[荐]百分数解决问题教案(通用5篇)。
想要了解更多“百分数解决问题教案”的信息我们建议您阅读这篇文章。上课前准备好课堂用到教案课件很重要,每个老师对于写教案课件都不陌生。同时还需要每位老师都重视教案课件,这样可以避免因准备不足导致的教学事故。相信会对你有所帮助!
百分数解决问题教案 篇1
(一)复习
1、教师引导学生看复习题(1)学校图书室原有图书1400册,今年图书册数增加了168册,现在图书室有多少册图书?
2、学生口答
3、引导学生看复习题(2)校图书室原有图书1400册,今年图书册数增加了。现在图书室有多少册图书?
教师出示不同答案a、1400+ b、1400+1400× c、1400× d、1400×(1+ )
4、教师先引导学生小组讨论选择正确答案
指名汇报并说明原因
5、教师谈话导入新课
如果将这道题的条件变为“今年图书册数增加了12%”,应该怎样分析解答呢?这就是我们这节课要继续研究的比较复杂的百分数应用题。
板书课题:比较复杂的百分数应用题
(二)学习新课
1、教学例3
学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?
(1)学生默读题。
(2)学生独立完成
(3)教师巡视发现不同做法指名板演
(4)学生说解题思路
(5)教师引导学生观察比较例3与复习题3有什么异同?(两道题问题相同,条件不同。)条件不同在哪儿?
(复习题3条件中给出的数值形式是分数形式;例3中给出的数值形式是百分数形式。)
教师指出,分数与百分数的互相转化的方法,让学生回答。
2、百分数应用题和分数应用题的联系和区别?
问:同学们能说一说百分数应用题和分数应用题有什么区别吗?
问:谁做单位“1”?(让学生分别指出两道题中的单位“1”),用什么方法解答。(乘法)
问:怎样列式表达?(比较)
问:结果如何?
教师和学生一起总结。
教师板书:相同点:数量关系和解题方法完全相同。
不同点:百分数应用题的数量关系用百分数来表示;分数应用题的.数量关系用分数来表示。
3。做一做第1题。
龙泉镇去年有小生2800人,今年比去年减少了0。5%。今年有小学生多少人?
在例3中已经学习了求比一个数多百分之几的数是多少,本题中学习求比一个数少百分之几的数是多少的问题。
学生先独立解答。再小组交流、讨论
(1)教师巡视,适时引导。先确定数量关系,再列式解答。
2800—2800×0。5%
=2800-14
=2786(人)
或
2800×(1—0。5%)
=2800×99。5%
=2786(人)
答:今年有小学生2786人。
(2)指名说解题思路。
问:此题和例3相比较,哪儿相同,哪儿不同?(条件不同,问题相同,解题思路相同。)
(三)课堂总结
今天我们学习了什么知识?解决这类题的关键是什么?
师述:今天我们学习了比一个数多(或少)百分之几是多少的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。
百分数应用题和分数应用题的思路和方法是一样的,只不过表示形式不一样而已。
(四)巩固反馈
练习二十二第4题、9。
百分数解决问题教案 篇2
【教学内容】
《义务教育课程标准实验教科书数学》六年级上册第85页例1及练习二十一第1~4题。
【教学目标】
1.认识一些常用的百分率,理解它们表示的具体意义。
2.掌握求一个数是另一个数的百分之几的问题的解答方法。
3.感受百分率在生活实际中的应用价值,提高学生分析、解决问题的能力。
【教学重、难点】
掌握求一些常用的百分率的方法。
【教具准备】
课件(或挂图)。
【教学过程】
一、复习准备
出示信息:西大街小学六(1)班有40人,其中男生有24人,女生有16人。
问题:六(1)班男生是全班人数的几分之几?女生是全班人数的几分之几?
学生独立解答,交流解题思路,总结求一个数是另一个数的几分之几用除法解决,关键是先弄清谁和谁相比,谁是单位1。
二、学习新课
1.把复习准备的问题改成:六(1)班男生是全班人数的百分之几?女生是全班人数的百分之几?
(1)学生尝试解决。
(2)让学生交流解决思路,比较改动后的问题与复习中的问题的相同之处和不同之处。
引导学生由相同之处再次深化数量关系和解题思路,明确还是分别用男生人数总人数和女生人数总人数来解答,由不同之处可得知结果要化成百分数。
从而共同揭示出:解决百分数的问题可以依照解决分数问题的方法。求一个数是另一个数的百分之几用除法解决。关键是先弄清谁和谁相比,谁是单位1。
2.学习例1。
出示课件:学生在操场上进行体育测试的情景。
出示两条信息:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。
小精灵提出一个问题:六年级学生的达标率是多少?
(1)师:对于小精灵给我们带来的这个问题,同学们有什么疑问呢?
可以简单介绍《国家体育锻炼标准》的有关内容,重点解释:达标率是指达标学生的人数占学生总人数的百分之几。(可根据学生已有知识经验,采取生与生、生与师的对话方式)
(2)学生独立解答,再在小组内交流解题思路,让学生总结求达标率的计算公式。
(3)全班交流达标率的计算公式,阅读课本第85页,看看书上的公式与自己总结的有什么不同。讨论:书上的计算公式为什么要乘100%?对此,你有何看法?
3.学习例2。
(1)先让学生观察统计表,你看懂了什么?有什么疑问?(重点理解发芽率的含义)
(2)学生独立列式计算,完成统计表。
(3)分组交流讨论,概括求发芽率的计算公式。
(4)让学生观察填写完整的统计表,解释绿豆的发芽率是97.5%、花生的发芽率是92%、大蒜的发芽率是95%的具体意义。根据这三个信息,你知道了什么?你对这里的同学们所做的种子发芽实验有了怎样的认识?
(5)简单介绍发芽率的应用价值。
4.认识一些常见的百分率。
(1)让学生在认识例1和例2中的达标率和发芽率的基础上,讨论:率指什么?
引导学生理解率是两个数相除的商所化成的百分数,即百分比或百分率。
(2)师指出生活中用百分率进行统计的还很多,师生共同补充常见的一些百分率的例子。
(3)课本第86页做一做的第一题
小组讨论:怎样求出我们所知道的百分率?说一说它们的含义和列出相关计算公式。(采取小组比赛的形式,比一比哪个小组列举的公式多而且合理)
(4)全班反馈交流。
5.深化理解百分率的意义。
(1)课件出示例1的信息:六年级学生的达标率是75%。用1个圆表示六年级学生的总人数。让学生思考如何在图上表示达标率是75%。课件显示这个圆的75%的部分涂上红色。
(2)这个圆的红色部分表示六年级学生的达标率是75%,那么剩下的部分表示什么?引导学生发现剩下的部分表示未达标率是25%。
(3)达标率和未达标率这一组百分率有什么关系?
引导学生发现达标率+未达标率=1,理解只要知道了其中的一个百分率,就能根据它们的关系求出另一个百分率。
(4)你们还能列举出象这样的一组百分率吗?
(5)根据以上的学习,讨论百分率一定小于100%这句话对吗?可让学生根据百分率的意义及一些实例来进行辩论。
(6)讨论:结合具体实例说一说哪些百分率不可能超过100%?哪些可能超过100%?说明了什么?
三、巩固练习
1.课本第86页做一做的第2题。
2.练习二十的第1题。
四、布置作业
课堂作业:练习二十的第2、3、4题。
课外作业:调查一些常见的百分率(课堂上没有涉及的),弄清它们的含义以及计算公式。
五、课堂总结及反思
1.学了这节课你还有什么疑问呢?
2.能谈谈学习后的收获或者是感受吗?(作者:湖北省武汉市西大街小学彭娟)
百分数解决问题教案 篇3
1、30占40的百分之几?
2、40是50的百分之几?
3、80比50多百分之几?
4、15比20少百分之几?
四、你知道吗?
1、出勤率=( )×100%
2、合格率=( )×100%
3、出粉率=( )×100%
4、优秀率=( )×100%
5、达标率=( )×100%
1、六一班有学生50人,某一天出勤人数是48人,求这天的出勤率。
_____________________________________
2、在500克水中加入50克盐,求盐水的含盐率。
_____________________________________
3、东村去年计划造林12公顷,实际造林14公顷,实际比计划造林增加百分之几?
_____________________________________
4、南村小学原来每月用水180吨,开展节约活动后,现在每月用水160吨,节约了百分之几?
_____________________________________
5、妈妈把50000元存入银行,定期3年,年利率是3.5%,到期时妈妈可取回多少元?
_____________________________________
6、一套服装现价480元,比原来降低25%,原来这套服装多少元?
_____________________________________
百分数解决问题教案 篇4
活动(一)铺垫复习。
1、说出下面各题中表示单位1的量,并列出数量关系式。
(1)男生人数占总人数的百分之几?
(2)故事书的本数相当于连环画本数的百分之几?
(3)实际产量是计划产量的百分之几?
(4)水稻播种的公顷数是小麦的百分之几?
2、只列式,不计算。
(1)140吨是60吨的百分之几?
(2)260吨是40吨的百分之几?
3、一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?
活动(二)相互合作,探究问题:
1、根据复习题第3题的题意,除了可以求实际造林是原计划的百分之几?还可以提什么问题?出示例3。一个乡去年原计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?
2、讨论:
(1)这道题与上面的复习题相比较,相同的地方是什么?不同的地方是什么?
(2)根据线段图,这道题应该怎样思考、解答?
列式解答:
(14-12)12=2120.167=16.7%
答:实际造林比原计划多16.7%。
3、学生阅读课本,对照例3的解答,质疑问难。
4、想一想,例3还有其他解法吗?
可能出现1412-100%116.7%-100%=16.7%
5、思考:如果例3中的问题改成:原计划造林比实际造林少百分之几?该怎样解答?
(例3中的问题改成原计划造林比实际造林少百分之几后,单位1的量发生变化。改编后的应用题应把实际造林的公顷数(14公顷)看做单位1的量,要比较的量是原计划造林比实际造林少的公顷数。)
解答过程:
(14-12)14或者:1-1214
=2141-0.857
0.143=1-85.7%
=14.3%=14.3%
答:原计划造林比实际造林少14.3%。
活动(三)、巩固练习
1、分析下列问题,指出所求问题是什么量与什么量比,把哪一个量看做单位1。
(1)今年比去年增产百分之几?
(2)男生比女生少百分之几?
(3)一种商品,降价了百分之几?
(4)客车速度比货车慢百分之几?
(5)货车速度比客车快百分之几?
2、判断题。(对的在括号里打,错的打。)
(1)客车每秒行的路程比货车多1.2米,那么,货车每秒行的路程比客车少1.2米。()
(2)客车每秒行的路程比货车多10%,那么,货车每秒行的路程比客车少10%。()
板书:
百分数解决问题教案 篇5
教材分析:
这部分内容是求一个数是另一个数的百分之几的应用题的发展。它是在求比一个数多(少)几分之几的分数应用题的基础上进行教学的。这种题实际上还是求一个数是另一个数的百分之几的题,只是有一个数题目里没有直接给出来,需要根据题里的条件先算出来。通过解答比一个数多(少)百分之几的应用题,可以加深学生对百分数的认识,提高百分数应用题的解题能力。
学情分析:
用线段图表示题目的数量关系有助于学生理解题意,分析数量关系。再通过想帮助学生弄清,要求实际造林比原计划多百分之几,就是求多造林的公顷数是原计划造林公顷数的百分之几。然后鼓励学生寻找不同的解决方法,这样既开拓了学生的解题思路,又可以发展学生的思维能力。不断的改变题中的问题,使学生进一步加深对这类百分数应用题的认识,看到题里条件和问题之间的内在联系,同时也促进了学生逻辑思维能力的发展。
教学目标:
1、认识求比一个数多(少)百分之几的应用题的结构特点。
2、理解和掌握这类应用题的数量关系、解题思路和解题方法。
教学重点:掌握求比一个数多(少)百分之几的应用题的解题方法,正确解答。
教学难点:理解这类应用题的数量关系、解题思路和解题方法。
教具准备
小黑板
教学过程
教学设计补充(点评)
第一课时
活动(一)铺垫复习。
1、说出下面各题中表示单位1的量,并列出数量关系式。
(1)男生人数占总人数的百分之几?
(2)故事书的本数相当于连环画本数的百分之几?
(3)实际产量是计划产量的百分之几?
(4)水稻播种的公顷数是小麦的百分之几?
2、只列式,不计算。
(1)140吨是60吨的百分之几?
(2)260吨是40吨的百分之几?
3、一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?
活动(二)相互合作,探究问题:
1、根据复习题第3题的题意,除了可以求实际造林是原计划的百分之几?还可以提什么问题?出示例3。一个乡去年原计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?
2、讨论:
(1)这道题与上面的复习题相比较,相同的地方是什么?不同的地方是什么?
(2)根据线段图,这道题应该怎样思考、解答?
列式解答:
(14-12)12=2120.167=16.7%
答:实际造林比原计划多16.7%。
3、学生阅读课本,对照例3的解答,质疑问难。
4、想一想,例3还有其他解法吗?
可能出现1412-100%116.7%-100%=16.7%
5、思考:如果例3中的问题改成:原计划造林比实际造林少百分之几?该怎样解答?
(例3中的问题改成原计划造林比实际造林少百分之几后,单位1的量发生变化。改编后的应用题应把实际造林的公顷数(14公顷)看做单位1的量,要比较的量是原计划造林比实际造林少的公顷数。)
解答过程:
(14-12)14或者:1-1214
=2141-0.857
0.143=1-85.7%
=14.3%=14.3%
答:原计划造林比实际造林少14.3%。
活动(三)、巩固练习
1、分析下列问题,指出所求问题是什么量与什么量比,把哪一个量看做单位1。
(1)今年比去年增产百分之几?
(2)男生比女生少百分之几?
(3)一种商品,降价了百分之几?
(4)客车速度比货车慢百分之几?
(5)货车速度比客车快百分之几?
2、判断题。(对的在括号里打,错的打。)
(1)客车每秒行的路程比货车多1.2米,那么,货车每秒行的路程比客车少1.2米。()
(2)客车每秒行的路程比货车多10%,那么,货车每秒行的路程比客车少10%。()
板书:
以上就是《[荐]百分数解决问题教案(通用5篇)》的全部内容,想了解更多内容,请点击百分数解决问题教案查看或关注本网站内容更新,感谢您的关注!