88教案网

你的位置: 教案 > 教案大全 > 导航 > 分数的解决问题教案

分数的解决问题教案

发表时间:2024-05-01

分数的解决问题教案。

88教案网编辑搜索并整理了“分数的解决问题教案”,以下是相关内容。老师提前规划好每节课教学课件是少不了的,每个老师都需要将教案课件设计得更加完善。做好教案课件的前期设计,才能按质按量地达到预期教学目标。请查看本文中的重要信息!

分数的解决问题教案【篇1】

分数除法的内容是在学生已经学习了倒数的认识、分数除法计算、分数乘法解决问题的基础上进行教学的。

成功之处:

沟通分数乘除法解决问题,加强知识的横向和纵向联系。在例2和例3的教学中重点梳理分数除法的数量关系:

在此类分数除法解决问题中,学生容易出现总数与份数、总数与每份数颠倒位置的情况。因此,加强分数除法解决问题的数量关系让学生明确谁是总数,谁是份数,谁是每份数。此外,还通过具体的例子来让学生进行辨别。如:榨1/4千克油需要4/5千克大豆,榨1千克油需要多少千克大豆?1千克大豆可以榨多少千克油?

在例4教学中,首先让学生先找出关键句中的数量关系,比如:小明的体重×4/5=小明体内水分的质量,然后再找出单位“1”,看一看是已知还是未知,已知用乘法,未知用除法或方程来解决问题。

不足之处:

1.个别学生仍然无法正确辨别分数除法解决问题中的总数、份数、每份数,导致列式出错。

2.学生在理解数量关系方面还存在一些问题,不能正确列出数量关系式。

改进之处:

1.对于数量关系式可以统一归纳为单位“1”的量×分率=对应量,加强理解对应量和对应分率之间的关系理解。

2.联系整数和分数解决问题进行对比,让学生加强整数和分数解决问题的区别与联系。

分数的解决问题教案【篇2】

(一)教学目标。

1、理解并掌握分数除法的计算方法,会进行分数除法计算。

2、会解答已知一个数的几分之几是多少求这个数的实际问题。

3、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。

4、能运用比的知识解决有关的实际问题。

(二)教材说明和教学建议。

1、本单元内容的结构及其地位作用。

本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。主要内容包括:分数除法的意义与计算;解决问题;比的意义与基本性质,求比值与化简比,及其比的应用。

本单元的内容和学生前面学习的很多知识具有比较直接的联系。如分数除法,除了与分数乘法的意义、计算及其应用有联系外,还与整数除法的意义,以及解方程的技能有关。而比的初步知识,则要用到分数和除法的一些基础知识。

通过本单元的学习,学生一方面基本上完成了分数加、减、乘、除的学习任务,比较系统地掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。

本单元由三小节组成,各小节内容的编排体系及其内在联系如下图所示。

从上面的图示,不难看出教材内容之间的内在联系。

就学习分数除法而言,首先要明确分数除法的运算意义,在此基础上探究并掌握它的计算方法,然后学习分数混合运算。

关于分数除法中的解决问题,主要有两种情况,一种是问题情境的数量关系与整数除法的实际问题相同,区别只是数据由整数变成了分数。教材安排在第1节里学习。另一种是问题情境的数量关系具有一定的特殊性,表现为已知一个数的几分之几是多少,要求这个数。这样的实际问题,与上一单元求一个数的几分之几是多少的实际问题,具有紧密的内在联系,即数量关系相同,区别在于已知数与未知数交换了位置。

类似地,比的初步知识,也大体上显现出由概念到性质、方法,再到应用的递进学习过程。

把“比”安排在本单元中教学,主要有两点好处:第一,比和分数有密切的联系,如两个数的比可以用分数形式来表示。加强比和分数的联系,有利于加深学生对分数意义的理解和对比的认识,也有利于提高学生灵活运用知识解决简单实际问题的能力。第二,提早教学比的概念,可以为后面教学圆周率、百分数、统计图表等做好准备。例如,学生有了比的概念,就容易理解百分数为什么又叫做百分比。在这一节教材中,有关比的应用,只讲按比例分配的计算问题。

2、本单元教材的编排特点。

与原教材相比,本单元教材的编写有不少改进,主要体现在以下几方面。

(1)关注相关知识的类比,帮助学生理解所学知识。

本单元的教材,根据有关知识的内在联系,精心提供了一系列类比思维的素材,引导学生由此及彼,利用已有的知识,理解新学内容。例如,在讨论分数除法意义时,由整数除法的实际问题引入,通过将整数(单位:克)改写成分数(单位:千克),导出分数除法,以帮助学生理解分数除法的运算意义与整数除法相同。又如,引导学生联系比和除法、分数的关系,研究并得出比的基本性质。再如,教学比的应用时,呈现了整数问题的解法和分数解法,帮助学生理解两种解法的内在联系,促进知识的融会贯通,提高应用知识的灵活性。

(2)借助操作与图示,引导学生探索并理解分数除法的计算方法。

分数除法计算方法的探索与理解,历来是教学的'一个难点。教材根据小学生的思维特点,采用手脑并用、数形结合的策略,加以突破。

在教学分数除以整数时,例题设计了一个折纸活动,让学生通过动手操作,探索计算结果,并理解算理:把一个数平均分成几份,就是求这个数的几分之一。

在教学整数除以分数时,教材引导学生画出线段图,凭借图示,将新问题转化为已经解决的问题,进而得出计算方法。

(3)部分内容作了适当的精简或加强处理。

根据《标准》,本单元分数除法的计算不包括带分数,但注意在练习中适当穿插一些假分数。这样既保证了《标准》改革意图的落实,又能满足以后进一步学习时的计算需要。

此外,本单元教材专门设置了一道例题,以实际问题为载体,引出分数混合运算。同时也能使学生初步看到分数除法在解决一般实际问题中的应用,从而突破了原来只讨论分数除法典型应用题的局限,有利于增强学生的数学应用意识。

(4)调整了分数除法应用问题的编排,鼓励学生用方程解决问题。

本单元的第二节“解决问题”,专门讨论比较典型的分数除法实际问题。同时还将原来安排在分数、小数四则混合运算单元的两步计算的实际问题,移来一并学习。在解题方法的处理上,教材提倡抓住等量关系用方程解决问题。这样,由列出形如(a/b)x=c的方程,到列出形如x±(a/b)x=c的方程,思路统一,便于理解。而且衔接紧密,较为有效地降低了学习的难度,便于学生拾阶而上。

(三)教学建议。

1、充分利用教材,促进学习迁移。

如前介绍,本单元教材在揭示相关知识的内在联系,提供类比思维的材料方面,作了不少努力。教学时,应充分利用这些资源,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。实际上,这也是本单元的课堂教学中,落实学生的主体地位,发挥教师主导作用的有效途径。

2、加强直观教学,结合操作和图形语言,探索、理解计算方法。

为了引导学生参与探索分数除法计算方法的过程,并能有所发现,有所感悟,教材设计了折纸与画图的教学活动。教学时,教师要用好这些直观手段,给学生动手的机会和较充分的时间,让更多的学生真正在操作、观察的过程中,凭借直观,发现算法,感悟算理。而要提高这些教学活动的有效性,还需要教师给予适当的点拨,引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,在理解的基础上得出算法,进而掌握算法。

3、抓住学习的关键,组织针对性练习。

我们知道,计算分数除法的关键步骤,是把除转化为乘;列方程解答分数除法问题的关键,则在于理解问题情境中的等量关系。因此,抓住这两个关键,组织开展针对性的专项练习,是提高学习成效的重要措施。教材中已经配备了一些这样的练习。教师还可从本班学生的实际出发,酌情加以增补,力求当堂巩固。

4、本单元内容可用13课时进行教学。

分数的解决问题教案【篇3】

《用百分数解决问题》数学教案设计

教学重点:

掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。

教学难点:

正确、灵活地解答这类百分数应用题的实际问题。

教学过程:

一、复习

1、出示复习题:学校图书室原有图书1400册,今年图书册数增加了。现在图书室有多少册图书?

2、学生找出这道题目的分率句,确定单位1,并根据数量关系列式:1400(1+)

二、新授

1、教学例3

(1)出示例题:学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?

(2)学生读题,找条件和问题,明确这道题是把谁看成单位1。

(3)引导思考:从今年图书册数增加了12%这句话中,你能知道些什么?

①今年图书增加的部分是原有的12%。

②今年图书的册数是原有的120%。

(4)学生讨论后分小组交流,并独立列式计算:

第一种:140012%=168(册)

1400+168=1568(册)

第二种:1400(1+12%)

=1400112%

=168(册)

2、通过这道题的学习,你明白了什么?(求一个数的几分之几和求一个数的。百分之几,都要用乘法计算)

3、巩固练习:完成P93做一做第1题。

三、练习

1、补充练习

(1)出示练习:

①油菜子的出油率是42%。2100千克油菜子可榨油多少千克?

②油菜子的出油率是42%。一个榨油厂榨出油菜子2100千克,用油菜子多少千克?

(2)分析理解:

A、出油率是什么意思?这两道题有什么相同和不同?

B、第(1)题是求一个数的百分之几是多少,应用什么方法计算?第(2)题是已知一个数的百分之几求这个数,可以怎样解?

(3)学生独立列式解答。

2、学生做教科书练习二十二的第1、3、4题。

教学追记:

本部分内容是求比一个数多(少)百分之几的应用题,这部分内容与求比一个数多(少)几分之几的应用题相似,只是相应的分率转换成了百分率。因此,在复习上,我安排了与例题较为相似的分数应用题,通过对题目的改变,让学生了解二者的联系。因为题型及解题方法几乎都相同,学生学起来也较为容易。

读书破万卷下笔如有神,以上就是为大家带来的5篇《小学六年级数学《用百分数解决问题》教案》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在。

分数的解决问题教案【篇4】

教材分析:

这部分内容是在学生学过分数应用题的解答和百分数的意义、百分数和分数、小数的互化的基础上进行教学的。这部分内容主要教学求一个数是另一个数的百分之几的应用题。这种应用题与求一个数是另一个数的几分之几的应用题相同,但程度上有所加深。这是因为,分数和百分数都可以表示两个数的比。所以,百分数应用题的解题思路和方法与分数应用题大致相同。解答百分数应用题,既可以加深对百分数的认识,又加强了知识间的联系。为了加强百分数的应用,教材还在例2之后列举了小麦的出粉率、产品的合格率、职工的出勤率等几个工农业生产和统计工作中经常用到的计算公式,并让学生说说还有哪些求百分数的例子。这样既扩大了学生所学的知识范围,又能通过练习加深对百分数的认识,同时也渗透了概率统计思想。

学情分析:

学生以前学过求一个数是另一个数的几分之几的分数应用题,学习本节知识时只要引导学生发现百分数应用题与分数应用题分析过程一致的地方,即明确以谁作单位1,确定了谁和谁比,根据求一个数是另一个数的几分之几的解答方法,仍用除法计算,只是结果要化成百分数。

教学目标:

1、使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百

分率的含义。

2、能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数

的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。

3、培养学生的知识迁移能力和数学的应用意识。

教学重点:解答求一个数是另一个数的百分之几的的百分之几的应用题。

教学难点:对一些百分率的理解。

教具准备小黑板、口算卡片

参考的有关数据:

稻谷出米率约72%小麦出粉率约85%棉子出油率约14%花生仁出油率约40%油菜子出油率约38%芝麻出油率约45%蓖麻子出油率约45%

教学过程

第一课时

活动(一)创设情境,提出问题:补充(点评)

1、口算比赛:(时间:1分钟)

5/6―1/23/102/91―1/44/51/54/54/3

5/8+3/47/124/77/8+1/41/5+1/33/45

想一想,根据自己的口算情况,你能提出什么数学问题?(做对的题数占总题数的几分之几?做错的题数占

总题数的几分之几?)

2、学生根据自己的口算情况口答做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?

3、提出问题:能否将做对的题数占总题数的几分之几的分数应用题改成一道百分数应用题呢?补充(点评)

(将做对的题数占总题数的几分之几改成做对的题

教学设计

校对并让学生说说自己的口算情况,

补充(点评)、

数占总题数的百分之几)

活动(二)相互合作,探究问题:

(一)初步感知

1、学生尝试解答各自的做对的题数占总题数的百分之几和做错的题数占总题数的百分之几的问题。

2、小结:求一个数是另一个数的百分之几的百分数应用题与求一个数是另一个数的几分之几的分数应用题解法相同,关键是找准单位1,所不同的是,求一个数是另一个数的百分之几的百分数应用题计算的结果要化成百分数。

(二)共同探讨

1、师:百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自做对的题数占总题数的百分之几这是你在这次口算比赛中的正确率,做错的题数占总题数的百分之几就是错误率。像这些正确率、错误率等我们通常称作百分率。你能举一些我们日常生活中的百分率的例子吗?

2、学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。

板书学生所举的百分率及其含义。如:

合格的产品数发芽的个数

产品的合格率=────────100%发芽率=───────100%

产品总数种子的总数

3、尝试解答例题:

(1)出示课本例1和例2的条件:

例1六年级有学生160人,已达到《国家体育锻炼标准》的有120人,?

例2某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒。?

(2)完成第113页的做一做

活动(三)运用知识,解决问题:

1、口答:

(1)2是5的百分之几?5是2的百分之几?

(2)用1000千克花生仁榨出花生油380千克,说出求花生仁出油率的公式,并算出花生仁的出油率。

2、判断:

(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%。

(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。

(3)25克盐放入100克水中,盐水的含盐率是25%。

3、课堂作业:

1、我国鸟类种数繁多,约有1166种。全世界鸟类约有

8590种。?

2、根据我班同学的情况,先编一道百分数应用题,在小组内交流,然后解答。补充(点评)

活动(四)、全课总结

1、学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?

2、学生谈谈今天所学的知识在我们的日常生活中有什么用?

课堂总结

学生说说解答求一个数是另一个数的百分之几的百分数应用题的关键是什么。

一、补充练习:

1、判断题

①五年级98个同学,全部达到体育锻炼标准,达标率为98%.

②今天一车间102个工人全部上班,今天的出勤率是102%

③甲工人加工103个零件,有100个合格,合格率是100%.

2、应用题

①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率.

②在一次数学测验中,六年级一班同学一共做了400个题,结果有错误的题16个,求错误率.

二、作业:结合练习二十九第6题进行课外调查。

分数的解决问题教案【篇5】

这部分内容,是在学生们学过分数除法的意义和计算法则、分数乘法应用题的基础上进行教学的。这类应用题历来是学生们学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助学生们分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生们通过方程解领会此类应用题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数应用题的能力,也有助于发展学生们思维的广度。

根据教材特点和学生实际我确定本节课的教学目标是:

(1)会分析较复杂的分数除法应用题数量关系。

(2)能列方程正确解答稍复杂的分数除法应用题。

(3)培养学生初步的逻辑思维能力。

让学生充分自主探究、寻求分数除法的解题方法。

课堂设计以学生为主体,注重学生间的合作与交流各抒已见、取长补短、共同提高。

现价是原价的4/5;男生比女生多1/3;今年比去年少2/5;火车速度比汽车快2/9

让学生来说说等量关系,找一找单位“1”

合唱队有女生30人,男生比女生多1/3,女生有多少人?

意图:解决问题中关键是找出题目中关键句的等量关系,因此安排了这一环节,一来是回顾,二来是在这里分散难点,以便在接下来出现一个完整题目,数量关系的`分析能较为自然了。

改例题为男生比女生多1/3,女生有多少人?

(补充)男生比女生少1/3,女生有多少人?

比较的目的:为了让学生明白这里的等量关系不变,变的是其中的已知与未知的量,因此我们仍然可以顺着刚才的思路,把未知的量设为X,应该说学生是不会有困难的。

例题与补充题的比较是考虑到,比单位“1”多(少)几分之几的区别,数量关系不一样了,其中未知与已知的量是相同的。也可以用方程的方法来解决。

分数的解决问题教案【篇6】

在教学中,充分挖掘学生的思维,数与形结合将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利、高效地学好这一部分知识,更有利于学生兴趣的培养、智力的开发、能力的.提高。让学生能够根据条件先找关键句,如:水分占体重的几分之几,确定单位“1”的量;自己画出线段图,在图中标出已知和未知的数量;接着根据图中的已知的、未知的量找出数量间相等的关系是:体重×水分占体重的几分之几=体内水分的重量;根据数量关系列出方程;方法归纳为:(1)画线段图, 不仅让学生自己动手画一画,还让学生说说线段图的意思,即加深学生对题的理解,又提高了学生分析能力;(2)找等量关系式,由于在学习分数乘法时,学生已经掌握了找等量关系式的方法,所以学生不仅能很快找出题中的等量关系式,还能根据第一个等量关系式写出另一个等量关系式;(3)解决问题,通过老师的鼓励与引导,学生能从不同角度分析问题,运用多种方法解决问题,拓展了学生的思维能力。如果不用列方程解,还可以怎样计算?水分的重量和水分占体重的几分之几是已知的,体重是未知的。根据分数除法的意义,已知积和一个因数,求另一个因数可以直接用除法计算。然后要求学生用算术方法来解答例1。做完后,让学生对算术解法和方程解法进形比较。它们都是根据数量的相等关系来列式的。算术法是按照除法的意义直接列出除法算式来解答的;方程解法是先设未知数,然后按照数量的相等关系列方程来解答的。这节课,学生们的思路都打开了,课堂的积极性明显高,从课后作业情况看,学习效果比较满意。

以上就是《分数的解决问题教案》的全部内容,想了解更多内容,请点击分数解决问题教案查看或关注本网站内容更新,感谢您的关注!