一元二次方程高中教案
发表时间:2020-09-08解一元一次方程第二课时导学案。
学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,大家应该开始写教案课件了。认真做好教案课件的工作计划,才能完成制定的工作目标!你们知道多少范文适合教案课件?小编特地为大家精心收集和整理了“解一元一次方程第二课时导学案”,但愿对您的学习工作带来帮助。
深圳市龙华新区万安学校导学案
上课班级七(1)课题解一元一次方程(2)
主备教师任思安副备教师李浩伦上课时间2014年11月28日星期五
教学目标知识与能力1、学习含有括号的一元一次方程的解法.
2、进一步体会解方程是运用方程解决实际问题重要环节.
过程与方法通过观察、思考,使学生探索方程的解法,经历和体验用多种方法解方程,提高解决问题的能力.
情感态度与价值观通过对与学生生活贴近的数学问题的探讨,使学生在动手、独立思考、的过程中,进一步体会方程模型的作用,体会学习数学的实用性.
教学重点熟悉求解一元一次方程
教学难点正确应用去括号法则
教具准备多媒体课件
教法运用讨论法、演示法、练习法
学法指导探究学习法、合作学习法
基本环节教师授课过程(教师活动)学生学习过程(学生活动)教学意图
导入
新课
(检查预习)设置问题串,请同学回答
1、上课时解一元一次方程的题型有什么特点?
2、本节课的一元一次方程有什么特点?与上课时的题型差异何在?
学生回答教师问题。一元一次方程的特点是只含有一个未知数并且未知数的指数是1的方程。复习旧知识引入新课。
初
学
新
课
(初步探究)解方程:x-6(2x-1)=4
解:去括号,得
x-12x+6=4
移项,得x–12x=4-6
合并同类项,得-11x=-2
方程两边同除以-11,得x=2/11h
学生回答去括号得x-12x+6=4
学生通过教师例题示范是学生初步掌握去括号的方法。学习含有括号的一元一次方程的解法.
正确应用去括号法则。
引
导
释
疑
(合作学习)解方程-2(X-1)=4
解:去括号,得-2x+2=4
移项,得-2x=2
方程量变同除以-2得x=-1wWw.jab88.COM
教师提出问题:根据以上两题大家能否总结出去括号的法则?
学生总结出去括号法则:括号前面是正号时,去掉括号的时候括号里面的每一项都不变号;括号前面是负号时,去掉括号时括号里面的每一项都要变号。通过两道例题的讲解使学生明白正确应用去括号法则。
基本环节教师授课过程(教师活动)学生学习过程(学生活动)教学意图
拓
展
学
习
(深入探究)小林到超市,准备买1听果奶和4听可乐,小明告诉他一听可乐比一听果奶贵5角钱,小林给了营业员20元钱,找回了3元,大家帮助小林算算一听果奶,一听可乐各是多少钱?
解:设1听果奶x元,那么1听可乐(x+0.5)元
由题意得方程
4(x+0.5)+x=20-3
解之得:x=3
所以:x+0.5=3+0.5=3.5
答:一听果奶3元,一听可乐3.5元。学生根据实际问题先找出该问题中的等量关系,然后根据等量关系列出方程4(x+0.5)+x=20-3
最后解方程得x=3.5通过对与学生生活贴近的数学问题的探讨,使学生在动手、独立思考、的过程中,进一步体会方程模型的作用,体会学习数学的实用性。
当
堂
检
测
(学习诊断)1、已知方程2(2x+1)=3(x+2)-(x+6)去括号得?
2、已知代数式12-3(9-x)与代数式5(x-4)的值相等,求x的值。
3、当y取何值时,2(y+4)的值比5(2y-7)大3?学生积极回答问题,在动手的动脑的过程中学生都能独立解决问题。使学生在动手、独立思考、的过程中,进一步体会方程模型的作用,体会学习数学的实用性.熟悉求解一元一次方程
课
堂
小
结
(梳理归纳)师生共同总结本节课的收获。学生积极发言说出自己本节课的收获。学生的课堂小结看似简单,但是却反映学生知识内化的重要方面,这个过程的实现,通过学生的书面表达完成,更能体现了学生的综合能力.
作业布置(检查反馈)板书设计(突出重点)
完成新概念。解一元一次方程(2)
1、例题
2、例题
3、去括号法则
教学反思这些环节的设置,对系统地、全面地培养学生捕捉信息、分析信息和处理信息的能力有非常大的作用,对学生课上反思、课上内化知识的能力提高.作为教师,应该长期坚持与学生在这方面切磋、探索,把课堂充分还给学生,充分尊重学生的个性思维,引导学生构建自己的认知结构,并给予适时调控和指导.
精选阅读
解一元一次方程(1)
老师在新授课程时,一般会准备教案课件,大家应该开始写教案课件了。对教案课件的工作进行一个详细的计划,可以更好完成工作任务!你们会写适合教案课件的范文吗?下面是小编为大家整理的“解一元一次方程(1)”,仅供您在工作和学习中参考。
课题
解一元一次方程(1)
课型
新授课
教学目标
1.了解与一元一次方程有关的概念,掌握等式的基本性质,能运用等式的基本性质解简单的一元一次方程.2.经历数值代入计算的过程,领会方程的解和解方程的意义.知道求方程的解就是将方程变形为x=a的形式.3.强调检验的重要性,养成检验反思的好习惯.
教学重点
归纳等式的性质;利用性质解方程.
教学难点
比较方程的解和解方程的异同;
教具准备
天平,砝码,物体
教学过程
教学内容
教师活动内容、方式
学生活动方式
设计意图
一.创设情境,引入新课:
1.做一做:填表:
x
1
2
3
4
5
2x+1
2.根据表格回答问题:
(1)当x=时,方程2x+1=5两边相等。
(2)你知道能使方程2x+1=5两边相等的x是多少吗?
我们把能使方程左右两边相等的未知数的值叫做方程的解,如x=5是方程2x+1=5的解,求方程的解的过程叫做解方程。求方程2x+1=5中x=5的过程就是解方程
3.试一试:分别把0、1、2、3、4代入方程,哪个值能使方程两边相等。
(1)2x-1=5(2)3x-2=4x-3
你知道方程2x-1=5和3x-2=4x-3吗?
4.那么我们怎样求方程的解呢?引入课题。
二.自主探究,合作讨论:.
1.用天平做演示实验,让学生探索得出:如果我们在两边盘内同时添上(或取下)相同质量的物体,可以看到天平依然平衡;如果我们将两边盘内物体的质量同时扩大到原来相同的倍数(或同时缩小到原来的几分之一),也会看到天平依然平衡,
2.由实验联想到等式的几种变形.
学生填表
学生练习巩固方程的解的概念
采用枚举这一合情推理的方法找出满足方程的未知数的值,得出方程的解和解方程的概念.通过实验提高学生的感性认识
教师活动内容、方式
学生活动方式
设计意图⑴2x+1=5→2x=5-1,3x=3+2x→3x-2x=3;⑵2x=4→x=4÷2.,=2→x=2×3
3.学生归纳等式的性质:
性质1:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;
性质2:等式两边都乘以(或除以)同一个数(除数不为零),所得结果仍是等式.
三.数学运用:
1..出示例1在括号内填上适当的数或整式,使所得结果仍是等式。
⑴如果3x=-x+4,那么3x+()=4
⑵如果x-1=x,那么()(x-1)=x
2.思考:比较方程的解和解方程的异同?
(方程的解是使方程成立的未知数的值;解方程是求方程解的过程,是一个等价变形过程,而求方程的解就是将方程变形为x=a的形式)
出示例2.解下列方程:(1)x+5=2;(2)-2x=4.
引导学生自己尝试运用等式的基本性质解方程,说清楚每一步的依据,交流解题方法.教师提供正确的解题格式.强调检验方法及检验的必要性.
3.思维拓展:
课本P96练一练2.
四.巩固与练习:课本P96练一练1。
五.回顾反思:
(1)小学阶段利用加减法、乘除法互为逆运算的方法解方程,学生印象深刻,教学时鼓励学生运用等式的性质来求,但不强求.
(2)解方程后,虽不要书面检验,但要求学生培养检验反思的好习惯.
(3)注意等式的性质中的“都”和“同”:“都”表示两边均要变形,“同”表示两边要作一样的变形.
五.作业(见作业纸)逐步引导启发学生归纳等式的性质
学生说出变形的依据
交流解题方法.
师生共同小结
等式的性质比较抽象,教学时不必在理论上作过多的展开,
3.3解一元一次方程
每个老师在上课前需要规划好教案课件,大家在细心筹备教案课件中。只有写好教案课件计划,才能促进我们的工作进一步发展!你们到底知道多少优秀的教案课件呢?以下是小编为大家收集的“3.3解一元一次方程”但愿对您的学习工作带来帮助。
3.3解一元一次方程
一、学习目标
1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。
2.通过讨论、探索解一元一次方程的一般步骤和容易产生的问题,培养学生观察、归纳和概括能力。
二、重点:解一元一次方程中去分母的方法;培养学生自己发现问题、解决问题的能力。
难点:去分母法则的正确运用。
三、学习过程:(一)、复习导入
1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)
2、回顾:解一元一次方程的一般步骤及每一步的依据
3、(只列不解)为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树_____棵。
(二)学生自学p99--100
根据等式性质,方程两边同乘以,得
即得不含分母的方程:4x-3x=960
X=960
像这样在方程两边同时乘以,去掉分数的分母的变形过程叫做。依据是
(三)例题:
例1解方程:
解:去分母,得依据
去括号,得依据
移项,得依据
合并同类项,得依据
系数化为1,得依据
注意:1)、分数线具有
2)、不含分母的项也要乘以(即不要漏乘)
讨论:小明是个“小马虎”下面是他做的题目,我们看看对不对?如果不对,请帮他改正。
(1)方程去分母,得
(2)方程去分母,得
(3)方程去分母,得
(4)方程去分母,得
通过这几节课的学习,你能归纳小结一下解一元一次方程的一般步骤吗?
解一元一次方程的一般步骤是:
1.依据;
2.依据;
3.依据;
4.化成的形式;依据;
5.两边同除以未知数的系数,得到方程的解;依据;
练一练:见P101练习解下列方程:(1)(2)
(3)思考:如何求方程
小明的解法:解:去百分号,得同学看看有没有异议?
四、小结:谈谈这节课有什么收获以及解带有分母的一元一次方程要注意的一些问题。
五、课堂检测:
1、去分母时,在方程的左右两边同时乘以各个分母的_____________,从而去掉分母,去分母时,每一项都要乘,不要漏乘,特别是不含分母的项,注意含分母的项约去分母分子必须加括号,由于分数线具有
2、解方程(1)2x+5=5x-7(2)4-3(2-x)=5x(3)=3x-1
(4)=+1(5)
六、作业P102:3,10.
一元一次方程导学案
老师工作中的一部分是写教案课件,大家应该要写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们到底知道多少优秀的教案课件呢?小编特地为您收集整理“一元一次方程导学案”,欢迎阅读,希望您能够喜欢并分享!
丽星中学八年级数学导学案设计小组负责人:小组长:年月日
预习笔记课题:从实际问题到方程可以用尝试、检验的方法找出方程②的解,即只要将x=1,2,3,4,5,…代入方程②的左右两边,看哪个数能使两边的值相等.
这样得到x=是方程的解.
【三】分组合作
1、练习:检验下列各括号内的数是不是它前面方程的解
(1)x-3(x+2)=6+x(x=3,x=-4)
(2)44x+64=328(x=5,x=6)
2、根据题意设未知数,并列出方程(不必求解):
(1)、某班原分成两个小组活动,第一组26人,第二组22人,根据学校活动器材的数量,要将第一组人数调整为第二组人数的一半,应从第一组调多少人到第二组去?
(2)、小明的爸爸三年前为小明存了一份3000元的教育储蓄.今年到期时取出,得到的本利和为3243元.请你帮小明算一算这种储蓄的年利率.
3、检验下列方程后面大括号内所列各数是否为相应方程的解:
(2)2(y-2)-9(1-y)=3(4y-1),{-10,10}.
4、小赵去商店买练习本,回来后问同学:“店主告诉我,如果多买一些就给我八折优惠.我就买了20本,结果便宜了1.60元.你猜原来每本价格是多少?”你能列出方程吗?
预习笔记
学习目标1、使学生会列一元一次方程
2、会判断一个数是不是某个方程的解
重点:会列一元一次方程解决一些简单的应用题
难点:列一元一次方程
思考题:
5x-1=2x+7(x=?)
如果未知数可能取到的数值较多,或
者不一定是整数,该从何试起?如果
试验根本无法入手又该怎么办?
【一】预习交流。
1、列出下列代数式
(1)一本笔记本1.2元,x本需要________钱。
(2)一支铅笔a元,一支钢笔b元,小强买2支铅笔和
3支钢笔一共需要____________元钱。
(3)长方形的宽为a,长比宽长3,则该长方形的面积为___________.
(4)x辆44座的汽车加上2辆32座的汽车最多可以乘坐________人。
2、引入(回顾小学学习的列方程解应用题)
一本笔记本1.2元,小红有6元钱,那么她最多能买到几本这样的笔记本?
【二】明确目标。
1、某校初一级师生共328人,乘车外出旅游,已有2辆校车可乘坐64人,如果租用客车,每辆可乘44人,那么还要租多少辆客车?
分析:设需租用客车辆,共可乘坐人,
加上乘坐校车的64人,就是全体328人.可得
你会解这个方程吗?试一试
2、在2.课外活动中,数学老师发现同学们的年龄大多是13岁.就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
设x年后同学的年龄是老师年龄的,而x年后同学的年龄是岁,
老师的年龄是(45+x)岁,可得
.
如何求方程②的解.
②
预习笔记附页预习笔记
【三】展现提升。
一选择
1、下列方程解为12的是()
A3x+2B2x+1=0C12x=2D12x=14
2、下列说法不正确的个数是()
①等式都是方程;②方程都是等式;③不是方程的就不是等式;④未知数的值就是方程的解
A3个B2个C1个D0个
3、x=-2是方程x+a=5的解,则a的值是()
A7B1C-1D-7
4、下列式子中:①3x+5y=0②x=0③3x2-2x④5x7⑤x2+1=4⑥x5+2=3x是方程的有()个
A1B2C3D4
6、下列说法正确的是()
Ax=-6是x-6的解Bx=5是3x+15的解
Cx=-1是-x4=4的解Dx=0.04是25x=1的解
7、在代数式x3-ax中,当x=-2时值为4,则a的值为()
A6B-6C2D-2
8、下列各式方程后面括号里的数是该方程的解的是()
A3x+4=-13{-4}B23x-1=5{9}
C6-2x=113{-1}D5-y=-16{23}
二填空
1、数值-1,-2,0,1,2中,方程3x+3=x+1的解是.
2、3个连续奇数的和是21,设最大的奇数为y,则可列方程为.
3、根据下列条件列方程:
(1)某数的3倍比它的2倍小1,设某数为x,则可列出方程.
(2)x与3的差的2倍等于x的13:.
(3)某仓库存放面粉x千克,运出25%后,还剩余300千克:
4、当x=2时,代数式ax-2的值是4,那么当x=-2时,这个代数式的值为.
5、甲班有32人,乙班有28人,如果要使甲班人数是乙班人数的2倍,那么需要从乙班调多少人到甲班?若设从乙班抽调x人到甲班,则可列方程为.
6、任写一个以x=2为解的方程,可以是.
三、根据题意,只列方程,不必求解
(1)某校初一年级组织学生去科技馆参观,共租用9辆大客车,每辆车有座位60个,老师共去20人,若该年级的男生比女生多30人,刚好每人都有座位,则该校女生有多少人?
(2)某工厂三天共运出货物60箱,第一天运出20箱,第二天运出第一天的12,问第三天运出多少箱?