88教案网

你的位置: 教案 > 高中教案 > 导航 > 高一物理第二章匀变速直线运动的研究导学案

高中牛顿第二定律教案

发表时间:2020-09-28

高一物理第二章匀变速直线运动的研究导学案。

老师工作中的一部分是写教案课件,大家应该要写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们到底知道多少优秀的教案课件呢?小编特地为您收集整理“高一物理第二章匀变速直线运动的研究导学案”,欢迎阅读,希望您能够喜欢并分享!

2-1实验:探究小车速度随时间变化的规律(预习案)
【学习目标】
1.会用描点法作出v-t图象。
2.能从v-t图象分析出匀变速直线运动的速度随时间的变化规律。
【学习难点】
1.各点瞬时速度的计算.
2.对实验数据的处理、规律的探究.
【自主学习】(A级)
一.实验目的探究小车速度随变化的规律。
二.实验原理利用打出的纸带上记录的数据,以寻找小车速度随时间变化的规律。
三.实验器材打点计时器、低压电源、纸带、带滑轮的长木板、小车、、细线、复写纸片、。
四.实验步骤
1.如课本34页图所示,把附有滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路。
2.把一条细线拴在小车上,使细线跨过滑轮,下边挂上合适的。把纸带穿过打点计时器,并把纸带的一端固定在小车的后面。
3.把小车停在靠近打点计时器处,接通后,放开,让小车拖着纸带运动,打点计时器就在纸带上打下一行小点,随后立即关闭电源。换上新纸带,重复实验三次。
4.从三条纸带中选择一条比较理想的,舍掉开头比较密集的点迹,在后边便于测量的地方找一个点做计时起点。为了测量方便和减少误差,通常不用每打一次点的时间作为时间的单位,而用每打五次点的时间作为时间的单位,就是T=0.02s×5=0.1s。在选好的计时起点下面表明A,在第6点下面表明B,在第11点下面表明C……,点A、B、C……叫做计数点,两个相邻计数点间的距离分别是x1、x2、x3……
5.利用第一章方法得出各计数点的瞬时速度填入下表:
位置ABCDEFG
时间(s)00.10.20.30.40.50.6
v(m/s)
6.以速度v为轴,时间t为轴建立直角坐标系,根据表中的数据,在直角坐标系中描点。
7.通过观察思考,找出这些点的分布规律。
五.注意事项
1.开始释放小车时,应使小车靠近打点计时器。
2.先接通电源,计时器工作后,再放开小车,当小车停止运动时及时断开电源。
3.要防止钩码落地和小车跟滑轮相撞,当小车到达滑轮前及时用手按住它。
4.牵引小车的钩码个数要适当。
5.加速度的大小以能在60cm长的纸带上清楚地取得六七个计数点为宜。
6.要区别计时器打出的点和人为选取的计数点。一般在纸带上每5个点取一个计数点,间隔为0.1s。
2-1实验:探究小车速度随时间变化的规律(探究案)
实验纸带
1.
2.
3.
数据处理(完成表格)
小车在几个时刻的瞬时速度
位置编号012345678
t/s00.10.20.30.40.50.60.70.8
V1(m/s)
V2(m/s)
V3(m/s)
做出速度-时间图像

学习反思:WwW.Jab88.CoM

2-1实验:探究小车速度随时间变化的规律(训练案)
1.在探究小车速度随时间变化的规律的实验中,按照实验进行的先后顺序,将下述步骤地代号填在横线上。
A.把穿过打点计时器的纸带固定在小车后面
B.把打点计时器固定在木板的没有滑轮的一端,并连好电路
C.换上新的纸带,再重做两次
D.把长木板平放在实验桌上,并使滑轮伸出桌面
E.使小车停在靠近打点计时器处,接通电源,放开小车,让小车运动
F.把一条细线拴在小车上,细线跨过定滑轮,下边吊着合适的钩码
G.断开电源,取出纸带
2.在下列给出的器材中,选出“探究小车速度随时间变化的规律”的实验中所需的器材并填在横线上(填序号)。
①打点计时器②天平③低压交流电源④低压直流电源⑤细线和纸带⑥钩码和小车⑦秒表⑧一端有滑轮的长木板⑨刻度尺
选出的器材是
3.为了计算加速度,最合理的方法是()
A.根据任意两计数点的速度用公式○算出加速度
B.根据实验数据画出v-t图,量出其倾角,由公式a=tana求出加速度
C.根据实验数据画出v-t图,由图线上相距较远的两点所对应的速度、时间,用公式
a=△v/△t算出加速度
D.依次算出通过连续两计数点间的加速度,算出平均值作为小车的加速度
4.汽车沿平直的公路行驶,小明坐在汽车驾驶员旁,注视着速度计,并记下间隔相等的各时刻的速度值,如下表所示.

从表中数据得到汽车在各段时间内的运动特点:在o~15s内,汽车的速度在变化,每5s速度增大______km/h;在15~30s内汽车速度不变,速度大小为_______km/h;在35~45s内汽车速度在变化,每5s速度减小_________km/h.
5.某同学在“探究小车速度随时间变化的规律”的实验中,算出小车经过各计数点的瞬时速度如表格中所示:
计数点序号123456
计数点对应时刻(s)0.10.20.30.40.50.6
通过计数点的速度(m/s)44.062.081.0100.0110.0138.0
请作出小车的v-t图象,并分析运动特点。

6.在“探究小车速度随时间变化的规律”的实验中,如图给出了从0点开始,每5个点取一个计数点的纸带,其中0、1、2、3、4、5、6都为计数点。测得:s1=1.40cm,s2=1.90cm,s3=2.38cm,s4=2.88cm,s5=3.39cm,s6=3.87cm。那么:
(1)在计时器打出点1、2、3、4、5时,小车的速度分别为:v1=cm/s,v2=cm/s,v3=cm/s,v4=cm/s,v5=cm/s。
(2)在平面直角坐标系中作出速度—时间图象。
(3)分析小车运动速度随时间变化的规律。

相关推荐

高一物理匀变速直线运动复习资料


一名优秀的教师在每次教学前有自己的事先计划,准备好一份优秀的教案往往是必不可少的。教案可以让学生更好的消化课堂内容,帮助教师营造一个良好的教学氛围。你知道如何去写好一份优秀的教案呢?下面是小编精心为您整理的“高一物理匀变速直线运动复习资料”,欢迎阅读,希望您能够喜欢并分享!

一、匀变速直线运动
1.定义
在变速直线运动中,如果在任意两段相等的时间内________相等,这种运动就叫做匀变速直线运动。
2.特点
速度随时间________,加速度保持不变,是直线运动。
3.分类和对比
分类速度变化加速度方向与
速度方向关系加速度情况
匀加速直线运动增大同向恒定
匀减速直线运动减小反向
二、匀变速直线运动的规律
1.三个基本公式
速度公式:v=________。
位移公式:x=__________。
位移速度关系式:__________。
2.两个推论
(1)做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初末时刻速度矢量和的____,还等于________的瞬时速度。
平均速度公式:v=________=vt2
(2)连续相等的相邻时间间隔T内的位移差相等。
即x2-x1=x3-x2=…=xn-x(n-1)=______。

匀变速直线运动规律的理解及应用
例1以12m/s的速度行驶的汽车,刹车后做匀减速运动,加速度大小是6.0m/s2,求刹车后还要前进多远?

例2物体由静止开始做匀加速直线运动,第1秒的平均速度为2m/s,求(1)第1秒内的位移S1如图(AB),(2)第3秒初的速度,(3)前2秒的位移S2(AC)(4)第2秒的位移(5)第2秒的平均速度

例3升降机从静止开始上升,先做匀加速运动,经过4秒钟速度达到4m/s,然后匀速上升2秒,最后3秒做匀减速运动停止,求升降机上升的总高度。

例4一个氢气球以4m/s2的加速度由静止从地面竖直上升,10s末从气球上掉下一重物,此重物最高可上升到距地面多高处?此重物从氢气球中掉下后,经多长时间落回到地面?(忽略空气阻力,g取10m/s2)

高一物理匀变速直线运动的位移与速度的关系


4匀变速直线运动的位移与速度的关系
整体设计
本节的教学目标是让学生熟练运用匀变速直线运动的位移与速度的关系来解决实际问题.教材先是通过一个例题的求解,利用公式x=v0t+at2和v=v0+at推导出了位移与速度的关系:v2-v02=2ax.到本节为止匀变速直线运动的速度—时间关系、位移—时间关系、位移—速度关系就都学习了.解题过程中应注意对学生思维的引导,分析物理情景并画出运动示意图,选择合适的公式进行求解,并培养学生规范书写的习惯,解答后注意解题规律.学生解题能力的培养有一个循序渐进的过程,注意选取的题目应由浅入深,不宜太急.对于涉及几段直线运动的问题,比较复杂,引导学生把复杂问题变成两段简单问题来解.
教学重点
1.匀变速直线运动的位移—速度关系的推导.
2.灵活应用匀变速直线运动的速度公式、位移公式以及速度—位移公式解决实际问题.
教学难点
1.运用匀变速直线运动的速度公式、位移公式推导出有用的结论.
2.灵活运用所学运动学公式解决实际问题.
课时安排
1课时
三维目标
知识与技能
1.掌握匀变速直线运动的速度—位移公式.
2.会推导公式vt2-v02=2ax.
3.灵活选择合适的公式解决实际问题.
过程与方法
通过解决实际问题,培养学生灵活运用物理规律合理分析、解决问题和实际分析结果的能力.
情感态度与价值观
通过教学活动使学生获得成功的喜悦,培养学生参与物理学习活动的兴趣,提高学习的自信心.
教学过程
导入新课
问题导入
发射枪弹时,枪弹在枪筒中的运动可以看作是匀加速运动.如图2-4-1.如果枪弹的加速度大小是5×105m/s2,枪筒长0.64m,枪弹射出枪口的速度是多大?
图2-4-1子弹加速运动
学生思考得出:由x=at2求出t.再由v=at求出速度.
同学们回答得很好,我们今天可以学习一个新的公式,利用它直接就可求解此问题了.
情境导入
为研究跳高问题,课题研究组的同学小李、小王、小华,在望江楼图书馆的多媒体阅读室里上多媒体宽带网的“世界体坛”网站,点播了当年朱建华破世界纪录的精彩的视频实况录像,如图2-4-2,并展开了相关讨论.
图2-4-2
解说员:“……各位观众你们瞧,中国著名跳高选手朱建华正伸臂、扩胸、压腿做准备活动,他身高1.83米.注意了:他开始助跑、踏跳,只见他身轻如燕,好一个漂亮的背跃式,将身体与杆拉成水平,跃过了2.38米高度,成功了!打破了世界纪录.全场响起雷鸣般的掌声……”
我们能否运用运动学知识求出朱建华离地瞬间的速度?
复习导入
在前面两节我们分别学习了匀变速直线运动的位移与时间的关系、速度与时间的关系.其公式为:v=v0+atx=v0t+at2
若把两式中消去t,可直接得到位移与速度的关系.
这就是今天我们要学习的内容.
推进新课
一、匀变速直线运动的位移与速度关系
问题:(多媒体展示)上两节学习了匀变速直线运动速度—时间关系与位移—时间关系,把两式中的t消去,可得出什么表达式?
学生运用两个公式推导,v=v0+att=①
x=v0t+at2②
把①式代入②式得:
x===v2-v02=2ax
点评:通过学生推导公式可加深学生对公式的理解和运用,培养学生逻辑思维能力.
注意:
1.在v-t关系、xt关系、xv关系式中,除t外,所有物理量皆为矢量,在解题时要确定一个正方向,常选初速度的方向为正方向,其余矢量依据其与v0方向的相同或相反,分别代入“+”“-”号,如果某个量是待求的,可先假定为“+”,最后根据结果的“+”“-”确定实际方向.
2.末速度为零的匀减速直线运动可看成初速度为零,加速度相等的反向匀加速直线运动.
例1某飞机着陆时的速度是216km/h,随后匀减速滑行,加速度的大小是2m/s2.机场的跑道至少要多长才能使飞机安全地停下来?
解析:这是一个匀变速直线运动的问题.以飞机着陆点为原点,沿飞机滑行的方向建立坐标轴(如图2-4-3).
图2-4-3以飞机的着陆点为原点,沿飞机滑行方向建立坐标轴
飞机的初速度与坐标轴的方向一致,取正号,v0=216km/h=60m/s;末速度v应该是0.由于飞机在减速,加速度方向与速度方向相反,即与坐标轴的方向相反,所以加速度取负号,a=-2m/s2.
由v2-v02=2ax解出
x=
把数值代入x==900m
即跑道的长度至少应为900m.
另一种解法:飞机着陆后做匀减速直线运动,并且末速度为零.因此可以看成初速度为零,加速度相等的反向匀加速直线运动.
即v0=0,v=216km/h=60m/s,a=2m/s2
由v2-v02=2at得v2=2ax
解出x==m=900m.
答案:900m
课堂训练
做匀减速直线运动的物体经4s后停止,若在第1s内的位移是14m,则最后1s的位移与4s内的位移各是多少?
不给学生提示,让学生自由发挥,引导学生用多种解法求解此题.学生完成后让学生回答此题的答案及思路.充分调动学生利用物理知识解决实际问题的思维意识.
参考答案:解法一(常规解法)
设初速度为v0,加速度大小为a,由已知条件及公式:
v=v0+at,x=v0t+at2可列方程
解得
最后1s的位移为前4s的位移减前3s的位移.
x1=v0t4-at42-(v0t3-at32)
代入数值x1=[16×4-×4×42-(16×3-×4×32)]m=2m
4s内的位移为:x=v0t+at2=(16×4-×4×16)m=32m.
解法二(逆向思维法)
思路点拨:将时间反演,则上述运动就是一初速度为零的匀加速直线运动.
则14=at42-at32
其中t4=4s,t3=3s,解得a=4m/s2
最后1s内的位移为x1=at12=×4×12m=2m
4s内的位移为x2=at42=×4×42m=32m.
解法三(平均速度求解)
思路点拨:匀变速直线运动中间时刻的瞬时速度等于这段时间内的平均速度.
由第1秒内位移为14m解出v0.5=m/s=14m/s,v4=0
由v4=v0.5+a×3.5得出a=-4m/s2
再由v=v0+at得:v0=16m/s,v3=4m/s
故最后1秒内的位移为:x1=t=×1m=2m
4s内的位移为:x2=t=×4m=32m.
点评:通过用多种方法解决同一问题,可以加深学生对公式的理解,提高学生灵活应用公式解决实际问题的能力.发散学生思维,培养多角度看问题的意识.
小结1:匀变速直线运动问题的解题思路
(1)首先是选择研究对象.分析题意,判断运动性质.是匀速运动还是匀变速运动,加速度方向、位移方向如何等.
(2)建立直角坐标系,通常取v0方向为坐标正方向.并根据题意画草图.
(3)根据已知条件及待求量,选定有关规律列方程.要抓住加速度a这个关键量,因为它是联系各个公式的“桥梁”.为了使解法简便,应尽量避免引入中间变量.
(4)统一单位,求解方程(或方程组).
(5)验证结果,并注意对结果进行有关讨论,验证结果时,可以另辟思路,运用其他解法.
以上各点,弄清运动性质是关键.
小结2:匀变速直线运动问题解题的注意点
注意物理量的矢量性:对运动过程中a、v、x赋值时,应注意它们的正、负号.
(1)匀减速运动:①匀减速运动的位移、速度大小,可以看成反向的匀加速运动来求得;②求匀减速运动的位移,应注意先求出物体到停止运动的时间.
(2)用平均速度解匀变速运动问题:如果问题给出一段位移及对应的时间,就可求出该段的平均速度.因为有关平均速度的方程中,时间t都是一次函数,用平均速度解题一般要方便些.
(3)应用v-t图象作为解题辅助工具
从匀变速直线运动的v-t图象可以得出,物体在任一时刻的速度大小、速度方向、位移大小,可以比较两个物体在同一时刻的速度大小、位移大小.无论选择题、非选择题,v-t图象都可以直观地提供解题的有用信息.
小结3:解题常用的方法
1.应用平均速度.匀变速运动的平均速度=,在时间t内的位移x=t,相当于把一个变速运动转化为一个匀速运动.
2.利用时间等分、位移等分的比例关系.对物体运动的时间和位移进行合理的分割,应用匀变速直线运动及初速度为零的匀变速运动的特殊关系,是研究匀变速运动的重要方法,比用常规方法简捷得多.
3.巧选参考系.物体的运动都是相对一定的参考系而言的.研究地面上物体的运动,常以地面为参考系,有时为了研究的方便,也可以巧妙地选用其他物体作参考系,从而简化求解过程.
4.逆向转换.即逆着原来的运动过程考虑,如火车进站刹车滑行;逆看车行方向考虑时就把原来的一个匀减速运动转化为一个初速为零的匀加速运动.
5.充分利用v-t图象.利用图象斜率、截距、图线与t轴间面积所对应的物理意义,结合几何关系,提取出形象的思维信息,从而帮助解题.
二、追及相遇问题
现实生活中经常会发生追及(如警察抓匪徒)、相遇或避免碰撞(如两车在同一直线上相向或同向运动时)的问题.我们现在就利用物理学知识探究警察能否抓住匪徒、两车能否相遇或避免相撞.
讨论交流:1.解追及、相遇问题的思路
(1)根据对两物体运动过程的分析,画出两物体运动的示意图.
(2)根据两物体的运动性质,分别列出两个物体的位移方程,注意要将两物体运动时间的关系反映在方程中.
(3)由运动示意图找出两物体位移间的关联方程,这是关键.
(4)联立方程求解,并对结果进行简单分析.
2.分析追及、相遇问题时应注意的问题
(1)分析问题时,一定要注意抓住一个条件两个关系,一个条件是两物体速度相等时满足的临界条件,如两物体的距离是最大还是最小,是否恰好追上等.两个关系是时间关系和位移关系,时间关系是指两物体运动时间是否相等,两物体是同时运动还是一先一后等;而位移关系是指两物体同地运动还是一前一后运动等,其中通过画运动示意图找到两物体间的位移关系是解题的突破口,因此在学习中一定要养成画草图分析问题的良好习惯,对帮助我们理解题意,启迪思维大有裨益.
(2)若被追赶的物体做匀减速运动,一定要注意,追上前该物体是否停止运动.
(3)仔细审题,注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”“恰巧”“最多”“至少”等,往往对应一个临界状态,满足相应的临界条件.
3.解决追及相遇问题的方法
大致分为两种方法:一是物理分析法,即通过对物理情景和物理过程的分析,找到临界状态和临界条件,然后列出方程求解;二是数学方法,因为在匀变速运动的位移表达式中有时间的二次方我们可列出位移方程,利用二次函数求极值的方法求解,有时也可借助v-t图象进行分析.
点评:通过该交流讨论,学生可在教师的引导下寻找解决实际问题的思路与方法,以及解决问题时的注意事项,这样可加快学生对理论知识的掌握,为自主地解决问题打下坚实的基础.
例2一辆汽车以3m/s2的加速度开始启动的瞬间,一辆以6m/s的速度做匀速直线运动的自行车恰好从汽车的旁边通过.求:
(1)汽车在追上自行车前多长时间与自行车相距最远?此时的距离是多少?汽车的瞬时速度是多大?
(2)汽车经多长时间追上自行车?追上自行车时汽车的瞬时速度是多大?
(3)作出此过程汽车和自行车的速度—时间图象.
解法一:(物理分析法)
分析:解决追及问题的关键是找出两物体运动中物理量之间的关系.当汽车速度与自行车速度相等时,两者之间的距离最大;当汽车追上自行车时,两者的位移相等.
(1)令v汽=v自,即at=v自,代入数值3t=6得t=2s
Δx=x自-x汽=v首t-at2=(6×2-×3×4)m=6m.
(2)x汽=x自,即at2=v自t,得t=s=s=4s
v汽=at=3×4m/s=12m/s.
(3)见解法二.
解法二:(1)如图2-4-4所示,设汽车在追赶自行车的过程中与自行车的距离为Δx,根据题意:
图2-4-4
Δx=x2-x1=v-t-at2=6t-×3t2=(t-2)2+6
可见Δx是时间的一元二次函数,根据相关的数学知识作出的函数图象如图2-4-5所示.显然当t=2s时汽车与自行车相距最远,最大距离Δxm=6m.此时汽车的速度为:
图2-4-5
v2=at=3×2m/s=6m/s.
(2)汽车追上自行车,即Δx=0
∴(t-2)2+6=0
解得:t=4s
此时汽车的速度为v4=at=3×4m/s=12m/s.
(3)图象如图2-4-6所示.
图2-4-6
点评:通过利用两种方法求解此题,可使学生体会两种方法的优、缺点.法一逻辑思维性强,需要研究运动过程的细节,虽比较麻烦,但可提高学生分析问题的能力;法二是把数学方程与物理过程相结合,把数学结果与物理意义相结合,充分体现了数学方法在解决物理问题中的意义和作用.但数学方法解出的答案需要检验其结果是否符合实际情况.
课堂训练
1.在平直公路上,一辆自行车与同方向行驶的汽车同时经过某点,它们的位移随时间的变化关系是自行车:s1=6t,汽车:s2=10tt2,由此可知:
(1)经过_________时间,自行车追上汽车.
(2)自行车追上汽车时,汽车的速度为_________.
(3)自行车追上汽车的过程中,两者间的最大距离为_________.
解析:(1)由方程可知,自行车以6m/s的速度做匀速直线运动,汽车做初速度为10m/s,加速度为0.5m/s2的匀减速直线运动,自行车若要追上汽车,则位移相同,即
6t=10tt2
t=16s.
(2)vt=v0+at=(10-×16)m/s=2m/s.
(3)当自行车与汽车速度相等时,两者相距最远.
vt=v0+at′=6m/s
10-t′=6m/s
t′=8s
Δs=10t′-t′2-6t′=16m
此题也可用数学方法解决.
Δs=10t-t2-6t=-t2+4t.
将二次函数配方,可得
Δs=-(t-8)2+16.
可见当t=8s时,Δs有最大值为16m.
当Δs=0,即-t2+4t=0时,
t=16s
此时两者相遇,vt=v0-at=2m/s.
答案:(1)16s(2)2m/s(3)16m
2.如图2-4-7所示,处于平直轨道上的甲、乙两物体相距x,同时同向开始运动,甲以初速度v1,加速度a1做匀加速直线运动,乙以初速度为零,加速度a2做匀加速直线运动,下述情况可能发生的是(假定甲能从乙旁边通过互不影响)()
A.a1=a2能相遇一次B.a1>a2能相遇二次
C.a1<a2可能相遇一次D.a1<a2可能相遇二次
图2-4-7
分析:本题属相遇问题,求解方法可以用公式(代数法),分别列出甲、乙的位移方程及相遇时的位移关系方程,再联立求解、讨论.也可以用图象法(几何法),结合v-t图象分析,这种方法很直观,尤其是本题只需进行定性判断,用图象法能迅速求解.
解法一:公式法
设经时间t,甲、乙相遇,时间t内甲、乙位移分别为:
x1=v1t+a1t2①
x2=a2t2②
相遇时位移满足x1=x2+x③
由①②③解得(a1-a2)t2+2v1t-2x=0④
①当a1=a2时,④变为一元一次方程,t有一解t=,即表示甲、乙只相遇一次.
②当a1≠a2时,④为关于时间t的一元二次方程,由求根公式得
t=
当a1>a2时,t的两个根中一正一负,合理解为t>0,故只有一个解,即只能相遇一次.
当a1<a2时,t=
这时解的情况比较复杂.若Δ=4v12+8(a2-a1)x<0,方程无解,即表示不可能相遇.若Δ=0,t有唯一解且t>0,表示相遇一次;若Δ>0,方程有两解,可能两根一正一负,取合理解t>0,故只能相遇一次;也可能两根均为正,表示相遇两次.
根据以上分析,本题选A、C、D.
解法二:图象法
图2-4-8
我们画出满足题给条件的v-t图象.如图2-4-8所示图a对应a1=a2的情况,两条图线平行,两物体仅在t=t1时相遇一次.图中阴影部分面积为x.
图b对应a1>a2的情况,两物体仅在t=t2时相遇一次.
图c对应a1<a2的情况,若在两条图线的交点对应的时刻t3两物体相遇,则仅相遇一次,图中阴影部分面积为x,若图中阴影面积小于x,则甲、乙不可能相遇.若图中阴影部分面积大于x,则可能相遇两次.
如图d,在t4和t4″两个时刻相遇.图中四边形ABCD的面积等于x,在0——t4时间内,甲在后,乙在前,v甲>v乙,甲追赶乙,距离逐渐减小,在t4时刻甲、乙相遇,在t4——t4′时间内,甲在前,乙在后,甲将乙拉得越来越远.t4′——t4″时间内,甲在前,乙在后,v乙>v甲,乙追甲,距离逐渐减小.到t4″时刻甲、乙再次相遇.当t>t4″后,乙在前,甲在后,v乙>v甲,两者距离一直变大,不可能再相遇.图中S△BCE为从第一次相遇后,甲把乙拉开的距离,S△FCD为从t4′起乙追上甲的距离.显然,S△BCE=S△FCD.
答案:ACD
课堂小结
本节课我们利用前两节速度时间关系,位移时间关系推导出了匀变速直线运动的位移与速度的关系.要求同学们能熟练运用此公式求解问题.之后共同总结了如何应用运动学知识求解实际问题,这是本节课的重点,接着探究了追及、相遇问题.重点介绍了处理追及相遇问题的两种方法:物理分析法、数学方法.
布置作业
1.教材第40页“问题与练习”第1、2题.
2.利用两个基本公式进行有关推导,体会各个公式解决问题的优、缺点.
板书设计
4匀变速直线运动的位移与速度的关系
一、位移与速度关系的推导:
二、位移与速度的关系:v2-v02=2ax
三、追及相遇问题
活动与探究
课题:将一个物体以某一初速度v0竖直向上抛出,抛出的物体只受重力作用,这个物体的运动就是竖直上抛运动.竖直上抛运动的加速度大小为g,方向竖直向下,竖直上抛运动是匀变速直线运动.
根据所学匀变速直线运动的有关知识,探究竖直上抛运动的基本规律,以及竖直上抛运动的处理方法.
探究结论:1.竖直上抛运动的基本规律
速度公式:vt=v0-gt
位移公式:h=v0t-gt2
速度位移关系:vt2-v02=-2gh.
2.竖直上抛运动的处理方法
整个竖直上抛运动分为上升和下降两个阶段,但其本质是加速度恒为g的完整的匀变速运动,所以处理时可采用两种方法:
(1)分段法:上升过程是a=-g,vt=0的匀变速直线运动,下落阶段是自由落体运动.
(2)整体法:将全过程看作是初速为v0、加速度是-g的匀变速直线运动,上述三个基本规律直接用于全过程.但必须注意方程的矢量性.习惯上取v0的方向为正方向,则vt>0时正在上升,vt<0时正在下降,h为正时物体在抛出点的上方,h为负时物体在抛出点的下方.
习题详解
1.解答:设初速度为v0,且其方向为正方向.已知:a=-5m/s2,x=22.5m,vt=0
由公式v2-v02=2ax,代入数值0-v02=2×(-5)×22.5
得v0=15m/s=54km/h.
2.解答:此题信息较多,关键是分清物体参与了哪个过程,从而提取解题的有用信息.
在最后匀减速阶段,v0=10m/s,x=1.2m,v=0,求a.
由公式v2-v02=2ax,得a==m/s2=m/s2.
3.解答:设靠自身的发动机起飞需要跑道的长度为x.
由v2-v02=2ax得x==m=500m>100m
故不能靠自身的发动机从舰上起飞.
由v2-v02=2ax得v02=v2-2ax
代入数值v02=(2500-2×5×100)m2/s2=1500m2/s2
得v0=m/s.
设计点评
由于反映匀变速直线运动的规律很多,因此对同一个具体问题往往有许多解法,但不同的解法繁简程度不一样,那么怎样才能恰当地、灵活地选用有关公式,比较简捷地解题呢?本教学设计就是围绕这一问题展开探究的.
先推导出了位移—速度关系.然后与同学们合作探究出解决匀变速直线运动问题的思路、注意点、常用的方法等.接着又通过追及、相遇问题对这些思路、方法进一步加强.引导学生对一道题不妨多用几种解法,并比较各种解法的优劣,多做这种训练,灵活应用公式解决实际问题的能力必定会提高.

高三物理《研究匀变速直线运动》案例分析


高三物理《研究匀变速直线运动》案例分析

1.实验器材
电火花计时器(或电磁打点计时器)、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸片.
2.实验步骤
(1)按照实验原理图所示实验装置,把打点计时器固定在长木板无滑轮的一端,接好电源;
(2)把一细绳系在小车上,细绳绕过滑轮,下端挂合适的钩码,纸带穿过打点计时器,固定在小车后面;
(3)把小车停靠在打点计时器处,接通电源,放开小车;
(4)小车运动一段时间后,断开电源,取下纸带;
(5)换纸带反复做三次,选择一条比较理想的纸带进行测量分析.
规律方法总结
1.数据处理
(1)目的
通过纸带求解运动的加速度和瞬时速度,确定物体的运动性质等.
(2)处理的方法
①分析物体的运动性质——测量相邻计数点间的距离,计算相邻计数点距离之差,看其是否为常数,从而确定物体的运动性质.
②利用逐差法求解平均加速度研究匀变速直线运动教学设计

③利用平均速度求瞬时速度:
研究匀变速直线运动教学设计

④利用速度—时间图象求加速度
3.注意事项
(1)平行:纸带、细绳要和木板平行.
(2)两先两后:实验中应先接通电源,后让小车运动;实验完毕应先断开电源,后取纸带.
(3)防止碰撞:在到达长木板末端前应让小车停止运动,防止钩码落地和小车与滑轮相撞.
(4)减小误差:小车的加速度宜适当大些,可以减小长度的测量误差,加速度大小以能在约50cm的纸带上清楚地取出6~7个计数点为宜.
a.作出速度—时间图象,通过图象的斜率求解物体的加速度;
b.剪下相邻计数点的纸带紧排在一起求解加速度.
2.依据纸带判断物体是否做匀变速运动的方法
(1)x1、x2、x3……xn是相邻两计数点间的距离.
(2)Δx是两个连续相等的时间里的位移差:Δx1=x2-x1,Δx2=x3-x2….
(3)T是相邻两计数点间的时间间隔:T=0.02n(打点计时器的频率为50Hz,n为两计数点间计时点的间隔数).
(4)Δx=aT2,因为T是恒量,做匀变速直线运动的小车的加速度a也为恒量,所以Δx必然是个恒量.这表明:只要小车做匀加速直线运动,它在任意两个连续相等的时间里的位移之差就一定相等.

匀变速直线运动的规律


一名优秀负责的教师就要对每一位学生尽职尽责,高中教师要准备好教案,这是每个高中教师都不可缺少的。教案可以保证学生们在上课时能够更好的听课,使高中教师有一个简单易懂的教学思路。你知道怎么写具体的高中教案内容吗?小编为此仔细地整理了以下内容《匀变速直线运动的规律》,相信您能找到对自己有用的内容。

高中物理《匀变速直线运动的规律》学案鲁科版必修1
静悟寄语:
1、一心向着目标前进的人,整个世界都得给他让路。
2、成功就在再坚持一下的努力之中。
3、奇迹,就在凝心聚力的静悟之中。
一、“静”什么?
1、环境“安静”:鸦雀无声,无人走动,无声说话、交流,无人随意出进。每一个人充分沉浸在难得的静谧之中。以享受维护安静环境为荣,以影响破坏安静环境为耻。
2、心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人,学习的主人。情绪稳定,效率较高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此心在彼,貌似用功,实则骗人。
二、【高考常考查的知识点】
1.静力学的受力分析与共点力平衡(选择题)
此题定位为送分题目,一般安排为16题,即物理学科的第一题,要求学生具有规范的受力分析习惯,熟练运用静力学的基本规律,如胡克定律、滑动摩擦定律与静摩擦力的变化规律、力的合成与分解、正交分解法等,可涉及两个状态,但一般不涉及变化过程的动态分析,也不至于考查相似三角形法等非常规方法。不必考虑计算题
2.运动图象及其综合应用(选择题)
山东卷对物理图象的专门考查以运动图象为代表,立足于对物理图象的理解。可涉及物理图象的基本意义、利用运动图象的分析运动过程、用不同物理量关系图象描述同一运动过程等。以宁夏、海南为代表的利用运动图象考查追及、相遇问题尚未被山东采纳。专题设计为选择题,尽量多涉及不同的图象类型。
3.牛顿定律的直接应用(选择、计算题)
与自感一样,超重失重为Ⅰ级要求知识点,此题为非主干知识考查题,为最可能调整和变化的题目。
但对牛顿定律的考查不会削弱,而很可能更加宽泛和深入,可拓展为具体情境中力和运动关系的分析(选择)、直线、类平抛和圆周运动中牛顿第二定律的计算(计算题的一部分)。
此专题定位在牛顿定律的直接应用,针对基本规律的建立、定律物理内涵的理解及实际情境中规律的应用,可涉及瞬时分析、过程分析、动态分析、特殊装置、临界条件,以及模型抽象、对象转换、整体隔离、合成分解等方法问题。
4.第四专题万有引力与航天(选择、计算题)
此专题内容既相对宽泛又相对集中,宽泛指万有引力与航天的内容均可涉及,集中即一定是本章内容且集中在一道题目中。这部分内容也是必考内容,今年考试说明中本章知识点增加了“经典时空观和相对论时空观(Ⅰ)”,“环绕速度”由(Ⅱ)到(Ⅰ)。可以理解为深度减弱,广度增加,最大的可能仍是选择题,也不排除作为力学综合题出现的可能,复习时应适当照顾。需特别注意的是,一定要关注近一年内天文的新发现或航天领域的新成就,题目常以此类情境为载体。
5.功能关系:(选择、计算题)动能定理、机械能守恒、功能关系、能量守恒是必考内容,要结合动力学过程分析、功能分析,进行全过程、分过程列式。考查形式选择题、计算题
注意:必修1、2部分考察多为选择题,但在牛顿定律结合功能关系以及抛体运动和圆周运动部分综合的计算,出现在24题上,本题一般涉及多个过程,是中等难度的保分题。
6.静电场主要以考察电场线、电势、电势差、电势能、电容器、带电粒子的加速与偏转为主
7.恒定电流以考察电学实验为主,选择中也容易出电路的分析题
8.磁场以考察磁场对运动电荷和通电导线的作用为主,选择中易出一个题,在大题中容易出与电场及重力场相结合的题目。
9.电磁感应以选择题、计算题,主要考察导体棒的切割以及感生电动势,楞次定律,注意图像问题
10.交流电主要考察交流电的四值、图像,以及远距离输电变压器问题,通常以选择形式出现
11.热学3-3:油膜法、微观量计算,气体实验定律,热一律、压强微观解释、热二律是重点
10.选修3-5中动量守恒、动量变化量计算、原子结构中能级跃迁、原子核中质能方程、核反应方程是考察重点。
三、【静悟注意事项】
1.以查缺补漏为主要目的,以考纲知识点为主线复习
2.重点看课本、课后题、改错本、以前做过的相关题目
3.把不会的问题记下来,集中找时间找老师解决
4.必须边思考,边动笔。静悟最忌只动眼动嘴的学习方式,必须多动脑多动手,做到手不离笔,笔不离纸。

匀变速直线运动
【考试说明】
主题内容要求说明
质点的直线
运动参考系、质点
位移、速度和加速度
匀变速直线运动及其公式、图像Ⅰ


【知识网络】
【考试说明解读】
1.参考系
⑴定义:在描述一个物体的运动时,选来作为标准的假定不动的物体,叫做参考系。
⑵运动学中的同一公式中涉及的各物理量应以同一参考系为标准。
2.质点
⑴定义:质点是指有质量而不考虑大小和形状的物体。
⑵质点是物理学中一个理想化模型,能否将物体看作质点,取决于所研究的具体问题,而不是取决于这一物体的大小、形状及质量,只有当所研究物体的大小和形状对所研究的问题没有影响或影响很小,可以将其形状和大小忽略时,才能将物体看作质点。
物体可视为质点的主要三种情形:
①物体只作平动时;
②物体的位移远远大于物体本身的尺度时;
③只研究物体的平动,而不考虑其转动效果时。
3.时间与时刻
⑴时刻:指某一瞬时,在时间轴上表示为某一点。
⑵时间:指两个时刻之间的间隔,在时间轴上表示为两点间线段的长度。
⑶时刻与物体运动过程中的某一位置相对应,时间与物体运动过程中的位移(或路程)相对应。
4.位移和路程
⑴位移:表示物体位置的变化,是一个矢量,物体的位移是指从初位置到末位置的有向线段,其大小就是此线段的长度,方向从初位置指向末位置。
⑵路程:路程等于运动轨迹的长度,是一个标量。只有在单方向的直线运动中,位移的大小才等于路程。
5.速度、平均速度、瞬时速度
⑴速度:是表示质点运动快慢的物理量,在匀速直线运动中它等于位移与发生这段位移所用时间的比值,速度是矢量,它的方向就是物体运动的方向。
⑵平均速度:物体所发生的位移跟发生这一位移所用时间的比值叫这段时间内的平均速度,即,平均速度是矢量,其方向就是相应位移的方向。公式=(V0+Vt)/2只对匀变速直线运动适用。
⑶瞬时速度:运动物体经过某一时刻(或某一位置)的速度,其方向就是物体经过某有一位置时的运动方向。
6.加速度
⑴加速度是描述物体速度变化快慢的物理量,是一个矢量,方向与速度变化的方向相同。
⑵做匀速直线运动的物体,速度的变化量与发生这一变化所需时间的比值叫加速度,即
⑶速度、速度变化、加速度的关系:
①方向关系:加速度的方向与速度变化的方向一定相同,加速度方向和速度方向没有必然的联系。
②大小关系:V、△V、a无必然的大小决定关系。
③只要加速度方向跟速度方向相同,无论加速度在减少还是在增大,物体的速度一定增大,若加速度减小,速度增大得越来越慢(仍然增大);只要加速度方向跟速度方向相反,物体的速度一定减小。
7、运动图象:s—t图象与v—t图象的比较
下图和下表是形状一样的图线在s—t图象与v—t图象中的比较.

s—t图v—t图
①表示物体匀速直线运动(斜率表示速度v)①表示物体匀加速直线运动(斜率表示加速度a)
②表示物体静止②表示物体做匀速直线运动
③表示物体向反方向做匀速直线运动;初位移为s0③表示物体做匀减速直线运动;初速度为v0
④t1时间内物体位移s1④t1时刻物体速度v1(图中阴影部分面积表示质点在0~t1时间内的位移)
补充:(1)s—t图中两图线相交说明两物体相遇,v—t图中两图线相交说明两物体在交点时的速度相等
(2)s—t图象与横轴交叉,表示物体从参考点的一边运动到另一边.v—t图线与横轴交叉,表示物体运动的速度反向.
(3)s—t图象是直线表示物体做匀速直线运动或静止.图象是曲线则表示物体做变速运动.v—t图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动.
(4)s—t图象斜率为正值,表示物体沿与规定正方向相同的方向运动.图象斜率为负值,表示物体沿与规定正方向相反的方向运动.v—t图线的斜率为正值,表示物体的加速度与规定正方向相同;图象的斜率为负值,表示物体的加速度与规定正方向相反.
【例题:07山东理综】如图所示,光滑轨道MO和ON底端对接且ON=2MO,M、N两点高度相同。小球自M点右静止自由滚下,忽略小球经过O点时的机械能损失,以v、s、a、EK分别表示小球的速度、位移、加速度和动能四个物理量的大小。下列图象中能正确反映小球自M点到N点运动过程的是

【例题:08山东理综】质量为1500kg的汽车在平直的公路上运动,v-t图象如图所示.由此可求(ABD)
A.前25s内汽车的平均速度
B.前l0s内汽车的加速度
C.前l0s内汽车所受的阻力
D.15~25s内合外力对汽车所做的功
8.匀变速直线运动的基本规律及推论:
基本规律:⑴Vt=V0+at,⑵s=V0t+at2/2
推论:⑴Vt2_VO2=2as
⑵(Vt/2表示时间t的中间时刻的瞬时速度)
⑶任意两个连续相等的时间间隔(T)内,位移之差是一恒量.即:
sⅡ-sⅠ=sⅢ-sⅡ=……=sN-sN-1=△s=aT2.
9.初速度为零的匀加速直线运动的特点:(设T为等分时间间隔):
⑴1T末、2T末、3T末……瞬时速度的比为:v1:v2:v3:……vn=1:2:3:……:n
⑵1T内、2T内、3T内……位移的比为:s1:s2:s3:……:sn=12:22:32:……:n2
⑶第一个T内、第二个T内、第三个T内……位移的比为:s1:sⅡ:sⅢ?……:sN=1:3:5:……:(2n-1)
⑷从静止开始通过连续相等的位移所用时间的比
t1:t2:t3:……:tn=
10、竖直上抛运动的两种研究方法
①分段法:上升阶段是匀减速直线运动,下落阶段是自由落体运动.
②整体法:从全程来看,加速度方向始终与初速度v0的方向相反,所以可把竖直上抛运动看成是一个匀变速直线运动,应用公式时,要特别注意v,h等矢量的正负号.一般选取向上为正方向,则上升过程中v为正值下降过程中v为负值,物体在抛出点以下时h为负值.
11、追及问题的处理方法
1.要通过两质点的速度比较进行分析,找到隐含条件.再结合两个运动的时间关系、位移关系建立相应的方程求解,也可以利用二次函数求极值,及应用图象法和相对运动知识求解
2.追击类问题的提示
1.匀加速运动追击匀速运动,当二者速度相同时相距最远.
2.匀速运动追击匀加速运动,当二者速度相同时追不上以后就永远追不上了.此时二者相距最近.
3.匀减速直线运动追匀速运动,当二者速度相同时相距最近,此时假设追不上,以后就永远追不上了.
4.匀速运动追匀减速直线运动,当二者速度相同时相距最远.
【例题:09海南】甲乙两车在一平直道路上同向运动,其图像如图所示,图中和的面积分别为和.初始时,甲车在乙车前方处.(ABC)
A.若,两车不会相遇B.若,两车相遇2次
C.若,两车相遇1次D.若,两车相遇1次