小学一年级数学的教案
发表时间:2021-04-08九年级数学竞赛圆的基本性质优化教案。
【例题求解】
【例1】在半径为1的⊙O中,弦AB、AC的长分别为和,则∠BAC度数为.
作出辅助线,解直角三角形,注意AB与AC有不同的位置关系.
注:由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结
合起来.
圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.
【例2】如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为()
A.B.C.D.
思路点拨所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解.
【例3】如图,已知点A、B、C、D顺次在⊙O上,AB=BD,BM⊥AC于M,求证:AM=DC+CM.
思路点拨用截长(截AM)或补短(延长DC)证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它.
【例4】如图甲,⊙O的直径为AB,过半径OA的中点G作弦CE⊥AB,在CB上取一点D,分别作直线CD、ED,交直线AB于点F,M.
(1)求∠COA和∠FDM的度数;
(2)求证:△FDM∽△COM;
(3)如图乙,若将垂足G改取为半径OB上任意一点,点D改取在EB上,仍作直线CD、ED,分别交直线AB于点F、M,试判断:此时是否有△FDM∽△COM?证明你的结论.
思路点拨(1)在Rt△COG中,利用OG=OA=OC;(2)证明∠COM=∠FDM,∠CMO=
∠FMD;(3)利用图甲的启示思考.
注:善于促成同圆或等圆中不同名称的相互转化是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).
【例5】已知:在△ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.
(1)求证:AF=DF;
(2)求∠AED的余弦值;
(3)如果BD=10,求△ABC的面积.
思路点拨(1)证明∠ADE=∠DAE;(2)作AN⊥BE于N,cos∠AED=,设FE=4x,FD=3x,利用有关知识把相关线段用x的代数式表示;(3)寻找相似三角形,运用比例线段求出x的值.
注:本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.
学历训练
1.D是半径为5cm的⊙O内一点,且OD=3cm,则过点D的所有弦中,最小弦AB=.
2.阅读下面材料:
对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.
对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.
例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.
回答下列问题:
(1)边长为lcm的正方形被一个半径为r的圆所覆盖,r的最小值是cm;
(2)边长为lcm的等边三角形被一个半径为r的圆所覆盖,r的最小值是cm;
(3)长为2cm,宽为lcm的矩形被两个半径都为r的圆所覆盖,r的最小值是cm.
(2003年南京市中考题)
3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.
(1)请问以下三个图形中是轴对称图形的有,是中心对称图形的有
(分别用下面三个图的代号a,b,c填空).
(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图)(用尺规画或徒手画均可,但要尽可能准确些,美观些).
a.是轴对称图形但不是中心对称图形.
b.既是轴对称图形又是中心对称图形.
4.如图,AB是⊙O的直径,CD是弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为()
A.12cmB.10cmC.8cmD.6cm
5.一种花边是由如图的弓形组成的,ACB的半径为5,弦AB=8,则弓形的高CD为()
A.2B.C.3D.
6.如图,在三个等圆上各自有一条劣弧AB、CD、EF,如果AB+CD=EF,那么AB+CD与E的大小关系是()
A.AB+CD=EFB.AB+CD=FC.AB+CDEFD.不能确定
7.电脑CPU芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种CPU芯片,需要长、宽都是1cm的正方形小硅片若干.如果晶圆片的直径为10.05cm,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗).
8.如图,已知⊙O的两条半径OA与OB互相垂直,C为AmB上的一点,且AB2+OB2=BC2,求∠OAC的度数.
9.不过圆心的直线交⊙O于C、D两点,AB是⊙O的直径,AE⊥,垂足为E,BF⊥,垂足为F.
(1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;
(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);
(3)请你选择(1)中的一个图形,证明(2)所得出的结论.
10.以AB为直径作一个半圆,圆心为O,C是半圆上一点,且OC2=AC×BC,
则∠CAB=.
11.如图,把正三角形ABC的外接圆对折,使点A落在BC的中点A′上,若BC=5,则折痕在△ABC内的部分DE长为.
12.如图,已知AB为⊙O的弦,直径MN与AB相交于⊙O内,MC⊥AB于C,ND⊥AB于D,若MN=20,AB=,则MC—ND=.
13.如图,已知⊙O的半径为R,C、D是直径AB同侧圆周上的两点,AC的度数为96°,BD的度数为36°,动点P在AB上,则CP+PD的最小值为.
14.如图1,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P′,使得OP×OP′=r2,这种把点P变为点P′的变换叫作反演变换,点P与点P′叫做互为反演点.
(1)如图2,⊙O内外各有一点A和B,它们的反演点分别为A′和B′,求证:∠A′=∠B;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.
①选择:如果不经过点O的直线与⊙O相交,那么它关于⊙O的反演图形是()
A.一个圆B.一条直线C.一条线段D.两条射线
②填空:如果直线与⊙O相切,那么它关于⊙O的反演图形是,该图形与圆O的位置关系是.
15.如图,已知四边形ABCD内接于直径为3的圆O,对角线AC是直径,对角线AC和BD的交点为P,AB=BD,且PC=0.6,求四边形ABCD的周长.
16.如图,已知圆内接△ABC中,ABAC,D为BAC的中点,DE⊥AB于E,求证:BD2-AD2=AB×AC.
17.将三块边长均为l0cm的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)
18.如图,直径为13的⊙O′,经过原点O,并且与轴、轴分别交于A、B两点,线段OA、OB(OAOB)的长分别是方程的两根.
(1)求线段OA、OB的长;
(2)已知点C在劣弧OA上,连结BC交OA于D,当OC2=CD×CB时,求C点坐标;
(3)在⊙O,上是否存在点P,使S△POD=S△ABD?若存在,求出P点坐标;若不存在,请说明理由.
相关推荐
九年级数学《圆的基本性质》知识点复习
九年级数学《圆的基本性质》知识点复习
一、圆
1、圆的定义
在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示
以点O为圆心的圆记作“⊙O”,读作“圆O”
二、圆形的旋转
1.图形的旋转
(1)定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。
(2)生活中的旋转现象大致有两大类:一类是物体的旋转运动,如时钟的时针、分针、秒针的转动,风车的转动等;另一类则是由某一基本图形通过旋转而形成的图案,如香港特别行政区区旗上的紫荆花图案。
(3)图形的旋转不改变图形的大小和形状,旋转是由旋转中心和旋转角所决定,旋转中心可以在图形上也可以在图形外。
(4)会找对应点,对应线段和对应角。
三、垂径定理
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:
(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
四、圆心角
(1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.
(2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.
(3)圆心角的度数和它们对的弧的度数相等.
五、圆周角
有关计算公式
①L(弧长)=n/180Xπr(n为圆心角度数,以下同);
②S(扇形面积)=n/360Xπr
③扇形圆心角n=(180L)/(πr)(度)。
④K=2Rsin(n/2)K=弦长;n=弦所对的圆心角,以度计。
六、圆内接四边形
四边形的四个顶点均在同一个圆上的四边形叫做圆内接四边形。
性质
1、圆内接四边形的对角互补。
2、圆内接四边形的任意一个外角等于它的内对角。
3、圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。(托勒密定理)
七、正多边形
重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、边长之间的关系.
难点:使学生理解四者:正多边形半径、中心角、弦心距、边长之间的关系.
正多边形的中心:所有对称轴的交点;
正多边形的半径:正多边形外接圆的半径。
八、弧长及扇形的面积
弧长公式:n是圆心角度数,r是半径,α是圆心角弧度。
l=nπr÷180或l=n/180·πr或l=|α|r
在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πR,所以n°圆心角所对的弧长为l=n°πR÷180°。
在弧度制下,若弧所对的圆心角为θ,则有公式L=Rθ。
九年级数学竞赛圆与圆辅导教案
教案课件是每个老师工作中上课需要准备的东西,是认真规划好自己教案课件的时候了。只有规划好了教案课件新的工作计划,才能促进我们的工作进一步发展!你们知道多少范文适合教案课件?考虑到您的需要,小编特地编辑了“九年级数学竞赛圆与圆辅导教案”,供您参考,希望能够帮助到大家。
【例题求解】
【例1】如图,⊙Ol与半径为4的⊙O2内切于点A,⊙Ol经过圆心O2,作⊙O2的直径BC交⊙Ol于点D,EF为过点A的公切线,若O2D=,那么∠BAF=度.
(重庆市中考题)
思路点拨直径、公切线、O2的特殊位置等,隐含丰富的信息,而连O2Ol必过A点,先求出∠DO2A的度数.
注:(1)两圆相切或相交时,公切线或公共弦是重要的类似于“桥梁”的辅助线,它可以使弦切角与圆周角、圆内接四边形的内角与外角得以沟通.同时,又是生成圆幂定理的重要因素.
(2)涉及两圆位置关系的计算题,常作半径、连心线,结合切线性质等构造直角三角形,将分散的条件集中,通过解直角三角形求解.
【例2】如图,⊙Ol与⊙O2外切于点A,两圆的一条外公切线与⊙O1相切于点B,若AB与两圆的另一条外公切线平行,则⊙Ol与⊙O2的半径之比为()
A.2:5B.1:2C.1:3D.2:3
(全国初中数学联赛试题)
思路点拨添加辅助线,要探求两半径之间的关系,必须求出∠COlO2(或∠DO2Ol)的度数,为此需寻求∠CO1B、∠CO1A、∠BO1A的关系.
【例3】如图,已知⊙Ol与⊙O2相交于A、B两点,P是⊙Ol上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线交⊙Ol于点N.
(1)过点A作AE∥CN交⊙Oll于点E,求证:PA=PE;
(2)连结PN,若PB=4,BC=2,求PN的长.
(重庆市中考题)
思路点拨(1)连AB,充分运用与圆相关的角,证明∠PAE=∠PEA;(2)PBPC=PDPA,探寻PN、PD、PA对应三角形的联系.
【例4】如图,两个同心圆的圆心是O,AB是大圆的直径,大圆的弦与小圆相切于点D,连结OD并延长交大圆于点E,连结BE交AC于点F,已知AC=,大、小两圆半径差为2.
(1)求大圆半径长;
(2)求线段BF的长;
(3)求证:EC与过B、F、C三点的圆相切.
(宜宾市中考题)
思路点拨(1)设大圆半径为R,则小圆半径为R-2,建立R的方程;(2)证明△EBC∽△ECF;(3)过B、F、C三点的圆的圆心O′,必在BF上,连OˊC,证明∠O′CE=90°.
注:本例以同心圆为背景,综合了垂径定理、直径所对的圆周角为直角、切线的判定、勾股定理、相似三角形等丰富的知识.作出圆中基本辅助线、运用与圆相关的角是解本例的关键.
【例5】如图,AOB是半径为1的单位圆的四分之一,半圆O1的圆心O1在OA上,并与弧AB内切于点A,半圆O2的圆心O2在OB上,并与弧AB内切于点B,半圆O1与半圆O2相切,设两半圆的半径之和为,面积之和为.
(1)试建立以为自变量的函数的解析式;
(2)求函数的最小值.
(太原市竞赛题)
思路点拨设两圆半径分别为R、r,对于(1),,通过变形把R2+r2用“=R+r”的代数式表示,作出基本辅助线;对于(2),因=R+r,故是在约束条件下求的最小值,解题的关键是求出R+r的取值范围.
注:如图,半径分别为r、R的⊙Ol、⊙O2外切于C,AB,CM分别为两圆的公切线,OlO2与AB交于P点,则:
(1)AB=2;
(2)∠ACB=∠OlMO2=90°;
(3)PC2=PAPB;
(4)sinP=;
(5)设C到AB的距离为d,则.
学力训练
1.已知:⊙Ol和⊙O2交于A、B两点,且⊙Ol经过点O2,若∠AOlB=90°,则∠AO2B的度数是.
2.矩形ABCD中,AB=5,BC=12,如果分别以A、C为圆心的两圆相切,点D在圆C内,点B在圆C外,那么圆A的半径r的取值范围.
(2003年上海市中考题)
3.如图;⊙Ol、⊙O2相交于点A、B,现给出4个命题:
(1)若AC是⊙O2的切线且交⊙Ol于点C,AD是⊙Ol的切线且交⊙O2于点D,则AB2=BCBD;
(2)连结AB、OlO2,若OlA=15cm,O2A=20cm,AB=24cm,则OlO2=25cm;
(3)若CA是⊙Ol的直径,DA是⊙O2的一条非直径的弦,且点D、B不重合,则C、B、D三点不在同一条直线上,
(4)若过点A作⊙Ol的切线交⊙O2于点D,直线DB交⊙Ol于点C,直线CA交⊙O2于点E,连结DE,则DE2=DBDC,则正确命题的序号是(写出所有正确命题的序号).
(厦门市中考题)
4.如图,半圆O的直径AB=4,与半圆O内切的动圆Ol与AB切于点M,设⊙Ol的半径为,AM的长为,则与的函数关系是,自变量的取值范围是.
(昆明市中考题)
5.如图,施工工地的水平地面上,有三根外径都是1米的水泥管两两相切摞在一起,则其最高点到地面的距离是()
A.2B.C.D.
6.如图,已知⊙Ol、⊙O2相交于A、B两点,且点Ol在⊙O2上,过A作⊙Oll的切线AC交BOl的延长线于点P,交⊙O2于点C,BP交⊙Ol于点D,若PD=1,PA=,则AC的长为()
A.B.C.D.
(武汉市中考题)
7.如图,⊙Ol和⊙O2外切于A,PA是内公切线,BC是外公切线,B、C是切点①PB=AB;②∠PBA=∠PAB;③△PAB∽△OlAB;④PBPC=OlAO2A.
上述结论,正确结论的个数是()
A.1B.2C.3D.4
(郴州市中考题)
8.两圆的半径分别是和r(Rr),圆心距为d,若关于的方程有两个相等的实数根,则两圆的位置关系是()
A.一定内切B.一定外切C.相交D.内切或外切
(连云港市中考题)
9.如图,⊙Ol和⊙O2内切于点P,过点P的直线交⊙Ol于点D,交⊙O2于点E,DA与⊙O2相切,切点为C.
(1)求证:PC平分∠APD;
(2)求证:PDPA=PC2+ACDC;
(3)若PE=3,PA=6,求PC的长.
10.如图,已知⊙Ol和⊙O2外切于A,BC是⊙Ol和⊙O2的公切线,切点为B、C,连结BA并延长交⊙Ol于D,过D点作CB的平行线交⊙O2于E、F,求证:(1)CD是⊙Ol的直径;(2)试判断线段BC、BE、BF的大小关系,并证明你的结论.
(四川省中考题)
11.如图,已知A是⊙Ol、⊙O2的一个交点,点M是OlO2的中点,过点A的直线BC垂直于MA,分别交⊙Ol、⊙O2于B、C.
(1)求证:AB=AC;
(2)若OlA切⊙O2于点A,弦AB、AC的弦心距分别为dl、d2,求证:dl+d2=O1O2;
(3)在(2)的条件下,若dld2=1,设⊙Ol、⊙O2的半径分别为R、r,求证:R2+r2=R2r2.
(山西省中考题)
12.已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为.
(全国初中数学联赛试题)
13.如图,7根圆形筷子的横截面圆半径为r,则捆扎这7根筷子一周的绳子的长度为.
(全国初中数学联赛试题)
14.如图,⊙Ol和⊙O2内切于点P,⊙O2的弦AB经过⊙Ol的圆心Ol,交⊙Ol于C、D,若AC:CD:DB=3:4:2,则⊙Ol与⊙O2的直径之比为()
A.2:7B.2:5C.2:3D.1:3
15.如图,⊙Ol与⊙O2相交,P是⊙Ol上的一点,过P点作两圆的切线,则切线的条数可能是()
A.1,2B.1,3C.1,2,3D.1,2,3,4
(安徽省中考题)
16.如图,相等两圆交于A、B两点,过B任作一直线交两圆于M、N,过M、N各引所在圆的切线相交于C,则四边形AMCN有下面关系成立()
A.有内切圆无外接圆B有外接圆无内切圆
C.既有内切圆,也有外接圆D.以上情况都不对
(太原市竞赛题)
17.已知:如图,⊙O与相交于A,B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙PP于点D,E,过点E作EF⊥CE交CB的延长线于F.
(1)求证:BC是⊙P的切线;
(2)若CD=2,CB=,求EF的长;
(3)若k=PE:CE,是否存在实数k,使△PBD恰好是等边三角形?若存在,求出是的值;若不存在,请说明理由.
(青岛市中考题)
18.如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.
(1)若PC=PD,求PB的长;
(2)试问线段AB上是否存在一点P,使PC2+PD2=4?,如果存在,问这样的P点有几个?并求出PB的值;如果不存在,说明理由;
(3)当点F在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.
请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少,或PC、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与OB的位置关系,证明你的结论.(浙江省嘉兴市中考题)
19.如图,D、E是△ABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF.
(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论;
(2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.
(全国初中数学联赛试题)
20.问题:要将一块直径为2cm的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面.
操作:方案一:在图甲中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求,画示意图).
方案二;在图乙中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画示意图);,
探究:(1)求方案一中圆锥底面的半径;
(2)求方案二中圆锥底面及圆柱底面的半径;
(3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O1、O2,圆锥底面的圆心为O3,试判断以O1、O2、O3、O为顶点的四边形是什么样的特殊四边形,并加以证明.
(大连市中考题)
九年级数学竞赛圆幂定理教案
【例题求解】
【例1】如图,PT切⊙O于点T,PA交⊙O于A、B两点,且与直径CT交于点D,CD=2,AD=3,BD=6,则PB=.
(成都市中考题)
思路点拨综合运用圆幂定理、勾股定理求PB长.
注:比例线段是几何之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段:
(1)平行线分线段对应成比例;
(2)相似三角形对应边成比例;
(3)直角三角形中的比例线段可以用积的形式简捷地表示出来;
(4)圆中的比例线段通过圆幂定理明快地反映出来.
【例2】如图,在平行四边形ABCD中,过A、B、C三点的圆交AD于点E,且与CD相切,若AB=4,BE=5,则DE的长为()
A.3B.4C.D.
(全国初中数学联赛题)
思路点拨连AC,CE,由条件可得许多等线段,为切割线定理的运用创设条件.
注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键.
【例3】如图,△ABC内接于⊙O,AB是∠O的直径,PA是过A点的直线,∠PAC=∠B.
(1)求证:PA是⊙O的切线;
(2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB的长和∠ECB的正切值.
(北京市海淀区中考题)
思路点拨直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x、k处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x与k的关系,建立x或k的方程.
【例4】如图,P是平行四边形AB的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE
(四川省竞赛题)
思路点拨由切割线定理得EG2=EFEP,要证明EG=DE,只需证明DE2=EFEP,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明.
注:圆中的许多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁.
需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几何各种类型的问题中.
【例5】如图,以正方形ABCD的AB边为直径,在正方形内部作半圆,圆心为O,DF切半圆于点E,交AB的延长线于点F,BF=4.
求:(1)cos∠F的值;(2)BE的长.
(成都市中考题)
思路点拨解决本例的基础是:熟悉圆中常用辅助线的添法(连OE,AE);熟悉圆中重要性质定理及角与线段的转化方法.对于(1),先求出EF,FO值;对于(2),从△BEF∽△EAF,Rt△AEB入手.
注:当直线形与圆结合时就产生错综复杂的图形,善于分析图形是解与圆相关综合题的关键,分析图形可从以下方面入手:
(1)多视点观察图形.如本例从D点看可用切线长定理,从F点看可用切割线定理.
(2)多元素分析图形.图中有没有特殊点、特殊线、特殊三角形、特殊四边形、全等三角形、相似三角形.
(3)将以上分析组合,寻找联系.
学力训练
1.如图,PT是⊙O的切线,T为切点,PB是⊙O的割线,交⊙O于A、B两点,交弦CD于点M,已知CM=10,MD=2,PA=MB=4,则PT的长为.
(绍兴市中考题)
2.如图,PAB、PCD为⊙O的两条割线,若PA=5,AB=7,CD=11,则AC:BD=.
3.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点F,若AB=CD=2,则CE=.
(天津市中考题)
4.如图,在△ABC中,∠C=90°,AB=10,AC=6,以AC为直径作圆与斜边交于点P,则BP的长为()
A.6.4B.3.2C.3.6D.8
(苏州市中考题)
5.如图,⊙O的弦AB平分半径OC,交OC于P点,已知PA、PB的长分别为方程的两根,则此圆的直径为()
A.B.C.D.
(昆明市中考题)
6.如图,⊙O的直径Ab垂直于弦CD,垂足为H,点P是AC上一点(点P不与A、C两点重合),连结PC、PD、PA、AD,点E在AP的延长线上,PD与AB交于点F,给出下列四个结论:①CH2=AHBH;②AD=AC:③AD2=DFDP;④∠EPC=∠APD,其中正确的个数是()
A.1B.2C.3D.4
(福州市中考题)
7.如图,BC是半圆的直径,O为圆心,P是BC延长线上一点,PA切半圆于点A,AD⊥BC于点D.
(1)若∠B=30°,问AB与AP是否相等?请说明理由;
(2)求证:PDPO=PCPB;
(3)若BD:DC=4:l,且BC=10,求PC的长.
(绍兴市中考题)
8.如图,已知PA切⊙O于点A,割线PBC交⊙O于点B、C,PD⊥AB于点D,PD、AO的延长线相交于点E,连CE并延长交⊙O于点F,连AF.
(1)求证:△PBD∽△PEC;
(2)若AB=12,tan∠EAF=,求⊙O的半径的长.
(北京市崇文区中考题)
9.如图,已知AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,PF分别交AB、BC于E、D,交⊙O于F、G,且BE、BD恰哈好是关于x的方程(其中为实数)的两根.
(1)求证:BE=BD;(2)若GEEF=,求∠A的度数.
(山西省中考题)
10.如图,△ABC中,∠C=90°,O为AB上一点,以O为圆心,OB为半径的圆与AB相交于点E,与AC相切于点D,已知AD=2,AE=1,那么BC=.
(山东省临沂市中考题)
11.如图,已知A、B、C、D在同一个圆上,BC=CD,AC与BD交于E,若AC=8,CD=4,且线段BE、ED为正整数,则BD=.
12.如图,P是半圆O的直径BC延长线上一点,PA切半圆于点A,AH⊥BC于H,若PA=1,PB+PC=(2),则PH=()
A.B.C.D.
13.如图,△ABC是⊙O的内接正三角形,弦EF经过BC的中点D,且EF∥AB,若AB=2,则DE的长为()
A.B.C.D.1
14.如图,已知AB为⊙O的直径,C为⊙O上一点,延长BC至D,使CD=BC,CE⊥AD于E,B
E交⊙O于F,AF交CE于P,求证:PE=PC.
(太原市竞赛题)
15.已知:如图,ABCD为正方形,以D点为圆心,AD为半径的圆弧与以BC为直径的⊙O相交于P、C两点,连结AC、AP、CP,并延长CP、AP分别交AB、BC、⊙O于E、H、F三点,连结OF.
(1)求证:△AEP∽△CEA;(2)判断线段AB与OF的位置关系,并证明你的结论;
(3)求BH:HC(四川省中考题)
16.如图,PA、PB是⊙O的两条切线,PEC是一条割线,D是AB与PC的交点,若PE=2,CD=1,求DE的长.
(国家理科实验班招生试题)
17.如图,⊙O的直径的长是关于x的二次方程(是整数)的最大整数根,P是⊙O外一点,过点P作⊙O的切线PA和割线PBC,其中A为切点,点B、C是直线PBC与⊙O的交点,若PA、PB、PC的长都是正整数,且PB的长不是合数,求PA+PB+PC的值.(全国初中数学竞赛题)