高中生物一轮复习教案
发表时间:2021-01-2520xx高考物理大一轮复习:碰撞、动量守恒定律(6份打包有课件)。
第1节动量动量定理动量守恒定律一、冲量、动量和动量定理
1.冲量
(1)定义:力和力的作用时间的乘积.
(2)公式:I=Ft,适用于求恒力的冲量.
(3)方向:与力的方向相同.
2.动量
(1)定义:物体的质量与速度的乘积.
(2)表达式:p=mv.
(3)单位:千克米/秒.符号:kgm/s.
(4)特征:动量是状态量,是矢量,其方向和速度方向相同.
3.动量定理
(1)内容:物体所受合力的冲量等于物体动量的变化量.
(2)表达式:F合t=Δp=p′-p.
(3)矢量性:动量变化量方向与合力的方向相同,可以在某一方向上用动量定理.
二、动量守恒定律
1.系统:相互作用的几个物体构成系统.系统中各物体之间的相互作用力称为内力,外部其他物体对系统的作用力叫做外力.
2.定律内容:如果一个系统不受外力作用,或者所受的合外力为零,这个系统的总动量保持不变.
3.定律的表达式
m1v1+m2v2=m1v1′+m2v2′,两个物体组成的系统初动量等于末动量.
可写为:p=p′、Δp=0和Δp1=-Δp2
4.守恒条件
(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.
(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.
(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.
[自我诊断]
1.判断正误
(1)动量越大的物体,其运动速度越大.(×)
(2)物体的动量越大,则物体的惯性就越大.(×)
(3)物体的动量变化量等于某个力的冲量.(×)
(4)动量是过程量,冲量是状态量.(×)
(5)物体沿水平面运动,重力不做功,重力的冲量也等于零.(×)
(6)系统动量不变是指系统的动量大小和方向都不变.(√)
2.(20xx广东广州调研)(多选)两个质量不同的物体,如果它们的()
A.动能相等,则质量大的动量大
B.动能相等,则动量大小也相等
C.动量大小相等,则质量大的动能小
D.动量大小相等,则动能也相等
解析:选AC.根据动能Ek=12mv2可知,动量p=2mEk,两个质量不同的物体,当动能相等时,质量大的动量大,A正确、B错误;若动量大小相等,则质量大的动能小,C正确、D错误.
3.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以()
A.减小球对手的冲量B.减小球对手的冲击力
C.减小球的动量变化量D.减小球的动能变化量
解析:选B.由动量定理Ft=Δp知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球对手的冲击力,选项B正确.
4.(20xx河南开封质检)(多选)如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是()
A.两手同时放开后,系统总动量始终为零
B.先放开左手,后放开右手,动量不守恒
C.先放开左手,后放开右手,总动量向左
D.无论何时放手,两手放开后在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零
解析:选ACD.当两手同时放开时,系统所受的合外力为零,所以系统的动量守恒,又因开始时总动量为零,故系统总动量始终为零,选项A正确;先放开左手,左边的物体就向左运动,当再放开右手后,系统所受合外力为零,故系统的动量守恒,且开始时总动量方向向左,放开右手后总动量方向也向左,故选项B错,而C、D正确.
5.(20xx湖南邵阳中学模拟)一个质量m=1.0kg的物体,放在光滑的水平面上,当物体受到一个F=10N与水平面成30°角斜向下的推力作用时,在10s内推力的冲量大小为________Ns,动量的增量大小为________kgm/s.
解析:根据p=Ft,可知10s内推力的冲量大小p=Ft=100Ns,根据动量定理有Ftcos30°=Δp.
代入数据解得Δp=503kgm/s=86.6kgm/s.
答案:10086.6
考点一动量定理的理解及应用
1.应用动量定理时应注意两点
(1)动量定理的研究对象是一个质点(或可视为一个物体的系统).
(2)动量定理的表达式是矢量式,在一维情况下,各个矢量必须选同一个正方向.
2.动量定理的三大应用
(1)用动量定理解释现象
①物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小.
②作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小.
(2)应用I=Δp求变力的冲量.
(3)应用Δp=FΔt求恒力作用下的曲线运动中物体动量的变化量.
[典例1](20xx高考全国乙卷)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g.求
(1)喷泉单位时间内喷出的水的质量;
(2)玩具在空中悬停时,其底面相对于喷口的高度.
解析(1)设Δt时间内,从喷口喷出的水的体积为ΔV,质量为Δm,则
Δm=ρΔV①
ΔV=v0SΔt②
由①②式得,单位时间内从喷口喷出的水的质量为
ΔmΔt=ρv0S③
(2)设玩具悬停时其底面相对于喷口的高度为h,水从喷口喷出后到达玩具底面时的速度大小为v.对于Δt时间内喷出的水,由能量守恒得
12(Δm)v2+(Δm)gh=12(Δm)v20④
在h高度处,Δt时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为
Δp=(Δm)v⑤
设水对玩具的作用力的大小为F,根据动量定理有
FΔt=Δp⑥
由于玩具在空中悬停,由力的平衡条件得
F=Mg⑦
联立③④⑤⑥⑦式得
h=v202g-M2g2ρ2v20S2⑧
答案(1)ρv0S(2)v202g-M2g2ρ2v20S2
(1)用动量定理解题的基本思路
(2)对过程较复杂的运动,可分段用动量定理,也可整个过程用动量定理.
1.如图所示,一个质量为0.18kg的垒球,以25m/s的水平速度向左飞向球棒,被球棒打击后反向水平飞回,速度大小变为45m/s,则这一过程中动量的变化量为()
A.大小为3.6kgm/s,方向向左
B.大小为3.6kgm/s,方向向右
C.大小为12.6kgm/s,方向向左
D.大小为12.6kgm/s,方向向右
解析:选D.选向左为正方向,则动量的变化量Δp=mv1-mv0=-12.6kgm/s,大小为12.6kgm/s,负号表示其方向向右,D正确.
2.质量为1kg的物体做直线运动,其速度图象如图所示.则物体在前10s内和后10s内所受外力的冲量分别是()
A.10Ns10Ns
B.10Ns-10Ns
C.010Ns
D.0-10Ns
解析:选D.由图象可知,在前10s内初、末状态的动量相同,p1=p2=5kgm/s,由动量定理知I1=0;在后10s内末状态的动量p3=-5kgm/s,由动量定理得I2=p3-p2=-10Ns,故正确答案为D.
3.如图所示,在倾角为θ的斜面上,有一个质量是m的小滑块沿斜面向上滑动,经过时间t1,速度为零后又下滑,经过时间t2,回到斜面底端.滑块在运动过程中,受到的摩擦力大小始终是Ff,在整个运动过程中,摩擦力对滑块的总冲量大小为________,方向是________;合力对滑块的总冲量大小为________,方向是________.
解析:摩擦力先向下后向上,因上滑过程用时短,故摩擦力的冲量为Ff(t2-t1),方向与向下运动时的摩擦力的方向相同,故沿斜面向上.合力的冲量为mg(t1+t2)sinθ+Ff(t1-t2),沿斜面向下.
答案:Ff(t2-t1)沿斜面向上mg(t1+t2)sinθ+Ff(t1-t2)沿斜面向下
4.如图所示,一质量为M的长木板在光滑水平面上以速度v0向右运动,一质量为m的小铁块在木板上以速度v0向左运动,铁块与木板间存在摩擦.为使木板能保持速度v0向右匀速运动,必须对木板施加一水平力,直至铁块与木板达到共同速度v0.设木板足够长,求此过程中水平力的冲量大小.
解析:考虑M、m组成的系统,设M运动的方向为正方向,根据动量定理有Ft=(M+m)v0-(Mv0-mv0)=2mv0
则水平力的冲量I=Ft=2mv0.
答案:2mv0
5.(20xx甘肃兰州一中模拟)如图所示,一质量为M=2kg的铁锤从距地面h=3.2m高处自由下落,恰好落在地面上的一个质量为m=6kg的木桩上,随即与木桩一起向下运动,经时间t=0.1s停止运动.求木桩向下运动时受到地面的平均阻力大小.(铁锤的横截面小于木桩的横截面,木桩露出地面部分的长度忽略不计,重力加速度g取10m/s2)
解析:铁锤下落过程中机械能守恒,则v=2gh=8m/s.
铁锤与木桩碰撞过程中动量守恒,Mv=(M+m)v′,v′=2m/s.
木桩向下运动,由动量定理(规定向下为正方向)得
[(M+m)g-f]Δt=0-(M+m)v′,解得f=240N.
答案:240N
6.(20xx河南开封二模)如图所示,静止在光滑水平面上的小车质量M=20kg.从水枪中喷出的水柱的横截面积S=10cm2,速度v=10m/s,水的密度ρ=1.0×103kg/m3.若用水枪喷出的水从车后沿水平方向冲击小车的前壁,且冲击到小车前壁的水全部沿前壁流进小车中.当有质量m=5kg的水进入小车时,试求:
(1)小车的速度大小;
(2)小车的加速度大小.
解析:(1)流进小车的水与小车组成的系统动量守恒,设当进入质量为m的水后,小车速度为v1,则mv=(m+M)v1,即v1=mvm+M=2m/s
(2)质量为m的水流进小车后,在极短的时间Δt内,冲击小车的水的质量Δm=ρS(v-v1)Δt,设此时水对车的冲击力为F,则车对水的作用力为-F,由动量定理有-FΔt=Δmv1-Δmv,得F=ρS(v-v1)2=64N,小车的加速度a=FM+m=2.56m/s2
答案:(1)2m/s(2)2.56m/s2
考点二动量守恒定律的理解及应用
1.动量守恒的“四性”
(1)矢量性:表达式中初、末动量都是矢量,需要首先选取正方向,分清各物体初末动量的正、负.
(2)瞬时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等.
(3)同一性:速度的大小跟参考系的选取有关,应用动量守恒定律,各物体的速度必须是相对同一参考系的速度.一般选地面为参考系.
(4)普适性:它不仅适用于两个物体所组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.
2.动量守恒定律的不同表达形式
(1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.
(2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.
(3)Δp=0,系统总动量的增量为零.
[典例2](20xx山东济南高三质检)光滑水平轨道上有三个木块A、B、C,质量分别为mA=3m、mB=mC=m,开始时B、C均静止,A以初速度v0向右运动,A与B碰撞后分开,B又与C发生碰撞并粘在一起,此后A与B间的距离保持不变.求B与C碰撞前B的速度大小.
解析设A与B碰撞后,A的速度为vA,B与C碰撞前B的速度为vB,B与C碰撞后粘在一起的速度为v,由动量守恒定律得
对A、B木块:mAv0=mAvA+mBvB①
对B、C木块:mBvB=(mB+mC)v②
由A与B间的距离保持不变可知
vA=v③
联立①②③式,代入数据得
vB=65v0④
答案65v0
应用动量守恒定律解题的步骤
(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);
(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);
(3)规定正方向,确定初、末状态动量;
(4)由动量守恒定律列出方程;
(5)代入数据,求出结果,必要时讨论说明.
1.如图所示,在光滑的水平面上放有一物体M,物体M上有一光滑的半圆弧轨道,轨道半径为R,最低点为C,两端A、B等高,现让小滑块m从A点由静止开始下滑,在此后的过程中,则()
A.M和m组成的系统机械能守恒,动量守恒
B.M和m组成的系统机械能守恒,动量不守恒
C.m从A到C的过程中M向左运动,m从C到B的过程中M向右运动
D.m从A到B的过程中,M运动的位移为mRM+m
解析:选B.M和m组成的系统机械能守恒,总动量不守恒,但水平方向动量守恒,A错误,B正确;m从A到C过程中,M向左加速运动,当m到达C处时,M向左速度最大,m从C到B过程中,M向左减速运动,C错误;在m从A到B过程中,有MxM=mxm,xM+xm=2R,得xM=2mR/(m+M),D错误.
2.(20xx广东湛江联考)如图所示,质量均为m的小车和木箱紧挨着静止在光滑的水平冰面上,质量为2m的小孩站在小车上用力向右迅速推出木箱,木箱相对于冰面运动的速度为v,木箱运动到右侧墙壁时与竖直墙壁发生弹性碰撞,反弹后能被小孩接住,求:
(1)小孩接住箱子后共同速度的大小;
(2)若小孩接住箱子后再次以相对于冰面的速度v将木箱向右推出,木箱仍与竖直墙壁发生弹性碰撞,判断小孩能否再次接住木箱.
解析:(1)取向左为正方向,根据动量守恒定律可得
推出木箱的过程中0=(m+2m)v1-mv,
接住木箱的过程中mv+(m+2m)v1=(m+m+2m)v2.
解得v2=v2.
(2)若小孩第二次将木箱推出,根据动量守恒定律可得
4mv2=3mv3-mv,
则v3=v,
故无法再次接住木箱.
答案:(1)v2(2)否
3.(20xx山东济南高三质检)如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端.三者质量分别为mA=2kg、mB=1kg、mC=2kg,开始时C静止,A、B一起以v0=5m/s的速度匀速向右运动,A与C相碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞.求A与C发生碰撞后瞬间A的速度大小.
解析:因碰撞时间极短,A与C碰撞过程动量守恒,设碰撞后瞬间A的速度大小为vA,C的速度大小为vC,
以向右为正方向,由动量守恒定律得mAv0=mAvA+mCvC,A与B在摩擦力作用下达到共同速度,设共同速度为vAB,
由动量守恒定律得mAvA+mBv0=(mA+mB)vAB,
A、B达到共同速度后恰好不再与C碰撞,应满足vAB=vC,联立解得vA=2m/s.
答案:2m/s
4.人和冰车的总质量为M,另一木球质量为m,且M∶m=31∶2.人坐在静止于水平冰面的冰车上,以速度v(相对地面)将原来静止的木球沿冰面推向正前方向的固定挡板,不计一切摩擦阻力,设小球与挡板的碰撞是弹性的,人接住球后,再以同样的速度v(相对地面)将球推向挡板.求人推多少次后不能再接到球?
解析:设第1次推球后人的速度为v1,有0=Mv1-mv,
第1次接球后人的速度为v1′,有Mv1+mv=(M+m)v1′;
第2次推球(M+m)v1′=Mv2-mv,
第2次接球Mv2+mv=(M+m)v2′……
第n次推球
(M+m)vn-1′=Mvn-mv,
可得vn=2n-1mvM,
当vn≥v时人便接不到球,可得n≥8.25,取n=9.
答案:9次
课时规范训练
[基础巩固题组]
1.关于物体的动量,下列说法中正确的是()
A.物体的动量越大,其惯性也越大
B.同一物体的动量越大,其速度不一定越大
C.物体的加速度不变,其动量一定不变
D.运动物体在任一时刻的动量方向一定是该时刻的速度方向
解析:选D.惯性大小的唯一量度是物体的质量,如果物体的动量大,但也有可能物体的质量很小,所以不能说物体的动量大其惯性就大,故A错误;动量等于物体的质量与物体速度的乘积,即p=mv,同一物体的动量越大,其速度一定越大,故B错误;加速度不变,速度是变化的,所以动量一定变化,故C错误;动量是矢量,动量的方向就是物体运动的方向,故D正确.
2.运动员向球踢了一脚(如图),踢球时的力F=100N,球在地面上滚动了t=10s停下来,则运动员对球的冲量为()
A.1000NsB.500Ns
C.零D.无法确定
解析:选D.滚动了t=10s是地面摩擦力对足球的作用时间.不是踢球的力的作用时间,由于不能确定人作用在球上的时间,所以无法确定运动员对球的冲量.
3.(多选)如图所示为两滑块M、N之间压缩一轻弹簧,滑块与弹簧不连接,用一细绳将两滑块拴接,使弹簧处于锁定状态,并将整个装置放在光滑的水平面上.烧断细绳后到两滑块与弹簧分离的过程中,下列说法正确的是()
A.两滑块的动量之和变大
B.两滑块与弹簧分离后动量等大反向
C.如果两滑块的质量相等,则分离后两滑块的速率也相等
D.整个过程中两滑块的机械能增大
解析:选BCD.对两滑块所组成的系统,互推过程中,合外力为零,总动量守恒且始终为零,A错误;由动量守恒定律得0=mMvM-mNvN,显然两滑块动量的变化量大小相等,方向相反,B正确;当mM=mN时,vM=vN,C正确;由于弹簧的弹性势能转化为两滑块的动能,则两滑块的机械能增大,D正确.
4.(多选)静止在湖面上的小船中有两人分别向相反方向水平抛出质量相同的小球,先将甲球向左抛,后将乙球向右抛.抛出时两小球相对于河岸的速率相等,水对船的阻力忽略不计,则下列说法正确的是()
A.两球抛出后,船向左以一定速度运动
B.两球抛出后,船向右以一定速度运动
C.两球抛出后,船的速度为0
D.抛出时,人给甲球的冲量比人给乙球的冲量大
解析:选CD.水对船的阻力忽略不计,根据动量守恒定律,两球抛出前,由两球、人和船组成的系统总动量为0,两球抛出后的系统总动量也是0.两球质量相等,速度大小相等,方向相反,合动量为0,船的动量也必为0,船的速度必为0.具体过程是:当甲球向左抛出后,船向右运动,乙球抛出后,船静止.人给甲球的冲量I甲=mv-0,人给乙球的冲量I2=mv-mv′,v′是甲球抛出后的船速,方向向右,所以乙球的动量变化量小于甲球的动量变化量,乙球所受冲量也小于甲球所受冲量.
5.高空作业须系安全带,如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h(可视为自由落体运动),此后经历时间t安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为()
A.m2ght+mgB.m2ght-mg
C.mght+mgD.mght-mg
解析:选A.由动量定理得(mg-F)t=0-mv,得F=m2ght+mg.选项A正确.
6.(多选)静止在光滑水平面上的物体,受到水平拉力F的作用,拉力F随时间t变化的图象如图所示,则下列说法中正确的是()
A.0~4s内物体的位移为零
B.0~4s内拉力对物体做功为零
C.4s末物体的动量为零
D.0~4s内拉力对物体的冲量为零
解析:选BCD.由图象可知物体在4s内先做匀加速后做匀减速运动,4s末的速度为零,位移一直增大,A错;前2s拉力做正功,后2s拉力做负功,且两段时间做功代数和为零,故B正确;4s末的速度为零,故动量为零,故C正确;根据动量定理,0~4秒内动量的变化量为零,所以拉力对物体的冲量为零,故D正确.
7.如图所示,甲、乙两名宇航员正在离空间站一定距离的地方执行太空维修任务.某时刻甲、乙都以大小为v0=2m/s的速度相向运动,甲、乙和空间站在同一直线上且可当成质点.甲和他的装备总质量为M1=90kg,乙和他的装备总质量为M2=135kg,为了避免直接相撞,乙从自己的装备中取出一质量为m=45kg的物体A推向甲,甲迅速接住A后即不再松开,此后甲、乙两宇航员在空间站外做相对距离不变的同向运动,且安全“飘”向空间站.(设甲、乙距离空间站足够远,本题中的速度均指相对空间站的速度)
(1)乙要以多大的速度v(相对于空间站)将物体A推出?
(2)设甲与物体A作用时间为t=0.5s,求甲与A的相互作用力F的大小.
解析:(1)以甲、乙、A三者组成的系统为研究对象,系统动量守恒,以乙的方向为正方向,
则有:M2v0-M1v0=(M1+M2)v1
以乙和A组成的系统为研究对象,有:
M2v0=(M2-m)v1+mv
代入数据联立解得
v1=0.4m/s,v=5.2m/s
(2)以甲为研究对象,由动量定理得,
Ft=M1v1-(-M1v0)
代入数据解得F=432N
答案:(1)5.2m/s(2)432N
[综合应用题组]
8.(多选)如图把重物压在纸带上,用一水平力缓缓拉动纸带,重物跟着一起运动,若迅速拉动纸带,纸带将会从重物下面拉出,解释这些现象的正确说法是()
A.在缓慢拉动纸带时,重物和纸带间的摩擦力大
B.在迅速拉动时,纸带给重物的摩擦力小
C.在缓慢拉动纸带时,纸带给重物的冲量大
D.在迅速拉动时,纸带给重物的冲量小
解析:选CD.在缓慢拉动纸带时,两物体之间的作用力是静摩擦力,在迅速拉动时,它们之间的作用力是滑动摩擦力.由于通常认为滑动摩擦力等于最大静摩擦力,所以一般情况是缓拉摩擦力小,快拉摩擦力大,故判断A、B都错;在缓慢拉动纸带时,摩擦力虽小些,但作用时间可以很长,故重物获得的冲量即动量的变化可以很大,所以能把重物带动,快拉时,摩擦力虽大些,但作用时间很短,故冲量小,所以重物动量改变很小.
9.(多选)某同学质量为60kg,在军事训练中要求他从岸上以大小为2m/s的速度跳到一条向他缓缓飘来的小船上,然后去执行任务,小船的质量是140kg,原来的速度大小是0.5m/s,该同学上船后又跑了几步,最终停在船上.则()
A.人和小船最终静止在水面上
B.该过程同学的动量变化量为105kgm/s
C.船最终的速度是0.95m/s
D.船的动量变化量是105kgm/s
解析:选BD.规定人原来的速度方向为正方向,设人上船后,船与人共同速度为v.由题意,水的阻力忽略不计,该同学跳上小船后与小船达到同一速度的过程,人和船组成的系统合外力为零,系统的动量守恒,则由动量守恒定律得:m人v人-m船v船=(m人+m船)v,代入数据解得:v=0.25m/s,方向与人的速度方向相同,与船原来的速度方向相反.故A错误,C错误;人的动量的变化Δp为:Δp=m人v-m人v人=60×(0.25-2)=-105kgm/s,负号表示方向与选择的正方向相反;故B正确;船的动量变化量为:Δp′=m船v-m船v船=140×(0.25+0.5)=105kgm/s;故D正确.
10.如图所示,一质量M=3.0kg的长方形木板B放在光滑水平地面上,在其右端放一质量为m=1.0kg的小木块A.现以地面为参照系,给A和B以大小均为4.0m/s,方向相反的初速度,使A开始向左运动,B开始向右运动,但最后A并没有滑离木板B.站在地面的观察者看到在一段时间内小木块A正在做加速运动,则在这段时间内的某时刻木板B相对地面的速度大小可能是()
A.2.4m/sB.2.8m/s
C.3.0m/sD.1.8m/s
解析:选A.A相对地面速度为0时,木板的速度为v1,由动量守恒得(向右为正):Mv-mv=Mv1,解得:v1=83m/s.木块从此时开始向右加速,直到两者有共速为v2,由动量守恒得:Mv-mv=(M+m)v2,解得:v2=2m/s,故B对地的速度在2m/s~83m/s范围内,选项A正确.
11.如图甲所示,物块A、B的质量分别是mA=4.0kg和mB=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触,另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的vt图象如图乙所示,求:
(1)物块C的质量mC;
(2)从物块C与A相碰到B离开墙的运动过程中弹簧对A物体的冲量大小.
解析:(1)由图可知,C与A碰前速度为v1=9m/s,碰后速度为v2=3m/s,C与A碰撞过程动量守恒,mCv1=(mA+mC)v2,代入数据解得mC=2kg.
(2)12s时B离开墙壁,此时B速度为零,A、C速度相等时,v3=-v2
从物块C与A相碰到B离开墙的运动过程中,A、C两物体的动量变化为:
Δp=(mA+mC)v3-(mA+mC)v2
从物块C与A相碰到B离开墙的运动过程中弹簧对A物体的冲量大小为
I=2(mA+mC)v2,代入数据整理得到I=36Ns.
答案:(1)2kg(2)36Ns
12.如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,小车的质量为1.6kg,木块与小车之间的动摩擦因数为0.2(g取10m/s2).设小车足够长,求:
(1)木块和小车相对静止时小车的速度;
(2)从木块滑上小车到它们处于相对静止所经历的时间;
(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离.
解析:(1)以木块和小车为研究对象,由动量守恒定律可得
mv0=(M+m)v解得:v=mM+mv0=0.4m/s.
(2)再以木块为研究对象,由动量定理可得
-μmgt=mv-mv0
解得:t=v0-vμg=0.8s.
(3)木块做匀减速运动,加速度为
a1=Ffm=μg=2m/s2
小车做匀加速运动,加速度为
a2=FfM=μmgM=0.5m/s2
在此过程中木块的位移为
x1=v2-v202a1=0.96m
车的位移为:x2=12a2t2=12×0.5×0.82m=0.16m
由此可知,木块在小车上滑行的距离为:
Δx=x1-x2=0.8m.
答案:(1)0.4m/s(2)0.8s(3)0.8m
第2节碰撞与能量守恒
一、碰撞
1.概念:碰撞指的是物体间相互作用持续时间很短,物体间相互作用力很大的现象,在碰撞过程中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.
2.分类
(1)弹性碰撞:这种碰撞的特点是系统的机械能守恒,相互作用过程中遵循的规律是动量守恒和机械能守恒.
(2)非弹性碰撞:在碰撞过程中机械能损失的碰撞,在相互作用过程中只遵循动量守恒定律.
(3)完全非弹性碰撞:这种碰撞的特点是系统的机械能损失最大,作用后两物体粘合在一起,速度相等,相互作用过程中只遵循动量守恒定律.
二、动量与能量的综合
1.区别与联系:动量守恒定律和机械能守恒定律所研究的对象都是相互作用的物体所构成的系统,且研究的都是某一个物理过程.但两者守恒的条件不同:系统动量是否守恒,决定于系统所受合外力是否为零;而机械能是否守恒,决定于系统是否有除重力和弹簧弹力以外的力是否做功.
2.表达式不同:动量守恒定律的表达式为矢量式,机械能守恒定律的表达式则是标量式,对功和能量只是代数和而已.
[自我诊断]
1.判断正误
(1)碰撞过程只满足动量守恒,不可能满足动能守恒(×)
(2)发生弹性碰撞的两小球有可能交换速度(√)
(3)完全非弹性碰撞不满足动量守恒(×)
(4)无论哪种碰撞形式都满足动量守恒,而动能不会增加(√)
(5)爆炸现象中因时间极短,内力远大于外力,系统动量守恒(√)
(6)反冲运动中,动量守恒,动能也守恒(×)
2.(20xx山西运城康杰中学模拟)(多选)有关实际中的现象,下列说法正确的是()
A.火箭靠喷出气流的反冲作用而获得巨大速度
B.体操运动员在着地时屈腿是为了减小地面对运动员的作用力
C.用枪射击时要用肩部抵住枪身是为了减少反冲的影响
D.为了减轻撞车时对司乘人员的伤害程度,发动机舱越坚固越好
解析:选ABC.根据反冲运动的特点与应用可知,火箭靠喷出气流的反冲作用而获得巨大速度.故A正确;体操运动员在落地的过程中,动量变化一定.由动量定理可知,运动员受的冲量I一定;由I=Ft可知,体操运动员在着地时屈腿是延长时间t,可以减小运动员所受到的平均冲力F,故B正确;用枪射击时子弹给枪身一个反作用力,会使枪身后退,影响射击的准确度,所以为了减少反冲的影响,用枪射击时要用肩部抵住枪身.故C正确;为了减轻撞车时对司乘人员的伤害程度,就要延长碰撞的时间,由I=Ft可知位于车体前部的发动机舱不能太坚固.故D错误.
3.甲、乙两物体在光滑水平面上沿同一直线相向运动,甲、乙物体的速度大小分别为3m/s和1m/s;碰撞后甲、乙两物体都反向运动,速度大小均为2m/s.甲、乙两物体质量之比为()
A.2∶3B.2∶5
C.3∶5D.5∶3
解析:选C.选取碰撞前甲物体的速度方向为正方向,根据动量守恒定律有m甲v1-m乙v2=-m甲v1′+m乙v2′,代入数据,可得m甲∶m乙=3∶5,C正确.
4.质量为ma=1kg,mb=2kg的小球在光滑的水平面上发生碰撞,碰撞前后两球的位移-时间图象如图所示,则可知碰撞属于()
A.弹性碰撞
B.非弹性碰撞
C.完全非弹性碰撞
D.条件不足,不能确定
解析:选A.由xt图象知,碰撞前va=3m/s,vb=0,碰撞后va′=-1m/s,vb′=2m/s,碰撞前动能12mav2a+12mbv2b=92J,碰撞后动能12mava′2+12mbvb′2=92J,故机械能守恒;碰撞前动量mava+mbvb=3kgm/s,碰撞后动量mava′+mbvb′=3kgm/s,故动量守恒,所以碰撞属于弹性碰撞.
5.(20xx高考天津卷)如图所示,方盒A静止在光滑的水平面上,盒内有一个小滑块B,盒的质量是滑块的2倍,滑块与盒内水平面间的动摩擦因数为μ;若滑块以速度v开始向左运动,与盒的左、右壁发生无机械能损失的碰撞,滑块在盒中来回运动多次,最终相对于盒静止,则此时盒的速度大小为________;滑块相对于盒运动的路程为________.
解析:设滑块质量为m,则盒子的质量为2m;对整个过程,由动量守恒定律可得mv=3mv共
解得v共=v3.
由功能关系可得μmgs=12mv2-123mv32
解得s=v23μg.
答案:v3v23μg
考点一碰撞问题
1.解析碰撞的三个依据
(1)动量守恒:p1+p2=p1′+p2′.
(2)动能不增加:Ek1+Ek2≥Ek1′+Ek2′或p212m1+p222m2≥p1′22m1+p2′22m2.
(3)速度要符合情景
①如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v后>v前,否则无法实现碰撞.
②碰撞后,原来在前面的物体速度一定增大,且速度大于或等于原来在后面的物体的速度,即v前′≥v后′.
③如果碰前两物体是相向运动,则碰后两物体的运动方向不可能都不改变.除非两物体碰撞后速度均为零.
2.碰撞问题的探究
(1)弹性碰撞的求解
求解:两球发生弹性碰撞时应满足动量守恒和动能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有
m1v1=m1v1′+m2v2′
12m1v21=12m1v1′2+12m2v2′2
解得:v1′=m1-m2v1m1+m2,v2′=2m1v1m1+m2
(2)弹性碰撞的结论
①当两球质量相等时,v1′=0,v2′=v1,两球碰撞后交换了速度.
②当质量大的球碰质量小的球时,v1′>0,v2′>0,碰撞后两球都沿速度v1的方向运动.
③当质量小的球碰质量大的球时,v1′<0,v2′>0,碰撞后质量小的球被反弹回来.
[典例1]质量为m、速度为v的A球与质量为3m的静止B球发生正碰.碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B球的速度可能有不同的值.碰撞后B球的速度大小可能是()
A.0.6vB.0.4v
C.0.2vD.v
解析根据动量守恒得:mv=mv1+3mv2,则当v2=0.6v时,v1=-0.8v,则碰撞后的总动能E′=12m(-0.8v)2+12×3m(0.6v)2=1.72×12mv2,大于碰撞前的总动能,由于碰撞过程中能量不增加,故选项A错误;当v2=0.4v时,v1=-0.2v,则碰撞后的总动能为E′=12m(-0.2v)2+12×3m(0.4v)2=0.52×12mv2,小于碰撞前的总动能,故可能发生的是非弹性碰撞,选项B正确;
当v2=0.2v时,v1=0.4v,则碰撞后的A球的速度大于B球的速度,而两球碰撞,A球不可能穿越B球,故选项C错误;当v2=v时,v1=-2v,则显然碰撞后的总动能远大于碰撞前的总动能,故选项D错误.
答案B
弹性碰撞问题的处理技巧
(1)发生碰撞的物体间一般作用力很大,作用时间很短;各物体作用前后各自动量变化显著;物体在作用时间内位移可忽略.
(2)即使碰撞过程中系统所受合外力不等于零,由于内力远大于外力,作用时间又很短,所以外力的作用可忽略,认为系统的动量是守恒的.
(3)若碰撞过程中没有其他形式的能转化为机械能,则系统碰后的总机械能不可能大于碰前系统的机械能.
(4)在同一直线上的碰撞遵守一维动量守恒,通过规定正方向可将矢量运算转化为代数运算.不在同一直线上在同一平面内的碰撞,中学阶段一般不作计算要求.
1.(20xx河北衡水中学模拟)(多选)在光滑水平面上动能为E0,动量大小为p0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反,将碰撞后球1的动能和动量大小分别记为E1、p1,球2的动能和动量大小分别记为E2、p2,则必有()
A.E1<E0B.p2>p0
C.E2>E0D.p1>p0
解析:选AB.因碰撞后两球速度均不为零,根据能量守恒定律,则碰撞过程中总动能不增加可知,E1<E0,E2<E0.故A正确,C错误;根据动量守恒定律得:p0=p2-p1,得到p2=p0+p1,可见,p2>p0.故B正确.故选AB.
2.两球A、B在光滑水平面上沿同一直线、同一方向运动,mA=1kg,mB=2kg,vA=6m/s,vB=2m/s.当A追上B并发生碰撞后,两球A、B速度的可能值是()
A.vA′=5m/s,vB′=2.5m/s
B.vA′=2m/s,vB′=4m/s
C.vA′=-4m/s,vB′=7m/s
D.vA′=7m/s,vB′=1.5m/s
解析:选B.虽然题中四个选项均满足动量守恒定律,但A、D两项中,碰后A的速度vA′大于B的速度vB′,必然要发生第二次碰撞,不符合实际;C项中,两球碰后的总动能Ek′=12mAvA′2+12mBvB′2=57J,大于碰前的总动能Ek=22J,违背了能量守恒定律;而B项既符合实际情况,也不违背能量守恒定律,故B项正确.
3.(20xx河北衡水中学高三上四调)如图所示,在光滑的水平面上,质量m1的小球A以速率v0向右运动.在小球的前方O点处有一质量为m2的小球B处于静止状态,Q点处为一竖直的墙壁.小球A与小球B发生正碰后小球A与小球B均向右运动.小球B与墙壁碰撞后原速率返回并与小球A在P点相遇,PQ=2PO,则两小球质量之比m1∶m2为()
A.7∶5B.1∶3
C.2∶1D.5∶3
解析:选D.设A、B两个小球碰撞后的速度分别为v1、v2,由动量守恒定律有:m1v0=m1v1+m2v2.①
由能量守恒定律有:12m1v20=12m1v21+12m2v22②
两个小球碰撞后到再次相遇,其速率不变,由运动学规律有:
v1∶v2=PO∶(PO+2PQ)=1∶5.③
联立①②③,代入数据解得:m1∶m2=5∶3,故选D.
4.(20xx黑龙江大庆一中检测)(多选)如图所示,长木板A放在光滑的水平面上,质量为m=4kg的小物体B以水平速度v0=2m/s滑上原来静止的长木板A的上表面,由于A、B间存在摩擦,之后A、B速度随时间变化情况如图乙所示,取g=10m/s2,则下列说法正确的是()
A.木板A获得的动能为2J
B.系统损失的机械能为2J
C.木板A的最小长度为2m
D.A、B间的动摩擦因数为0.1
解析:选AD.由图象可知,木板获得的速度为v=1m/s,A、B组成的系统动量守恒,以B的初速度方向为正方向,由动量守恒定律得:mv0=(M+m)v,解得:木板A的质量M=4kg,木板获得的动能为:Ek=12Mv2=2J,故A正确;系统损失的机械能ΔE=12mv20-12mv2-12Mv2,代入数据解得:ΔE=4J,故B错误;由图得到:0~1s内B的位移为xB=12×(2+1)×1m=1.5m,A的位移为xA=12×1×1m=0.5m,木板A的最小长度为L=xB-xA=1m,故C错误;由图象可知,B的加速度:a=-1m/s2,负号表示加速度的方向,由牛顿第二定律得:μmBg=mBa,代入解得μ=0.1,故D正确.
考点二爆炸及反冲问题
1.爆炸现象的三条规律
(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于系统受到的外力,所以在爆炸过程中,系统的总动量守恒.
(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.
(3)位置不变:爆炸和碰撞的时间极短,因而在作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸或碰撞后仍然从爆炸或碰撞前的位置以新的动量开始运动.
2.反冲的两条规律
(1)总的机械能增加:反冲运动中,由于有其他形式的能量转变为机械能,所以系统的总机械能增加.
(2)平均动量守恒
若系统在全过程中动量守恒,则这一系统在全过程中平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m1v1-m2v2=0,得m1x1=m2x2.该式的适用条件是:
①系统的总动量守恒或某一方向的动量守恒.
②构成系统的m1、m2原来静止,因相互作用而运动.
③x1、x2均为沿动量守恒方向相对于同一参考系的位移.
1.我国发现的“神舟十一号”飞船与“天宫二号”空间站实现了完美对接.假设“神舟十一号”到达对接点附近时对地的速度为v,此时的质量为m;欲使飞船追上“天宫二号”实现对接,飞船需加速到v1,飞船发动机点火,将质量为Δm的燃气一次性向后喷出,燃气对地向后的速度大小为v2.这个过程中,下列各表达式正确的是()
A.mv=mv1-Δmv2
B.mv=mv1+Δmv2
C.mv=(m-Δm)v1-Δmv2
D.mv=(m-Δm)v1+Δmv2
解析:选C.飞船发动机点火喷出燃气,由动量守恒定律,mv=(m-Δm)v1-Δmv2,选项C正确.
2.在静水中一条长l的小船,质量为M,船上一个质量为m的人,当他从船头走到船尾,若不计水对船的阻力,则船移动的位移大小为()
A.mMlB.mM+ml
C.MM+mlD.mM-ml
解析:选B.船和人组成的系统水平方向动量守恒,人在船上行进,船将后退,即mv人=Mv船,人从船头走到船尾,设船后退的距离为x,则人相对地面行进的距离为l-x,有ml-xt=Mxt,则m(l-x)=Mx,得x=mlM+m,故选项B正确.
3.一弹丸在飞行到距离地面5m高时仅有水平速度v=2m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,重力加速度g取10m/s2,则下列图中两块弹片飞行的轨迹可能正确的是()
解析:选B.弹丸爆炸过程遵守动量守恒,若爆炸后甲、乙同向飞出,则有
2m=34mv甲+14mv乙①
若爆炸后甲、乙反向飞出,则有
2m=34mv甲-14mv乙②
或2m=-34mv甲+14mv乙③
爆炸后甲、乙从同一高度做平抛运动,由选项A中图可知,爆炸后甲、乙向相反方向飞出,下落时间t=2hg=2×510s=1s,速度分别为v甲=x甲t=2.51m/s=2.5m/s,v乙=x乙t=0.51m/s=0.5m/s,代入②式不成立,A项错误;同理,可求出选项B、C、D中甲、乙的速度,分别代入①式、②式、③式可知,只有B项正确.
4.以初速度v0与水平方向成60°角斜向上抛出的手榴弹,到达最高点时炸成质量分别为m和2m的两块.其中质量大的一块沿着原来的方向以2v0的速度飞行.求:
(1)质量较小的另一块弹片速度的大小和方向;
(2)爆炸过程有多少化学能转化为弹片的动能.
解析:(1)斜抛的手榴弹在水平方向上做匀速直线运动,在最高点处爆炸前的速度v1=v0cos60°=12v0.设v1的方向为正方向,如图所示,由动量守恒定律得:
3mv1=2mv1′+mv2
其中爆炸后大块弹片速度v1′=2v0,
解得v2=-2.5v0,“-”号表示v2的速度与爆炸前速度方向相反.
(2)爆炸过程中转化为动能的化学能等于系统动能的增量,ΔEk=12×2mv1′2+12mv22-12(3m)v21=274mv20.
答案:(1)2.5v0方向与爆炸前速度的方向相反
(2)274mv20
考点三动量和能量观点综合应用
1.动量的观点和能量的观点
动量的观点:动量守恒定律
能量的观点:动能定理和能量守恒定律
这两个观点研究的是物体或系统运动变化所经历的过程中状态的改变,不对过程变化的细节作深入的研究,而关心运动状态变化的结果及引起变化的原因.简单地说,只要求知道过程的初、末状态动量式、动能式和力在过程中所做的功,即可对问题进行求解.
2.利用动量的观点和能量的观点解题应注意下列问题
(1)动量守恒定律是矢量表达式,还可写出分量表达式;而动能定理和能量守恒定律是标量表达式,绝无分量表达式.
(2)中学阶段凡可用力和运动的观点解决的问题.若用动量的观点或能量的观点求解,一般都要比用力和运动的观点要简便,而中学阶段涉及的曲线运动(a不恒定)、竖直面内的圆周运动、碰撞等,就中学知识而言,不可能单纯考虑用力和运动的观点求解.
[典例2](20xx高考全国甲卷)如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30kg,冰块的质量为m2=10kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10m/s2.
(1)求斜面体的质量;
(2)通过计算判断,冰块与斜面体分离后能否追上小孩?
解析(1)规定向右为速度正方向.冰块在斜面体上运动到最大高度时两者达到共同速度,设此共同速度为v,斜面体的质量为m3.由水平方向动量守恒和机械能守恒定律得
m2v20=(m2+m3)v①
12m2v220=12(m2+m3)v2+m2gh②
式中v20=-3m/s为冰块推出时的速度.联立①②式并代入题给数据得
m3=20kg③
(2)设小孩推出冰块后的速度为v1,由动量守恒定律有
m1v1+m2v20=0④
代入数据得
v1=1m/s⑤
设冰块与斜面体分离后的速度分别为v2和v3,由动量守恒和机械能守恒定律有
m2v20=m2v2+m3v3⑥
12m2v220=12m2v22+12m3v23⑦
联立③⑥⑦式并代入数据得
v2=1m/s⑧
由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩.
答案(1)20kg(2)见解析
应用动量、能量观点解决问题的两点技巧
(1)灵活选取系统的构成,根据题目的特点可选取其中动量守恒或能量守恒的几个物体为研究对象,不一定选所有的物体为研究对象.
(2)灵活选取物理过程.在综合题目中,物体运动常有几个不同过程,根据题目的已知、未知灵活地选取物理过程来研究.列方程前要注意鉴别、判断所选过程动量、机械能的守恒情况.
1.如图所示,两块长度均为d=0.2m的木块A、B,紧靠着放在光滑水平面上,其质量均为M=0.9kg.一颗质量为m=0.02kg的子弹(可视为质点且不计重力)以速度v0=500m/s水平向右射入木块A,当子弹恰水平穿出A时,测得木块的速度为v=2m/s,子弹最终停留在木块B中.求:
(1)子弹离开木块A时的速度大小及子弹在木块A中所受的阻力大小;
(2)子弹穿出A后进入B的过程中,子弹与B组成的系统损失的机械能.
解析:(1)设子弹离开A时速度为v1,对子弹和A、B整体,
有mv0=mv1+2Mv
Fd=12mv20-12mv21-12×2Mv2
联立解得v1=320m/s,F=7362N
(2)子弹在B中运动过程中,最后二者共速,速度设为v2,对子弹和B整体,有mv1+Mv=(m+M)v2
解得v2=20523m/s
ΔE=12mv21+12Mv2-12(m+M)v22=989J.
答案:(1)320m/s7362N(2)989J
2.两滑块a、b沿水平面上同一条直线运动,并发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置x随时间t变化的图象如图所示.求:
(1)滑块a、b的质量之比;
(2)整个运动过程中,两滑块克服摩擦力做的功与因碰撞而损失的机械能之比.
解析:(1)设a、b的质量分别为m1、m2,a、b碰撞前的速度为v1、v2.由题给图象得
v1=-2m/s①
v2=1m/s②
a、b发生完全非弹性碰撞,碰撞后两滑块的共同速度为v.
由题给图象得v=23m/s③
由动量守恒定律得
m1v1+m2v2=(m1+m2)v④
联立①②③④式得
m1∶m2=1∶8⑤
(2)由能量守恒得,两滑块因碰撞而损失的机械能为
ΔE=12m1v21+12m2v22-12(m1+m2)v2⑥
由图象可知,两滑块最后停止运动.由动能定理得,两滑块克服摩擦力所做的功为
W=12(m1+m2)v2⑦
联立⑥⑦式,并代入题给数据得
W∶ΔE=1∶2⑧
答案:(1)1∶8(2)1∶2
3.(20xx高考全国丙卷)如图,水平地面上有两个静止的小物块a和b,其连线与墙垂直;a和b相距l,b与墙之间也相距l;a的质量为m,b的质量为34m.两物块与地面间的动摩擦因数均相同.现使a以初速度v0向右滑动.此后a与b发生弹性碰撞,但b没有与墙发生碰撞.重力加速度大小为g.求物块与地面间的动摩擦因数满足的条件.
解析:设物块与地面间的动摩擦因数为μ.若要物块a、b能够发生碰撞,应有
12mv20μmgl①
即μv202gl②
设在a、b发生弹性碰撞前的瞬间,a的速度大小为v1.由能量守恒有
12mv20=12mv21+μmgl③
设在a、b碰撞后的瞬间,a、b的速度大小分别为v1′、v2′,由动量守恒和能量守恒有
mv1=mv1′+34mv2′④
12mv21=12mv1′2+1234mv2′2⑤
联立④⑤式解得v2′=87v1⑥
由题意知,b没有与墙发生碰撞,由功能关系可知
1234mv2′2≤μ34mgl⑦
联立③⑥⑦式,可得
μ≥32v20xx3gl⑧
联立②⑧式,a与b发生弹性碰撞,但b没有与墙发生碰撞的条件32v20xx3gl≤μv202gl⑨
答案:32v20xx3gl≤μv202gl
4.(20xx河北邯郸摸底)如图所示,木块A、B的质量均为m,放在一段粗糙程度相同的水平地面上,木块A、B间夹有一小块炸药(炸药的质量可以忽略不计).让A、B以初速度v0一起从O点滑出,滑行一段距离后到达P点,速度变为v02,此时炸药爆炸使木块A、B脱离,发现木块B立即停在原位置,木块A继续沿水平方向前进.已知O、P两点间的距离为s,设炸药爆炸时释放的化学能全部转化为木块的动能,爆炸时间很短可以忽略不计,求:
(1)木块与水平地面的动摩擦因数μ;
(2)炸药爆炸时释放的化学能.
解析:(1)设木块与地面间的动摩擦因数为μ,炸药爆炸释放的化学能为E0.
从O滑到P,对A、B由动能定理得
-μ2mgs=122m(v02)2-122mv20①
解得μ=3v208gs②
(2)在P点爆炸时,A、B动量守恒,有2mv02=mv③
根据能量守恒定律,有
E0+122m(v02)2=12mv2④
联立③④式解得E0=14mv20.
答案:(1)3v208gs(2)14mv20
课时规范训练
[基础巩固题组]
1.如图所示,在光滑水平面上质量分别为mA=2kg、mB=4kg,速率分别为vA=5m/s、vB=2m/s的A、B两小球沿同一直线相向运动()
A.它们碰撞前的总动量是18kgm/s,方向水平向右
B.它们碰撞后的总动量是18kgm/s,方向水平向左
C.它们碰撞前的总动量是2kgm/s,方向水平向右
D.它们碰撞后的总动量是2kgm/s,方向水平向左
解析:选C.它们碰撞前的总动量是2kgm/s,方向水平向右,A、B相碰过程中动量守恒,故它们碰撞后的总动量也是2kgm/s,方向水平向右,选项C正确.
2.一枚火箭搭载着卫星以速率v0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m1,后部分的箭体质量为m2,分离后箭体以速率v2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v1为()
A.v0-v2B.v0+v2
C.v0-m2m1v2D.v0+m2m1(v0-v2)
解析:选D.由动量守恒定律得(m1+m2)v0=m1v1+m2v2得v1=v0+m2m1(v0-v2).
3.甲、乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p1=5kgm/s,p2=7kgm/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10kgm/s,则二球质量m1与m2间的关系可能是下面的哪几种()
A.m1=m2B.2m1=m2
C.4m1=m2D.6m1=m2
解析:选C.甲、乙两球在碰撞过程中动量守恒,所以有:p1+p2=p1′+p2′,即:p1′=2kgm/s.由于在碰撞过程中,不可能有其它形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加.所以有p212m1+p222m2≥p1′22m1+p2′22m2,所以有:m1≤2151m2,因为题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有p1m1>p2m2,即m1<57m2;同时还要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即p1′m1<p2′m2,所以m1>15m2.因此C选项正确.
4.(多选)如图,大小相同的摆球a和b的质量分别为m和3m,摆长相同,摆动周期相同,并排悬挂,平衡时两球刚好接触,现将摆球a向左拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是()
A.第一次碰撞后的瞬间,两球的速度大小相等
B.第一次碰撞后的瞬间,两球的动量大小相等
C.第一次碰撞后,两球的最大摆角不相同
D.发生第二次碰撞时,两球在各自的平衡位置
解析:选AD.两球在碰撞前后,水平方向不受外力,故水平两球组成的系统动量守恒,由动量守恒定律有:mv0=mv1+3mv2;又两球碰撞是弹性的,故机械能守恒,即12mv20=12mv21+123mv22,解两式得:v1=-v02,v2=v02,可见第一次碰撞后的瞬间,两球的速度大小相等,选项A正确;因两球质量不相等,故两球碰后的动量大小不相等,选项B错;两球碰后上摆过程,机械能守恒,故上升的最大高度相等,因摆长相等,故两球碰后的最大摆角相同,选项C错;两球摆动周期相同,故经半个周期后,两球在平衡位置处发生第二次碰撞,选项D正确.
5.(多选)在质量为M的小车中挂有一单摆,摆球的质量为m0,小车和单摆以恒定的速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列哪些情况说法是可能发生的()
A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)v=Mv1+mv2+m0v3
B.摆球的速度不变,小车和木块的速度变化为v1和v2,满足Mv=Mv1+mv2
C.摆球的速度不变,小车和木块的速度都变为v1,满足Mv=(M+m)v1
D.小车和摆球的速度都变为v1,木块的速度变为v2,满足(M+m0)v=(M+m0)v1+mv2
解析:选BC.在小车M和木块发生碰撞的瞬间,摆球并没有直接与木块发生力的作用,它与小车一起以共同速度v匀速运动时,摆线沿竖直方向,摆线对球的拉力和球的重力都与速度方向垂直,因而摆球未受到水平力作用,球的速度不变,可以判定A、D项错误;小车和木块碰撞过程,水平方向无外力作用,系统动量守恒,而题目对碰撞后,小车与木块是否分开或连在一起,没有加以说明,所以两种情况都可能发生,即B、C选项正确.
6.如图所示,光滑水平面上的木板右端,有一根轻质弹簧沿水平方向与木板相连,木板质量M=3.0kg,质量m=1.0kg的铁块以水平速度v0=4.0m/s,从木板的左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好停在木板的左端,则在上述过程中弹簧具有的最大弹性势能为()
A.4.0JB.6.0J
C.3.0JD.20J
解析:选C.设铁块与木板速度相同时,共同速度大小为v,铁块相对木板向右运动时,相对滑行的最大路程为L,摩擦力大小为Ff,根据能量守恒定律得
铁块相对于木板向右运动过程
12mv20=FfL+12(M+m)v2+Ep
铁块相对于木板运动的整个过程
12mv20=2FfL+12(M+m)v2
又根据系统动量守恒可知,mv0=(M+m)v
联立得到:Ep=3.0J,故选C.
7.A、B两个物体粘在一起以v0=3m/s的速度向右运动,物体中间有少量炸药,经过O点时炸药爆炸,假设所有的化学能全部转化为A、B两个物体的动能且两物体仍然在水平面上运动,爆炸后A物体的速度依然向右,大小变为vA=2m/s,B物体继续向右运动进入半圆轨道且恰好通过最高点D,已知两物体的质量mA=mB=1kg,O点到半圆最低点C的距离xOC=0.25m,水平轨道的动摩擦因数μ=0.2,半圆轨道光滑无摩擦,求:
(1)炸药的化学能E;
(2)半圆弧的轨道半径R.
解析:(1)A、B在爆炸前后动量守恒,得2mv0=mvA+mvB,解得vB=4m/s
根据系统能量守恒有:
12(2m)v20+E=12mv2A+12mv2B,解得E=1J.
(2)由于B物体恰好经过最高点,故有mg=mv2DR
对O到D的过程根据动能定理可得:
-μmgxOC-mg2R=12mv2D-12mv2B
联立解得R=0.3m.
答案:(1)1J(2)R=0.3m
[综合应用题组]
8.冰球运动员甲的质量为80.0kg.当他以5.0m/s的速度向前运动时,与另一质量为100kg、速度为3.0m/s的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:
(1)碰后乙的速度的大小;
(2)碰撞中总机械能的损失.
解析:(1)设运动员甲、乙的质量分别为m、M,碰前速度大小分别为v和v1,碰后乙的速度大小为v1′,由动量守恒定律得
mv-Mv1=Mv1′①
代入数据得v1′=1.0m/s②
(2)设碰撞过程中总机械能的损失为ΔE,有
12mv2+12Mv21=12Mv1′2+ΔE③
联立②③式,代入数据得
ΔE=1400J.
答案:(1)1.0m/s(2)1400J
相关推荐
20xx高考物理大一轮复习:第12章-近代物理初步(6份打包有课件)
一名优秀的教师在教学时都会提前最好准备,作为教师就要精心准备好合适的教案。教案可以让学生更容易听懂所讲的内容,帮助教师提前熟悉所教学的内容。写好一份优质的教案要怎么做呢?下面的内容是小编为大家整理的20xx高考物理大一轮复习:第12章-近代物理初步(6份打包有课件),供您参考,希望能够帮助到大家。
第1节光电效应波粒二象性
一、光电效应及其规律
1.光电效应现象
在光的照射下,金属中的电子从表面逸出的现象,发射出来的电子叫光电子.
2.光电效应的产生条件
入射光的频率大于金属的极限频率.
3.光电效应规律
(1)每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效应.
(2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大.
(3)光电效应的发生几乎是瞬时的,一般不超过10-9s.
(4)当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比.
二、爱因斯坦光电效应方程
1.光子说
在空间传播的光不是连续的,而是一份一份的,每—份叫做一个光子,光子的能量ε=hν.
2.逸出功W0:电子从金属中逸出所需做功的最小值.
3.最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值.
4.光电效应方程
(1)表达式:hν=Ek+W0或Ek=hν-W0.
(2)物理意义:金属表面的电子吸收一个光子获得的能量是hν,这些能量的一部分用来克服金属的逸出功W0,剩下的表现为逸出后电子的最大初动能.
三、光的波粒二象性
1.光的干涉、衍射、偏振现象证明光具有波动性.
2.光电效应、康普顿效应说明光具有粒子性.
3.光既具有波动性,又具有粒子性,称为光的波粒二象性.
[自我诊断]
1.判断正误
(1)任何频率的光照射到金属表面都可以发生光电效应.(×)
(2)要使某金属发生光电效应,入射光子的能量必须大于金属的逸出功.(√)
(3)光电子的最大初动能与入射光子的频率成正比.(×)
(4)光的频率越高,光的粒子性越明显,但仍具有波动性.(√)
(5)德国物理学家普朗克提出了量子假说,成功地解释了光电效应规律.(×)
(6)美国物理学家康普顿发现了康普顿效应,证实了光的粒子性.(√)
(7)法国物理学家德布罗意大胆预言了实物粒子具有波动性.(√)
2.当用一束紫外线照射锌板时,产生了光电效应,这时()
A.锌板带负电B.有正离子从锌板逸出
C.有电子从锌板逸出D.锌板会吸附空气中的正离子
解析:选C.发生光电效应时,有光电子从锌板中逸出,逸出光电子后的锌板带正电,对空气中的正离子有排斥作用,C正确.
3.(多选)一单色光照到某金属表面时,有光电子从金属表面逸出,下列说法中正确的是()
A.无论增大入射光的频率还是增大入射光的强度,金属的逸出功都不变
B.只延长入射光照射时间,光电子的最大初动能将增大
C.只增大入射光的频率,光电子的最大初动能将增大
D.只增大入射光的频率,光电子逸出所经历的时间将缩短
解析:选AC.金属逸出功只与极限频率有关,A正确.根据光电效应方程Ek=hν-W0可知,光电子的最大初动能由入射光的频率和逸出功决定,只延长入射光照射时间,光电子的最大初动能将不变,B错误,C正确.发生光电效应的条件是入射光的频率大于截止频率,光电子逸出所经历的时间几乎同时,D错误.
4.关于光的本性,下列说法正确的是()
A.光既具有波动性,又具有粒子性,这是互相矛盾和对立的
B.光的波动性类似于机械波,光的粒子性类似于质点
C.大量光子才具有波动性,个别光子只具有粒子性
D.由于光既具有波动性,又具有粒子性,无法只用其中一种去说明光的—切行为,只能认为光具有波粒二象性
解析:选D.光既具有波动性,又具有粒子性,但不同于宏观的机械波和机械粒子,波动性和粒子性是光在不同的情况下的不同表现,是同一客体的两个不同的侧面、不同属性,只能认为光具有波粒二象性,A、B、C错误,D正确.
5.在某次光电效应实验中,得到的遏止电压Uc与入射光的频率ν的关系如图所示.若该直线的斜率和截距分别为k和b,电子电荷量的绝对值为e,则普朗克常量可表示为________,所用材料的逸出功可表示为________.
解析:根据光电效应方程Ekm=hν-W0及Ekm=eUc得Uc=hνe-W0e,故he=k,b=-W0e,得h=ek,W0=-eb.
答案:ek-eb
考点一光电效应的理解
1.光电效应中的几个概念比较
(1)光子与光电子
光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子.
(2)光电子的动能与光电子的最大初动能
光照射到金属表面时,电子吸收光子的全部能量,可能向各个方向运动,需克服原子核和其他原子的阻碍而损失一部分能量,剩余部分为光电子的初动能;只有金属表面的电子直接向外飞出时,只需克服原子核的引力做功的情况,才具有最大初动能.
(3)光电流和饱和光电流
金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关.
(4)光的强弱与饱和光电流
频率相同的光照射金属产生光电效应,入射光越强,饱和光电流越大.
2.对光电效应规律的解释
对应规律对规律的产生的解释
光电子的最大初动能随着入射光频率的增大而增大,与入射光强度无关电子吸收光子能量后,一部分克服原子核引力做功,剩余部分转化为光电子的初动能,只有直接从金属表面飞出的光电子才具有最大初动能,对于确定的金属,逸出功W0是一定的,故光电子的最大初动能只随入射光的频率增大而增大
光电效应具有瞬时性光照射金属时,电子吸收一个光子的能量后,动能立即增大,不需要能量积累的过程
光较强时饱和电流大光较强时,包含的光子数较多,照射金属时产生的光电子较多,因而饱和电流较大
1.(20xx高考全国乙卷)(多选)现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生.下列说法正确的是()
A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大
B.入射光的频率变高,饱和光电流变大
C.入射光的频率变高,光电子的最大初动能变大
D.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生
解析:选AC.产生光电效应时,光的强度越大,单位时间内逸出的光电子数越多,饱和光电流越大,说法A正确.饱和光电流大小与入射光的频率无关,说法B错误.光电子的最大初动能随入射光频率的增加而增加,与入射光的强度无关,说法C正确.减小入射光的频率,如低于极限频率,则不能发生光电效应,没有光电流产生,说法D错误.
2.(20xx广东深圳模拟)(多选)在光电效应实验中,用同一种单色光,先后照射锌和银的表面,都能发生光电效应.对于这两个过程,下列物理过程中一定不同的是()
A.遏止电压B.饱和光电流
C.光电子的最大初动能D.逸出功
解析:选ACD.同一束光照射不同的金属,一定相同的是入射光的光子能量,不同金属的逸出功不同,根据光电效应方程Ekm=hν-W0知,最大初动能不同,则遏止电压不同,选项A、C、D正确;同一束光照射,单位时间内射到金属表面的光子数目相等,所以饱和光电流是相同的,选项B错误.
3.(20xx广东省湛江一中高三模拟)(多选)用如图所示的光电管研究光电效应的实验中,用某种频率的单色光a照射光电管阴极K,电流计G的指针发生偏转.而用另一频率的单色光b照射光电管阴极K时,电流计G的指针不发生偏转,那么()
A.a光的频率一定大于b光的频率
B.只增加a光的强度可使通过电流计G的电流增大
C.增加b光的强度可能使电流计G的指针发生偏转
D.用a光照射光电管阴极K时通过电流计G的电流是由d到c
解析:选AB.由于用单色光a照射光电管阴极K,电流计G的指针发生偏转,说明发生了光电效应,而用另一频率的单色光b照射光电管阴极K时,电流计G的指针不发生偏转,说明b光不能发生光电效应,即a光的频率一定大于b光的频率;增加a光的强度可使单位时间内逸出光电子的数量增加,则通过电流计G的电流增大;因为b光不能发生光电效应,所以即使增加b光的强度也不可能使电流计G的指针发生偏转;用a光照射光电管阴极K时通过电流计G的电子的方向是由d到c,所以电流方向是由c到d.选项A、B正确.
光电效应实质及发生条件
(1)光电效应的实质是金属中的电子获得能量后逸出金属表面,从而使金属带上正电.
(2)能否发生光电效应,不取决于光的强度,而是取决于光的频率.只要照射光的频率大于该金属的极限频率,无论照射光强弱,均能发生光电效应.
考点二光电效应方程及图象的理解
1.爱因斯坦光电效应方程
Ek=hν-W0
hν:光子的能量
W0:逸出功,即从金属表面直接飞出的光电子克服原子核引力所做的功.
Ek:光电子的最大初动能.
2.四类图象
图象名称图线形状由图线直接(间接)得到的物理量
最大初动能Ek与入射光频率ν的关系图线
①极限频率:图线与ν轴交点的横坐标νc
②逸出功:图线与Ek轴交点的纵坐标的值W0=|-E|=E
③普朗克常量:图线的斜率k=h
颜色相同、强度不同的光,光电流与电压的关系
①遏止电压Uc:图线与横轴的交点
②饱和光电流Im:电流的最大值
③最大初动能:Ekm=eUc
颜色不同时,光电流与电压的关系
①遏止电压Uc1、Uc2
②饱和光电流
③最大初动能Ek1=eUc1,Ek2=eUc2
=遏止电压Uc与入射光频率ν的关系图线
①截止频率νc:图线与横轴的交点
②遏止电压Uc:随入射光频率的增大而增大
③普朗克常量h:等于图线的斜率与电子电量的乘积,即h=ke.(注:此时两极之间接反向电压)
[典例](20xx重庆万州二中模拟)(多选)某金属在光的照射下产生光电效应,其遏止电压Uc与入射光频率ν的关系图象如图所示.则由图象可知()
A.该金属的逸出功等于hν0
B.若已知电子电荷量e,就可以求出普朗克常量h
C.遏止电压是确定的,与照射光的频率无关
D.入射光的频率为2ν0时,产生的光电子的最大初动能为hν0
解析当遏止电压为零时,最大初动能为零,则入射光的能量等于逸出功,所以W0=hν0,A正确;根据光电效应方程Ek=hν-W0和-eUc=0-Ek得,Uc=heν-W0e,可知当入射光的频率大于极限频率时,遏止电压与入射光的频率呈线性关系,C错误;因为Uc=heν-W0e,知图线的斜率等于he,从图象上可以得出斜率的大小,已知电子电荷量e,可以求出普朗克常量h,B正确;从图象上可知逸出功W0=hν0,根据光电效应方程Ek=h2ν0-W0=hν0,D正确.
答案ABD
应用光电效应方程时的注意事项
(1)每种金属都有一个截止频率,光频率大于这个截止频率才能发生光电效应.
(2)截止频率是发生光电效应的最小频率,对应着光的极限波长和金属的逸出功,即hν0=hcλ0=W0.
(3)应用光电效应方程Ek=hν-W0时,注意能量单位电子伏和焦耳的换算(1eV=1.6×10-19J).
20xx高考物理复习实验07验证动量守恒定律学案新人教版
实验07验证动量守恒定律
(对应学生用书P117)
一、实验目的
验证动量守恒定律.
二、实验原理
在一维碰撞中,测出物体的质量m和碰撞前后物体的速度v、v′,找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v1′+m2v2′,看碰撞前后动量是否守恒.
三、实验器材
方案一:气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等.
方案二:带细线的摆球(两套)、铁架台、天平、量角器、坐标纸、胶布等.
方案三:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥.
方案四:斜槽、小球(两个)、天平、复写纸、白纸等.
四、实验步骤
方案一:利用气垫导轨完成一维碰撞实验(如图所示)
1.测质量:用天平测出滑块质量.
2.安装:正确安装好气垫导轨.
3.实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).
4.验证:一维碰撞中的动量守恒.
方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(如图所示)
1.测质量:用天平测出两小球的质量m1、m2.
2.安装:把两个等大小球用等长悬线悬挂起来.
3.实验:一个小球静止,拉起另一个小球,放下时它们相碰.
4.测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.
5.改变条件:改变碰撞条件,重复实验.
6.验证:一维碰撞中的动量守恒.
方案三:在光滑桌面上两车碰撞完成一维碰撞实验(如图所示)
1.测质量:用天平测出两小车的质量.
2.安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.
3.实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.
4.测速度:通过纸带上两计数点间的距离及时间由v=ΔxΔt算出速度.
5.改变条件:改变碰撞条件,重复实验.
6.验证:一维碰撞中的动量守恒.
方案四:利用斜槽上滚下的小球验证动量守恒定律(如图所示)
1.测质量:用天平测出两小球的质量,并选定质量大的小球为入射小球.
2.安装:按照图中所示安装实验装置.调整固定斜槽使斜槽底端水平.
3.铺纸:白纸在下,复写纸在上且在适当位置铺放好.记下重垂线所指的位置O.
4.放球找点:不放被撞小球,每次让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面.圆心P就是小球落点的平均位置.
5.碰撞找点:把被撞小球放在斜槽末端,每次让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤4的方法,标出碰后入射小球落点的平均位置M和被撞小球落点的平均位置N.如图所示.
6.验证:连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中.最后代入m1OP=m1OM+m2ON,看在误差允许的范围内是否成立.
7.结束:整理好实验器材放回原处.
某同学用如图1所示装置通过半径相同的A、B两球(mA>mB)的碰撞来验证动量守恒定律.图中PQ是斜槽,QR为水平槽.实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹.重复上述操作10次,得到10个落点痕迹.再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,和B球碰撞后,A、B球分别在记录纸上留下各自的落点痕迹,重复这种操作10次.图1中O点是水平槽末端R在记录纸上的垂直投影点.B球落点痕迹如图2所示,其中米尺水平放置,且平行于G、R、O所在的平面,米尺的零点与O点对齐.
图1
图2
(1)碰撞后B球的水平射程应取____________cm.
(2)在以下选项中,本次实验必须进行测量的有____________(填选项号).
A.水平槽上未放B球时,测量A球落点位置到O点的距离
B.A球与B球碰撞后,测量A球及B球落点位置到O点的距离
C.测量A球或B球的直径
D.测量A球和B球的质量(或两球质量之比)
E.测量水平槽面相对于O点的高度
(3)实验中,关于入射球在斜槽上释放点的高低对实验影响的说法中正确的是()
A.释放点越低,小球受阻力越小,入射小球速度越小,误差越小
B.释放点越低,两球碰后水平位移越小,水平位移测量的相对误差越小,两球速度的测量越准确
C.释放点越高,两球相碰时,相互作用的内力越大,碰撞前后动量之差越小,误差越小
D.释放点越高,入射小球对被碰小球的作用力越大,轨道对被碰小球的阻力越小
解析:(1)用一尽可能小的圆把小球落点圈在里面,可知圆心的位置是65.7cm,这也是小球落点的平均位置.
(2)本实验中要测量的数据有:两个小球的质量m1、m2,三个落点到O点的距离x1、x2、x3,所以应选A、B、D.
(3)入射球的释放点越高,入射球碰前速度越大,相碰时内力越大,阻力的影响相对越小,可以较好的满足动量守恒的条件,也有利于减小测量水平位移时的相对误差,从而使实验的误差减小,选项C正确.
答案:(1)65.7(65.5~65.9均可)(2)ABD(3)C
(对应学生用书P118)
一、数据处理
1.速度的测量
方案一:滑块速度的测量:v=ΔxΔt,式中Δx为滑块挡光片的宽度(仪器说明书上给出,也可直接测量),Δt为数字计时器显示的滑块(挡光片)经过光电门的时间.
方案二:摆球速度的测量:v=2gh,式中h为小球释放时(或碰撞后摆起的)高度,h可用刻度尺测量(也可由量角器和摆长计算出).
方案三:小车速度的测量:v=ΔxΔt,式中Δx是纸带上两计数点间的距离,可用刻度尺测量,Δt为小车经过Δx的时间,可由打点间隔算出.
2.验证的表达式
方案一、二、三:m1v1+m2v2=m1v1′+m2v2′.
方案四:m1OP=m1OM+m2ON
二、注意事项
1.前提条件
碰撞的两物体应保证“水平”和“正碰”.
2.方案提醒
(1)若利用气垫导轨进行实验,调整气垫导轨时,注意利用水平仪确保导轨水平.
(2)若利用摆球进行实验,两小球静放时球心应在同一水平线上,且刚好接触,摆线竖直,将小球拉起后,两条摆线应在同一竖直面内.
(3)若利用长木板进行实验,可在长木板下垫一小木片用以平衡摩擦力.
(4)若利用斜槽小球碰撞应注意:
①斜槽末端的切线必须水平;
②入射小球每次都必须从斜槽同一高度由静止释放;
③选质量较大的小球作为入射小球;
④实验过程中实验桌、斜槽、记录的白纸的位置要始终保持不变.
(20xx全国新课标Ⅱ)现利用如图所示的装置验证动量守恒定律.在图中,气垫导轨上有A、B两个滑块,滑块A右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.
实验测得滑块A的质量m1=0.310kg,滑块B的质量m2=0.108kg,遮光片的宽度d=1.00cm;打点计时器所用交流电的频率f=50.0Hz.
将光电门固定在滑块B的右侧,启动打点计时器,给滑块A一向右的初速度,使它与B相碰.碰后光电计时器显示的时间为ΔtB=3.500ms,碰撞前后打出的纸带如图所示.
若实验允许的相对误差绝对值(|碰撞前后总动量之差碰前总动量|×100%)最大为5%,本实验是否在误差范围内验证了动量守恒定律?写出运算过程.
解析:按定义,物体运动的瞬时速度大小为v:
v=ΔsΔt①
式中Δs为物块在很短时间Δt内走过的路程,设纸带上打出相邻两点的时间间隔为ΔtA,则
ΔtA=1f=0.02s②
ΔtA可视为很短,设在A碰撞前后瞬时速度大小分别为v0、v1,将②式和图给实验数据代入①式可得:
v0=4.00×10-20.02m/s=2.00m/s③
v1=1.94×10-20.02m/s=0.970m/s④
设B在碰撞后的速度大小为v2,由①式有
v2=dΔtB⑤
代入题所给的数据可得:v2=2.86m/s⑥
设两滑块在碰撞前后的动量分别为p和p′,则
p=m1v0⑦
p′=m1v1+m2v2⑧
两滑块在碰撞前后总动量相对误差的绝对值为
δγ=|p-p′p|×100%⑨
联立③④⑥⑦⑧⑨式并代入有关数据,
可得:δγ=1.7%<5%⑩
因此,本实验在允许的误差范围内验证了动量守恒定律.
答案:见解析
高考物理第一轮动量守恒定律复习学案
第十八章动量守恒定律
1.本章主要研究动量定理和动量守恒定律。
2.动量的观点、能量的观点和力与运动相结合的观点是解决力学问题的三大法宝。所以本章知识常与能量结合,在每年的高考中都是考查的重点,不仅题型全,而且分量重,分值约占20—30分左右。
3.在高考中,本章的知识常以选择题和综合大题的形式考查,特别是与两大守恒定律相综合的问题,常常以压轴题的形式出现。
第一课时动量守恒定律及其应用
【教学要求】
1.知道动量及动量守恒定律;
2.会用动量守恒定律求解有关问题。
【知识再现】
一、冲量
1.定义:________和___________的乘积叫做力的冲量。
2.公式:_________________
3.单位:______符号:_________
4.方向:冲量是矢量,方向是由_________的方向决定的。
二、动量
1.定义:物体的________和__________的乘积叫做动量
2.公式:__________________
3.单位:________符号_________
4.方向:动量是矢量,它的方向与__________的方向相同
三、动量定理
1.内容:物体所受___________________等于物体的______________,这个结论叫做动量定理。
2.表达式:Ft=mv′-mv或Ft=△p
四、动量守恒定律
1.动量守恒定律的内容
一个系统____________或者____________,这个系统的________保持不变,这个结论叫做动量守恒定律。
2.常用的三种表达形式
(1)m1v1+m2v2=m1v1′+m2v2′
(2)p=p′
(3)△p1=-△p2′
3.适用条件:系统不受外力或者所受外力之和为零。
知识点一动量与动量的变化
动量是矢量,物体动量的方向与物体瞬时速度方向相同。动量变化量△p的大小,一般都是用末动量减初动量,也称为动量增量。
【应用1】(07学年度广东省重点中学12月月考)质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,碰掸时间极短,离地的速率为v2。在碰撞过程中,地面对钢球冲量的方向和大小为(D)
A.向下,m(v1-v2)B.向下,m(v1+v2)
C.向上,m(v1-v2)D.向上,m(v1+v2)
导示:如果相互接触前库仑力是引力,则两个电荷是异种电荷,它们相互接触中和后带等量同种电荷,带电性质与原来电量大的相同,所以库仑力是斥力。如果相互接触前库仑力是斥力,则两个电荷是同种电荷,它们相互接触后带等量同种电荷,电量乘积比原来大,则相互接触后库仑力一定增大。
故选BC。
△p=pt-P0,此式为矢量式,若Pt、P0不在一条直线上,要用平行四边形定则(或矢量三角形法)求矢量差;若在同一直线上,先规定正方向,再用正负表示Pt、P0,则可用△p=pt-p0=mvt—mv0进行代数运算求解。
知识点二动量守恒定律的条件
动量守恒定律的适用条件:1、系统不受外力或者所受外力之和为零。2、系统所受的舍外力虽不为零,但合外力比内力小得多,如碰撞过程中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,它们在碰撞、爆炸过程中的冲量可忽略不计。3、系统所受的合外力虽然不为零,但在某个方向上合外力为零,则在该方向上系统的动量守恒。
【应用2】(07学年度广东省重点中学12月月考)如图所示,A、B两物体的质量比mA∶mB=3∶2,它们原来静止在平板车C上,A、B间有一根被压缩了的弹簧,A、B与平板车上表面间的动摩擦因数相同,地面光滑.当弹簧突然释放后,则有(BC)
A.A、B系统动量守恒
B.A、B、C系统动量守恒
C.小车向左运动
D.小车向右运动
导示:A、B组成的系统所受合外力不为0,所以动量不守恒;A、B、C组成的系统所受合外力为0,所以动量守恒,故B选项正确。对于C,它受A给它向左的摩擦力,大小为μmAg;同理它受B给它向右的摩擦力,大小为μmBg。而mA∶mB=3∶2,所以向左的摩擦力大于向右的摩擦力,故向左运动。故答案应选BC。
类型一利用动量定理求冲量
【例1】一质量为m的小球,以初速度v0沿水平方向射出,恰好垂直地射到一倾角为300的固定斜面上,并立即沿反方向弹回。已知反弹速度的大小是入射速度大小的3/4。求在碰撞中斜面对小球的冲量的大小。
导示:小球在碰撞斜面前做平抛运动。设刚要碰撞斜面时小球速度为v0。由题意,v的方向与竖直线的夹角为300,且水平分量仍为v0,如图所示。由此得
v=2v0①
碰撞过程中,小球速度由v变为反向的3v/4,碰撞时间极短,可不计重力的冲量,由动量定理得:
I=m(3v/4)+mv②
由①、②得I=7mv0/2。
答案:7mv0/2
恒力的冲量常直接用冲量公式求解,变力的冲量常用动量定理来求。
类型二某方向动量守恒的问题
当系统的合外力不为零,但其某方向上合外力为零时,我们说系统的动量不守恒,但系统在合外力为零的方向上动量守恒,这时,我们可以根据这一方向上动量守恒解决问题。
【例2】将质量为m的铅球以大小为v0仰角为θ的初速度抛入一个装着砂子的总质量为M的静止砂车中如图所示.砂车与地面间的摩擦力不计,球与砂车的共同速度等于多少?
导示:把铅球和砂车看成一个系统,系统在整个过程中不受水平方向的外力,则水平方向动量守恒。
则mv0cosθ=(M+m)v
所以v=mv0cosθ/(M+m)
解决这类问题时要弄清楚动量在哪个方向上守恒,系统内各物体在初末状态时,此方向的动量分别为多少,对其动量进行正确的分解。
类型三多个物体相互作用的问题
【例3】(07学年度广东省重点中学12月月考)如图所示,质量分别为mA=0.5kg、mB=0.4kg的长板紧挨在一起静止在光滑的水平面上,质量为mC=0.1kg的木块C以初速vC0=10m/s滑上A板左端,最后C木块和B板相对静止时的共同速度vCB=1.5m/s.求:
(1)A板最后的速度vA;
(2)C木块刚离开A板时的速度vC.
导示:(1)C在A上滑动的过程中,A、B、C组成系统的动量守恒,则
mCvC0=mCvC+(mA+mB)vA
(2)C在B上滑动时,B、C组成系统的动量守恒,则
mCvC+mBvA=(mC+mB)vCB
解得vA=0.5m/s,vC=5.5m/s
多个物体发生相互作用的问题,是本章的一个难点,也是高考的热点,在利用动量守恒定律列式求解时,一定要注意两点:一是研究对象,二是物理过程。即要注意所列方程是对整个系统还是系统中的某两个或几个物体;是对全过程还是对其中某一过程的初、末状态列方程,这是要一定明确的。
类型四用归纳法求解的相互作用问题
【例3】如图,光滑水平面上停着一只木球和载人小车,木球的质量为m,人和车的总质量为M,已知M:m=16:1.人以速度为v0沿水平面将木球推向正前方的固定挡板,木球被挡板弹回之后,人接住球后再以同样的对地速度将球推向挡板,设木球与挡板相碰时无动能损失,求人经过几次推球之后,再也不能接住木球?
导示:推球前后瞬间的过程,人和车在水平方向不受其他外力作用,满足动量守恒定律.设向左为正方向,经n次推球后车和人对地的速度为vn(n=1,2,…)由题意可知,当vn=v车≥v球=v0时就再接不住球了.
人第一次推球前后有O=Mv1-mv0,得v1=v0/16
人第二次推球前后有Mv1+mv0=Mv2-mv0,得v2=3v0/16
人第三次推球前后有Mv2+mv0=Mv3-mv0,得v3=5v0/16
由以上各式可看出,人推球后,人和车各次的速度构成一等差数列.该等差数列的第一项a1=v0/16,公差d=v0/8.所以,第n次推球后人的速度的表达式vn=v0/16+(n-1)v0/8=(2n-1)v0/16。
由人再接不住的条件v0≤vn,解得n≥8.5,取n=9,即人第9次推球后再也接不住球了。
有一类物理问题,如两个物体的多次相互碰撞等,若将每一次的碰撞看作一个事件,则多次碰撞的规律,可由对这些个别事件的分析提出。这种由个别事件推理出一般规律的方法就称作归纳法。归纳法是解决上述类型问题的一种常用的方法。
1.(2007山西模拟)如图所示,木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁上,在b上施加向左的水平力F,使弹簧压缩,当撤去外力后,下列说法中正确的是()
A.尚未离开墙壁前,a和b组成的系统动量守恒
B.尚未离开墙壁前,a和b组成的系统机械能守恒
C.离开墙壁后,a、b组成的系统动量守恒
D.离开墙壁后,a、b组成的系统机械能守恒
2.两条船在静止的水面上沿着平行的方向相向匀速运动,速率均为6m/s,当两船相互交错时各给对方20kg的货物,此后乙船的速率变为4m/s,方向不变.若甲船总质量为300kg,甲船交换货物后的速度为多少?乙船的总质量为多少?(水的阻力不计)
3.(2007广东佛山)质量为40kg的女孩骑自行车带质量为30kg的男孩,如图所示。行驶速度为2.5m/s。自行车行驶时,男孩要从车上下来。
(1)他知道如果直接跳下来,他可能会摔跤。为什么?所以他下来时用力往前推自行车,这样可使他下车时水平速度是0。
(2)计算男孩下车的一刻女孩和自行车的速度。
(3)计算自行车和两个孩子整个系统的动能在男孩下车前后的值。如有不同,请解释为什么。
答案:1、BCD;
2、5.2m/s、120kg;
3、略
20xx高考物理大一轮复习:第9章-磁场(10份打包有课件)
一名爱岗敬业的教师要充分考虑学生的理解性,教师要准备好教案,这是教师的任务之一。教案可以让学生更好地进入课堂环境中来,让教师能够快速的解决各种教学问题。关于好的教案要怎么样去写呢?下面是小编为大家整理的“20xx高考物理大一轮复习:第9章-磁场(10份打包有课件)”,相信能对大家有所帮助。
第1节磁场的描述、磁场对电流的作用
一、磁场、磁感应强度
1.磁场
(1)基本性质:磁场对处于其中的磁体、电流和运动电荷有磁力的作用.
(2)方向:小磁针的N极所受磁场力的方向.
2.磁感应强度
(1)物理意义:描述磁场强弱和方向.
(2)定义式:B=FIL(通电导线垂直于磁场).
(3)方向:小磁针静止时N极的指向.
(4)单位:特斯拉,符号T.
二、磁感线及几种常见的磁场分布
1.磁感线
在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致.
2.几种常见的磁场
(1)条形磁铁和蹄形磁铁的磁场(如图所示)
(2)几种电流周围的磁场分布
直线电流的磁场通电螺线管的磁场环形电流的磁场
特点无磁极、非匀强且距导线越远处磁场越弱与条形磁铁的磁场相似,管内为匀强磁场且磁场最强,管外为非匀强磁场环形电流的两侧是N极和S极且离圆环中心越远,磁场越弱
安培定则
立体图
横截面图
纵截面图
(3)磁感线的特点
①磁感线上某点的切线方向就是该点的磁场方向.
②磁感线的疏密程度表示磁场强弱.
③磁感线是闭合曲线,没有起点和终点.在磁体外部,从N极指向S极,在磁体内部,从S极指向N极.
④磁感线是假想的曲线,不相交、不中断、不相切.
三、安培力的大小和方向
1.大小
(1)F=BILsinθ(其中θ为B与I之间的夹角)
(2)磁场和电流垂直时F=BIL.
(3)磁场和电流平行时F=0.
2.方向
(1)用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.
(2)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面.(注意:B和I可以有任意夹角)
[自我诊断]
1.判断正误
(1)小磁针N极受磁场力的方向就是该处磁感应强度的方向.(√)
(2)磁场中的一小段通电导体在该处受力为零,此处B一定为零.(×)
(3)由定义式B=FIL可知,电流强度I越大,导线L越长,某点的磁感应强度就越小.(×)
(4)磁感线是真实存在的.(×)
(5)通电线圈可等效成条形磁铁,它周围的磁感线起始于线圈一端,终止于线圈的另一端.(×)
(6)安培力的方向既跟磁感应强度方向垂直,又跟电流方向垂直.(√)
2.(多选)指南针是我国古代四大发明之一.关于指南针,下列说法正确的是()
A.指南针可以仅具有一个磁极
B.指南针能够指向南北,说明地球具有磁场
C.指南针的指向会受到附近铁块的干扰
D.在指南针正上方附近沿指针方向放置一直导线,导线通电时指南针不偏转
解析:选BC.指南针有N、S两个磁极,受到地磁场的作用静止时S极指向南方,A错误,B正确.指南针有磁性,可以与铁块相互吸引,C正确.由奥斯特实验可知,小磁针在通电导线放置位置合适的情况下,会发生偏转,D错误.
3.磁场中某区域的磁感线如图所示,则()
A.a、b两处的磁感应强度的大小不等,Ba>Bb
B.a、b两处的磁感应强度的大小不等,Ba<Bb
C.同一通电导线放在a处受力一定比放在b处受力大
D.同一通电导线放在a处受力一定比放在b处受力小
解析:选B.在磁场中,磁感线的疏密表示磁场的强弱,故Ba<Bb,A错误,B正确.同一通电导线如果都垂直放入磁场中,则在a处受力一定比b处受力小,但如果导线与磁场平行放置,受力均为0,故C、D均错误.
4.关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()
A.安培力的方向可以不垂直于直导线
B.安培力的方向总是垂直于磁场的方向
C.安培力的大小与通电直导线和磁场方向的夹角无关
D.将直导线从中点折成直角,安培力的大小一定变为原来的一半
解析:选B.根据左手定则,安培力垂直于电流和磁感应强度所组成的平面,A错误,B正确.由安培力公式F=BILsinθ(θ为B与I的夹角)可知,C错误.若在垂直于磁感应强度的平面内将直导线折成直角,其有效长度变为原来的22,安培力大小也变为原来的22,D错误.
考点一磁场的理解及安培定则
1.磁感应强度的三点理解
(1)磁感应强度由磁场本身决定,因此不能根据定义式B=FIL认为B与F成正比,与IL成反比.
(2)测量磁感应强度时小段通电导线必须垂直磁场放入,如果平行磁场放入,则所受安培力为零,但不能说该点的磁感应强度为零.
(3)磁感应强度是矢量,其方向为放入其中的小磁针N极的受力方向,也是小磁针静止时N极的指向.
2.安培定则的应用
在运用安培定则判定直线电流和环形电流的磁场时应分清“因”和“果”.
原因(电流方向)结果(磁场绕向)
直线电流的磁场大拇指四指
环形电流的磁场四指大拇指
3.磁场的叠加
磁感应强度是矢量,计算时与力的计算方法相同,利用平行四边形定则或正交分解法进行合成与分解.
◆特别提醒:两个电流附近的磁场的磁感应强度是由两个电流分别独立存在时产生的磁场在该处的磁感应强度叠加而成的.
1.指南针是我国古代四大发明之一.当指南针上方有一条水平放置的通电导线时,其N极指向变为如图实线小磁针所示.则对该导线电流的以下判断正确的是()
A.可能东西放置,通有由东向西的电流
B.可能东西放置,通有由西向东的电流
C.可能南北放置,通有由北向南的电流
D.可能南北放置,通有由南向北的电流
解析:选C.若导线东西放置,通有由东向西的电流,根据安培定则可知,小磁针所在处合磁场方向将在南北方向上,其不会出现题图所示情况,故选项A错误.若导线东西放置,通有由西向东的电流,根据安培定则可知,小磁针N极不偏转,故选项B错误.若导线南北放置,通有由北向南的电流时,根据安培定则可知,小磁针N极将顺时针偏转,可转向图中实线所示位置,故选项C正确.若导线南北放置,通有由南向北的电流,根据安培定则可知,小磁针N极将逆时针偏转,指向西北方,故选项D错误.
2.(20xx河北廊坊模拟)(多选)无限长通电直导线在周围某一点产生的磁场的磁感应强度B的大小与电流大小成正比,与导线到这一点的距离成反比,即B=kIr(式中k为常数).如图所示,两根相距L的无限长直导线分别通有电流I和3I.在两根导线的连线上有a、b两点,a点为两根直导线连线的中点,b点距电流为I的导线的距离为L.下列说法正确的是()
A.a点和b点的磁感应强度方向相同
B.a点和b点的磁感应强度方向相反
C.a点和b点的磁感应强度大小比为8∶1
D.a点和b点的磁感应强度大小比为16∶1
解析:选AD.根据右手螺旋定则,导线周围的磁场的磁感线,是围绕导线形成的同心圆,两导线在a处的磁感应强度方向都向下,则合磁感应强度方向向下;根据B=kIr,电流为3I导线在b处的磁感应强度方向向下,而电流为I导线在b处的磁感应强度方向向上,因电流为3I导线在b处产生的磁场较大,则合磁感应强度方向向下,因此a点和b点的磁感应强度方向相同,故A正确,B错误.
两导线在a处的磁感应强度大小B1=3kIL2+kIL2=k8IL;两导线在b处的磁感应强度大小B2=3kI2L-kIL=kI2L,则a点和b点的磁感应强度大小之比为16∶1,故C错误,D正确.
3.(20xx江西南昌调研)如图所示,M、N和P是以MN为直径的半圆弧上的三点,O为半圆弧的圆心,∠MOP=60°,在M、N处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O点的磁感应强度大小为B1.若将M处长直导线移至P处,则O点的磁感应强度大小为B2,那么B2与B1之比为()
A.3∶1B.3∶2
C.1∶1D.1∶2
解析:选B.如图所示,当通有电流的长直导线在M、N两处时,根据安培定则,可知:二者在圆心O处产生的磁感应强度都为B1/2;当将M处长直导线移到P处时,两直导线在圆心O处产生的磁感应强度也为B1/2,做平行四边形,由图中的几何关系,可得B2B1=B22B12=cos30°=32,故选项B正确.
4.(20xx湖北三市六校联考)如图甲所示,无限长导线均通以恒定电流I.直线部分和坐标轴接近重合,弯曲部分是以坐标原点O为圆心的相同半径的一段圆弧,已知直线部分在原点O处不形成磁场,则图乙中O处磁感应强度和图甲中O处磁感应强度相同的是()
解析:选A.由题意可知,图甲中O处磁感应强度的大小是其中一段在O点产生的磁感应强度大小的2倍,方向垂直纸面向里;图A中,根据安培定则可知,左上段与右下段的通电导线产生的磁场叠加为零,则剩余的两段通电导线产生的磁感应强度大小是其中一段在O点的磁感应强度的2倍,且方向垂直纸面向里,故A正确;同理,图B中,四段通电导线在O点产生的磁感应强度是其中一段在O点产生的磁感应强度的4倍,方向垂直纸面向里,故B错误;图C中,右上段与左下段产生磁场叠加为零,则剩余两段产生磁感应强度大小是其中一段在O点产生磁感应强度的2倍,方向垂直纸面向外,故C错误;图D中,四段在O点产生的磁感应强度是其中一段在O点产生磁感应强度的2倍,方向垂直纸面向外,故D错误.
磁感应强度叠加三步骤
空间中的磁场通常会是多个磁场的叠加,磁感应强度是矢量,可以通过平行四边形定则进行计算或判断.其步骤如下:
(1)确定场源,如通电导线.
(2)定位空间中需求解磁场的点,利用安培定则判定各个场源在这一点上产生的磁场的大小和方向.如图中M、N在c点产生的磁场.
(3)应用平行四边形定则进行合成,如图中的合磁场B.
考点二安培力作用下的平衡与加速问题
1.分析导体在磁场中平衡和加速问题的思路
(1)确定要研究的导体.
(2)按照已知力→重力→安培力→弹力→摩擦力的顺序,对导体受力分析.
(3)分析导体的运动情况.
(4)根据平衡条件或牛顿第二定律列式求解.
2.受力分析的注意事项
(1)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面.
(2)安培力的大小:应用公式F=BILsinθ计算弯曲导线在匀强磁场中所受安培力的大小时,有效长度L等于曲线两端点的直线长度.
(3)视图转换:对于安培力作用下的力学问题,导体棒的受力往往分布在三维空间的不同方向上,这时应利用俯视图、剖面图或侧视图等,变立体图为二维平面图.
考向1:安培力作用下静态平衡问题
通电导体在磁场中受安培力和其它力作用而处于静止状态,可根据磁场方向、电流方向结合左手定则判断安培力方向.
[典例1](20xx广东广州三模)(多选)如图所示,质量为m、长度为L的直导线用两绝缘细线悬挂于O、O′,并处于匀强磁场中,当导线中通以沿x正方向的电流I,且导线保持静止时悬线与竖直方向夹角为θ.磁感应强度方向和大小可能为()
A.z正向,mgILtanθ
B.y正向,mgIL
C.z负向,mgILtanθ
D.沿悬线向上,mgILsinθ
解析本题要注意在受力分析时把立体图变成侧视平面图,然后通过平衡状态的受力分析来确定B的方向和大小.若B沿z正向,则从O向O′看,导线受到的安培力F=ILB,方向水平向左,如图甲所示,导线无法平衡,A错误.
若B沿y正向,导线受到的安培力竖直向上,如图乙所示.当FT=0,且满足ILB=mg,即B=mgIL时,导线可以平衡,B正确.
若B沿z负向,导线受到的安培力水平向右,如图丙所示.若满足FTsinθ=ILB,FTcosθ=mg,即B=mgtanθIL,导线可以平衡,C正确.若B沿悬线向上,导线受到的安培力左斜下方向,如图丁所示,导线无法平衡,D错误.
答案BC
考向2:安培力作用下动态平衡问题
此类题目是平衡问题,只是由于磁场大小或方向、电流大小或方向的变化造成安培力变化,与力学中某个力的变化类似的情景.
[典例2](20xx陕西西安模拟)如图所示,长为L的通电直导体棒放在光滑水平绝缘轨道上,劲度系数为k的水平轻弹簧一端固定,另一端拴在棒的中点,且与棒垂直,整个装置处于方向竖直向上、磁感应强度为B的匀强磁场中,弹簧伸长x时,棒处于静止状态.则()
A.导体棒中的电流方向从b流向a
B.导体棒中的电流大小为kxBL
C.若只将磁场方向缓慢顺时针转过一小角度,x变大
D.若只将磁场方向缓慢逆时针转过一小角度,x变大
解析由受力平衡可知安培力方向水平向右,由左手定则可知,导体棒中的电流方向从a流向b,故A错误;由于弹簧伸长为x,根据胡克定律有kx=BIL,可得I=kxBL,故B正确;若只将磁场方向缓慢顺时针或逆时针转过一小角度,则安培力在水平方向上的分力减小,根据力的平衡可得,弹簧弹力变小,导致x变小,故C、D错误.
答案B
考向3:安培力作用下加速问题
此类题目是导体棒在安培力和其它力作用下合力不再为零,而使导体棒产生加速度,根据受力特点结合牛顿第二定律解题是常用方法.
[典例3]如图所示,PQ和MN为水平平行放置的金属导轨,相距1m,导体棒ab跨放在导轨上,棒的质量为m=0.2kg,棒的中点用细绳经滑轮与物体相连,物体的质量M=0.3kg,棒与导轨的动摩擦因数为μ=0.5,匀强磁场的磁感应强度B=2T,方向竖直向下,为了使物体以加速度a=3m/s2加速上升,应在棒中通入多大的电流?方向如何?(g=10m/s2)
解析导体棒所受的最大静摩擦力大小为
fm=0.5mg=1N
M的重力为G=Mg=3N
要使物体加速上升,则安培力方向必须水平向左,则根据左手定则判断得知棒中电流的方向为由a到b.
根据受力分析,由牛顿第二定律有
F安-G-fm=(m+M)a
F安=BIL
联立得I=2.75A
答案2.75A方向由a→b
安培力作用下导体的分析技巧
(1)安培力作用下导体的平衡问题与力学中的平衡问题分析方法相同,只不过多了安培力,解题的关键是画出受力分析示意图.
(2)安培力作用下导体的加速问题与动力学问题分析方法相同,关键是做好受力分析,然后根据牛顿第二定律求出加速度.
考点三磁场中导体运动方向的判断
1.判定通电导体运动或运动趋势的思路
研究对象:通电导线或导体――→明确导体所在位置的磁场分布情况――→利用左手定则
导体的受力情况――→确定导体的运动方向或运动趋势的方向
2.几种判定方法
电流元法分割为电流元――→左手定则安培力方向―→整段导体所受合力方向―→运动方向
特殊位置法在特殊位置―→安培力方向―→运动方向
等效法环形电流??小磁针
条形磁铁??通电螺线管??多个环形电流
结论法同向电流互相吸引,异向电流互相排斥;两不平行的直线电流相互作用时,有转到平行且电流方向相同的趋势
转换研究对象法定性分析磁体在电流磁场作用下如何运动或运动趋势的问题,可先分析电流在磁体磁场中所受的安培力,然后由牛顿第三定律,确定磁体所受电流磁场的作用力,从而确定磁体所受合力及运动方向
1.一个可以自由运动的线圈L1和一个固定的线圈L2互相绝缘垂直放置,且两个线圈的圆心重合,如图所示.当两线圈中通以图示方向的电流时,从左向右看,线圈L1将()
A.不动
B.顺时针转动
C.逆时针转动
D.在纸面内平动
解析:选B.方法一(电流元法)把线圈L1沿水平转动轴分成上下两部分,每一部分又可以看成无数段直线电流元,电流元处在L2产生的磁场中,根据安培定则可知各电流元所在处的磁场方向向上,由左手定则可得,上半部分电流元所受安培力均指向纸外,下半部分电流元所受安培力均指向纸内,因此从左向右看线圈L1将顺时针转动.
方法二(等效法)把线圈L1等效为小磁针,该小磁针刚好处于环形电流I2的中心,小磁针的N极应指向该点环形电流I2的磁场方向,由安培定则知I2产生的磁场方向在其中心处竖直向上,而L1等效成小磁针后,转动前,N极指向纸内,因此小磁针的N极应由指向纸内转为向上,所以从左向右看,线圈L1将顺时针转动.
方法三(结论法)环形电流I1、I2之间不平行,则必有相对转动,直到两环形电流同向平行为止.据此可得,从左向右看,线圈L1将顺时针转动.
2.如图所示,蹄形磁铁用柔软的细绳悬吊在天花板上,在磁铁两极的正下方固定着一根水平直导线,当直导线中通以向右的电流时()
A.磁铁的N极向纸外、S极向纸内转动,绳子对磁铁的拉力减小
B.磁铁的S极向纸外、N极向纸内转动,绳子对磁铁的拉力减小
C.磁铁的N极向纸外、S极向纸内转动,绳子对磁铁的拉力增大
D.磁铁的S极向纸外、N极向纸内转动,绳子对磁铁的拉力增大
解析:选C.假设磁铁不动,导线运动,根据安培定则可知,通电导线左边的磁场斜向下,而右边的磁场斜向上,那么在导线两侧取两小段,根据左手定则可知,左边一小段所受安培力的方向垂直纸面向里,右侧一小段所受安培力的方向垂直纸面向外,从上往下看,导线顺时针转动.如今导线不动,磁铁运动,根据相对运动,则知磁铁逆时针转动(从上向下看),即N极向纸外转动,S极向纸内转动.当转动90°时,导线所受的安培力方向竖直向上,根据牛顿第三定律可得磁铁受到导线向下的作用力,故绳子对磁铁的拉力增大,C正确.
判断磁场中导体运动趋势的两点注意
(1)应用左手定则判定安培力方向时,磁感线穿入手心,大拇指一定要与磁感线方向垂直,四指与电流方向一致但不一定与磁感线方向垂直,这是因为:F一定与B垂直,I不一定与B垂直.
(2)导体与导体之间、磁体与磁体之间、磁体与导体之间的作用力和其他作用力一样具有相互性,满足牛顿第三定律.
课时规范训练
[基础巩固题组]
1.中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也.”进一步研究表明,地球周围地磁场的磁感线分布示意如图.结合上述材料,下列说法不正确的是()
A.地理南、北极与地磁场的南、北极不重合
B.地球内部也存在磁场,地磁南极在地理北极附近
C.地球表面任意位置的地磁场方向都与地面平行
D.地磁场对射向地球赤道的带电宇宙射线粒子有力的作用
解析:选C.由题意可知,地理南、北极与地磁场的南、北极不重合,存在磁偏角,A正确.磁感线是闭合的,再由图可推知地球内部存在磁场,地磁南极在地理北极附近,故B正确.只有赤道上方附近的磁感线与地面平行,故C错误.射向地球赤道的带电宇宙射线粒子的运动方向与地磁场方向不平行,故地磁场对其有力的作用,这是磁场的基本性质,故D正确.
2.三根平行的长直导体棒分别过正三角形ABC的三个顶点,并与该三角形所在平面垂直,各导体棒中均通有大小相等的电流,方向如图所示.则三角形的中心O处的合磁场方向为()
A.平行于AB,由A指向B
B.平行于BC,由B指向C
C.平行于CA,由C指向A
D.由O指向C
解析:选A.如图所示,由右手螺旋定则可知,导体A中电流在O点产生的磁场的磁感应强度方向平行BC,同理,可知导线B、C中电流在O点产生的磁场的磁感应强度的方向分别平行于AC、AB,又由于三根导线中电流大小相等,到O点的距离相等,则它们在O点处产生的磁场的磁感应强度大小相等,再由平行四边形定则,可得O处的合磁场方向为平行于AB,由A指向B,故选项A正确.
3.如图所示,AC是一个用长为L的导线弯成的、以O为圆心的四分之一圆弧,将其放置在与平面AOC垂直的磁感应强度为B的匀强磁场中.当在该导线中通以由C到A,大小为I的恒定电流时,该导线受到的安培力的大小和方向是()
A.BIL,平行于OC向左
B.22BILπ,垂直于AC的连线指向左下方
C.22BILπ,平行于OC向右
D.22BIL,垂直于AC的连线指向左下方
解析:选B.直导线折成半径为R的14圆弧形状,在磁场中的有效长度为2R,又因为L=14×2πR,则安培力F=BI2R=22BILπ.安培力的方向与有效长度的直线AC垂直,根据左手定则可知,安培力的方向垂直于AC的连线指向左下方,B正确.
4.如图所示,用粗细均匀的电阻丝折成平面梯形框架abcd.其中ab、cd边与ad边夹角均为60°,ab=bc=cd=L,长度为L的电阻丝电阻为R0,框架与一电动势为E、内阻r=R0的电源相连接,垂直于框架平面有磁感应强度为B的匀强磁场,则梯形框架abcd受到的安培力的大小为()
A.0B.5BEL11R0
C.10BEL11R0D.BELR0
解析:选C.并联部分的总电阻为R并=3R02R03R0+2R0=65R0,电路中的总电流I=ER并+r,所以线框受到的合外力F=BI2L=10BEL11R0,C正确.
5.如图所示,接通开关S的瞬间,用丝线悬挂于一点、可自由转动的通电直导线AB将()
A.A端向上,B端向下,悬线张力不变
B.A端向下,B端向上,悬线张力不变
C.A端向纸外,B端向纸内,悬线张力变小
D.A端向纸内,B端向纸外,悬线张力变大
解析:选D.当开关S接通时,由安培定则知导线附近磁感线分布如图,由左手定则判断出通电直导线此时左部受力指向纸内,右部受力指向纸外,导线将转动,转到与磁感线接近垂直时,导线转动的同时,相当于具有向里的电流,则导线受安培力将竖直向下,可知悬线张力变大,故选项D正确.
6.电磁炮是一种理想的兵器,它的主要原理如图所示,利用这种装置可以把质量为m=2.0g的弹体(包括金属杆EF的质量)加速到6km/s.若这种装置的轨道宽d=2m、长L=100m、电流I=10A、轨道摩擦不计且金属杆EF与轨道始终垂直并接触良好,则下列有关轨道间所加匀强磁场的磁感应强度和磁场力的最大功率结果正确的是()
A.B=18T,Pm=1.08×108W
B.B=0.6T,Pm=7.2×104W
C.B=0.6T,Pm=3.6×106W
D.B=18T,Pm=2.16×106W
解析:选D.通电金属杆在磁场中受安培力的作用而对弹体加速,由功能关系得BIdL=12mv2m,代入数值解得B=18T;当速度最大时磁场力的功率也最大,即Pm=BIdvm,代入数值得Pm=2.16×106W,故选项D正确.
[综合应用题组]
7.质量为m、长为L的直导体棒放置于四分之一光滑圆弧轨道上,整个装置处于竖直向上磁感应强度为B的匀强磁场中,直导体棒中通有恒定电流,平衡时导体棒与圆弧圆心的连线与竖直方向成60°角,其截面图如图所示.则下列关于导体棒中电流的分析正确的是()
A.导体棒中电流垂直纸面向外,大小为I=3mgBL
B.导体棒中电流垂直纸面向外,大小为I=3mg3BL
C.导体棒中电流垂直纸面向里,大小为I=3mgBL
D.导体棒中电流垂直纸面向里,大小为I=3mg3BL
解析:选C.根据左手定则可知,不管电流方向向里还是向外,安培力的方向只能沿水平方向,再结合导体棒的平衡条件可知,安培力只能水平向右,据此可判断出,导体棒中的电流垂直纸面向里,对导体棒受力分析如图所示,并根据平衡条件可知,F=mgtan60°,又安培力为F=BIL,联立可解得I=3mgBL,故选项C正确.
8.如图所示,两平行光滑金属导轨固定在绝缘斜面上,导轨间距为L,劲度系数为k的轻质弹簧上端固定,下端与水平直导体棒ab相连,弹簧与导轨平面平行并与ab垂直,直导体棒垂直跨接在两导轨上,空间存在垂直导轨平面斜向上的匀强磁场.闭合开关K后导体棒中的电流为I,导体棒平衡时,弹簧伸长量为x1;调转图中电源极性,使导体棒中电流反向,导体棒中电流仍为I,导体棒平衡时弹簧伸长量为x2.忽略回路中电流产生的磁场,则匀强磁场的磁感应强度B的大小为()
A.kIL(x1+x2)B.kIL(x2-x1)
C.k2IL(x2+x1)D.k2IL(x2-x1)
解析:选D.由平衡条件可得mgsinα=kx1+BIL;调转图中电源极性使导体棒中电流反向,由平衡条件可得mgsinα+BIL=kx2,联立解得B=k2IL(x2-x1).选项D正确.
9.(多选)如右图所示,在倾角为α的光滑斜面上,垂直斜面放置一根长为L、质量为m的直导体棒,当通以图示方向电流I时,欲使导体棒静止在斜面上,可加一平行于纸面的匀强磁场,当外加匀强磁场的磁感应强度B的方向由垂直斜面向上沿逆时针方向转至水平向左的过程中,下列说法中正确的是()
A.此过程中磁感应强度B逐渐增大
B.此过程中磁感应强度B先减小后增大
C.此过程中磁感应强度B的最小值为mgsinαIL
D.此过程中磁感应强度B的最大值为mgtanαIL
解析:选AC.导体棒受重力、支持力、安培力作用而处于平衡状态,当外加匀强磁场的磁感应强度B的方向由垂直斜面向上沿逆时针方向转至水平向左的过程中,安培力由沿斜面向上转至竖直向上,导体棒受力的动态变化如图所示,则由图知安培力逐渐增大,即此过程中磁感应强度B逐渐增大,A对、B错;刚开始安培力F最小,有sinα=Fmg,所以此过程中磁感应强度B的最小值为mgsinαIL,C对;最后安培力最大,有F=mg,即此过程中磁感应强度B的最大值为mgIL,D错.
10.如图所示,一长为10cm的金属棒ab用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1T,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘,金属棒通过开关与一电动势为12V的电池相连,电路总电阻为2Ω.已知开关断开时两弹簧的伸长量均为0.5cm;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3cm.重力加速度的大小取10m/s2.判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量.
解析:金属棒通电后,闭合回路电流I=ER=122A=6A
导体棒受到的安培力大小为F=BIL=0.06N.
开关闭合后,电流方向为从b到a,由左手定则可判断知金属棒受到的安培力方向竖直向下
由平衡条件知:开关闭合前:
2kx=mg
开关闭合后:2k(x+Δx)=mg+F
代入数值解得m=0.01kg.
答案:方向竖直向下0.01kg
11.某同学用图中所给器材进行与安培力有关的实验.两根金属导轨ab和a1b1固定在同一水平面内且相互平行,足够大的电磁铁(未画出)的N极位于两导轨的正上方,S极位于两导轨的正下方,一金属棒置于导轨上且与两导轨垂直.
(1)在图中画出连线,完成实验电路.要求滑动变阻器以限流方式接入电路,且在开关闭合后,金属棒沿箭头所示的方向移动.
(2)为使金属棒在离开导轨时具有更大的速度,有人提出以下建议:
A.适当增加两导轨间的距离
B.换一根更长的金属棒
C.适当增大金属棒中的电流
其中正确的是________(填入正确选项前的标号).
解析:(1)由于磁场方向竖直向下,要使金属棒的运动如图所示,则金属棒中电流由里向外,滑动变阻器用限流接法,实物图连接如图所示.
(2)为使金属棒离开时速度较大,由动能定理知BILx=12mv2,v=2BILxm,适当增大两导轨间的距离,可以增大v,适当增大金属棒的电流可以增大v,换一根更长的金属棒,增大了质量,v变小,因此A、C正确.
答案:(1)图见解析(2)AC
12.载流长直导线周围磁场的磁感应强度大小为B=kI/r,式中常量k0,I为电流强度,r为距导线的距离.在水平长直导线MN正下方,矩形线圈abcd通以逆时针方向的恒定电流,被两根等长的轻质绝缘细线静止地悬挂,如图所示.开始时MN内不通电流,此时两细线内的张力均为T0.当MN通以强度为I1的电流时,两细线内的张力均减小为T1;当MN内的电流强度变为I2时,两细线的张力均大于T0.
(1)分别指出强度为I1、I2的电流的方向;
(2)求MN分别通以强度为I1和I2电流时,线框受到的安培力F1与F2大小之比;
(3)当MN内的电流强度为I3时两细线恰好断裂,在此瞬间线圈的加速度大小为a,求I3.
解析:(1)由题意知,当MN通以电流I1时,线圈受到的安培力向上,根据左手定则、安培定则可以判断I1的方向向左,当MN通以电流I2时,线圈受到的安培力应向下,同理,可以判断I2的方向向右.
(2)当MN中的电流为I时,线圈受到的安培力大小为
F=kIiL1r1-1r2
式中r1、r2分别为ab、cd与MN的间距,i为线圈中的电流,L为ab、cd的长度.
所以F1F2=I1I2
(3)设MN中电流为I3时,线圈所受安培力为F3,由题设条件有2T0=mg,2T1+F1=mg,F3+mg=ma,I1I3=F1F3,由以上各式得I3=T0a-gT0-T1gI1
答案:(1)I1方向向左,I2方向向右(2)F1F2=I1I2
(3)T0a-gT0-T1gI1
第2节磁场对运动电荷的作用
一、洛伦兹力
1.定义:运动电荷在磁场中所受的力.
2.大小
(1)v∥B时,F=0.
(2)v⊥B时,F=qvB.
(3)v与B夹角为θ时,F=qvBsin_θ.
3.方向
(1)判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向.
(2)方向特点:F⊥B,F⊥v.即F垂直于B、v决定的平面.(注意B和v可以有任意夹角).
由于F始终垂直于v的方向,故洛伦兹力永不做功.
二、带电粒子在磁场中的运动
1.若v∥B,带电粒子以入射速度v做匀速直线运动.
2.若v⊥B,带电粒子在垂直于磁感线的平面内,以入射速度v做匀速圆周运动.
3.基本公式
(1)向心力公式:qvB=mv2r.
(2)轨道半径公式:r=mvBq.
(3)周期公式:T=2πrv=2πmqB.
f=1T=Bq2πm.
ω=2πT=2πf=Bqm.
三、洛伦兹力的应用实例
1.回旋加速器
(1)构造:如图所示,D1、D2是半圆形金属盒,D形盒的缝隙处接交流电源.D形盒处于匀强磁场中.
(2)原理:交变电流的周期和粒子
做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由qvB=mv2R,得Ekm=q2B2R22m,可见粒子获得的最大动能由磁感应强度B和D形盒半径R决定,与加速电压无关.
2.质谱仪
(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等组成.
(2)原理:粒子由静止在加速电场中被加速,根据动能定理qU=12mv2可知进入磁场的速度v=2qUm.粒子在磁场中受洛伦兹力偏转,做匀速圆周运动,根据牛顿第二定律,qvB=mv2r.由以上几式可得出需要研究的物理量如粒子轨道半径、粒子质量、比荷等.
[自我诊断]
1.判断正误
(1)洛伦兹力和安培力的方向都与磁场方向垂直.(√)
(2)粒子在只受到洛伦兹力作用时运动的动能不变.(√)
(3)运动电荷进入磁场后(无其他力作用)可能做匀速直线运动.(√)
(4)洛伦兹力可以做正功、做负功或不做功.(×)
(5)带电粒子在匀强磁场中做匀速圆周运动的周期与速度的大小无关.(√)
(6)带电粒子在匀强磁场中做匀速圆周运动的半径与粒子的比荷成正比.(×)
(7)经回旋加速器加速的带电粒子的最大初动能由D形盒的最大半径决定,与加速电压无关.(√)
(8)质谱仪只能区分电荷量不同的粒子.(×)
2.如图所示,电子枪射出的电子束进入示波管,在示波管正下方有竖直放置的通电环形导线,则示波管中的电子束将()
A.向上偏转
B.向下偏转
C.向纸外偏转
D.向纸里偏转
解析:选A.由安培定则知,环形导线在示波管处产生的磁场方向垂直于纸面向外,由左手定则可判断,电子受到的洛伦兹力方向向上,A正确.
3.如图,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出).一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O.已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计重力.铝板上方和下方的磁感应强度大小之比为()
A.2B.2
C.1D.22
解析:选D.根据洛伦兹力提供向心力得qvB=mv2R,粒子的动能Ek=12mv2,由此得磁感应强度B1=2mEkqR,结合题意知动能和半径都减小为原来的一半,则磁感应强度B2=2m12Ekq12R,故B1B2=22,故D正确.
4.(多选)图为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是()
A.电子与正电子的偏转方向一定不同
B.电子与正电子在磁场中运动轨迹的半径一定相同
C.仅依据粒子运动轨迹无法判断该粒子是质子还是正电子
D.粒子的动能越大,它在磁场中运动轨迹的半径越小
解析:选AC.电子、正电子和质子垂直进入磁场时,所受的重力均可忽略,受到的洛伦兹力方向与其电性有关,由左手定则可知A正确;由轨迹半径R=mvqB知,若电子与正电子进入磁场时的速度不同,则其运动的轨迹半径也不相同,故B错误;由R=mvqB=2mEkqB知D错误;因为质子和正电子的速度未知,半径关系不确定,故依据粒子运动轨迹无法判断该粒子是质子还是正电子,C正确.
考点一对洛伦兹力的理解
1.洛伦兹力的特点
(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面.
(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.
(3)洛伦兹力一定不做功.
2.洛伦兹力与安培力的联系及区别
(1)安培力是洛伦兹力的宏观表现,二者是相同性质的力,都是磁场力.
(2)安培力可以做功,而洛伦兹力对运动电荷不做功.
3.洛伦兹力与电场力的比较
1.下列关于洛伦兹力的说法中,正确的是()
A.只要速度大小相同,所受洛伦兹力就相同
B.如果把+q改为-q,且速度反向,大小不变,则洛伦兹力的大小、方向均不变
C.洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直
D.粒子在只受到洛伦兹力作用下运动的动能、速度均不变
解析:选B.因为洛伦兹力的大小不但与粒子速度大小有关,而且与粒子速度的方向有关,如当粒子速度与磁场垂直时F=qvB,当粒子速度与磁场平行时F=0.又由于洛伦兹力的方向永远与粒子的速度方向垂直,因而速度方向不同时,洛伦兹力的方向也不同,所以A选项错.因为+q改为-q且速度反向,由左手定则可知洛伦兹力方向不变,再由F=qvB知大小也不变,所以B选项正确.因为电荷进入磁场时的速度方向可以与磁场方向成任意夹角,所以C选项错.因为洛伦兹力总与速度方向垂直,因此,洛伦兹力不做功,粒子动能不变,但洛伦兹力可改变粒子的运动方向,使粒子速度的方向不断改变,所以D选项错.
2.(多选)如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的M、N两小孔中,O为M、N连线的中点,连线上a、b两点关于O点对称.导线均通有大小相等、方向向上的电流.已知长直导线周围产生的磁场的磁感应强度B=kIr,式中k是常数,I是导线中的电流,r为对应点到导线的距离.一带正电的小球以初速度v0从a点出发沿MN连线运动到b点.关于上述过程,下列说法正确的是()
A.小球先做加速运动后做减速运动
B.小球一直做匀速直线运动
C.小球对桌面的压力先减小后增大
D.小球对桌面的压力一直在增大
解析:选BD.由右手螺旋定则可知,M处的通电导线在MO区域产生的磁场垂直于MO向里,离导线越远磁场越弱,所以磁场由M到O逐渐减弱;N处的通电导线在ON区域产生的磁场垂直于ON向外,由O到N逐渐增强,带正电的小球由a点沿连线MN运动到b点,受到的洛伦兹力F=Bqv为变力,则从M到O洛伦兹力的方向向上,随磁场的减弱而减小,从O到N洛伦兹力的方向向下,随磁场的增强而增大,所以对桌面的压力一直在增大,D正确,C错误;由于桌面光滑,洛伦兹力始终沿竖直方向,所以小球在水平方向上不受力,做匀速直线运动,B正确、A错误.
3.(20xx河南开封四校二联)如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直纸面向里,一带电微粒由a点进入电磁场并刚好能沿ab直线向上运动.下列说法中正确的是()
A.微粒一定带负电
B.微粒的动能一定减小
C.微粒的电势能一定增加
D.微粒的机械能不变
解析:选A.对该微粒进行受力分析得:它受到竖直向下的重力、水平方向的电场力和垂直速度方向的洛伦兹力,其中重力和电场力是恒力,由于粒子沿直线运动,则可以判断出其受到的洛伦兹力也是恒定的,即该粒子是做匀速直线运动,动能不变,所以B项错误;如果该微粒带正电,则受到向右的电场力和向左下方的洛伦兹力,所以微粒受到的力不会平衡,故该微粒一定带负电,A项正确;该微粒带负电,向左上方运动,所以电场力做正功,电势能一定是减小的,C项错误;因为重力势能增加,动能不变,所以该微粒的机械能增加,D项错误.
理解洛伦兹力的四点注意
(1)正确分析带电粒子所在区域的合磁场方向.
(2)判断洛伦兹力方向时,特别区分电荷的正、负,并充分利用F⊥B、F⊥v的特点.
(3)计算洛伦兹力大小时,公式F=qvB中,v是电荷与磁场的相对速度.
(4)洛伦兹力对运动电荷(或带电体)不做功、不改变速度的大小,但它可改变运动电荷(或带电体)速度的方向,影响带电体所受其他力的大小,影响带电体的运动时间等.
考点二带电粒子在匀强磁场中的运动
1.带电粒子在匀强磁场中运动圆心、半径及时间的确定方法.
(1)圆心的确定
①已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,P为入射点,M为出射点).
②已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P为入射点,M为出射点).
(2)半径的确定
可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.
(3)运动时间的确定
粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为:t=θ2πT(或t=θRv).
2.重要推论
(1)当速度v一定时,弧长(或弦长)越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长.
(2)当速率v变化时,圆心角大的运动时间长.
考向1:圆形磁场区域
(1)圆形边界中,若带电粒子沿径向射入必沿径向射出,如图所示,轨迹圆与区域圆形成相交圆,巧用几何关系解决.
(2)带电粒子在圆形磁场中不沿径向,轨迹圆与区域圆相交,抓住两圆心,巧用对称性解决.
[典例1](20xx湖南师大附中月考)(多选)如图所示,以O为圆心、MN为直径的圆的左半部分内有垂直纸面向里的匀强磁场,三个不计重力、质量相同、带电荷量相同的带正电粒子a、b和c以相同的速率分别沿aO、bO和cO方向垂直于磁场射入磁场区域,已知bO垂直MN,aO、cO与bO的夹角都为30°,a、b、c三个粒子从射入磁场到射出磁场所用时间分别为ta、tb、tc,则下列给出的时间关系可能正确的是()
A.ta<tb<tcB.ta>tb>tc
C.ta=tb<tcD.ta=tb=tc
解析粒子带正电,偏转方向如图所示,粒子在磁场中的运动周期相同,在磁场中运动的时间t=θ2πT,故粒子在磁场中运动对应的圆心角越大,运动时间越长.设粒子的运动半径为r,圆形区域半径为R,当粒子a恰好从M点射出磁场时,r=13R,当粒子b恰好从M点射出磁场时,r=R,如图甲所示,ta<tb=tc.当rR时,粒子a对应的圆心角最小,c对应的圆心角最大,tctbta;当r≤13R,轨迹如图乙所示,ta=tb=tc.同理,13Rr≤R时,tatb=tc.A、D正确.
答案AD
[典例2](20xx高考全国甲卷)一圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M射入筒内,射入时的运动方向与MN成30°角.当筒转过90°时,该粒子恰好从小孔N飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为()
A.ω3BB.ω2B
C.ωBD.2ωB
解析如图所示,粒子在磁场中做匀速圆周运动,圆弧所对应的圆心角由几何知识知为30°,则π2ω=2πmqB30°360°,即qm=ω3B,选项A正确.
答案A
考向2:直线边界(进、出磁场具有对称性,如图所示)
[典例3](多选)如图,两个初速度大小相同的同种离子a和b,从O点沿垂直磁场方向进入匀强磁场,最后打到屏P上,不计重力,下列说法正确的有()
A.a、b均带正电
B.a在磁场中飞行的时间比b的短
C.a在磁场中飞行的路程比b的短
D.a在P上的落点与O点的距离比b的近
解析a、b粒子做圆周运动的半径都为R=mvqB,画出轨迹如图所示,圆O1、O2分别为b、a的轨迹,a在磁场中转过的圆心角大,由t=θ2πT=θmqB和轨迹图可知A、D选项正确.
答案AD
考向3:平行边界(存在临界条件,如图所示)
[典例4](20xx湖南长沙模拟)如图所示,一个理想边界为PQ、MN的匀强磁场区域,磁场宽度为d,方向垂直纸面向里.一电子从O点沿纸面垂直PQ以速度v0进入磁场.若电子在磁场中运动的轨道半径为2d.O′在MN上,且OO′与MN垂直.下列判断正确的是()
A.电子将向右偏转
B.电子打在MN上的点与O′点的距离为d
C.电子打在MN上的点与O′点的距离为3d
D.电子在磁场中运动的时间为πd3v0
解析电子带负电,进入磁场后,根据左手定则判断可知,所受的洛伦兹力方向向左,电子将向左偏转,如图所示,A错误;设电子打在MN上的点与O′点的距离为x,则由几何知识得:x=r-r2-d2=2d-2d2-d2=(2-3)d,故B、C错误;设轨迹对应的圆心角为θ,由几何知识得:sinθ=d2d=0.5,得θ=π6,则电子在磁场中运动的时间为t=θrv0=πd3v0,故D正确.
答案D
带电粒子在磁场中做匀速圆周运动的分析方法
考点三回旋加速器和质谱仪
1.质谱仪的主要特征
将质量数不等,电荷数相等的带电粒子经同一电场加速后进入偏转磁场.各粒子由于轨道半径不同而分离,其轨道半径r=mvqB=2mEkqB=2mqUqB=1B2mUq.在上式中,B、U、q对同一元素均为常量,故r∝m,根据不同的半径,就可计算出粒子的质量或比荷.
2.回旋加速器的主要特征
(1)带电粒子在两D形盒中回旋周期等于两盒狭缝之间高频电场的变化周期,与带电粒子的速度无关.
(2)将带电粒子在两盒狭缝之间的运动首尾连起来是一个初速度为零的匀加速直线运动.
(3)带电粒子每加速一次,回旋半径就增大一次,所以各半径之比为1∶2∶3∶…
(4)粒子的最后速度v=BqRm,可见带电粒子加速后的能量取决于D形盒的最大半径和磁场的强弱.
1.(20xx河南省实验中学月考)(多选)如图所示是医用回旋加速器的示意图,其核心部分是两个D形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连.现分别加速氘核(21H)和氦核(42He).下列说法中正确的是()
A.氘核(21H)的最大速度较大
B.它们在D形盒内运动的周期相等
C.氦核(42He)的最大动能较大
D.仅增大高频电源的频率可增大粒子的最大动能
解析:选BC.粒子在回旋加速器中能达到的最大速度,取决于在最外圈做圆周运动的速度.根据qvB=mv2R,得v=qBRm,两粒子的比荷qm相等,所以最大速度相等,A错误.带电粒子在磁场中运动的周期T=2πmqB,两粒子的比荷qm相等,所以周期相等,B正确.最大动能Ek=12mv2=q2B2R22m,两粒子的比荷qm相等,但质量不等,所以氦核最大动能大,C正确.回旋加速器加速粒子时,粒子在磁场中运动的周期与交流电的周期相同,否则无法加速,D错误.
2.(20xx高考全国乙卷)现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比约为()
A.11B.12
C.121D.144
解析:选D.带电粒子在加速电场中运动时,有qU=12mv2,在磁场中偏转时,其半径r=mvqB,由以上两式整理得:r=1B2mUq.由于质子与一价正离子的电荷量相同,B1∶B2=1∶12,当半径相等时,解得:m2m1=144,选项D正确.
3.(多选)如图所示为一种获得高能粒子的装置,环形区域内存在垂直于纸面、磁感应强度大小可调的匀强磁场(环形区域的宽度非常小).质量为m、电荷量为q的带正电粒子可在环中做半径为R的圆周运动.A、B为两块中心开有小孔的距离很近的平行极板,原来电势均为零,每当带电粒子经过A板刚进入AB之间时,A板电势升高到+U,B板电势仍保持为零,粒子在两板间的电场中得到加速.每当粒子离开B板时,A板电势又降为零.粒子在电场中一次次加速使得动能不断增大,而在环形区域内,通过调节磁感应强度大小可使绕行半径R不变.已知极板间距远小于R,则下列说法正确的是()
A.环形区域内匀强磁场的磁场方向垂直于纸面向里
B.粒子从A板小孔处由静止开始在电场力作用下加速,绕行N圈后回到A板时获得的总动能为NqU
C.粒子在绕行的整个过程中,A板电势变化周期不变
D.粒子绕行第N圈时,环形区域内匀强磁场的磁感应强度为1R2NmUq
解析:选BD.由题意知粒子在轨道内做顺时针圆周运动,根据左手定则可判断匀强磁场的磁场方向垂直于纸面向外,所以A错误;由于粒子在做圆周运动的过程中洛伦兹力不做功,在AB板间电场力做功W=qU,所以粒子绕行N圈后回到A板时获得的总动能为NqU,故B正确;由于粒子的轨道半径R不变,而粒子做圆周运动第N圈的速度为vN,根据NqU=12mv2N,可得粒子圆周运动的速度增大,根据R=mvBq,T=2πmBq=2πRv,所以周期减小,故A板电势变化周期变小,故C错误;粒子绕行第N圈时,NqU=12mv2N,所以vN=2NqUm,又R=mvNBq,联立得B=1R2NmUq,所以D正确.
课时规范训练
[基础巩固题组]
1.(多选)如图所示,一只阴极射线管,左侧不断有电子射出,若在管的正下方放一通电直导线AB时,发现射线的径迹向下偏,则()
A.导线中的电流从A流向B
B.导线中的电流从B流向A
C.若要使电子束的径迹向上偏,可以通过改变AB中的电流方向来实现
D.电子束的径迹与AB中的电流方向无关
解析:选BC.由于AB中通有电流,在阴极射线管中产生磁场,电子受到洛伦兹力的作用而发生偏转,由左手定则可知,阴极射线管中的磁场方向垂直纸面向里,所以根据安培定则,AB中的电流从B流向A.当AB中的电流方向变为从A流向B时,则AB上方的磁场方向变为垂直纸面向外,电子所受的洛伦兹力变为向上,电子束的径迹变为向上偏转.选项B、C正确.
2.两相邻匀强磁场区域的磁感应强度大小不同、方向平行.一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的()
A.轨道半径减小,角速度增大
B.轨道半径减小,角速度减小
C.轨道半径增大,角速度增大
D.轨道半径增大,角速度减小
解析:选D.因洛伦兹力不做功,故带电粒子从较强磁场区域进入到较弱的磁场区域后,其速度大小不变,由r=mvqB知,轨道半径增大;由角速度ω=vr知,角速度减小,选项D正确.
3.如图所示,半径为R的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外.一电荷量为q(q0)、质量为m的粒子沿平行于直径ab的方向射入磁场区域,射入点与ab的距离为R2,已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)()
A.qBR2mB.qBRm
C.3qBR2mD.2qBRm
解析:选B.如图所示,粒子做圆周运动的圆心O2必在过入射点垂直于入射速度方向的直线EF上,由于粒子射入、射出磁场时运动方向间的夹角为60°,故圆弧ENM对应圆心角为60°,所以△EMO2为等边三角形.由于O1D=R2,所以∠EO1D=60°,△O1ME为等边三角形,所以可得到粒子做圆周运动的半径EO2=O1E=R,由qvB=mv2R,得v=qBRm,B正确.