小学的乘法教案
发表时间:2020-10-06同底数幂的乘法学案(新版北师大版)。
第一章整式的乘除
1.1同底数幂的乘法
一、学习目标
1.经历探索同底数幂乘法运算性质过程,进一步体会幂的意义.
2.了解同底数幂乘法的运算性质,并能解决一些实际问题
二、学习重点:同底数幂的乘法运算法则的推导过程以及相关计算
三、学习难点:对同底数幂的乘法公式的理解和正确应用
四、学习设计
(一)预习准备
预习书p2-4
(二)学习过程
1.试试看:(1)下面请同学们根据乘方的意义做下面一组题:
①②=_____________=
③a3.a4=_____________=a()
(2)根据上面的规律,请以幂的形式直接写出下列各题的结果:
===×=
2.猜一猜:当m,n为正整数时候,
.=.==
即aman=(m、n都是正整数)
3.同底数幂的乘法法则:同底数幂相乘
运算形式:(同底、乘法)运算方法:(底不变、指加法)
当三个或三个以上同底数幂相乘时,也具有这一性质,用公式表示为
amanap=am+n+p(m、n、p都是正整数)
练习1.下面的计算是否正确?如果错,请在旁边订正
(1).a3a4=a12(2).mm4=m4(3).a2b3=ab5(4).x5+x5=2x10
(5).3c42c2=5c6(6).x2xn=x2n(7).2m2n=2mn(8).b4b4b4=3b4
2.填空:(1)x5()=x8(2)a()=a6xk
(3)xx3()=x7(4)xm()=x3m
(5)x5x()=x3x7=x()x6=xx()(6)an+1a()=a2n+1=aa()
例1.计算
(1)(x+y)3(x+y)4(2)
(3)(4)(m是正整数)
变式训练.计算
(1)(2)(3).
(4)(5)(a-b)(b-a)4(6)
(n是正整数)
拓展.1、填空
(1)8=2x,则x=
(2)8×4=2x,则x=
(3)3×27×9=3x,则x=.
2、已知am=2,an=3,求的值3、
4、已知的值。5、已知的值。
回顾小结
1.同底数幂相乘法则要注重理解“同底、相乘、不变、相加”这八个字.
2.解题时要注意a的指数是1.
3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.
4.-a2的底数a,不是-a.计算-a2a2的结果是-(a2a2)=-a4,而不是(-a)2+2=a4.
5.若底数是多项式时,要把底数看成一个整体进行计算[
相关阅读
同底数幂的除法学案
教案课件是老师不可缺少的课件,大家应该开始写教案课件了。只有写好教案课件计划,才能够使以后的工作更有目标性!你们知道哪些教案课件的范文呢?下面是小编为大家整理的“同底数幂的除法学案”,希望对您的工作和生活有所帮助。
8.3幂的除法(2)
主备:审核:
班级姓名学号
一、课前准备:
观察幂是如何变化的?指数是如何变化的?
16=24;8=2();4=2();2=2().
做一做:81=34;27=3();9=3();3=3().
10000=10();1000=10();100=10();10=10().
二、探索新知:
猜想1:1=2().
如果用同底数幂的除法性质,那么
1=23÷23=23-3=20
做一做:1=3(),1=10()
规定:a0=1(a0),即:任何不等于0的数的0次幂等于1.
猜想2:=2();=2();=2().
你能用同底数幂的除法说明吗?
做一做:=3();=3();=3().
0.1=10();0.01=10();0.001=10().
规定:a-n=(a0,n为正整数)即:任何不等于0的数的-n(n为正整数)次幂等于这个数n次幂的倒数
总结:对于零指数幂和负整数指数幂,幂的运算性质仍然适用.
三、知识运用:
例1填空:
20=____,22=___,2-2=____,(-2)2=____,
(-2)-2=____,10-3=____,(-10)-3=____,
(-10)0=___,()-2=,()-3=.
例2:用小数或分数表示下列各数
(1)4(2)-3-3(3)1.6×10-5.
四、当堂反馈:
1.用小数或分数表示下列各数.
(1)(2)((3)(4)
2.把下列小数写成负整数指数幂的形式
(1)0.001(2)0.000001(3)(4)
3.某种细胞可以近似地看成球体,它的半径是m.用小数表示这个半径
五.课后巩固
1.填空:
(1)当a≠0时,a0=
(2)当a≠0,p为正整数时,a-p=
(3)30÷3-1=,若(x-2)0=1,则x满足条件
(4)33=3-3=(-3)3=(-3)-3=
(5)510÷510=103÷106=72÷78=(-2)9÷(-2)2=
2.选择:
(1)(-0.5)-2等于()
A.1B.4C.-4D.0.25
(2)(33-3×9)0等于()
A.1B.0C.12D.无意义
(3)下列算术:①,②(0.0001)0=(1010)0,③10-2=0.001,
④中,正确的算术有()个.
A.0B.1C.2D.3
3.计算:
(1)a8÷a3÷a2(2)52×5-1-90
(3)(x3)2÷[(x4)3÷(x3)3]3
六.拓展延伸
1.在括号内填写各式成立的条件:
(1)x0=1();(2)(y-2)0=1();
(3)(a-b)0=1();(4)(|x|-3)0=1();
2.填空:
(1)256b=25211,则b=____.
(2)若0.0000003=3×10m,则m=________
(3)若()=,则x=
(4),则x=_____
(5)若1=0.01x,则x=,若,则x=
3.若a=-0.32,b=-3-2,c=()
A.a〈b〈c〈dB.b〈a〈d〈c
C.a〈d〈c〈bD.c〈a〈d〈b
4.若,求n的值.
同底数幂的乘法
每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。是时候对自己教案课件工作做个新的规划了,未来的工作就会做得更好!究竟有没有好的适合教案课件的范文?小编收集并整理了“同底数幂的乘法”,供大家参考,希望能帮助到有需要的朋友。
8.1同底数幂的乘法参考教案
教学任务分析
教学
目标知识与技能1.会用同底数幂相乘的法则计算同底数幂的乘法;
2.会用同底数幂相乘的法则计算科学计数法相乘.
过程与方法通过探究同底数幂相乘的法则,训练学生的观察能力和归纳能力.
情感态度与
价值观在计算过程中,培养学生严谨的学风.
重点同底数幂相乘,科学计数法相乘.
难点科学计数法在其他学科中应用广泛,是本节课的难点.
教学流程安排
活动说明活动目的
活动1引出同底数幂相乘.从实际问题引入,激发学生兴趣.
活动2探究同底数幂相乘.探究法则,培养学生归纳能力.
活动3同底数幂相乘.同底数幂相乘与科学计数法相乘.
活动4回顾与反思.总结同底数幂相乘与科学计数法相乘.
课前准备
教具学具补充材料
电脑、投影仪课件资源、投影片
教学过程设计
问题与情景师生行为设计意图
活动1引出同底数幂相乘
请同学们,我们说电脑存储器的容量常用M来做单位,1MB到底是多少字节呢?请同学们看课本上的小资料.学生看书,教师巡视.
(此问题的目的在于引出同底数幂相乘,其他的例子也可以达到此目的)
引出,即同底数的幂相乘.
谁会计算?
学生讨论,教师巡视.学生独立思考,锻炼能力.
活动2探究同底数幂相乘
我们先看下面问题:
1.103表示____个10相乘,
即103=10×__×10;
2.54=________________(写成乘法);
3.103×102=______________(写成乘法);
=___(写成乘方)
4.=_______________(写成乘法);
=___(写成乘方)
5.a2×a3=________________(写成乘法);
=___(写成乘方)
学生解答,教师给予鼓励.
探究同底数幂相乘.
6.210×210=___(写成乘方).要求学生直接写成幂的形式,有困难的加以指导.训练学生的归纳能力.
大家想一想,
学生思考,教师巡视指导.
得出结论,要求说明理由.总结一般规律.
活动3同底数幂相乘
我们如何用语言来叙述
学生用语言叙述,教师点评并给予鼓励.
深化对法则的认识.
例1计算
⑴26×23;⑵a2a4;
⑶b2b3b5;⑷xmxm+1.学生先观察.运用同底数幂相乘的运算法则.
解:(略)教师边板书,边用法则讲述计算的原理.比如26×23是底数都是2,是同底数幂相乘,积的底数不变,指数是6+3,最后结果是29.运用法则进行计算.
例2太阳系的形状像一个以太阳为中心的大圆盘,光通过这个圆盘半径的时间约为2×104s,光的速度是2×105Km/s,求太阳系的直径.学生列出算式,然后讨论解法.应用同底数幂的运算法则.
解:
=
=
=
科学计数法的相乘,先用乘法的交换率与结合率,把数和幂分开,然后数与数、幂与幂分别相乘,最后写成规范的科学计数法.用同底数幂的运算法则进行科学计数法的相乘.
活动4回顾与反思
1.今天,我们学习了同底数幂相乘,怎样进行同底数幂的计算?
2.你还学到了什么知识?
学生回答,教师鼓励.总结同底数幂的运算法则和科学计数法相乘的计算方法.
请同学们做课后练习(P69)第1、2题.学生解答,教师巡视指导.巩固练习.
布置作业课后习题(P70)A组第1、2、3、4题,B组选做.
同底数幂的乘法导学案
课题:8.1同底数幂的乘法姓名
【学习目标】
1.能引导学生探索、理解、掌握同底数幂的运算性质,并会用符号表示,知道幂的意义是推导同底数幂的运算性质的依据;
2.会正确地运用同底数幂乘法的运算性质进行运算;
【学习重点】
同底数幂乘法的运算法则及其应用
【问题导学】
1、-23的底数是,指数是,幂是.
2、同底数幂相乘,底数,。
3、aa=a.(在括号内填数)
4、若1010=10,则m=.
5、28=2,则n=.
【问题探究】
问题一
6、-a(-a)=;xxxy=.
7、aa+aa–aa+aa=.
8、(a-b)(a-b)=;(x+y)(x+y)=.
问题二
9、化简计算:
(1)()();(2)(2x-y)(2x-y)(2x-y);
(3)aa-2aa-3aa(4)2x5x5+(-x)2x(-x)7
(5)(n-m)3(m-n)2-(m-n)5
【问题评价】
10、下列各式正确的是()
A.3a5a=15aB.-3x(-2x)=-6x
C.3x2x=6xD.(-b)(-b)=b
11、下列运算错误的是()
A.(-a)(-a)2=-a3B.–2x2(-3x)=-6x4
C.(-a)3(-a)2=-a5D.(-a)3(-a)3=a6
12、设a=8,a=16,则a=()
A.24B.32C.64D.128
13、若xx()=x,则括号内应填x的代数式为()
A.xB.xC.xD.x
14、(-2)(-2)2(-2)3=(-x)x3(-x)2x5=
(x-y)(y-x)2(x-y)3=
15、若bmbnx=bm+n+1(b≠0且b≠1),则x=.
16、计算:
(1)3x3x9+x2x10-2xx3x8(2)(-1)2m(-1)2m+1
(3)b(-b)2+(-b)(-b)2(4)1000×10m×10m-3
17、一台电子计算机每秒可运行4×10次运算,它工作5×10秒可作多少次运算?