通过这种碰撞可传递能量,其中任何一个分子运动方向和速率大小都是不断变化的,这就是杂乱无章的气体分子热运动.(3)从总体上看气体分子沿各个方向运动的机会均等,因此对大量分子而言,在任一时刻向容器各个方向运动的分子数是均等的.(4)大量气体分子的速率是按一定规律分布,呈“中间多,两头少”的分布规律,且这个分布状态与温度有关,温度升高时,平均速率会增大.

今天我们就是要从气体分子运动的这些特点和规律来解释气体实验定律.

(二)教学过程设计

1、关于气体压强微观解释的教学

首先通过设问和讨论建立反映气体宏观物理状态的温度(T)、体积(V)与反映气体分子运动的微观状态物理量间的联系:
温度是分子热运动平均动能的标志,对确定的气体而言,温度与分子运动的平均速率有关,温度越高,反映气体分子热运动的平均速率()越大.

体积影响到分子密度(即单位体积内的分子数),对确定的一定质量的理想气体而言,分子总数N是一定的,当体积为V时,单位体积内的分子数与体积V成反比,即体积越大时,反映气体分子的密度n越小.

然后再设问:气体压强大小反映了气体分子运动的哪些特征呢?

这应从气体对容器器壁压强产生的机制来分析.

先让学生看用计算机模拟气体分子运动撞击器壁产生压强的机制:

首先用计算机软件在大屏幕上显示出如图1所示的图形:

向同学介绍:如图所示是一个一端用活塞(此时表示活塞部分的线条闪烁3~5次)封闭的气缸,活塞用一弹簧与一固定物相连,活塞与气缸壁摩擦不计,当气缸内为真空时,弹簧长为原长.如果在气缸内密封了一定质量的理想气体.由于在任一时刻气体分子向各方向上运动的分子数相等,为简化问题,我们仅讨论向活塞方向运动的分子.大屏幕上显示图2,即图中显示的仅为总分子数的,(图中显示的“分子”暂呈静态)先看其中一个(图2中涂黑的“分子”闪烁2~3次)分子与活塞碰撞情况,(图2中涂黑的“分子”与活塞碰撞且以原速率反弹回来,活塞也随之颤抖一下,这样反复演示3~5次)再看大量分子运动时与活塞的碰撞情况:

大屏幕上显示“分子”都向活塞方向运动,对活塞连续不断地碰撞,碰后的“分子”反弹回来,有的返回途中与别的“分子”相撞后改变方向,有的与活塞对面器壁相碰改变方向,但都只显示垂直于活塞表面的运动状态,而活塞被挤后有一个小的位移,且相对稳定,如图3所示的一个动态画面.时间上要显示15~30秒定格一次,再动态显示15~30秒,再定格.

得出结论:由此可见气体对容器壁的压强是大量分子对器壁连续不断地碰撞所产生的.

进一步分析:若每个分子的质量为m,平均速率为v,分子与活塞的碰撞是完全弹性碰撞,则在这一分子与活塞碰撞中,该分子的动量变化为2mv,即受的冲量为2mv,根据牛顿第三定律,该分子对活塞的冲量也是2mv,那么在一段时间内大量分子与活塞碰撞多少次,活塞受到的总冲量就是2mv的多少倍,单位时间内受到的总冲量就是压力,而单位面积上受到的压力就是压强.由此可推出:气体压强一方面与每次碰撞的平均冲量2mv有关,另一方面与单位时间内单位面积受到的碰撞次数有关.对确定的一定质量的理想气体而言,每次碰撞的平均冲量,2mv由平均速率v有关,v越大则平均冲量就越大,而单位时间内单位面积上碰撞的次数既与分子密度n有关,又与分子的平均速率有关,分子密度n越大,v也越大,则碰撞次数就越多,因此从气体分子动理论的观点看,气体压强的大小由分子的平均速率v和分子密度n共同决定,n越大,v也越大,则压强就越大.

2、用气体分子动理论解释实验三定律

(1)教师引导、示范,以解释玻意耳定律为例教会学生用气体分子动理论解释实验定律的基本思维方法和简易符号表述形式.

范例:用气体分子动理论解释玻意耳定律.

一定质量(m)的理想气体,其分子总数(N)是一个定值,当温度(T)保持不变时,则分子的平均速率(v)也保持不变,当其体积(V)增大几倍时,则单位体积内的分子数(n)变为原来的几分之一,因此气体的压强也减为原来的几分之一;反之若体积减小为原来的几分之一,则压强增大几倍,即压强与体积成反比.这就是玻意耳定律.

书面符号简易表述方式:

小结:基本思维方法(详细文字表述格式)是:依据描述气体状态的宏观物理量(m、p、V、T)与表示气体分子运动状态的微观物理量(N、n、v)间的相关关系,从气体实验定律成立的条件所述的宏观物理量(如m一定和T不变)推出相关不变的微观物理量(如N一定和v不变),再根据宏观自变量(如V)的变化推出有关的微观量(如n)的变化,再依据推出的有关微观量(如v和n)的变与不变的情况推出宏观因变量(如p)的变化情况,结论是否与实验定律的结论相吻合.若吻合则实验定律得到了微观解释.

(2)让学生体验上述思维方法:每个人都独立地用书面详细文字叙述和用符号简易表述的方法来对查理定律进行微观解释,然后由平时物理成绩较好的学生口述,与下面正确答案核对.

书面或口头叙述为:一定质量(m)的气体的总分子数(N)是一定的,体积(V)保持不变时,其单位体积内的分子数(n)也保持不变,当温度(T)升高时,其分子运动的平均速率(v)也增大,则气体压强(p)也增大;反之当温度(T)降低时,气体压强(p)也减小.这与查理定律的结论一致.

用符号简易表示为:

(3)让学生再次练习,用气体分子动理论解释盖·吕萨克定律.再用更短的时间让学生练习详细表述和符号表示,然后让物理成绩为中等的或较差的学生口述自己的练习,与下面标准答案核对.

一定质量(m)的理想气体的总分子数(N)是一定的,要保持压强(p)不变,当温度(T)升高时,全体分子运动的平均速率v会增加,那么单位体积内的分子数(n)一定要减小(否则压强不可能不变),因此气体体积(V)一定增大;反之当温度降低时,同理可推出气体体积一定减小.这与盖·吕萨克定律的结论是一致的.

用符号简易表示为:

(三)课堂小结

1、本节课我们首先明确了气体状态参量与相关的气体分子运动的微观物理量间的关系着重从气体分子动理论的观点认识到气体对容器壁的压强是大量分子连续不断地对器壁碰撞产生的,且由分子的平均速率和分子密度共同决定其大小.

2、本节课我们重点学习了用气体分子动理论的观点来解释气体三个实验定律的方法.

五、说明

1、本节课设计用计算机模拟气体分子对器壁碰撞而产生压强是为了使学生有一点感性认识,帮助学生想象,其中有两点需要说明,一是弹簧的形变(活塞的位移)说明活塞受到了压力,二是图中所示的“分子”数只是示意图,其“大量”的含义是无法(也没必要)用具体图形表示.

2、本节课用气体分子动理论解释实验定律的侧重点在于教会学生“解释”的方法,它是一种从宏观到微观,又由微观到宏观的有序而又严密的推理.因此对三个定律解释方式是先教师示范,讲清方法,再让学生独立思考,自行体验,最后反复练习,熟练掌握.既采用详细表述又用符号简易表示,其目的也是为了训练学生既严密又简练的逻辑思维.

3、由于温度只是气体分子平均动能的标志,它与分子平均速率v只能推出定性的相关关系,中学阶段无法得到定量的相关关系,因此对查理定律和盖·吕萨克定律也只能进行定性解释,不能定量的推出正比关系.


扩展阅读

高考物理知识网络分子动理论 热和功 气体复习教案


第八章分子动理论热和功气体
热学是物理学的重要组成部分.本章的核心内容是研究热现象的两种观点:分子动理论观点(微观)和能量观点(宏观).把握重点、解决难点的关键在于:透过现象看本质的思维能力的培养;通过对各种热现象的充分了解,把握各种热现象;运用已有知识对各种热现象的分析解释,实现对未知领域的探索研究.能的转化与守恒定律是自然界普遍适用的规律.将分子动理论与能的观点有机结合起来,研究热现象的各类问题,是解决重点、难点的关键所在.
本章及相关知识网络
专题一分子动理论
【考点透析】
一、本专题考点:本专题为Ⅰ类要求。
二、理解和掌握的内容
1.物质是由大量的分子组成的
⑴分子很小,设想分子为球体形状,用油膜法可粗略地测出分子的直径d=v/s(v是油滴的体积,s是水面上形成的单分子油膜的面积,d为分子直径),其数量级为10-10m.
⑵阿佛伽德罗常数:1mol的任何物质含有的微粒数相同,这个数叫阿佛伽德罗常数,它和物质的摩尔质量是联系宏观物理量(物体的质量、体积)与微观物理量(分子质量、分子体积)的桥梁.深刻理解它们的物理意义,对研究解决各类具体问题有特别重要的作用.
2.分子的热运动
这个要点的实验基础是布朗运动和扩散现象
⑴布朗运动是悬浮在液体或气体中的固体微粒的运动,是永不停息的无规则运动.其规律是:颗粒越小,运动越明显;温度越高,运动越激烈.布朗运动是液体分子永不停息地做无规则热运动的间接反映;是微观分子热运动造成的宏观现象.
⑵扩散现象是分子永不停息的无规则的热运动的直接表现.温度越高,扩散进行的越快.扩散具有方向性:从分子密度较大的区域向密度较小的区域扩散.
3.分子间的相互作用力
⑴分子间同时存在着相互作用的引力和斥力,其合力叫分子力.
⑵分子间的引力和斥力都随分子间的距离增大而减小,随分子间距离的减小而增大,但斥力比引力变化得快.
⑶分子力的特点:
①r=r0时(r0数量级约为10-10m),f引=f斥,分子力F=0
②rr0时,f引f斥,分子表现为斥力
③rr0时,f引f斥,分子表现为引力
④r10r0时,f引,f斥迅速减小,趋近于零,可以认为分子力F=0
4.难点释疑有同学认为“在较暗的房间里,有阳光射进来后可以观察到悬浮在空气中的尘埃在不停的运动,称为布朗运动.”这是错误的,因为布朗运动是在液体和气体中通过显微镜观察到的,直接用眼睛看到的微粒运动现象都不是布朗运动.用眼睛直接看到,微粒已经很大了.各个方向空气分子对它的撞击力的合力几乎为零,而它的运动主要是由于自身重力和环境中气流的影响.布朗运动既不是分子的运动,也不是眼睛直接观察到的微粒运动,做布朗运动的微粒,其线度应在二者之间.
【例题精析】
例1用M表示某物质的摩尔质量,m表示分子质量,ρ表示物质密度,V表示摩尔体积,v0表示分子体积,NA表示阿佛伽德罗常数,那么反映这些量之间关系的下列式子中一定正确的有()
①NA=v0/V②NA=V/v0③V=M/ρ④m=M/NA
A.①③B.②④C.①④D.③④
解析:对于固体与液体忽略分子间的距离,分子是一个挨一个排列的.②③④选项都正确;但对于气体来讲,分子间距离很大,②不正确.本题所给物质的状态不确定,因此一定正确的是D.
思考拓宽:⑴上题中所给物质若为固体,根据题目条件确定单位体积的分子个数.
⑵上题中这种物质若是气态,根据题目条件确定;单位体积的分子数.
⑶上题中这种物质若是气态,根据题目条件确定该气体分子间的平均距离.
⑷横向发散:已知铜的密度为8.9×103kg/m3,原子量为64,通过估算可知铜中每个原子所占有的体积为:()(1995年全国高考题).
A.8×10-24m3B.1×10-26m3C.1×10-29m3D.7×10-6m3
例2分子间的作用力有引力(f引)和斥力(f斥),则()
A.f引和f斥是同时存在的
B.f引总是大于f斥,其合力总表现为引力
C.分子间距离越小,f引越小,f斥越大
D.分子间距离越小,f引越大,f斥越小
解析:根据分子动理论,分子间的引力和斥力总是同是存在的.当分子间距离等于平衡距离时,引力和斥力相平衡,表现出的分子力为零;当分子间距离小于平衡距离时,斥力大于引力,分子力表现为斥力;当分子间距离大于平衡距离时,引力大于斥力,分子力表现为引力.分子引力与斥力总是随分子间距离的减小而增大,随分子间距离的增大而减小,本题答案选A.
【能力提升】
Ⅰ知识与技能
1.关于分子动理论,下列说法中正确的是()
A.用油膜法测出一般分子直径的数量级是10-10m
B.布朗运动的激烈程度与温度有关系,温度为0℃时,布朗运动停止
C.分子间同时存在着引力和斥力,引力随分子间距离增大而增大,斥力随分子间距离的增
大而减小
2.布朗运动主要说明了()
A.液体是由分子组成的B.液体分子不停地做无规则的运动
C.液体分子间有空隙D.液体分子间有相互作用力
3.下面证明分子间存在引力和斥力的实验,哪个是正确的()
A.两块铅压紧以后能连在一起,说明分子间有引力
B.一般高压气体难被压缩,说明分子间有斥力
C.破碎的玻璃不能拼接在一起,是由于分子间存在斥力
4.用油膜法测出分子直径后,要测定阿佛伽德罗常数,只需知道油滴的()
A.摩尔质量B.摩尔体积C.体积D.密度
5.只要知道下列哪一组物理量,就可以估算出气体分子间的平均距离()
A.阿佛伽德罗常数,该气体的摩尔质量和密度
B.阿佛伽德罗常数,该气体的摩尔质量和质量
C.阿佛伽德罗常数,该气体的质量和体积
D.该气体的密度.体积和摩尔质量
Ⅱ能力与素质
6.在“利用油膜法估测分子大小”的实验中,将1cm3的油酸溶于酒精,制成200cm3的油酸酒精溶液.测出1cm3溶液有n=50滴.取一滴溶液,滴在水面上,随着酒精溶于水.油酸在水面上形成面积s=0.2m2的单分子油膜.试估算油酸分子的大小.
7.空气在标准状况下,分子间的距离为.

专题二热和功
【考点透析】
一、本专题考点:本专题为Ⅰ类要求。
二、理解和掌握的内容
1.物体的内能
⑴分子的平均动能:是物体内所有分子动能的平均值.温度是分子平均动能的标志,温度越高分子平均动能越大.
①物体内部各个分子的运动速度是不同的,所以分子的动能是不相等的,温度是大量分子的平均动能的标志.所以对个别分子讲温度无意义.温度是一个宏观量.
②不同物质的物体,如果温度相同,则它们的分子平均动能相同,但它们的分子平均速率不同.
③分子的平均动能与物体宏观机械运动的速度无关.
⑵分子势能:分子间由于存在相互作用,因此分子间具有由它们的相对位置所决定的势能,这就是分子势能.
①分子势能的变化用分子力做功来量度,分子力做正功,分子势能减小;分子力做负功,分子势能增加.
②分子势能与物体的体积有关.
⑶物体的内能:物体内所有分子的动能和势能的总和叫物体的内能.
①物体的内能与物质量、温度、体积三个因素有关.
②内能和机械能是两种不同形式的能,物体可以同时具有内能和机械能.一定条件下内能和机械能可以相互转化.
2.物体内能的改变:
改变内能有两种方式:做功和热传递
⑴做功是其他形式的能与内能的相互转化过程,内能的改变量可用做功的数值来量度.
⑵热传递是物体间内能的转移过程,内能转移量用热量来量度.
说明:①热量作为物理量,它的意义并不是物体含有热多少,而是在热传递的过程中,物体内能改变的量度,热量是对热传递过程而言的,没有热传递过程就无所谓热量这个概念.
②发生热传递的条件是温度不同,内能只能从高温物体向低温度物体传递,温度相等时达到动态平衡.
③做功和热传递虽有本质区别,但在改变内能上是等效的.
3.热力学第一定律、能量守恒定律
⑴热力学第一定律:一个热力学统,内能的增量△U,等于系统与外界交换的热量Q和所做的功W之和.表达式:△U=Q+W
⑵能量守恒定律:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体,在转化和转移的过程中其总量不变,这就是能量守恒定律.
说明:①能的转化和守恒定律是自然界的普遍规律,违背该定律的第一类永动机是永远无法实现的.
②物质不同运动形式对应着不同形式的能,各种形式的能可以相互转化或转移.
4.热力学第二定律:
⑴一种表述:不可能使热量由低温物体传递到高温物体,而不引起其他变化.
⑵另一种表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化.
说明:①第一种是按照热传导过程的方向性表述的,第二种则是按照机械能与内能转化过程的方向性来表述的.这两种表述是等价的,都揭示了自然界的基本规律:一切与热现象有关的实际宏观过程都是不可逆的.
②热力学第一定律和热力学第二定律是热力学知识的基础理论.热力学第一定律指出任何热力学过程中能量守恒,而对过程没有限制.热力学第二定律指明哪些过程可以发生,哪些不可以发生.如第二类永动机不可能实现,宏观的实际的热现象过程是不可逆的.
【例题精析】
例1关于分子间势能下列说法正确的是:()
A.分子间为引力时,距离越小,分子间势能越大
B.分子间为斥力时,距离越大,分子间势能越大
C.物体在热胀冷缩时,分子间势能不变
D.物体在热胀冷缩时,分子间势能改变
解析:根据分子力做功与分子间势能变化关系知,A、B选项均错误.当分子间距离等于平衡距离时,分子间势能最小.在此基础上,间距增大或减小,分子间势能都将增大.热胀冷缩过程中,分子间距离发生变化,因此分子间势能改变.本题答案为D
思考拓宽:要确定分子间势能随分子间距离变化的关系.应首先确定分子间开始的距离,然后才能明确分子间势能随分子间距离变化的关系.否则无法确定.物体的体积增大时,分子间势能一定增大吗?
例2如图所示,直立容器内部有被隔板隔开的A、B两部分气体,A的密度小,B的密度较大,抽去隔板,加热气体,使两部分气体均匀混合,设在此过程中气体吸热为Q,气体内能增加量为△E,则
A.△E=QB.△EQ
C.△EQD.无法比较
解析:由于A、B气体的合重心在中线下,混合均匀后在中线.所以系统重力势能增大.由能量守恒可得,吸收热量一部分增加气体内能,一部分增加重力热能.所以B正确
思考拓宽:若上两部分气体装在绝热容器中.将隔板抽去后.当气体充分混合均匀后.气体内能如何变化?
例3.一定质量的气体从外界吸收了2.6×105J的热量,其内能增加了4.2×105J,则在这个过程中是外界对气体做了功还是气体对外界做了功?做了多小功?
解析:由热力学第一定律知,做功和热传递都可以改变物体内能,表达式W+Q=△E.因为内能增加量大于气体吸收的热量,所以是外界对气体做了功.W=△E-Q=1.6×105J.

【能力提升】
Ⅰ知识与技能
1.r表示两分子间的距离,Ep表示两分子间相互作用的势能,当r=r0时,两分子间斥力等于引力,设两个分子间相距很远时Ep=0,则()
A.当rr0时,Ep随r的增大而减小
B.当rr0时,Ep随r的增大而增大
C.当rr0时,Ep不随r而变
D.当r=r0时,Ep最小,且为负值
2.质量相等的氢气和氧气,温度相同,不考虑分子间势能,则()
A.氧气的内能较大B.氢气的内能较大
C.两者内能相等D.氢气分子的平均动能较大
3.下列说法正确是()
A.物体温度升高,则分子热运动的平均动能增大
B.物体温度升高,则分子热运动的速率都增大
C.物体体积减小,分子间势能一定增大
4.下列说法错误的是:()
A.物体对外界做功,物体的内能一定减少
B.物体吸收热量且不对外做功,物体的温度一定升高
C.物体温度不变,内能可能变大
5.一个装有气体的绝热圆筒,如筒的一端有活塞可移动,当气体体积增大时,则()
A.气体内能增加,温度升高
B.物体内能增加,温度降低
C.气体内能减少,温度升高
D.气体内能减少,温度降低
6.子弹射入置于光滑水平面上的木块的过程中,下列说法正确的是()
A.子弹、木块组成的系统机械能守恒
B.子弹损失的机械能等于木块内能的增加
C.子弹损失的机械能等于木块和子弹内能的增加量
D.子弹、木块组成的系统动量守恒
7.一木块从斜面上匀速下滑,在下滑过程中,若不考虑木块的热膨胀,下列说法正确的是
A.木块的分子势能增加
B.木块的分子平均动能不变
C.木块的分子势能和分子平均动能均增大
D.木块的机械能减少,内能增大
8.质量相等,温度都是0℃的水和冰相比较,它们的内能()
A.因为质量和温度相等,所以内能相等
B.冰的密度比水小,水凝结成冰时体积增大,分子间势能增大;温度相等,分子热运动平均动能相等,所以冰的内能较多
C.水凝结成冰的过程要放出热量,内能减少,所以水的内能较多
9.有一绝热容器,中间有一绝热活塞,用销钉固定,封闭了A、B两部分气体,开始它们温度相同,体积相同.A的压强是B压强的2倍,如图所示.现拔掉销钉,活塞移动后,下列说法正确的是()
①.B气体内能增大②.A气体内能不变
③.B气体温度升高④.A气体温度不变
A.①②B.①③C.②③D.②④
Ⅱ能力与素质
10.保温材料做成的封闭房间里,为降低室内温度,同时打开电冰箱和电风扇,两电器工作较长时间后,房内的气温将会怎样变化?说明原因.
11.一质量为m的子弹,以v0的速度射入放在光滑水平面上的质量为M,长为L的木块中,子弹从木块中穿出时的速度为v1,v1=v0/3.设子弹穿过木块过程中所受阻力不变,则此过程中子弹和木块组成的系统获得多少内能?
【拓展与研究】
12.利用风力发电是一种经济而又清洁的能源利用方式.我国甘肃等地,四季的平均风速为10m/s.已知空气的密度为1.3kg/m3,该地新建的小型风力发电机的风车有三个长度为12m的叶片,转动时可形成半径为12m的圆面.
⑴若这个风车能将通过此圆面内的10%的气流的动能转化为电能,那么该风车带动的发电机的功率为多大?(保留两位有效数字)
⑵为了减少风车转动轴的磨损,根据最新设计,在转动轴承部分镀了一层纳米陶瓷.一般陶瓷每立方厘米含有1010个晶粒,而这种纳米陶瓷每立方厘米含有1019个晶粒,若把每个晶粒看成球形;并假设这些晶粒是一个挨一个紧密排列的,那么每个晶粒的直径大约是多少纳米?(保留两位有效数字)
专题三气体
【考点透析】
一、本专题考点:气体的状态和状态参量为Ⅱ类要求,气体分子运动特点和气体压强的微观意义为Ⅰ类要求。
二、理解和掌握的内容
1.气体的状态和状态参量
⑴温度:温度宏观上讲是表示物体冷热程度的物理量;微观上讲是标志物体分子热运动平均动能大小的物理量.温度的数值与使用的温标有关.
①摄氏温度t:单位"摄氏度"(℃),在1个标准大气压下,水的冰点为0℃,沸点为100℃.
②热力学温度T:单位"开尔文"(K),把-273.15℃作为热力学温度的零度.
③就每一度表示的冷热差别来说,两种温度是相同的,所以两者的关系是T=(t+273.15)K,△T=△t.
④绝对零度是低温的极限,只能接近但不能达到;表明分子的热运动永远存在.
⑵体积V:气体体积是指大量气体分子所能到达的整个空间的体积.封闭在容器内的气体,其体积等于容器的容积.处在容器内的气体在不考虑重力对气体分子分布的影响时,气体的密度处处相等.气体的质量与体积成正比.在标准状态下,1mol的任何气体的体积均为22.4L,单位:米3(m3).
⑶压强:气体的压强,从分子动理论角度上看,气体的压强是由于大量气体分子作无规则的热运动,对器壁发生频繁持续的碰撞而引起的,大量分子对器壁单位面积上的压力就是气体的压强.国际单位制:帕(Pa).
说明:①单位体积内气体的分子数越多,分子的平均速率越大,气体的压强就越大.
②大气压强还可以理解为是由于大气受地球引力而产生的.
⑷一定质量的气体,其所处的状态通常用压强、体积、温度三个物理量来描述.这三个物理量叫做气体的状态参量.当气体的三个状态参量确定时,则气体处于确定状态.三个状态参量密切相关,并遵循一定的规律,所谓状态变化,至少有两个参量同时改变.
2.气体分子运动特点
⑴气体很容易压缩,可见气体分子间的作用非常微弱.通常认为,气体分子除相互碰撞或与器壁碰撞外,不受力的作用;气体分子能在空间自由移动,能够充满它可以到达的空间.
⑵气体分子的热运动,表现为分子频繁不断地互相碰撞或跟器壁碰撞,每个气体分子的热运动的速度大小和方向在频繁不断的碰撞中发生变化,造成气体分子热运动的杂乱无章的特性.
⑶组成气体的大量分子,作为整体表现出来的规律是:
①任意时刻大量的气体分子在各个不同方向上运动的机会是相等的.换一种说法:任意时刻大量气体分子在各个方向上运动的分子数量是相等的.这种方向上的机会均等性,随气体分子数量的增加而增大.
②大量气体分子的热运动速率;按“中间多、两头少”的规律分布,即气体的大多数分子的速率,都在某个“中间”速率数值附近.离“中间”速率数值越大,分子数越少.
【例题精析】
例1对于一定量的气体,下列论述中正确的是()
A.当分子热运动变剧烈时,压强必变大
B.当分子热运动变剧烈时,压强可以不变
C.当分子间的平均距离变大时,压强必变小
D.当分子间的平均距离变大时,压强必变大
解析:一定质量的气体,其压强由单位体积内气体的分子个数和分子热运动的平均速率两个因素决定.所以当分子热运动变剧烈时,分子的平均速率增大.若气体的体积增大,单位体积的气体分子个数减小,其压强可以不变,答案为B.
例2一定质量的气体处于平衡状态Ⅰ,现设法使其温度降低而压强升高,达到平衡状态Ⅱ,则(1999年全国高考题)
A.状态Ⅰ时气体的密度比状态Ⅱ时的大
B.状态Ⅰ时分子的平均动能比状态Ⅱ时的大
C.状态Ⅰ时分子间的平均距离比状态Ⅱ时的大
D.状态Ⅰ时每个分子动能都比状态Ⅱ时的分子平均动能大
解析:温度是分子平均动能的标志,温度降低,分子的平均动能必然减小,B项正确;分子的平均动能减小,并不表示每一个分子的动能都减小,分子动理论是统计规律,都是对大量分子而言,对某个分子并不具备分子动理论的特征,所以D项错误;气体压强由分子的平均速率和单位体积内的分子个数两个因素决定,温度降低使分子的平均速率减小,而其压强升高,必是因为单位体积的分子数增多引起,即气体的密度增大,分子间的平均距离减小,所以A项错误,C项正确.
【能力提升】
Ⅰ知识与技能
1.在自然界能够达到的温度是:()
A.106℃B.-273.15℃C.-1K
2.关于气体的体积,下列说法中正确的是()
A.气体的体积与气体的质量成正比
B.气体的体积与气体的密度成正比
C.气体的体积就是所有气体分子体积的总和
D.气体的体积与气体的质量、密度和分子的体积无关,只决定于容器的容积.
3.在一容器中用活塞封闭有气体,下列哪一种情况是可能的:
①使气体温度升高,同时压强增大
②使气体温度升高,体积减小,而压强增大
③使气体温度保持不变,但压强和体积同时增大
④使气体的温度降低,气体的压强和密度同时减小
A.①②B.②③C.②④D.①④
4.密封容器中气体的压强()
A.是由于气体受到重力产生的
B.是由于气体分子的相互作用力产生的
C.是大量气体分子频繁地碰撞器壁而产生的
D.当容器自由下落时减小为零
5.一定质量的气体,若保持温度不变而增大其压强,则()
A.单位体积内气体分子数一定增加
B.单位体积内气体分子数可能减少
C.气体分子热运动的平均动能增加
D.气体分子的平均动能可能减少
Ⅱ能力与素质
6.给汽车轮胎打气,使胎内空气达到所需的压强,冬天和夏天相比,胎内的气体的质量是否相同?为什么?

效果验收
1.根据下列哪一组数据,可以算出水分子的体积()
A.水的密度和水的摩尔体积
B.水的摩尔质量和阿佛伽德罗常数
C.水的密度,阿佛伽德罗常数
D.水的密度,水的摩尔质量,阿佛伽德罗常数
2.关于布朗运动,说法不正确的是()
A.布朗运动不是分子的运动,但反映了液体分子的无规则运动
B.布朗运动的剧烈程度与液体的温度有关
C.布朗运动的明显程度与微粒的大小无关
D.布朗运动的无规则性与液体的种类,微粒的物质种类无关
3.温度相同的氧气、氢气,关于它们的分子的动能说法正确的是()
A.每一个氧分子和每一个氢分子的动能相同
B.一克氧分子和一克氢分子的动能相同
C.一摩尔的氧分子和一摩尔的氢分子的动能相同
D.氧气、氢气的内能相同
4.下列说法正确的是()
A.物体的温度升高时,一定吸收了热量
B.物体的内能增加时,外界一定对物体做了功
C.0℃冰化成0℃的水,水的内能增大
D.物体由静止突然加速运动时,内能增大
5.甲和乙两个分子相距较远,若将甲固定,然后使乙逐渐向甲移动,直到不能再靠近为止,则在这个过程中()
A.分子力总是做正功
B.分子力总是做负功
C.先是分子力做负功,后是分子力做正功
D.先是分子力做正功,后是分子力做负功
6.有关物体的内能,以下说法正确的是()
A.1g0℃水的内能比1g0℃冰的内能大
B.电流通过电阻时发热,内能增加,是热传递的结果
C.气体膨胀,它的内能一定减小
D.橡皮筋被拉伸时,分子间势能减小
7.行驶中的汽车制动后滑行一段距离,最后停下;流星在夜空中坠落并发出明亮的火焰;降落伞在空中匀速下降;条形磁铁在下落过程中穿过闭合线圈,线圈中产生电流,上述不同现象中所包含的相同的物理过程是:()
①.物体克服阻力做功
②.物体的动能转化为其他形式的能量
③.物体的势能转化为其他形式的能量
④.物体的机械能转化为其他形式的能量
A.①②B.②③C.③④D.①④
8.下列说法中正确的是:
①.液体中悬浮微粒的布朗运动是做无规则运动的液体分子撞击微粒而引起的
②.物体的温度越高,其分子的平均动能越大
③.物体里所有分子动能的总和叫做物体的内能
④.只有热传递才能改变物体的内能
A.①③B.①②C.②③D.③④
9.如图所示电冰箱的工作原理图,压缩机工作时,强迫制冷剂在冰箱内外管道中不断循环,那么,下列说法中正确的是()
①.在冰箱内的管道中,致冷剂迅速膨胀并吸收热量
②.在冰箱外的管道中,致冷剂迅速膨胀并放出热量
③.在冰箱内的管道中,致冷剂被剧烈压缩并吸收热量
④.在冰箱外的管道中,致冷剂被剧烈压缩并放出热量
A.①③B.②③C.②④D.①④
二.填空题(每题5分)
10.在做《用油膜法做测分子大小》的实验中,用油酸酒精的浓度为每104ml溶液中有纯油酸6ml,用注射器测得1ml上述溶液有75滴.把1滴该溶液滴入盛水的浅盘里,待水面稳定后,将玻璃板放在浅盘上,用笔在玻璃板上描出油酸的轮廓,再把玻璃板放在坐标纸上,其形状和尺寸如图示,坐标中正方形方格的边长为1cm,试求:
⑴油酸膜的面积cm2
⑵每滴油酸酒精溶液含有纯油酸的体积cm3
⑶按以上实验数据估测出油酸分子的直径
11.用长度放大600倍的显微镜观察布朗运动,估计放大后的小颗粒(碳)体积为1×103m3,碳的密度是2.25×103kg/m3,摩尔质量是1.2×102kg/mol,阿佛伽德罗常数为6.0×1023mol-1,则该小碳粒含分子数约为个(保留1位有效数字)
三.计算题
12.(7分)黄金的密度是19.3×103kg/m3,摩尔质量是19.7kg/mol,求⑴金分子的质量;⑵金分子的体积;⑶金分子的直径.
13.(10分)某同学想要估测每秒钟太阳辐射到地球表面上的能量,他用一个横截面积s=3.2dm2的保湿圆筒,内装有质量为m=0.4kg的水,被太阳光垂直照射t=3min,水的温度升高了Δt=2.2℃.已知水的比热C=4.2×103J/kg℃,地球半径R=6400km,试求出太阳向地球表面辐射能量的功率.

第八章热学部分答案
专题一:1.A2.B3.A4.B5.A6.5×10-10m7.3.3×10-9m
专题二:1.D2.B3.A4.A5.D6.D7.D8.C9.A
10.⑴房内温度升高⑵电冰箱、电风扇消耗的电能最后都转化为内能,因而房内温度升高.11.E内=2(2M-m)mv02/9M
拓展与研究⑴2.9×104w⑵6nm
专题三:1.A2.D3.D4.C5.A6.不相同.气体压强是由分子的平均速率和单位体积的分子数两个因素决定,夏天比冬天温度高,分子平均速率大,达到相同压强,夏天轮胎内气体质量少.
效果验收:1.D2.C3.C4.C5.D6.A7.D8.B9.D
10.⑴106cm2⑵.8×10-6m⑶.7.5×10-10m11.5×106个12.⑴.3.3×10-25kg⑵.1.7×10-29m3⑶.3.2×10-10m13.8.2×1016w

高考物理考点重点分子动理论复习


第十一章分子动理论

1.本章主要是研究物体的组成、分子热运动、分子间的作用力以及物体的内能。
2.本章主要内容为分子动理论,以分子动理论为基础,将宏观物理量温度和物体的内能联系起来。属模块中高考必考内容。
3.高考中以选择题形式考查对基础知识的理解,以计算题形式进行宏观量与微观量间的计算。

第一课时分子动理论

【教学要求】
1.知道物体是由大量分子组成的,理解阿伏加德罗常数。
2.知道分子热运动,分子热运动与布朗运动关系。
3.知道分子间的作用力和一些宏观解释。
【知识再现】
一、物质是由大量分子组成的
1.分子体积很小,它的直径数量级是m.
2.油膜法测分子直径:d=V/S,V是,S是水面上形成成的单分子油膜的面积.
3.分子质量很小,一般分子质量的数量级是
kg
4.分子间有空隙.
5.阿伏加德罗常数:1mol的任何物质都含有相同的粒子数,这个数的测量值NA=mol—1。阿伏加德罗常数是个十分巨大的数字,分子的体积和质量都很分小,从而说明物质是由大量分子组成的.
二、分子永不停息地做无规则热运动
1.扩散现象:相互接触的物质彼此进入对方的现象,温度越高,扩散.
2.布朗运动:在显微镜下看到的悬浮在液体中的的永不停息的无规则运动,颗粒越小,运动越;温度越高,运动越.布朗运动不是液体分子的运动.
三、分子间存在着相互作用力
1.分子间同时存在相互作用的和
,合力叫分子力.
2.特点:分子间的引力和斥力都随分子间的
增大而减小,随分子间距离的减小而增大,但斥力比引力变化更。
知识点一微观量与宏观量关系的计算
微观量与宏观量间的关系,以阿伏加德罗常数为联系的桥梁。解题时应抓住宏观量中的质量、体积、摩尔质量、摩尔体积、分子数目等,微观量中的分子质量、分子大小(体积与直径),气体问题一般用正方体模型,固体、液体分子一般用球模型。
【应用1】(07南京调研)铜的摩尔质量为,密度为,阿伏加德罗常数为,则下列说法正确的是()
A.1kg铜所含的原子数是
B.1m3铜所含的原子数是
C.1个铜原子的质量是
D.1个铜原子所占的体积是
导示:1kg铜的量为,原子数是,A错。1m3铜质量为,摩尔数为,原子数是,B错。1摩尔铜原子的质量是M,1个铜原子的质量是,C对。1摩尔铜的体积为,一个铜原子所占的体积为,D对。故本题选CD。
物质密度等于质量与体积之比,也等于摩尔质量与摩尔体积之比。摩尔质量为分子质量的6.02×23倍。摩尔体积为分子占据体积的6.02×23倍。
知识点二布朗运动的理解
布朗运动是花粉小颗粒的运动,它体现了分子运动的特点,不是分子运动。由于分子运动,对花粉小颗粒产生随机的碰撞,这种不平衡,使得花粉小颗粒运动起来。
【应用2】(08镇江调查)用显微镜观察水中的花粉,追踪某一个花粉颗粒,每隔10s记下它的位置,得到了a、b、c、d、e、f、g等点,再用直线依次连接这些点,如图所示,则下列说法中正确的是()
A.这些点连接的折线就是这一花粉颗粒运动的径迹
B.它说明花粉颗粒做无规则运动
C.在这六段时间内花粉颗粒运动的平均速度大小相等
D.从a点计时,经36s,花粉颗粒可能不在de连线上
导示:花粉颗粒的运动是杂乱无章的,10s内的径迹是复杂的,这些点连接的折线不一定是这一花粉颗粒运动的径迹,A错。它只能说明花粉颗粒做无规则运动,B正确。六段时间的位移大小不等,所以花粉颗粒运动的平均速度大小不等,C错。从d点再运动6s时间,花粉颗粒可能不在de连线上,体现花粉颗粒运动的无规则性,D正确。故选BD。
知识点三分子间的作用力与分子势能
分子间同时存在相互作用的斥力与引力,它们都随分子间距离的增大而减小,斥力减小得快。斥力与引力的合力为分子间的作用力,又分别表现为斥力和引力。所以这里的概念容易引起混淆。
【例3】(07新乡调研)当分子距离r=r0时,分子间引力和斥力恰好平衡,若使分子间距离从r1逐渐变为r2,(r0r1r2),在这—变化过程中,下列说法中可能正确的是()
A.分子间的引力比分子间的斥力减小得快,分子力增大
B.分子间的引力比分子间的斥力减小得快,分子力减小
C.分子间的斥力比分子间的引力减小得快,分子力增大
D.分子间的斥力比分子间的引力减小得快,分子力减小
导示:当分子距离r=r0时,分子间引力和斥力相等,距离再增大时,表现为引力,斥力减小得快,但分子力减小,ABC错,D对,故选D。
讨论分子间斥力与引力时,应区别斥力、引力和作用力三者之间的关系以及它们在不同距离段上的特点。
类型一分子力与宏观力的关系
与分子力特点有关的习题主要有三类:一是判断对分子力特点的描述是否正确.二是利用分子力特点研究分子力做功,分子的加速度.三是与实际相关联的问题.要正确分析这些问题,必须准确把握分子力的特点,熟知分子间斥力、引力及合力随分子间距离的变化规律.应弄清楚是分子力原因还是其它力作用的结果,切不可见了相斥、相吸就与分子力联系.
【例1】如图所示,使玻璃板的下表面与水接触,再向上用力把玻璃板缓慢拉离水面,当玻璃板离开水面时()
A.玻璃板只受重力和拉力作用,所以对玻璃板的拉力与玻璃板的重力大小相等
B.因为玻璃板的下表面附着了一层水,所以对玻璃板的拉力比玻璃板的重力稍大一些,大的值与这层水的重力相当
C.玻璃板受重力、拉力和浮力作用,所以对玻璃板的拉力小于玻璃板的重力
D.玻璃板离开水面时,水层发生了分裂,为了克服大量水分子间的引力和大气压力,拉力明显大于玻璃板的重力
导示:本实验中,弹簧秤的拉力明显大于玻璃板的重力。形成这种现象的原因就是璃板离开水面时,水层发生了分裂,为了克服大量水分子间的引力和大气压力而产生的。答案D。
宏观力现象往往与微观分子间的作用力有关,例如固体抗压、抗拉等,是由分子力而产生的,而气体的压强则是由分子无规则运动而产生的。
类型二估算题的解题思路
估算题解题时,要抓住对应物理量之间的关系,建立要近似的模型,列出相关等式来求解。
【例2】将0.01mol的香水散在12×7×3.5m3的教室空间,那么每立方米空间有多少个香水分子?
导示:香水分子的总数为:0.01×6.02×1023个,每立方米空间有个香水分子。
在宏观环境下计算出的微观量,其数值是一个较大的值,这也是粗略判断结果是否正确的方法之一。
类型三宏观现象与微观理论的对应关系
【例3】将下列实验事实与产生的原因对应起来。
导示:水与酒精混合体积变小是因为分子间存在间隙,则A与e对应。固体很难被压缩是因为分子间存在斥力,B与d对应。细绳不易被拉断是因为分子间存在引力C与c对应。糖在热水中溶解很快
是因为分子运动剧烈程度与温度有关,D与b对应。冻食品也会变干是因为固体分子也在不停地运动,E与a对应。
1.(07靖江联考)下列叙述正确的是()
A.只要知道水的摩尔质量和水分子的质量,就可以计算出阿伏伽德罗常数
B.物体的温度越高,分子热运动的平均动能越大
C.悬浮在液体中的固体微粒越大,布朗运动越明显
D.吸热的物体,其内能一定增加
2.(07广东普宁)一艘油轮装载着密度为9×102kg/m3的原油在海上航行。由于故障而发生原油泄漏。如果泄漏的原油有9t,海面上风平浪静时,这些原油造成的污染面积最大可达到()
A.108m2B.109m2C.1010m2D.1011m2
3.(07启东)在用油膜法估测分子的大小的实验中,已经油的摩尔质量为M,密度为ρ,油滴质量为m,油滴在液面上扩散后的最大面积为S,阿伏加德罗常数为N,以上各量均为国际单位.则()
A.油滴分子直径d=
B.油滴分子直径d=
C.油滴所含分子数n=
D.油滴所含分子数n=
4.如图所示,设有一分子位于图中的坐标原点O处不动,另一分子可位于x轴上不同位置处。图中纵坐标表示这两个分子间分子力的大小,两条曲线分别表示斥力和吸力的大小随分子间距离的变化关系,e为两曲线的交点,则()
A、ab表示吸力,cd表示斥力,e点坐标可能为10-15m
B、ab表示斥力,cd表示吸力,e点坐标可能为10-10m
C、ab表示吸力,cd表示斥力,e点坐标可能为10-10m
D、ab表示斥力,cd表示吸力,e点坐标可能为10-15m
参考答案:1.AB2.D3.BC4.C

高考物理备考复习分子动理论教案


§X7.《分子动理论》章末测试
一、选择题
1.下列说法中正确的是(AC)
A.物质是由大量分子组成的,分子直径的数量级是10-10m
B.物质分子在不停地做无规则运动,布朗运动就是分子的运动
C.在任何情况下,分子间的引力和斥力是同时存在的
D.1kg的任何物质含有的微粒数相同,都是6.02×1023个,这个数叫阿伏加德罗常数
2.关于布朗运动,下列说法正确的是(BC)
A.布朗运动是在显微镜中看到的液体分子的无规则运动
B.布朗运动是液体分子无规则运动的反映
C.悬浮在液体中的微粒越小,液体温度越高,布朗运动越显著
D.布朗运动的无规则性反映了小颗粒内部分子运动的无规则性
3.以下说法中正确的是(BCD)
A.分子的热运动是指物体的整体运动和物体内部分子的无规则运动的总和
B.分子的热运动是指物体内部分子的无规则运动
C.分子的热运动与温度有关:温度越高,分子的热运动越激烈
D.在同一温度下,不同质量的同种液体的每个分子运动的激烈程度可能是不相同的
4.在一杯清水中滴一滴墨汁,经过一段时间后墨汁均匀地分布在水中,只是由于(C)
A.水分子和碳分子间引力与斥力的不平衡造成的
B.碳分子的无规则运动造成的
C.水分子的无规则运动造成的
D.水分子间空隙较大造成的
5.下列关于布朗运动的说法中正确的是(D)
A.将碳素墨水滴入清水中,观察到的布朗运动是碳分子无规则运动的反映
B.布朗运动是否显著与悬浮在液体中的颗粒大小无关
C.布朗运动的激烈程度与温度有关
D.微粒的布朗运动的无规则性,反映了液体内部分子运动的无规则性
6.下面证明分子间存在引力和斥力的试验,错误的是(D)
A.两块铅压紧以后能连成一块,说明存在引力
B.一般固体、液体很难被压缩,说明存在着相互排斥力
C.拉断一根绳子需要一定大小的力说明存在着相互吸引力
D.碎玻璃不能拼在一起,是由于分子间存在着斥力
7.关于分子间相互作用力的以下说法中,正确的是(CD)
A.当分子间的距离r=r0时,分子力为零,说明此时分子间既不存在引力,也不存在斥力
B.分子力随分子间的距离的变化而变化,当rr0时,随着距离的增大,分子间的引力和斥力都增大,但引力比斥力增大的快,故分子力表现为引力
C.当分子间的距离rr0时,随着距离的减小,分子间的引力和斥力都增大,但斥力比引力增大的快,故分子力表现为斥力
D.当分子间的距离r=10-9m时,分子间的作用力可以忽略不计
8.两个分子从相距较远(分子力忽略)开始靠近,直到不能再靠近的过程中(BCD)
A.分子力先做负功后做正功
B.分子力先做正功后做负功
C.分子间的引力和斥力都增大
D.两分子从r0处再靠近,斥力比引力增加得快
9.质量相等的氢气和氧气,温度相同,不考虑分子间的势能,则(B)
A.氧气的内能较大
B.氢气的内能较大
C.两者内能相等
D.氢气分子的平均动能较大
10.以下说法中正确的是(D)
A.温度低的物体内能小
B.温度低的物体内分子运动的平均速率小
C.物体做加速运动时速度越来越大,物体内分子的平均动能也越来越大
D.以上说法都不对
二、填空题
11.在做“用油膜法估测分子直径的大小”的实验中,试验简要步骤如下:
A.将画有油膜轮廓的玻璃板放在坐标纸上,数出轮廓内的方格数(不足半个的舍去,多于半个的算一个),再根据方格的边长求出油膜的面积S。
B.将一滴酒精油酸溶液滴在水面上,带油酸薄膜的形状稳定后,将玻璃板放在浅盘上,用彩笔将薄膜的形状描画在玻璃板上。
C.用浅盘装入约2cm深的水,然后用痱子粉或石膏粉均匀地撒在水面上。
D.用公式d=求出薄膜厚度,即油酸分子的大小。
E.根据酒精油酸溶液的浓度,算出一滴溶液中纯油酸的体积V。
F.用注射器或滴管将事先配置好的酒精油酸溶液一滴一滴地滴入量筒,记下量筒内增加一定体积时的滴数。
上述试验步骤的合理顺序是。(答案:CFBAED)
12.已知一滴水的体积是6×10-8m3,则这滴水中含有的水分子数为个。
(答案:2×1021)
13.如果取分子间距离r=r0(r0=10-10m)时为分子势能的零势能点,则rr0时,分子势能为值;rr0时,分子势能为值。如果取r→∞远时为分子势能的零势能点,则rr0时,分子势能为值;rr0时,分子势能可以为值。(填“正”、“负”或“零”)(答案:正;正;负;负或零或正)
14.某人做一次深呼吸,吸进400cm3的空气,据此估算他所吸进的空气分子的总数约为个。(保留一位有效数字)(答案:1×1022)
三、计算题
15.在做“用油膜法估测分子大小”的实验中,所用油酸酒精溶液的浓度为每104mL溶液中有纯油酸6mL,用注射器测得1mL上述溶液有75滴,把1滴该溶液滴入盛水的浅盘里,待水面稳定后,将玻璃板放在浅盘上,用笔在玻璃板上描出油酸的轮廓,再把玻璃板放在坐标纸上,其形状和尺寸如图所示,坐标中正方形方格的边长为2cm,试求
(1)油酸膜的面积是多少cm2;
(2)每滴油酸酒精溶液中含有纯油酸的体积;
(3)按以上实验数据估测出油酸分子的直径。

解:(1)油膜的面积S=72×4cm2=288cm2
(2)每滴溶液中含有的纯油酸体积V=mL=8×10-6mL
(3)油酸分子的直径3×10-8cm=3×10-10m
16.一个截面积为S的圆形绝热容器装有质量为m的水。已知水的比热容为c,水的温度为t1,在阳光下照射时间为T后,温度升高到t2。若照射时阳光与水平方向的夹角为α,试算出阳光垂直照射时单位面积热辐射的功率。
解:水的温度从t1升高到t2过程中,吸收的热量:
Q吸=cm(t2-t1)
太阳光垂直热辐射的功率为P,则:
Q辐射=PTSsinα
由Q吸=Q辐射得:
17.如图所示,在质量为M的细玻璃管中盛有少量乙醚液体,用质量为m的软木塞将管口封闭,加热玻璃管使软木塞在乙醚蒸汽的压力下水平飞出,玻璃管悬于长为L的轻杆上,细杆可绕上端轴O无摩擦转动,欲使玻璃管在竖直平面内做圆周运动,在忽略热量损失的条件下,乙醚最少要消耗多少内能?
解:设软木塞水平飞出时M和m的速率分别为v1和v2,由动量守恒定律得:mv2=Mv1(1)
细玻璃管恰越过最高点的条件是速度为零,由机械能守恒定律得:
Mv12=Mg*2L(2)
由能量守恒定律知,管塞分离时二者动能之和等于乙醚消耗的内能E内,
即:E内=Mv12+mv22(3)
联立(1)(2)(3)式,可得E内=2MgL

高考物理基础知识要点复习分子动理论内能


20xx届高三物理一轮复习全案:第一章分子动理论内能(选修3-3)

【高考目标定位】

考纲点击

热点提示

1.分子动理论的基本观点和实验根据Ⅰ

2.阿伏伽德罗常数0℃沸点是:100℃

(2)热力学温标T单位:K(SI制的基本单位之一)把-273℃作为0K绝对零度(是低温的极限,只能无限接近、不能达到)

【要点名师精解】

类型一:阿伏伽德罗常数及微观量的计算

【例1】已知水的密度A.当r大于r1时,分子间的作用力表现为引力B.当r小于r1时,分子间的作用力表现为斥力C.当r等于r2时,分子间的作用力为零D.在r由r1变到r2的过程中,分子间的作用力做负功【答案】BC

【解析】分子间距等于r0时分子势能最小,即r0=r2。当r小于r1时分子力表现为斥力;当r大于r1小于r2时分子力表现为斥力;当r大于r2时分子力表现为引力,A错BC对。在r由r1变到r2的过程中,分子斥力做正功分子势能减小,D错误。

【命题意图与考点定位】分子间距于分子力、分子势能的关系

2.(20xx·上海物理·14)分子间的相互作用力由引力与斥力共同产生,并随着分子间距的变化而变化,则

(A)分子间引力随分子间距的增大而增大

(B)分子间斥力随分子间距的减小而增大

(C)分子间相互作用力随分子间距的增大而增大

(D)分子间相互作用力随分子间距的减小而增大

答案:B

解析:根据分子力和分子间距离关系图象,如图,选B。

本题考查分子间相互作用力随分子间距的变化,图象的理解。

难度:中等。

3.(09·北京·13)做布朗运动实验,得到某个观测记录如图。图中记录的是(D)

A.分子无规则运动的情况

B.某个微粒做布朗运动的轨迹

C.某个微粒做布朗运动的速度——时间图线

D.按等时间间隔依次记录的某个运动微粒位置的连线

解析:布朗运动是悬浮在液体中的固体小颗粒的无规则运动,而非分子的运动,故A项错误;既然无规则所以微粒没有固定的运动轨迹,故B项错误,对于某个微粒而言在不同时刻的速度大小和方向均是不确定的,所以无法确定其在某一个时刻的速度,故也就无法描绘其速度-时间图线,故C项错误;故只有D项正确。

4.(09·上海物理·2)气体内能是所有气体分子热运动动能和势能的总和,其大小与气体的状态有关,分子热运动的平均动能与分子间势能分别取决于气体的(A)

A.温度和体积B.体积和压强

C.温度和压强D.压强和温度

解析:由于温度是分子平均动能的标志,所以气体分子的动能宏观上取决于温度;分子势能是由于分子间引力和分子间距离共同决定,宏观上取决于气体的体积。因此答案A正确。

5.(09·江苏卷物理·12.A)(选修模块3—3)(12分)(1)若一气泡从湖底上升到湖面的过程中温度保持不变,则在此过程中关于气泡中的气体,下列说法正确的是。(填写选项前的字母)(A)气体分子间的作用力增大(B)气体分子的平均速率增大(C)气体分子的平均动能减小(D)气体组成的系统地熵增加(2)若将气泡内的气体视为理想气体,气泡从湖底上升到湖面的过程中,对外界做了0.6J的功,则此过程中的气泡(填“吸收”或“放出”)的热量是J。气泡到达湖面后,温度上升的过程中,又对外界做了0.1J的功,同时吸收了0.3J的热量,则此过程中,气泡内气体内能增加了J。(3)已知气泡内气体的密度为1.29kg/,平均摩尔质量为0.29kg/mol。阿伏加德罗常数,取气体分子的平均直径为,若气泡内的气体能完全变为液体,请估算液体体积与原来气体体积的比值。(结果保留一位有效数字)。

答案:A.(1)D;(2)吸收;0.6;0.2;(3)设气体体积为,液体体积为,

气体分子数,(或)

则(或)

解得(都算对)

解析:(1)掌握分子动理论和热力学定律才能准确处理本题。气泡的上升过程气泡内的压强减小,温度不变,由玻意尔定律知,上升过程中体积增大,微观上体现为分子间距增大,分子间引力减小,温度不变所以气体分子的平均动能、平均速率不变,此过程为自发过程,故熵增大。D项正确。

(2)本题从热力学第一定律入手,抓住理想气内能只与温度有关的特点进行处理。理想气体等温过程中内能不变,由热力学第一定律,物体对外做功0.6J,则一定同时从外界吸收热量0.6J,才能保证内能不变。而温度上升的过程,内能增加了0.2J。

(3)微观量的运算,注意从单位制检查运算结论,最终结果只要保证数量级正确即可。设气体体积为,液体体积为,气体分子数,(或)

则(或)

解得(都算对)

6.(08北京卷)15.假如全世界60亿人同时数1g水的分子个数,每人每小时可以数5000个,不间断地数,则完成任务所需时间最接近(阿伏加德罗常数NA取6×1023mol-1)()

A.10年B.1千年C.10万年D.1千万年

答案:C

[解析]:1g水的分子个数个,则完成任务所需时间t==6×1018小时,约为1000年。

7.(08天津卷)下列说法正确的是()

A.布朗运动是悬浮在液体中固体颗粒的分子无规则运动的反映

B.没有摩擦的理想热机可以把吸收的能量全部转化为机械能

C.知道某物质的摩尔质量和密度可求出阿伏加德罗常数

D.内能不同的物体,它们分子热运动的平均动能可能相同

答案:D

[解析]:布朗运动是悬浮在液体中固体小颗粒的运动,他反映的是液体无规则的运动,所以A错误;没有摩擦的理想热机不经过做功是不可能把吸收的能量全部转化为机械能的B错误,摩尔质量必须和分子的质量结合才能求出阿伏加德罗常数C错;温度是分子平均动能的标志,只要温度相同分子的平均动能就相同,物体的内能是势能和动能的总和所以D正确

【考点精题精练】

1.(20xx·福建省龙岩二中高三摸底考试)一定质量的气体(分子力及分子势能不计)处于平衡状态Ⅰ,现设法使其温度升高同时压强减小,达到平衡状态Ⅱ,则在状态Ⅰ变为状态Ⅱ的过程(BD)A.气体分子的平均动能必定减小

B.单位时间内气体分子对器壁单位面积的碰撞次数减少C.气体的体积可能不变D.气体必定吸收热量

2、(20xx·吉林市普通中学高三下学期期中)下列说法中正确的是

A.扩散运动向着更为无序的方向进行,是可逆过程

B.物体的内能取决于温度、体积和物质的量

C.分子间作用力随分子间距离的增大而减小

D.液晶对不同颜色光的吸收强度随电场强度的变化而变化

3、(20xx·江苏盐城中学高三一模)下列说法正确的是

A.布朗运动是悬浮在液体中固体颗粒的分子无规则运动的反映

B.没有摩擦的理想热机可以把内能全部转化为机械能

C.浸润与不浸润均是分子力作用的表现

D.热力学温标的最低温度为0K,它没有负值,它的单位是物理学的基本单位之一

4、(20xx·江苏盐城中学高三一模)质量m=0.1kg的氢气在某状态下的体积V=1.92m3,则此时氢气分子的平均间距为。(已知氢气的摩尔质量M=2g/mol,阿伏加德罗常数NA=6.0×1023mol-1.)5、(20xx·山东省德州市高三一模)对一定质量的理想气体,下列说法正确的是:A.气体的体积是所有气体分子的体积之和B.气体温度越高,气体分子的热运动就越剧烈C.气体对容器的压强是由大量气体分子对容器不断碰撞而产生的D.当气体膨胀时,气体分子的势能减小,因而气体的内能一定减少

答案:BC

6.下列说法中正确的是(D)

(A)布朗运动是液体分子的无规则运动

(B)液体很难被压缩的原因是:当液体分子距离减小时,分子间斥力增大,分子间的引力减小,所以分子力体现为斥力

(C)每个分子的内能等于它的势能和动能的总和

(D)物体的内能大小与其温度、体积及所含物质的量三者有关

7.下列说法中正确的是(CD)A.理想气体在等温变化时,内能不改变,因而与外界不发生热量交换B.布朗运动是液体分子的运动,它说明分子永不停息地做无规则运动C.质量一定的理想气体,压强不变时,温度越高,体积越大D.根据热力学第二定律可知,热量不可能自发地从低温物体传到高温物体8、(20xx·山东省济南市高三期末检测考试)为保证环境和生态平衡,在生产活动中严禁污染水源。在某一水库中,一艘快艇在水面上匀速行驶,速度为8m/s。油箱突然破裂,柴油迅速流入水中,从漏油开始到船员堵住漏油共用1.5分钟。漏出的油在水面上形成宽约为100m的长方形油层,漏出油的体积1.44×10-3m3.则该油层的厚度约为分子直径的多少倍?

(油分子的直径约为10—10m)答案:油层长度①

油层厚度②

(倍)③

9、(20xx·山东省东营市一模)一种油的密度为,摩尔质量为M。取体积为V的油慢慢滴出,可滴n滴。将其中一滴滴在广阔水面上形成面积为S的单分子油膜,求阿伏加伽德罗常数。

解:(1)一个分子的直径…………1分由题意得或…………2分解得:…………1分10、(20xx·山东省聊城市一模)一种油的密度为,摩尔质量为M。取体积为V的油慢慢滴出,可滴n滴。将其中一滴滴在广阔水面上形成面积为S的单分子油膜,求阿伏加伽德罗常数。

解:一个分子的直径…………1分由题意得或…………2分解得:…………1分