88教案网

你的位置: 教案 > 高中教案 > 导航 > 高考物理第一轮复习学案

高中生物一轮复习教案

发表时间:2021-01-25

高考物理第一轮复习学案。

一名优秀的教师在教学方面无论做什么事都有计划和准备,作为教师就需要提前准备好适合自己的教案。教案可以让学生能够听懂教师所讲的内容,帮助教师更好的完成实现教学目标。所以你在写教案时要注意些什么呢?以下是小编为大家精心整理的“高考物理第一轮复习学案”,供大家参考,希望能帮助到有需要的朋友。

第四课时单元知识整合
本章知识结构
1.对动量守恒定律:要理解透动量守恒的条件,以及动量守恒定律应用的近似性、独立性;另外,还应特别注意动量守恒定律的方向性、相对性。各量应对同一参考系。
2.碰撞问题是应用动量守恒定律的重头戏,既有定量计算的难题,也有定性分析判断的活题。要牢固掌握两球碰撞后可能状态判断的依据,即:(1)碰撞前后应符合系统动量守恒;(2)碰撞后的总动能应不大于碰撞前的总动能;(3)所给碰撞后两球的位置和状态应符合实际。如:后球不应超越前球;两球动量的变化(含方向)应符合作用规律等。对导出式Ek=p2/2m要能够熟练地应用。
3.应用动量定理和动量守恒定律的基本思路:确定研究对象——受力分析——过程分析——确定初末状态——选取正方向——列方程求解。
说明:(1)对于单个物体的受力和时间问题的题目,优先考虑动量定理。
(2)对于相互作用的物体系,且明显具备了动量守恒条件的题目,优先考虑动量守恒定律。
1.矢量运算法:由于动量、冲量均为矢量,因此在运用动量定理、动量守恒定律时都遵循矢量运算法则——平行四边形法则。在一维的情况下,通过选取正方向可将矢量运算转化为代数运算。
2.等效替代法:如在“验证动量守恒定律”的实验中,用其平抛运动的水平距离,等效替代碰撞前后的速度。
3.整体法和隔离法:如对研究对象的选取和过程的选取时经常运用。
4.直接求解和间接求解:如求冲量I或△p
类型一动量定理解决变质量问题
物体动量的增量可以是物体质量不变,由速度变化形成,即△p=mv2-mv1=m(v2-v1)=m△v;也可以是速度不变,由质量变化形成,即△p=m2v-m1v=(m2-m1)v=△mv,动量定理表达式为F△t=△mv.在分析问题时要注意第二种情况。
【例1】宇宙飞船进入一个宇宙尘埃区,每前进1m,就有1O个平均质量为2×10-7kg的微尘粒与飞船相撞,并附在飞船上。若尘埃微粒原来的速度不计,要保持飞船的速度10km/s,飞船喷气产生的推力至少应维持多大?
导示:设飞船速度为v,飞行时间为△t,每前进1m附着的尘粒数为n,尘粒的平均质量为m0,则在△t内飞船增加的质量△m=nm0v△t.
据动量定理F△t=△mv,可知推力:F=(nm0v△t/△t)v=nm0v2=200N
答案:200N
对于流体或类似流体(如粒子流)问题求解的的常用方法,选取一段时间内作用在某物体上的流体柱为研究对象,然后确定出流体柱的体积、质量、状态变化及受力情况,再利用动量定理列式求解。
类型二碰撞中的临界问题
【例2】如图所示,甲、乙两小孩各乘一辆小车在光滑的水平地面上以大小为v0=6m/s的速度匀速相向行驶,甲和他的车及所带若干小球的总质量为M1=50kg,乙和他的车的总质量为M2=30kg.甲不断地将小球一个一个地相对地面以向右大小为v=16.5m/s的速度抛向乙,并被乙接住。问甲至少要抛出多少个质量均为m=1kg的小球,才能保证两车不会相撞?
导示:两车不相撞的临界条件是:两车最终相对于地面的速度相同(即速度大小、方向均相同),设此速度为vn.不考虑中间的“子过程”,而先研究由甲(包括车)、小球、乙(包括车)组成的系统。
以水平向右的方向为正方向.
系统初动量为p0=M1v0+M2(-v0)
系统末动量为pn=(M1+M2)vn
由动量守恒定律,得vn=1.5m/s
设甲至少要抛出n个质量均为m=1kg的小球才能保证两车不会相撞.仍不考虑中间的“子过程”,而研究由甲抛出的n个小球和乙(包括乙乘车)组成的系统。假定n个小球由甲一次水平向右抛出(抛出的速度为16.5m/s),并被乙接住,则由动量守恒定律,有nmv+M2(-v0)=(nm+M2)vn,得n=15
答案:15个
要注意分析物理情景,以及物理语言(“最大”“最小”“恰好”等)所蕴含的临界状态,极限分析法是确定临界状态和临界条件行之有效的方法之一。
类型三动量与能量结合的问题
【例3】如图所示,坡道顶端距水平面高度为h,质量为ml的小物块A从坡道顶端由静止滑下,进人水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端与质量为m2的挡板B相连,弹簧处于原长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A,B与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求:
(1)物块A在与挡板B碰撞前瞬间速度v的大小;
(2)弹簧第一次达到最大压缩量d时的弹性势能E。(设弹簧处于原长时弹性势能为零).
导示:(1)由机械能守恒定律,有
mlgh=m1v2,v=
(2)A、B在碰撞过程中内力远大于外力,由动量守恒,有m1v=(m1+m2)v′
A、B克服摩擦力所做的功W=μ(ml十m2)gd
由能量守恒定律,有
(ml+m2)v′2=Ep+μ(ml十m2)gd
解得Ep=ml2gh/(ml十m2)-μ(ml十m2)gd
机械能守恒定律和动量守恒定律研究的都是系统相互作用过程中满足的规律,不同之处是各自的守恒条件不同,要根据题设的物理情景和物理过程,确定满足的物理规律,机械能守恒为标量式,但势能可能出现负值,动量守恒为矢量式,选取正方向后列代数式。
1.(2007年高考天津理综卷)如图所示,物体A静止在光滑的水平面上,A的左边固定有轻质弹簧,与A质量相等的物体B以速度v,向A运动并与弹簧发生碰撞,A、B始终沿同一直线运动,则A、B组成的系统动能损失最大的时刻是()
A.A开始运动时
B.A的速度等于v时
C.B的速度等于零时
D.A和B的速度相等时

2.水力采煤时,用水枪在高压下喷出强力的水柱冲击煤层,设水的密度为ρ水枪口的截面积为s水从枪口射出的速度为v,水平射到煤层后速度变为零,则煤层受到水的平均冲击力为多少?

3.(07年扬州市期末调研测试)质量为M的小车置于水平面上。小车的上表面由1/4圆弧和平面组成,车的右端固定有一不计质量的弹簧,圆弧AB部分光滑,半径为R,平面BC部分粗糙,长为l,C点右方的平面光滑。滑块质量为m,从圆弧最高处A无初速下滑(如图),与弹簧相接触并压缩弹簧,最后又返回到B相对于车静止。求:
(1)BC部分的动摩擦因数μ;
(2)弹簧具有的最大弹性势能;
(3)当滑块与弹簧刚分离时滑块和小车的速度大小。
答案:1、D;2、ρv2s;
3、(1)
(2)
(3),

延伸阅读

高考物理第一轮专题复习学案


一位优秀的教师不打无准备之仗,会提前做好准备,准备好一份优秀的教案往往是必不可少的。教案可以让学生们能够更好的找到学习的乐趣,帮助高中教师能够更轻松的上课教学。那么,你知道高中教案要怎么写呢?急您所急,小编为朋友们了收集和编辑了“高考物理第一轮专题复习学案”,欢迎阅读,希望您能阅读并收藏。

7阶段测试(二)

1已知某行星绕太阳运动的轨道半径为r,公转的周期为T,万有引力常量为G,则由此可求出

A某行星的质量B太阳的质量

C某行星的密度D太阳的密度

2已知下面的哪组数据,可以算出地球的质量M(引力常量G为已知)()

A月球绕地球运动的周期T及月球到地球中心的距离R

B地球绕太阳运行周期T及地球到太阳中心的距离R

C人造卫星在地面附近的运行速度V和运行周期T

D地球绕太阳运行速度V及地球到太阳中心的距离R

3关于人造地球卫星和宇宙飞船的下列说法中,正确的是()

A如果知道人造地球卫星的轨道半径和它的周期,再利用万有引力恒量,就可算出地球的质量

B两颗人造地球卫星,只要它们的绕行速度大小相等,不论它们的质量,形状差别有多大,它们的绕行半径和绕行周期一定是相同的

C原来在同一轨道上沿同一方向绕行的人造卫星一前一后,若要后一卫星追上前一卫星并发生相撞,只要将后者速度增大一些即可

D一只绕火星飞行的宇宙飞船,宇航员从舱内慢慢走出,并离开飞船,飞船因质量减小,所受万有引力减小

4关于人造地球卫星及其中物体的超重.失重问题,下列说法正确的是()

A在发射过程中向上加速时产生超重现象

B在降落过程中向下减速时产生超重现象

C进入轨道时做匀速圆周运动,产生失重现象

D失重是由于地球对卫星内物体的作用力减小而引起的

5同步卫星是指相对于地面不动的人造地球卫星()

A可以在地球上任意一点的正上方,且离地心的距离可按需要选择不同的值

B可以在地球上任意一点的正上方但离地心的距离是一定的

C只能在赤道的正上方,但离地心的距离可按需要选择不同的值

D只能在赤道的正上方离地心的距离是一定的

6设想人类开发月球,不断把月球上的矿藏搬运到地球上.假设经过长时间开采后,地球仍可看成是均匀的球体,月球仍沿开采前的圆周轨道运动,则与开采前相比()

A地球与月球间的万有引力将变大

B地球与月球间的万有引力将变小

C月球绕地球运动的周期将变长

D月球绕地球运动的周期将变短

7我们国家在1986年成功发射了一颗实用地球同步卫星,从1999年至今已几次将”神州”号宇宙飞船送入太空,在某次实验中,飞船在空中飞行了36h,环绕地球24圈.则同步卫星与飞船在轨道上正常运转相比较()

A卫星运转周期比飞船大

B卫星运转速度比飞船大

C卫星运加转速度比飞船大

D卫星离地高度比飞船大

8宇宙飞船和空间站在同一轨道上运动,若飞船想与前面的空间站对接,飞船为了追上轨道空间站,可采取的方法是()

A飞船加速直到追上轨道空间站,完成对接

B飞船从原轨道减速至一个较低轨道,再加速追上轨道空间站,完成对接.

C飞船加速至一个较高轨道,再减速追上轨道空间站,完成对接.

D无论飞船如何采取何种措施,均不能与空间站对接

9可以发射一颗这样的人造地球卫星,使其圆轨道()

A与地球表面上某一纬度(非赤道)是共面的同心圆

B与地球表面上某一经线(非赤道)是共面的同心圆

C与地球表面上的赤道是共面的同心圆,且卫星相对地球表面是静止的

D与地球表面上的赤道是共面的同心圆,且卫星相对地球表面是运动的

10在绕地球做匀速圆周运动的航天飞机外表面,有一隔热陶瓷片自动脱落,则()

A陶瓷片做平抛运动

B陶瓷片做自由落体运动

C陶瓷片按原圆轨道做匀速圆周运动

D陶瓷片做圆周运动,逐渐落后于航天飞机

11火星的球半径是地球半径的1/2,火星质量是地球质量的1/10,忽略火星的自转,如果地球上质量为60㎏的人到火星上去,则此人在火星表面的质量是_______㎏,所受的重力是______N;在火星表面由于火星的引力产生的加速度是________m/s;在地球表面上可举起60㎏杠铃的人,到火星上用同样的力,可以举起质量_______㎏的物体

12某行星的一颗小卫星在半径为r的圆轨道上绕行星运动,运行的周期是T.已知引力常量为G,这个行星的质量M=_____________

13已知地球半径为R,质量为M,自转周期为T.一个质量为m的物体放在赤道处的海平面上,则物体受到的万有引力F=_________,重力G=__________

14已知月球的半径为r,月球表面的重力加速度为g,万有引力常量为G,若忽略月球的自转,则月球的平均密度表达式为_________

15一个登月的宇航员,能用一个弹簧秤和一个质量为m的砝码,估测出月球的质量和密度吗?写出表达式(已知月球半径R)

16已知太阳光从太阳射到地球,需要8分20秒,地球公转轨道可近似看成固定轨道,地球半径约为6.4×106m,试估算太阳质量M与地球质量m之比M/m为多少(保留一位有效数字)

17火箭内平台上放有测试仪器,火箭从地面启动后,以加速度g/2竖值向上匀加速运动,升到某一高度时,测试仪对平台的压力为启动前压力的17/18.已知地球半径R,求火箭此时离地面的高度.(g为地面附近的重力加速度)

参考答案1B2AC3AB4ABC5D6BD7AD8B9CD10C11.60235.23.92150

12.4π2r3/GT213.GMm/R2GMm/R2-4π2mR/T2143g/4πRG15FR/Gm3F/4GR163*10517R/2

高考物理第一轮导学案复习:磁场


20xx届高三物理一轮复习导学案
九、磁场(7)

【课题】带电粒子在复合场中的运动
【目标】
1、进一步掌握带电粒子在电磁场中的受力特点和运动规律
2、会用力学有关规律分析和解决带电粒子在电磁场中的实际应用问题
【导入】
带电粒子在电磁场中的实际应用有很多,常见的有:速度选择器、质谱仪、回旋加速器、磁流体发电机等。这些实例在近几年高考中经常出现,因此我们需要从它们的原理及应用等方面去掌握。
【导研】
[例1](09年宁夏卷)16.医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度。电磁血流计由一对电极a和b以及磁极N和S构成,磁极间的磁场是均匀的。使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图所示。由于血液中的正负离子随血流一起在磁场中运动,电极a、b之间会有微小电势差。在达到平衡时,血管内部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零。在某次监测中,两触点的距离为3.0mm,血管壁的厚度可忽略,两触点间的电势差为160V,磁感应强度的大小为0.040T。则血流速度的近似值和电极a、b的正负为()
A.1.3m/s,a正、b负
B.2.7m/s,a正、b负
C.1.3m/s,a负、b正
D.2.7m/s,a负、b正

[例2](1)(09年广东物理)12.如图是质谱仪的工作原理示意图。带电粒子被加速电场加速后,进入速度选择器。速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E。平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2。平板S下方有强度为B0的匀强磁场。下列表述正确的是()
A.质谱仪是分析同位素的重要工具
B.速度选择器中的磁场方向垂直纸面向外
C.能通过的狭缝P的带电粒子的速率等于E/B
D.打在胶片上的位置越靠近狭缝P,粒子荷质比越小

(2)测定同位素组成的装置里(质谱仪),原子质量Al=39和A2=41钾的单价离子先在电场里加速,接着进入垂直离子运动方向的均匀磁场中(如图).在实验过程中由于仪器不完善,加速电压在乎均值U0附近变化±△U.求需要以多大相对精确度维持加速电压值,才能使钾同位素束不发生覆盖?

[例3]汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示,真空管内的阴极K发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A中心小孔沿中心轴O1O的方向进入到两块水平正对放置的平行板P和P间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O点处,形成了一个亮点;加上偏转电压U后,亮点偏离到O点,O点与O点的竖直距离为d,水平距离可忽略不计.此时,在P和P间的区域,再加上一个方向垂直于纸面向里的匀强磁场,调节磁场的强弱,当磁感应强度的大小为B时,亮点重新回到O点.已知极板水平方向的长度为L1,极板间距为b,极板右端到荧光屏的距离为L2.
(1)求打在荧光屏O点的电子速度的大小;
(2)推导出电子比荷的表达式.

[例4](2007年苏州市高三教学调研测试)(16分)一块N型半导体薄片(称霍尔元件),其横载面为矩形,体积为b×c×d,如图所示。已知其单位体积内的电子数为n、电阻率为ρ、电子电荷量e.将此元件放在匀强磁场中,磁场方向沿Z轴方向,并通有沿x轴方向的电流I。
(1)此元件的CC/两个侧面中,哪个面电势高?
(2)证明在磁感应强度一定时,此元件的CC/两个侧面的电势差与其中的电流成正比
(3)磁强计是利用霍尔效应来测量磁感应强度B的仪器。其测量方法为:将导体放在匀强磁场之中,用毫安表测量通以电流I,用毫伏表测量C、C/间的电压UCC’,就可测得B。若已知其霍尔系数。并测得UCC’=0.6mV,I=3mA。试求该元件所在处的磁感应强度B的大小。

[例5]电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场由加了电压的相距为d的两块水平平行放置的导体板形成,匀强磁场的左边界与偏转电场的右边界相距为s,如图甲所示.大量电子(其重力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0,当在两板间加如图乙所示的周期为2t0、幅值恒为U0的电压时,所有电子均从两板间通过,进入水平宽度为l,竖直宽度足够大的匀强磁场中,最后通过匀强磁场打在竖直放置的荧光屏上.问:
(1)电子在刚穿出两板之间时的最大侧向位移与最小侧向位移之比为多少?
(2)要使侧向位移最大的电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多少?
(3)在满足第(2)问的情况下,打在荧光屏上的电子束的宽度为多少?(已知电子的质量为m、电荷量为e)
【导练】
1、如图是某离子速度选择器的原理示意图,在一半径为R=10cm的圆柱形筒内有B=1×10-4T的匀强磁场,方向平行于轴线.在圆柱形筒上某一直径两端开有小孔a、b分别作为入射孔和出射孔.现有一束比荷为q/m=2×1011C/kg的正离子,以不同角度α入射,最后有不同速度的离子束射出.其中入射角α=30°,且不经碰撞而直接从出射孔射出的离子的速度v大小是()
A.4×105m/sB.2×105m/s
C.4×106m/sD.2×106m/s
2.磁流体发电是一项新兴技术,它可以把气体的内能直接转化为电能,下图是它的示意图.平行金属板A、B之间有一个很强的匀强磁场,磁感应强度为B,将一束等离子体(即高温下电离的气体,含有大量正、负带电粒子)垂直于B的方向喷入磁场,每个离子的速度为v,电荷量大小为q,A、B两板间距为d,稳定时下列说法中正确的是()
A.图中A板是电源的正极
B.图中B板是电源的正极
C.电源的电动势为Bvd
D.电源的电动势为Bvq

3.(08广东卷)4.1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示,这台加速器由两个铜质D形合D1、D2构成,其间留有空隙,下列说法正确的是()
A.离子由加速器的中心附近进入加速器
B.离子由加速器的边缘进入加速器
C.离子从磁场中获得能量
D.离子从电场中获得能量

4.(浙江省金华一中20xx届高三12月联考)环形对撞机是研究高能粒子的重要装置,其工作原理的示意图如图所示。正、负离子由静止经过电压为U的直线加速器加速后,沿圆环切线方向射入对撞机的真空环状空腔内,空腔内存在着与圆环平面垂直的匀强磁场,磁感应强度大小为B。两种带电粒子将被局限在环状空腔内,沿相反方向做半径相等的匀速圆周运动,从而在碰撞去迎面相撞。为维持带电粒子在环状空腔中的匀速圆周运动,下列说法中正确的是()
A.对于给定的加速电压,带电粒子的比荷q/m越大,磁感应强度B越大
B.对于给定的加速电压,带电粒子的比荷q/m越大,磁感应强度B越小
C.对于给定的带电粒子,加速电压U越大,粒子运动的周期越小
D.对于给定的带电粒子,不管加速电压U多大,粒子运动的周期都不变

高考物理第一轮光学导学案复习


20xx届高三物理一轮复习导学案
十四、光学(1)

【课题】光的折射全反射现象
【目标】
1、了解光的折射现象,理解光的折射定律。
2、了解光的全反射现象,掌握全反射的重要条件和应用。
【导入】
一、光的折射定律
折射光线在入射光线和法线所在的平面上,折射光线和入射光线分居在法线两侧,入射角的正弦跟折射角的正弦之比为一常数sini/sinr=n。
二、折射率
1、光从真空射入某种介质时,入射角的正弦跟折射角的正弦之比n=sini/sinr
2、折射率等于光在真空中的速度c跟光在这种介质中的速度v之比,n=c/v.
三、全反射
1、当入射角增大到某一角度,使折射角达到90°时,折射光完全消失,只剩下反射光,这种现象叫做全反射。
2、全反射临界角:光从光密介质射向光疏介质,当折射角变为90°时的入射角叫临界角;光从折射率为n的介质射向真空时临界角的计算公式:sinA=1/n。
四、光导纤维
利用光的全反射,可制成光导纤维。光从光导纤维一端射入后,在传播过程中经过多次全反射,最终从另一端射出。由于发生的是全反射,因此传播过程中的能量损耗非常小。用光导纤维传输信息,既经济又快捷。

【导研】
[例1]单色光在真空中的传播速度是c,波长为λ0,在水中的传播速度是v,波长为λ,水对这种单色光的折射率为n。当这束单色光从空气斜射入水中时,入射角为θ1,折射角为θ2,下列说法中正确的是()
A.v=B.
C.v=cnλ=λ0D.

[例2]一束光从空气射向折射率为的一种玻璃表面,其入射角为i,下列说法正确的是()
A.i>450时,会发生全反射B.增大入射角i,折射角会大于450
C.欲使折射角r=300,则i应为600
D.当i=arctan时,反射光线恰好与折射光线垂直

[例3](20xx重庆20)如题20图所示,空气中有一折射率为的玻璃柱体,其横截而是圆心角为90o,、半径为R的扇形OAB、一束平行光平行于横截面,以45o入射角射到OA上,OB不透光,若考虑首次入射到圆弧AB上的光,则AB弧上有光透出的部分的弧长为()
A.1/6RB.1/4R
C.1/3RD.5/12R
[例4](通州市2008届高三第四次调研测试)光纤通信是一种现代化的通讯工具,为了研究问题的方便,我们将光导纤维简化为一根长直的玻璃管,如图所示为玻璃管沿轴线的横截面,若光从左端以与端面成300入射,玻璃管长为L,折射率为n=,已知光在真空中的传播速度为c.
(1)通过计算分析光能否从玻璃管的侧面射出;
(2)求出光通过玻璃管所需的时间.

[例5](江苏省拼茶中学2008届高三物理五月份模拟试卷)如图直角三角形ABC,角A=300,BC=2cm,n=,平行光与AB平行射向AC,在BC的右侧有光屏P,P与BC平行,在光屏上有一光带.
(1)作出在P上形成光带的光路。
(2)屏离BC之距多大,可使连续光带最宽。

[例6](1)(2008年高考物理模拟试卷)如图所示,将刻度尺直立在装满某种透明液体的宽口瓶中(液体未漏出),从刻度尺上A、B两点射出的光线AC和BC在C点被折射和反射后都沿直线CD传播,已知刻度尺上相邻两根长刻度线间的距离为1cm,刻度尺右边缘与宽口瓶右内壁间的距离d=2.5cm,由此可知,瓶内液体的折射率n=(可保留根号).

(2)(南京市2008届高三第一次模拟考试)如图所示,某同学用插针法测定一半圆形玻璃砖的折射率.在平铺的白纸上垂直纸面插大头针P1、P2确定入射光线,并让入射光线过圆心O,在玻璃砖(图中实线部分)另一侧垂直纸面插大头针P3,使P3挡住P1、P2的像,连接OP3.图中MN为分界面,虚线半圆与玻璃砖对称,B、C分别是入射光线、折射光线与圆的交点,AB、CD均垂直于法线并分别交法线于A、D点.设AB的长度为l1,AO的长度为l2,CD的长度为l3,DO的长度为l4,为较方便地表示出玻璃砖的折射率,需用刻度尺测量(用上述给出量的字母表示),则玻璃砖的折射率可表示为.

【导练】
1、太阳光照射在平坦的大沙漠上,我们在沙漠中向前看去,发现前方某处射来亮光,好像太阳光从远处水面反射来的一样,我们认为前方有水。但走到该处仍是干燥的沙漠,这现象在夏天城市中太阳光照射沥青路面时也能观察到。对这种现象正确的解释是()
A.越靠近地面,空气的折射率越大B.这是光的干涉形成的
C.越靠近地面,空气的折射率越小D.这是光的衍射形成的

2、(20xx全国卷Ⅱ20)频率不同的两束单色光1和2以相同的入射角从同一点射入一厚玻璃板后,其光路如右图所示,下列说法正确的是()
A.单色光1的波长小于单色光2的波长
B.在玻璃中单色光1的传播速度大于单色光2的传播速度
C.单色光1通过玻璃板所需的时间小于单色光2通过玻璃板所需的时间
D.单色光1从玻璃到空气的全反射临界角小于单色光2从玻璃到空气的全反射临界角
3、现在高速公路上的标志牌都用“回归反光膜”制成,夜间行车时,它能把车灯射出的光逆向返回,标志牌上的字特别醒目。这种“回归反光膜”是用球体反射元件制成的,如图所示,反光膜内均匀分布着直径为10μm的细玻璃珠,所用玻璃的折射率为,为使入射的车灯光线经玻璃珠折射→反射→再折射后恰好和入射光线平行,那么第一次入射的入射角应是()
A.15°B.30°C.45°D.60°

4、(2008年苏、锡、常、镇四市调查二)一复色光中只含有a、b两种单色光,在真空中a光的波长大于b光的波长.
①在真空中,a光的速度▲(选填“大于”、“等于”或“小于”)b光的速度.
②若用此复色光通过玻璃半球且经球心O射向空气时,下列四个光路图中可能符合实际情况的是▲.

5、(福建省龙岩二中20xx届高三摸底考试)如图所示,一束光从空气垂直射到直角棱镜的AB面上,已知棱镜材料的折射率为1.4,则这束光进入棱镜后的光路图应为下面四个图中的()

高考物理第一轮导学案复习:热学


一名优秀的教师在教学方面无论做什么事都有计划和准备,教师要准备好教案,这是老师职责的一部分。教案可以让学生们充分体会到学习的快乐,帮助授课经验少的教师教学。那么怎么才能写出优秀的教案呢?下面是小编精心为您整理的“高考物理第一轮导学案复习:热学”,相信能对大家有所帮助。

20xx届高三物理一轮复习导学案
十二、热学(1)

【课题】分子动理论内能
【目标】
1.知道分子动理论的基本内容;掌握微观量的估算方法。
2.理解内能的概念,了解温度和温标的含义。
【导入】
分子动理论的基本内容是:物体是由大量分子组成的;分子永不停息地做无规则运动;分子之间存在相互作用的引力和斥力.
一、物体是由大量分子组成的:
1、分子的“小”:它的直径的数量级是10-10m,可用油膜法来粗测直径d=V/S,其中V是油滴体积,S是油滴在水面上充分扩展后形成的油膜面积。
2、分子数目的“多”:1mol任何物质的分子数目均为阿伏加德罗常数
NA=6.02×1023mol-1.
3、阿伏伽德罗常数是联系宏观物理量与微观物理量的桥梁,根据油膜法测出分子的直径,可算出阿伏伽德罗常数;反过来,己知阿伏伽德罗常数,根据摩尔质量(或摩尔体积)就可以算出一个分子的质量(或一个分子所占据的体积).
①分子的质量:m0=MA/NA=;②分子的体积:v0==(固、液体)
③分子的大小:球体模型直径d=;立方体
④物质所含的分子数:N=nNA==
4、分子大小的测量方法—单分子油膜法d=V/s;
5、分子间有间隙的实验依据是:_________________________________________。
二.分子永不停息地做无规则运动——分子热运动
1、扩散现象:相互接触的物体彼此进入对方的现象.温度越高,扩散越快.
2、布朗运动:悬浮在液体中微小颗粒的无规则运动
(1)原因:液体分子对颗粒碰撞的不平衡而引起
(2)结论:布朗运动说明了液体内部分子运动的无规则性
(3)影响因素:温度(温度越高,布朗运动越明显)颗粒大小(颗粒越小,布朗运动越明显)
3、扩散现象和布朗运动同时也证明了分子间有间隙.
三.分子间同时存在着相互作用的引力和斥力,如图为分子力跟分子间距的变化图线
1、引力和斥力随分子间距的增大而减小,但斥力变化比引力快.
2、平衡位置:F斥=F引时,分子间的距离r0,其数量级为10-10m.
3、rro时,F斥F引,分子力表现为斥力.
4、rro时,F斥F引,分子力表现为引力.
5、r10ro时,分子力可忽略.
四、物体的内能
1、分子的平均动能:物体内所有分子的动能的平均值.温度是分子平均动能的标志,温度越高,分子平均动能越大.
2、分子势能:由分子间的相互作用和相对位置决定的能量叫分子势能.分子势能的大小与物体的体积有关.
①r>r0时,分子势能随分子间距的增大而增大.
②r<r0时,分子势能随分子间距的增大而减小.
③r=r0时,分子势能最小.
3、物体的内能:物体内所有分子的动能和势能的总和叫物体的内能(热力学能).
4、内能的决定因素
(1)微观:分子势能、分子平均动能、分子数;
(2)宏观:物体体积、温度、物质的量。
注意:内能和机械能的区别。

五、温度和温标
1、温度:宏观含义____________________;微观含义___________________________。
2、两种温标:1、摄氏温标t;2、热力学温标T。

【导研】
[例1]以下说法正确的是()
A.无论是什么物质,只要它们的摩尔数相同就含有相同的分子个数
B.分子间的引力不等于分子斥力时,违背了牛顿第三定律
C.1g氢气与1g氦气含有的分子个数相同,都是6.02×1023个
D.阳光从缝隙射入教室,从阳光中看到的尘埃的运动就是布朗运动

[例2]铜的摩尔质量为μ,密度为ρ.若阿伏伽德罗常数为NA,则下列说法中哪个是错误的()
A.lm3铜所含的原子数目ρNA/μB.1kg铜所含的原子数目ρNA
C.一个铜原子的质量是μ/NAD.一个铜原子占有的体积是μ/ρNA

[例3]如图所示,设有一分子位于图中的坐标原点O处不动,另一分子可位于x轴上不同位置处。图中纵坐标表示这两个分子间分子力的大小,两条曲线分别表示斥力和吸力的大小随分子间距离的变化关系,e为两曲线的交点,则()
A、ab表示吸力,cd表示斥力,e点坐标可能为10-15m
B、ab表示斥力,cd表示吸力,e点坐标可能为10-10m
C、ab表示吸力,cd表示斥力,e点坐标可能为10-10m
D、ab表示斥力,cd表示吸力,e点坐标可能为10-15m

[例4]在做“用油膜法估测分子的大小”的实验时,所用的油酸酒精溶液的浓度为a,测量中,某位同学测得如下数据:测得体积为V的油酸酒精溶液共有N滴;油膜面积为S,则:
(1)用以上物理量的符号表示计算分子直径大小的公式为:d=________.
(2)该同学实验中最终得到的计算结果和大多数同学的比较,发现自己所测数据偏大,则对出现这种结果的原因,下列说法中可能正确的是________.
A.错误地将油酸酒精溶液的体积直接作为油酸的体积进行计算
B.计算油膜面积时,错将不完整的方格作为完整方格处理
C.计算油膜面积时,只数了完整的方格数
D.水面上痱子粉撒得较多,油膜没有充分展开

[例5](1)关于物体的内能,下列说法中正确的是()
A.相同质量的两种物体升高相同的温度,内能增量一定相同
B.一定量0℃的水结成0℃的冰,内能一定减小
C.一定量的气体体积增大,但既不吸热也不放热,内能一定减小
D.一定量的气体吸收热量而保持体积不变,内能一定减小
(2)关于温度的概念,下述说法中正确的是()
A.温度是分子平均动能的标志,物体温度高,则分子的平均动能大
B.温度是分子平均动能的标志,温度升高,则物体的每一个分子的动能都增大
C.某物体当其内能增大时,则该物体的温度一定升高
D.甲物体的温度比乙物体的温度高,则甲物体分子平均速率比乙物体分子平均速率

【导练】
1、以下关于分子间作用力的说法中,正确的是:()
A.分子间既存在引力也存在斥力,分子力是它们的合力.
B.分子之间距离减小时,引力和斥力都增大,且引力增大得比斥力快.
C.压缩气缸内气体时要用力推活塞,这表明气体分子间的作用力主要表现为斥力.
D.紧压两块铅块后它们会连接在一起,这说明铅分子间存在引力.

2、下列说法哪些是正确的()
A.水的体积很难被压缩,这是分子间存在斥力的宏观表现
B.气体总是很容易充满容器,这是分子间存在斥力的宏观表现
C.两个相同的半球壳吻合接触,中间抽成真空(马德堡半球),用力很难拉开,这是分子间存在吸引力的宏观表现
D.用力拉铁棒的两端,铁棒没有断,这是分子间存在吸引力的宏观表现

3、下列说法中正确的是()
A.温度是分子平均动能的标志
B.物体的体积增大时,分子势能一定增大
C.分子间的引力和斥力都随分子间距离的增大而减小
D.利用阿伏伽德罗常数和某种气体的密度,就一定可以求出该种气体的分子质量
4、(09北京13)做布朗运动实验,得到某个观测记录如图。图中记录的是()
A.分子无规则运动的情况
B.某个微粒做布朗运动的轨迹
C.某个微粒做布朗运动的速度——时间图线
D.按等时间间隔依次记录的某个运动微粒位置的连线

5、将一个分子从靠近另一分子最近的位置由静止开始释放,在远离的程()
A.rr0时,分子势能不断增大,动能不断减小
B.r=r0时,分子势能最小,动能最大
C.rr0时,分子势能不断减小,动能不断增加
D.r具有最大值时,分子动能为零,分子势能最大

6.下列现象中,不能用分子动理论来解释的是()
A.白糖放入杯中,杯中的水会变甜
B.悬浮在水中的花粉微粒在不停地做无规则运动
C.大风吹起时,地上的尘土飞扬
D.把两块纯净的向压紧,两块铅合在了一起

7.分子间有相互作用的势能,规定两分子相距无穷远时分子势能为零,并已知两分子相距r0时分子间的引力与斥力大小相等。设分子a和分子b从相距无穷远处分别以一定的初速度在同一直线上相向运动,直到它们之间的距离达到最小。在此过程中下列说法正确的是()
A.a和b之间的势能先增大,后减小
B.a和b的总动能先增大,后减小
C.两分子相距r0时,a和b的加速度均不为零
D.两分子相距r0时,a和b之间的势能大于零

8.下列说法正确的是()
A.熔融的铁块化成铁水的过程中,温度不变,内能也不变
B.物体运动的速度增大,则物体中分子热运动的平均动能增大,物体的内能增大
C.A、B两物体接触时有热量从物体A传到物体B,这说明物体A的内能大于物体B的内能
D.A、B两物体的温度相同时,A、B两物体的内能可能不同,分子的平均速率也可能不同