高中语文必修一教案
发表时间:2020-02-19高中数学必修2知识点总结 第一章 空间几何体。
一名优秀的教师在教学方面无论做什么事都有计划和准备,作为教师就要在上课前做好适合自己的教案。教案可以更好的帮助学生们打好基础,帮助教师能够更轻松的上课教学。那么如何写好我们的教案呢?下面是小编为大家整理的“高中数学必修2知识点总结 第一章 空间几何体”,欢迎大家阅读,希望对大家有所帮助。
高中数学必修2知识点总结第一章空间几何体
1.柱、锥、台、球的结构特征
由若干个平面多边形围成的几何体称之为多面体。围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体称之为旋转体,其中定直线称为旋转体的轴。
(1)柱
棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。
底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……
注:相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:
棱柱的性质:
①侧棱都相等,侧面是平行四边形;
②两个底面与平行于底面的截面是全等的多边形;
③过不相邻的两条侧棱的截面是平行四边形;
④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形。
棱柱与圆柱统称为柱体;
(2)锥
棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。
底面是三角锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥……
正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。
注:棱锥的性质:
①平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;
②正棱锥各侧棱相等,各侧面是全等的等腰三角形;
③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。
圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面。
圆锥的性质:
①平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;
②轴截面是等腰三角形;
棱锥与圆锥统称为锥体。
(3)台
棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点。
正棱台的性质:
①各侧棱相等,各侧面都是全等的等腰梯形;
②正棱台的两个底面以及平行于底面的截面是正多边形;
③棱台经常补成棱锥研究。
圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴。
圆台的性质:
①圆台的上下底面,与底面平行的截面都是圆;
②圆台的轴截面是等腰梯形;
③圆台经常补成圆锥来研究。
圆台和棱台统称为台体。
(4)球
以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。
注:球的有关问题转化为圆的问题解决。
(5)组合体
由柱、锥、台、球等几何体组成的复杂的几何体叫组合体。
2.空间几何体的三视图
三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形。
具体包括:
(1)正视图:物体前后方向投影所得到的投影图;
它能反映物体的高度和长度;
(2)侧视图:物体左右方向投影所得到的投影图;
它能反映物体的高度和宽度;
(3)俯视图:物体上下方向投影所得到的投影图;
它能反映物体的长度和宽度;
3.空间几何体的直观图
(1)斜二测画法
①建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX,OY,建立直角坐标系;
②画出斜坐标系,在画直观图的纸上(平面上)画出对应的O’X’,O’Y’,使=450(或1350),它们确定的平面表示水平平面;
③画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半;
④擦去辅助线,图画好后,要擦去X轴、Y轴及为画图添加的辅助线(虚线)。
结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的倍。
注:解决两种常见的题型时应注意
1)由几何体的三视图画直观图时,一般先考虑“俯视图”.
2)由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。
(2)平行投影与中心投影
平行投影的投影线是互相平行的,中心投影的投影线相交于一点。
扩展阅读
高中数学必修二《空间几何体的结构》教学设计
俗话说,居安思危,思则有备,有备无患。高中教师要准备好教案,这是高中教师的任务之一。教案可以让上课时的教学氛围非常活跃,帮助高中教师有计划有步骤有质量的完成教学任务。关于好的高中教案要怎么样去写呢?下面是小编精心收集整理,为您带来的《高中数学必修二《空间几何体的结构》教学设计》,仅供您在工作和学习中参考。
高中数学必修二《空间几何体的结构》教学设计
教学目标:
1.知识目标:能根据几何结构特征对空间物体进行分类;掌握棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征;
2.能力目标:会表示有关几何体;能判断组合体是由哪些简单几何体构成的。
3.情感目标:通过对生活中事物联系课本知识,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
教学重点:
七种空间几何体的结构特征。
教学难点:
七种空间几何体的分类及简单组合体的判断。
教学方式:多媒体
教学过程:
一、引入
在我们周围存在着各种各样的物体,它们都占据着一定的空间,将这些物体抽象出来的空间图形就叫做空间几何体。下面我们来认识几种最基本的空间几何体。
二、几种基本空间几何体的结构特征
1、棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。棱柱中,两个互相平行的面叫做棱柱的底面;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。
底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱
用各顶点字母表示棱柱,如棱柱ABCDEF-ABCDEF。
2、棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥
其中三棱锥又叫四面体。棱锥也用顶点和底面各顶点字母表示,如棱锥S-ABCD。
3、棱台:用一个平行于棱锥底面的平面区截棱锥,底面于截面之间的部分叫做棱台。
原棱锥的底面和截面分别叫做棱台的下底面和上底面,棱台也有侧面、侧棱、顶点。
由三棱锥、四棱锥、五棱锥截得的棱台分别叫做三棱台、四棱台、五棱台
4、圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体。
旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。圆柱用表示它的轴的字母表示,如圆柱OO。
5、圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面围成的旋转体。圆锥也有轴、底面、侧面和母线。圆锥也用表示它的轴的字母表示,如圆锥SO。
棱锥和圆锥统称为锥体。
6、圆台:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台。圆台也有轴、底面、侧面、母线。
7、球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体。
半圆的圆心叫做球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径,球常用球心字母O表示,如球O。
三、空间几何体的分类
简单空间几何体概括分类为:柱体、锥体、台体和球体。但现实世界中的物体除了简单的几何体外,还有大量的几何体是由简单几何体组合而成,简单组合体的构成有两种基本形式:1、由简单几何体拼接而成,如课本P7(1)(2);2、由简单几何体截去或挖去一部分而成,如课本P7(3)(4)。
判断ppt中一些简单组合体的结构特征。
四、巩固练习
1、课本P10A组习题1.(4)2
2、有两个面互相平行,其余各面都是平行四边形的几何体是不是棱柱(举反例说明,如图)
3、棱柱的任何两个平面都可以作为棱柱的底面吗?
4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
五、归纳总结
由学生总结归纳。
六、布置课后作业
精析精练《空间几何体的结构》
高中数学必修一知识点总结
高中数学必修一知识点总结
【第一章】
集合和函数的基本概念
这一章的易错点,都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就会丢分。次一级的知识点就是集合的韦恩图、会画图,掌握了这些,集合的“并、补、交、非”也就解决了。
还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。在第一轮复习中一定要反复去记这些概念,最好的方法是写在笔记本上,每天至少看上一遍。
【第二章】
基本初等函数
——指数、对数、幂函数三大函数的运算性质及图像
函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。
函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考点。另外指数函数和对数函数的对立关系及其相互之间要怎样转化等问题,需要着重回看课本例题。
【第三章】
函数的应用
这一章主要考是函数与方程的结合,其实就是函数的零点,也就是函数图像与X轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间灵活转化,以求能最简单的解决问题。关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这些难点对应的证明方法都要记住,多练习。二次函数的零点的Δ判别法,这个需要你看懂定义,多画多做题。
2提高数学成绩的方法
上课要认真听课要多做笔记记完笔记一定要课下找时间看多加复习看不懂的找同学或者是老师帮忙。当别人在玩的时候你抽出时间来看笔记坚持一段时间,你会发现成绩有了明显的提高
课下要提前预习提前做好准备找出难点和重点上课老师讲的时候要认真的听讲抓住课堂上的时间是最重要的如果你课堂上不认真听课下要付出5倍的力量和时间才能抓回来
课上听了只是一部分课下还要勤加练习多做练习题。当别人在玩的时候你抽出时间来做些题巩固知识不会的题思考之后再去问有助于提高学习效率
考试完之后要总结错题要把错题整理到一个错题本上思考如何做错总结为何做错,今后要怎么做才能不会做错。总结完不能扔在一边而要常看常复习。并写上错的原因,方便看的时候一目了然提高自己的学习效率
高三数学知识点:空间几何体
高三数学知识点:空间几何体
一、柱、锥、台、球的结构特征
结构特征
图例
棱柱
(1)两底面相互平行,其余各面都是平行四边形;
(2)侧棱平行且相等.
圆柱
(1)两底面相互平行;(2)侧面的母线平行于圆柱的轴;
(3)是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体.
棱锥
(1)底面是多边形,各侧面均是三角形;
(2)各侧面有一个公共顶点.
圆锥
(1)底面是圆;(2)是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体.
棱台
(1)两底面相互平行;(2)是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分.
圆台
(1)两底面相互平行;
(2)是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分.
球
(1)球心到球面上各点的距离相等;(2)是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.
二、简单组合体的结构特征
三、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
四、空间几何体的直观图——斜二测画法
斜二测画法特点:
①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
五、柱体、锥体、台体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c为底面周长,h为高,h为斜高,l为母线)
(3)柱体、锥体、台体的体积公式
(4)球体的表面积和体积公式:
高中数学必修二《空间几何体的三视图和直观图》优秀教案
一名优秀的教师就要对每一课堂负责,教师要准备好教案,这是老师职责的一部分。教案可以保证学生们在上课时能够更好的听课,帮助教师能够井然有序的进行教学。那么一篇好的教案要怎么才能写好呢?小编收集并整理了“高中数学必修二《空间几何体的三视图和直观图》优秀教案”,供大家借鉴和使用,希望大家分享!
高中数学必修二《空间几何体的三视图和直观图》教学设计
一、三维目标:1知识与技能:掌握斜二测画法;能用斜二测画法画空间几何体的直观图。
2过程与方法:引导学生体会画水平放置的直观图的关键是确定多边形顶点的
位置。
3情感态度与价值观:培养学生严谨的治学态度。
二、教学重点:用斜二测画法画空间几何体的直观图
三、教学难点:用斜二测画法画空间几何体的直观图
四、教学过程:
(一)复习巩固、
1.何为三视图?(正视图:自前而后;侧视图:自左而右;俯视图:自上而下)
2.定义直观图(表示空间图形的平面图).观察者站在某一点观察几何体,画出的图形.把空间图形画在平面内,画得既富有立体感,又能表达出图形各主要部分的位置关系和度量关系的图形
(二)、讲授新课:
1.教学水平放置的平面图形的斜二测画法:
①讨论:水平放置的平面图形的直观感觉?以六边形为例讨论.
②出示例1用斜二测画法画水平放置的正六边形.
(师生共练,注意取点、变与不变→小结:画法步骤)
③给出斜二测画法规则:
建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX,OY,建立直角坐标系;
画出斜坐标系,在画直观图的纸上(平面上)画出对应的O’X’,O’Y’,使XOY=450(或
1350),它们确定的平面表示水平平面;
画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半;
擦去辅助线,图画好后,要擦去X轴、Y轴及为画图添加的辅助线(虚线)。
④练习:用斜二测画法画水平放置的正五边形.
⑤讨论:水平放置的圆如何画?(正等测画法;椭圆模板)
2.教学空间图形的斜二测画法:
①讨论:如何用斜二测画法画空间图形?
②出示例2用斜二测画法画长4cm、宽3cm、高2cm的长方体的直观图.
(师生共练,建系→取点→连线,注意变与不变;小结:画法步骤)
③出示例3(教材P18)根据三视图,用斜二测画法画它的直观图.
讨论:几何体的结构特征?基本数据如何反应?
师生共练:用斜二测画法画图,注意正确把握图形尺寸大小的关系
④探究:如何由三视图得到直观图?又如何由直观图得到三视图?
二者有何关系?(探究P19奖杯的三视图到直观图)
结论:空间几何体的三视图与直观图有密切联系.三视图从细节上刻画了空间几何体的结构,根据三视图可以得到一个精确的空间几何体,三视图在现实生活中得到广泛应用(零件图纸、建筑图纸等).直观图是对空间几何体的整体刻画,根据直观图的结构想象实物的形象.
(三)、巩固练习:
1.练习:P19-201~5题
2.右图是一个几何体的三视图,请作出其直观图.
3.画出一个正四棱台的直观图.尺寸:上、下底面
边长2cm、4cm;高3cm
五、课时小结:本节课主要学习了用斜二测画法画空间几何体的直观图。
六、思考题:已知正三角形ΔABC的边长为a,那么
ΔA´B´C´的平面直观图的面积为()(08年皖北联考)若已知ΔABC的平面直观图ΔA´B´C´是边长为a的正三角形,
那么原ΔABC的面积为()
正视图俯视图侧视图

