88教案网

你的位置: 教案 > 教案大全 > 导航 > 分式方程教案十二篇

分式方程教案

发表时间:2024-09-25

分式方程教案十二篇。

老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据。我们听了一场关于“分式方程教案”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!

分式方程教案(篇1)

1.经历在实际问题中运用分式方程的过程,了解分式方程的意义,体会分式方程的模型思想.

2.会解可化为一元一次方程的分式方程.

3.了解分式方程增根产生的原因,会检验分式方程的根.

4.通过学习分式方程的解法,理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,体会数学中的转化思想.

重点:

(1)可化为一元一次方程的分式方程的解法.

(2)分式方程转化为整式方程的方法及其中的转化思想.

1、什么叫方程?什么叫方程的解?

2、阅读课本P76页“交流与发现”,完成课本上的.填空。并思考所列方程有怎样的特点?

2、阅读课本P77—78例1、例2并思考:

(1)与解一元一次方程有什么异同点?解分式方程必需要.

(2)总结解分式方程的步骤:

3、自学课本P78—79页例3、例4,进一步熟练解分式方程的步骤.

分式方程教案(篇2)

一、教学内容分析:

本节“分式方程”是人教版八年级下册第16章第3节的内容,是继一元一次方程,二元一次方程组之后,初中阶段所讲授的又能一种方程的解法。本节课是在继分式的内容及分式的四则混合运算之后所讲述的一个内容,其实际上就是分式与方程的综合。因此本节课可以看作是一个综合课,同时分式方程的解法也是初中阶段的一个重点内容,要求学生必须掌握。

二、学情分析:

在学习本章之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),他们对于整式方程特别是一元一次方程的解法及其基本思路(使方程逐步化为x=a 的形式)已经比较熟悉,而分式方程的未知数在分母中,它的解法比以前学过的方程复杂,需通过转化思想,化分式方程为整式方程。

三、教学目标:

1、明确什么是分式方程?会区分整式方程与分式方程。

2、会解可化为一元一次方程的分式方程。

3、知道分式方程产生增根的原因,并学会如何验根。

四、教学重点:

分式方程的解法。

教学难点:理解分式方程可能产生增根的原因。

五、教学流程

1、忆一忆

(1)什么叫方程?什么叫方程的解?

(2)什么叫分式?

(3)结合具体例子说出解一元一次方程的步骤。

设计意图:

让学生由旧知识的回忆自然引出新知识便于学生理解接受。

2x-(x-1)/3=6 3x/4+(2x+1)/3=0

2、猜一猜

板书课题“分式方程”,让学生猜一猜其概念,结合分式和方程的特点学生易得出:分母中含有未知数的方程叫分式方程。

设计意图:

采用这种形式引入今天的话题,让学生觉得不是在上数学,而象是在拉家常,让学生没有负担,另外,学生在前面的回忆的基础上很容易猜出来分式方程的概念。这样使学生感受到数学的简单,从而树立学好数学的信心。

3、辨一辨

判断下列方程是不是分式方程,并说出为什么?

1/(x-2)=3/x x(x-1)/x=-1 (3-x)/=x/2

2x+(x-1)/5=10 3/x=2/(x-3) (2x+1)/x+3x=1

指出:

分式方程与整式方程的区别(分母中含不含未知数)

设计意图:

学生说出来了分式方程的概念还远远不够,通过这道题使学生更进一步的巩固分式方程的概念。 (x-1)/x=-1这个方程可能学生会有争议,让学生说出自己的意见后,老师可总结,在判断方是否为分式方程时,不能化简,以形式为准。

4、想一想

提出该如何解方程呢?让学生讨论后得出:

通过去分母,方程两边同乘以各分母的最简公分母,回忆最简公分母的定义。

设计意图:

让学生自己去想该如何解,然后老师加以指导,这样会使学生感觉到自己真正是课堂的主人,从而全身心地投入学习。

5、试一试

(1)80/(x+5) (2)1/(x-5)=10/x.x-25

方程两边同乘以 x(x+5)得: 方程两边同乘以(x+5)(x-5)得:

80x=60(x+5) x+5=10

80x=60x+300 x=5

20x=300

x=15

提醒学生检验,对比两个方程发现问题。

设计意图:

通过提醒学生检验,让学生自己发现问题。从而自然引出话题。

6、议一议

分式方程为什么会产生增根?(两边都乘以了一个零因式,但这个根是整式方程的解)所以分式方程的检验代入最简公分母即可,提出,分式方程能不检验吗?通过讨论使学生得出分式方程必须检验,因为分式方程的检验是为了看是不是增根,而不是检验对错,所以必须检验。

7、说一说

老师帮忙总结出解分式方程的一般步骤:

1、程两边都乘最简公分母,约去分母,化为整式方程。

2、解这个整式方程。

3、把整式方程的根代入最简公分母,看它的值是否为零,使最简公分母为零的值是原方程的增根,必须舍去。

可简单记作:

一化二解三检验。

设计意图:

让学生对所学知识上升到一个理论高度。

8、做一做

解方程:

(1)2/(x-3)=3/x (2)x/(x-1)-1=3/(x-1)(x+2)

体验解分式方程的完整过程。

分式方程教案(篇3)

作为一名为他人授业解惑的教育工作者,就不得不需要编写说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。说课稿应该怎么写才好呢?下面是小编收集整理的八年级数学分式方程说课稿,欢迎大家分享。

一、设计思想:

数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。

处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动。

根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。

网络环境下代数课的教学模式:设置情境—提出问题—自主探究—合作交流—反思评价—巩固练习—总结提高。

二、背景分析:

(一)学情分析:

内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》

学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。

本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的兴趣较浓。

(二)内容分析:

本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元二次方程的分式方程打下基础。

通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透类比转化思想。

(三)教学方式:自学导读—同伴互助—精讲精练。

(四)教学媒体:Midea———Class纯软多媒体教学网几何画板。

三、教学目标:

知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。

过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的.能力,培养应用意识,渗透转化思想。

情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成功体验,树立学好数学的自信心。

教学重点:解分式方程的基本思路和解法。

教学难点:理解分式方程可能产生增根的原因。

设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师好把握,学生好掌握,否则就是空中楼阁,雾里看花,水中望月。

四、板书设计:

(一)不是分式方程的解

(二)学习方法:类比与转化

教学思考:伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,绝不能用媒体技术替代应有的板书,现代教育技术与传统教育技术完美的结合才是提高课堂教学效率的有效途径之一。

五、教学过程:

活动1:创设情境,列出方程

设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美—激励启迪。

设计说明:通过经历实际问题→列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。

活动2:总结定义,探究解法

使学生能从整体上把握数、式、方程及它们之间的联系与区别;通过合作探究分式方程的解法,培养学生的探究能力,增强利用类比转化思想解决实际问题的能力及合作的意识。

教学思考:再一次体现了对全章进行整体设计的好处,在学习16.1分式和16.2分式的运算时,几乎每一节课都运用类比的思想—分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。在利用媒体技术拓展学习内容时要遵循以下原则:

一、拓展内容要与所学内容有有机联系。

二、拓展内容要符合学生实际认知水平,不要任意拔高。

三、拓展内容要适量,不要信息过载。

分式方程教案(篇4)

1。使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;

2。通过列分式方程解应用题,渗透方程的思想方法。

例 解方程:

(1)2x+xx+3=1; (2)15x=2×15 x+12;

(3)2(1x+1x+3)+x-2x+3=1。

所以 x=6。

检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

x=12。

检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。

2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,

即 2x+xx+3=1。

2(x+3)+x2=x(x+3),

即 2x+6+x2=x2+3x,

亦即 2x-3x=-6。

解这个整式方程,得 x=6。

检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍。若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?

请同学根据题意,找出题目中的等量关系。

答:骑车行进路程=队伍行进路程=15(千米);

骑车的速度=步行速度的2倍;

骑车所用的时间=步行的时间-0。5小时。

请同学依据上述等量关系列出方程。

答案:

15x=2×15 x+12。

方法2 设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为

15x-15 2x=12。

解 由方法1所列出的方程,已在复习中解出,下面解由方法2所列出的方程。

30-15=x,

所以 x=15。

检验:当x=15时,2x=2×15≠0,所以x=15是原分式方程的根,并且符合题意。

所以骑车追上队伍所用的时间为15千米 30千米/时=12小时。

指出:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离 时间。

如果设速度为未知量,那么按时间找等量关系列方程;如果设时间为未知量,那么按

速度找等量关系列方程,所列出的方程都是分式方程。

例2 某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成。现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?

分析;这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是

s=mt,或t=sm,或m=st。

请同学根据题中的等量关系列出方程。

答案:

方法1 工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x+3)天,设工程总量为1,甲的工作效率就是x1,乙的工作效率是1x+3。依题意,列方程为

2(1x+1x3)+x2-xx+3=1。

方法2 设规定日期为x天,乙与甲合作两天后,剩下的工程由乙单独做,恰好在规定日期完成,因此乙的工作时间就是x天,根据题意列方程

2x+xx+3=1。

方法3 根据等量关系,总工作量—甲的工作量=乙的工作量,设规定日期为x天,则可列方程

1-2x=2x+3+x-2x+3。

用方法1~方法3所列出的方程,我们已在新课之前解出,这里就不再解分式方程了。重点是找等量关系列方程。

三、课堂练习

1。甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数。

2。A,B两地相距135千米,有大,小两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟。已知大、小汽车速度的.比为2:5,求两辆汽车的速度。

答案:

1。甲每小时加工15个零件,乙每小时加工20个零件。

2。大,小汽车的速度分别为18千米/时和45千米/时。

1。列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,不同点是,解分式方程必须要验根。一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意。原方程的增根和不符合题意的根都应舍去。

2。列分式方程解应用题,一般是求什么量,就设所求的量为未知数,这种设未知数的方法,叫做设直接未知数。但有时可根据题目特点不直接设题目所求的量为未知量,而是设另外的量为未知量,这种设未知数的方法叫做设间接未知数。在列分式方程解应用题时,设间接未知数,有时可使解答变得简捷。例如在课堂练习中的第2题,若题目的条件不变,把问题改为求大、小两辆汽车从A地到达B地各用的时间,如果设直接未知数,即设,小汽车从A地到B地需用时间为x小时,则大汽车从A地到B地需(x+5-12)小时,依题意,列方程

解这个分式方程,运算较繁琐。如果设间接未知数,即设速度为未知数,先求出大、小两辆汽车的速度,再分别求出它们从A地到B地的时间,运算就简便多了。

1。填空:

(1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;

(2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;

(3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克。

2。列方程解应用题。

(1)某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时。已知他第二次加工效率是第一次的2。5倍,求他第二次加工时每小时加工多少零件?

(2)某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?

(3)已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?

(4)A,B两地相距135千米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟。已知两车的速度之比是5:2,求两辆汽车各自的速度。

答案:

1。(1)mn m+n; (2)m a-b-ma; (3)ma a+b。

2。(1)第二次加工时,每小时加工125个零件。

(2)步行40千米所用的时间为40 4=10(时)。答步行40千米用了10小时。

(3)江水的流速为4千米/时。

分式方程教案(篇5)

大家好!

(一)教材分析:(人教版)数学八年级下册第十六章:《分式方程》第一课时本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元一次方程的分式方程打下基础。通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,进一步发展学生分析问题和解决问题的能力,培养应用意识,渗透类比转化思想。

(二)、教学目标:

知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。

过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。

情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成就感,树立学好数学的自信心。

(三)教学重点:解分式方程的基本思路和解法。

(四)教学难点:理解分式方程可能产生增根的原因。

(五)学情分析:《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。教师作为教学主导,学生是主体作用

我们这学生基础知识较扎实,学生喜欢上数学课,学习数学的兴趣较浓,具有一定探索解决问题的能力,采用的学习方法:

1、类比学习的方法。通过与分数的乘除法运算类比得到分式方程的解法。

2、探究合作学习。学生互助下进行学习。

(六)教学方法:教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。

1、启发式教学启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。

2、合作式教学在师生平等的交流中评价学习。伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,不能用媒体技术替代应有的板书。

(七)、教学过程:

1、复习巩固:大约三分钟

2、讲授新课:

活动1:创设情境,列出方程

设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美-激励启迪。通过经历实际问题→列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。大约10分钟

活动2:总结定义,探究解法

使学生能从整体上把握数、式、方程及它们之间的联系与区别;及原来学过的方程解法,通过合作探究分式方程(板书)

例1:解方程

23x3=和例2解方程-1=的解

x1x3x(x1)(x2)法,得到解分式方程的步骤

(1)找最简公分母,方程两边乘最简公分母把分式方程转化为整式方程,

(2)解整式方程。

(3)检验,作答。培养学生的探究能力,教师总结方程解法,增强利用类比转化思想解决实际问题的能力及合作的意识。大约15分钟。

活动3:通过学生练习后老师讲评,讲练结合,分析增根,练习题看课件(大约20分钟)

活动4:小节和布置作业,深化巩固(略),大约2分钟

教学思考:在学习16.1分式和16.2分式的运算时,几乎每一节课都运用类比的思想-分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。因此,同时还要注意老师要深入学生的讨论中,帮助他们得到解分式方程的方法,学生可能出现

(1)不懂的找公分母

(2)容易漏乘

(3)为什么产生增跟和解决增根的检验问题

我的说课完毕,谢谢!

分式方程教案(篇6)

分式方程是初中二年级学生必学到的内容,也是在数学学习领域中的一个跨越, 本节课作为分式方程的第一节课,是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是前一节的深化,同时解决了解方程的问题,又为以后的教学――“应用”打下了良好的基础,因而在教材中具有不可忽略的地位与作用,特别是对于学生来讲,做好分式方程教学反思,可以更好的提高学生的学习效率。

本节的教学重点是探索分式方程概念、会解可化为一元一次方程的分式方程、明确分式方程与整式方程的区别和联系。教学难点是如何将分式方程转化成整式方程。本节教材中的引例分式方程较复杂,学生直接探索它的解法有些困难。我是从简单的整式方程引出分式方程后,再引导学生探究它的解法。这样很轻松地找到新知识的切入点:用等式性质去分母,转化为整式方程再求解。因此,学生学的效果也较好。教师在整个的分式方程教学反思中起着决定性的作用,一定要让教师深刻的认识到这一点。从个人的工作经验中做出如下分析:

第一点、更我思考的空间留给学生 问题不轻易直接告诉学生答案,而由学生通过动手动脑来获得,从而发挥他们的主观能动性。我主要在做题方法上指导,思维方式上点拨。改变那种让学生在自己后面亦步亦趋的习惯,从而成为爱动脑、善动脑的学习者。

第二点、做好积极指导、引导的工作 保证学生掌握正确知识,和清晰的解题思路。由于学生总结的语言有限,我就把本节课的重点内容:解分式方程的思路,步骤,如何检验等都用多媒体形式给学生展示出来。还有在解分式方程过程中容易出现的问题都给学生做了强调。

第三点、对学生出现的错误问题,做出及时交流沟通 及时检查纠正,保证学生认识到自己的错误并在第一时间内更正。学生在做题过程中我就在教室巡视,及时发现学生的错误,及时纠正。对于困难的学生也做个别辅导。

虽然在课堂上做了很多,但也存在许多不足的地方,这也是我在今后教学中应该注意的地方。第一,讲例题时,先讲一个产生增根的.较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步。第二,给学生的鼓励不是很多。鼓励可以让学生有充分的自信心。“信心是成功的一半”,“在今后的课堂教学中,应尊重其差异性,尽可能分层教学,评价标准多样化。多鼓励,少批评;多肯定,少指责。用动态的、发展的、积极的眼光看待每个学生,帮助他们树立自信心。赞美的力量是巨大的,有时,一句赞美的话,可以改变人的一生。一句肯定的话、一个赞许的点头、一张表示优胜的卡片,都是很好的鼓励,会起到意想不到的良好结果。

分式方程教案(篇7)

理解分式方程与整式方程的区别,并掌握解分式方程的一般步骤。

通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤,使学生进一步了解数学思想中的“转化”思想。

培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

教学重点:探索如何将分式方程转化为整式方程并掌握解分式方程的一般步骤

一.创设情境,导入新课:

为帮助四川受灾的人们重建家园,某中学号召同学们自愿捐款。已知第一次捐款总额为20__元,第二次捐款总额为2150元,第二次捐款人数比第一次多15人,而且两次人均捐款额恰好相等。

根据以上信息你能分别求出两次捐款的人数吗?

若设第一次捐款人数为X人,第二次捐款人数为 ( ) 人。

根据相等关系列方程为( )。

这个方程的分母中含有未知数,与以前学过的方程不同,这就是我们这节课要学习的分式方程。(板书课题)

以前学过的像一元一次方程、二元一次方程等这类分母中不含有未知数的方程叫整式方程

(1)去分母,(2)去括号, (3)移项, (4)合并同类项, (5)化未知x的系数为1

所以x=200是原方程的解。

分式方程的增根:不适合原方程的整式方程的根,叫原方程的增根.

怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?

最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去。

本节课我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可,我明白了分式方程转化为整式方程为什么会产生增根。

1. 解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母

2.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。

分式方程教案(篇8)

教学目标

1. 理解直接开平方法与平方根运算的联系,学会用直接开平方法解特殊的一元二次方程;培养基本的运算能力;

2.知道形如(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解。培养观察、比较、分析、综合等能力,会应用学过的知识去解决新的问题;

3. 鼓励学生积极主动的参与“教”与“学”的整个过程,体会解方程过程中所蕴涵的化归思想、整体思想和降次策略。

教学重点及难点

1、 用直接开平方法解一元二次方程;

2、理解直接开平方法中的整体思想,懂得(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解

教学过程设计

一、情景引入,理解方法

看一看:特殊奥林匹克运动会的会标

想一想:

在XX年的特殊奥林匹克运动会的筹备过程中制玩具节举办的更加隆重,xx学校将在运动场搭建一个舞台,其中一个方案是:在运动场正中间搭建一个面积为144平方米的正方形舞台,那么请问这个舞台的各边边长将会是多少米呢?

解:由题意得: x2=144

根据平方根的意义得:x=± 12

∴原方程的解是:x1=12 , x2=-12

∵边长不能为负数

∴x=12

了解方法:

上述解方程的方法叫做直接开平方法。通过直接将某一个数开平方,解一元二次方程的方法叫做直接开平方法。

【说明】用开平方法解形如ax2+c=0(a≠0)的方程有三种可能性,学生归纳是难点,教师要在学生具体感知的基础上进行具体概括。通过两个阶段联系后的探究意在培养学生探究一般规律的能力。

第三阶段:怎样解方程(1+x)2=144?

请四人学习小组共同研究,并给出一个解题过程。可以参考课本或其他资料。小组长负责清楚的记录解题过程。

第四阶段:众人齐心当考官!

请各四人小组试着编一个类似于(x+1)2=144 这样能用直接开平方法解的一元二次方程。

1、分析学生所编的方程。

2、从学生的编题中挑出一个方程给学生练习。

3、出示:思考:下列方程又该如何应用直接开平方法求解呢?

4(x+1)2-144=0

归纳:形如(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解。

【说明】在第三、四阶段的讲解和练习中教师需让学生体会到其中蕴涵了整体思想。

三、巩固方法,提高能力

请大家帮帮忙,挑一挑,拣一拣,下列一元二次方程中,哪些更适宜用直接开平方法来解呢?

⑴  x2=3              ⑵  3t2-t=0

⑶  3y2=27            ⑷  (y-1)2-4=0

⑸  (2x+3)2=6         ⑹  x2=36x

四、自主小结

今天我们学会了什么方法解一元二次方程?适合用开平方法解的一元二次方程有什么特点?

分式方程教案(篇9)

教学目标

(一)知识与技能jAb88.COM

理解分式方程与整式方程的区别,并掌握解分式方程的一般步骤。

(二)过程与方法

通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤,使学生进一步了解数学思想中的"转化"思想。

(三)情感、态度与价值观

培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

教学重点:探索如何将分式方程转化为整式方程并掌握解分式方程的一般步骤

教学难点 :探索分式方程产生增根的原因。

教学过程

一.创设情境,导入新课:

为帮助四川受灾的人们重建家园,某中学号召同学们自愿捐款。已知第一次捐款总额为20xx元,第二次捐款总额为2150元,第二次捐款人数比第一次多15人,而且两次人均捐款额恰好相等。

根据以上信息你能分别求出两次捐款的人数吗?

若设第一次捐款人数为X人,第二次捐款人数为 ( ) 人。

根据相等关系列方程为( )。

这个方程的分母中含有未知数,与以前学过的方程不同,这就是我们这节课要学习的分式方程。(板书课题)

二.新课学习:

(一).分式方程的定义:

分母中含有未知数的方程叫做分式方程

以前学过的像一元一次方程、二元一次方程等这类分母中不含有未知数的方程叫整式方程

反馈练习

(二).探索分式方程的解法

1.回顾整式方程的解法

解方程(解上面练习中的第三题)

师生共同回顾:解整式方程的步骤

(1)去分母,(2)去括号, (3)移项, (4)合并同类项, (5)化未知x的系数为1

2.如何解分式方程呢?

(学生尝试完成,然后集体补充步骤)

解方程:20xx∕X=2150/X+15

解:方程两边同时乘以X(X+15),得

20xx(X+15)=2150X

解这个整式方程,得

x=200

则200+15=215

检验:把x=200代入原方程,

因为左边=10 右边=10

所以左边=右边

所以x=200是原方程的解。

3.归纳解分式方程的步骤

一是去分母,二是解整式方程,三是检验

4.例题解方程:

(生独立完成,师指导)

分式方程的增根:不适合原方程的整式方程的根,叫原方程的增根.

师:解分式方程必须进行检验!

[师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?

[生]最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去。

三.应用升华

四.小结

本节课我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可,我明白了分式方程转化为整式方程为什么会产生增根。

五.布置作业:

本小节课时作业

教学反思

1. 解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母

2.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。

分式方程教案(篇10)

各位领导、各位老师:

大家好!

今天我说课的内容是人教八年级数学下册第十六章《分式》第三节第一课时——分式方程.下面我分说教材、说学情、说教法学法、教学过程、教学效果预想五个方面谈谈我对本节课的看法.

一、说教材

1、教材的地位和作用

可化为一元一次方程的分式方程是在学生已熟练地掌握了一元一次方程的解法、分式四则运算等有关知识的基础进行学习的.它既可看成是分式有关知识在解方程中的应用;也可看成是进一步学习研究其它分式方程的基础(可化为一元二次方程的分式方程),因此它有着承前启后的作用.同时学习了分式方程后也为解决实际问题拓宽了路子.

2、教学目标:

根据教材的地位、作用,考虑到学生已有的认知结构心理特征,本着学习知识,培养能力,进行教育,养成好的学习习惯的原则,我确定了如下教学目标:

知识和技能目标:

①、理解分式方程的概念、会解分式方程.

②、掌握解分式方程的验根方法.

过程和方法目标:

经历“实际问题—分式方程—整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.

情感、态度和价值观目标:

①、培养学生乐于探究、合作学习的好习惯.

②、体会探索发现的乐趣,增强学习数学的自信心.

3、教学重点、教学难点

本着新课程标准,在钻研教材的基础上,我确定本节课的重点、难点为:

教学重点:分式方程的解法

教学难点:解分式方程过程中产生增根的原因及如何验根.

二、学情分析

学生是在前面学习分式的意义、分式的混合运算和熟练解一元一次方程的基础上学习本节内容的,同时八年级学生具有丰富的想象力、好奇心和好胜心理.容易开发他们的主观能动性.但对于解分式方程过程中会出现增根,部分同学理解起来较为困难,因此在教学过程中应重点强调如何把分式方程转化为整式方程和解分式方程过程中产生增根的原因及如何验根.

三、教法学法

1、说教法

常言道:教必有法,教无定法.本节内容从实际问题出发引了出分式方程的概念,介绍分式方程的求解方法.再加上数学学科的特点,所以本节课充分利用“教学案”、采用了启发式、引导式教学方法.特别注重"精讲多练 ",真正体现以学生为主体.上新课时采用了启发、引导式的同时,针对学生的回答所出现的一些问题给出及时的纠正,在上课做练习时,除了让尽可能多的学生板演以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决.

2、说学法

“授人以鱼,不如授人以渔”.本节课里我主要指导学生采用了自主探索、合作交流、自我反思的学习方法,使学生积极主动得参与到教学过程,通过合作交流,激发学生的学习兴趣,体现探索的快乐,使学生的主体地位得到充分的发挥.

四、说教学过程

1、回顾旧知

师生在和谐的气愤之下共同回忆以下内容:

(1)大家还记得我们以前学过什么方程吗?

(2)你会解一元一次方程吗?例如:

(3)解二元一次方程组的主要思想是什么?

设计意图:通过以上三个问题让学生投入到方程的世界,也为学生能够自己通过知识的迁移突破本节课的重点做一个铺垫.

2、创设情景、导入新课

出示引言中的问题:

一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?

师生活动:教师提出问题,学生依照第26页的分析,完成填空,根据“两次航行所用时间相等”这一等量关系列出方程.

设计意图:先通过本章引言中的一个行程问题,引导学生从分析入手,列出含未知数的式子表示有关的量,并进一步根据相等关系列出方程,为探索分式方程及分式方程的解法作准备.

3、小组合作、探究新知

(1)方程 与以前所学的方程有何不同?什么叫分式方程?

师生活动:教师提出问题,学生思考、议论后在全班交流.

学生归纳出:该方程的特征是分母中含有未知数.

设计意图:通过观察、比较,培养学生的观察问题和语言表达能力.

(2)如何解分式方程?

师生活动:鼓励学生寻求解决问题的办法,引导学生将分式方程转化为整式方程,学生在解刚才的一元一次方程的基础上自然会想到“去分母”来实现这种转变,求出方程的解,并要求学生验根.

设计意图:怎样解分式方程,这是本节的核心问题,也是本节课的重点,本次活动中用“转化”和“类比”的思想,把待解决的问题,通过转化,化归到已经解决或比较容易的问题中去,最终使问题得到解决.从而突破本节课的重点.

(3)解分式方程 :

(4)思考:

①上面两个方程中,为什么第一个分式方程去分母后所得整式方程的解就是它的解,而第二个不是呢?

②解分式方程时,去分母后所得整式方程的解是原分式方程的解,也可能不是,这是为什么呢?

③如何进行检验呢?有更简单的方法吗?

师生活动:学生独立解决问题,然后提出自己的看法在小组讨论,在学生讨论期间,教师应参与到学生的数学活动中,鼓励学生勇于探索、实践,解释产生这一现象的原因,并懂得在解分式方程时一定要进行验根.

设计意图:这一环节是本节课的难点,此时我设置了一个问题串,降低难度,并且此环节的内容可以说是适度.考虑学生的认知水平,关于增根的过多知识点我大胆舍去,只把目标定于了解解分式方程产生增根的原因和掌握验根的方法,再者通过引导学生进行比较、探究,并进行充分的讨论,最后统一认识,用分式的意义及分式的基本性质解释分式方程可能无解的原因,以及验根的方法,从而突破本节课的难点.

(4)精析例题

出示P28例题

师生活动:教师出示题目,学生独立完成,指名2名学生板演.

设计意图:①例题的作用可以培养学生学以致用的能力、严格的解题规范格式,从而养成良好的学习习惯.

②评价时采用生生评价的方式可以提高学生学习的兴趣,活跃课堂气氛,培养学生严谨的数学思维习惯.

(5)归纳总结解分式方程的步骤

师生活动:学生总结,老师补充点评

设计意图:让学生明确解题步骤,有一个清晰的解题思路,并强调转化思想.

4、练习巩固、深化提高

P29的练习

师生活动:教师出示题目,学生独立完成,指4名学生板演,教师强调步骤,特别是检验.

设计意图:及时巩固所学知识,了解学生学习效果,增强学生应用知识的能力.

5、总结反思、纳入系统

(1)通过本节课的学习,

你学会了哪些知识?

(2)通过本节课的学习,

你想告诉同学们注意什么?

(3)通过本节课的学习,

你获得了哪些学习数学的方法?

师生活动:学生个体小结,小组归纳,集体补充.

设计意图:①让学生以反思的形式回忆本节的学习内容与方法,更有利于学生加深对所学知识的印象,有利于培养学生养成良好的数学学习习惯.

②注重学生间的相互合作,培养学生的合作意识、竞争意识,养成“爱提问、敢质疑、富联想、善总结”的好习惯.

6、作业布置

(1)、必做题:P32第1题

(2)、选做题:P32第2题.

设计意图:考虑学生的个别差异,分层次布置作业,让基础差的学生能够吃饱,基础好的学生吃好,使每位学生都感到学有所获.

7、板书设计

16.3分式方程 三、创设情境 解分式方程二 例一

一、回顾旧知 四、探究新知

二、分式方程概念 解分式方程一 归纳 例二

设计意图:清晰明朗,利于两个分式方程的对比从而分析出现增根的原因.

五、效果预想

数学课程标准指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,而动手实践、自主探究与合作交流是学生学习数学的重要方式.本着这一理念,在本课的教学过程中,我严格遵循由感性到理性,将数学知识始终与现实生活中学生熟悉的实际问题相结合,不断提高他们应用数学方法分析问题、解决问题的能力.在重视课本基础知识的基础上,适当进行拓展延伸,培养学生的创新意识,同时根据新课程标准的评价理念,在教学过程中,不仅能够注重学生的参与意识,而且注重学生对待学习的态度是否积极.课堂中也尽量给学生更多的空间、更多展示自我的机会,让学生在和谐的氛围中认识自我、找到自信、体验成功的乐趣.使学生的主体地位得到充分的体现,使教学过程成为一个在发现在创造的认知过程.

以上就是我对本节课的设想,请各位老师提出宝贵意见.

分式方程教案(篇11)

教科书第12~13页,“回顾与整理”、“练习与应用”第1~4题。

1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

一、回顾与整理

1、谈话引入。本单元我们学习了哪些内容?你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?在小组中互相说说。

2、组织讨论。

(1)出示讨论题。

(2)小组交流,巡视指导。

(3)汇报交流。

你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?

3、小结。同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

二、练习与应用

1、完成第1题。

(1)独立完成计算。

(2)汇报与展示,说说错误的原因及改正的方法。

2、完成第2题。

(1)学生独立完成。

(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)

3、完成第3题。

(1)列出方程,不解答。

(2)你是怎样列的?怎么想的?大家同意吗?

(3)完成计算。

4、完成第4题。单价、数量、总价之间有怎样的数量关系?指出:抓住基本关系列方程,y也可以表示未知数。

三、课堂总结

通过回顾与整理,大家共同复习了有关方程的知识,你还有什么疑问吗?

分式方程教案(篇12)

经历从实际问题中建立分式方程模型的过程,从分析分式方程的特点入手,引出解分式方程的基本思路。通过解分式方程讨论得出分式方程验根的必要性。通过例题巩固分式方程的.解法,总结出解分式方程的步骤。

1.通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义。

2.通过观察、思考,归纳分式方程的概念。

3.解分式方程的一般步骤。

1.通过具体例子,独立探索方程的解法,经历和体会解分式方程的必要步骤。

2.进一步体会数学思想中的转化思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径。

1.养成自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

2.运用转化的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信心。

1.解分式方程的一般步骤,熟练掌握分式方程的解法。

1.什么叫方程?什么叫方程的解?

使方程两边相等的未知数的值,叫做方程的解。

以上就是《分式方程教案十二篇》的全部内容,想了解更多内容,请点击分式方程教案查看或关注本网站内容更新,感谢您的关注!