88教案网

你的位置: 教案 > 初中教案 > 导航 > 数据的收集

小学数据教案

发表时间:2020-12-24

数据的收集。

(一)教学目标:

1)知识目标:让学生会采取合理的方法收集数据,并能对数据加工、整理。进一步了解、掌握抽样调查的优缺点。

2)能力目标:初步经历数据的收集、加工与整理过程,发展学生的统计意识和数据处理的能力。通过调查过程,培养学生的探索精神,分析问题、处理问题的能力。

3)情感目标:通过对真实的素材的调查培养学生的求真的科学态度。通过学生的交流与合作,培养大家的团结合作精神。

(二)重点、难点:

重点是怎样采取合理的方法调查收集数据。

难点是抽样调查的时候如何确定调查对象和范围,使收集的数据具有代表性和广泛性。

(三)教具准备:

自制课件备用。

(四)教学过程:

一.引入:

1。让学生欣赏音乐《发如雪》

问:你能写出歌名吗?让学生在同学和听课老师中分别开展调查,把调查数据在课件上展示。

学生调查表老师调查表

回答情况

人数

百分比

答对

答错

回答情况

人数

百分比

答对

答错

2。在全班学生中开展调查,每个同学每年去肯德基(或麦当劳)消费的次数。并把调查结果和老师在课前在郊区中学的同年级的学生中的调查结果做对比。

学生调查表某郊区中学八年级某班学生调查表

一年中消费的次数

人数

从来不去

1—6次

6次以上

一年中消费的次数

人数

从来不去

37

1—6次

11

6次以上

2

问题:

1)同样的调查,为什么有不同的统计结果?

答:调查的对象不同,也就是我们抽取的样本不同,他们的情况就有所不同。

2)上面两个调查结果能否反映在全体师生中调查同样问题的情况?

答:不能,因为他们不具有代表性和广泛性.

3)下面的表格能反映全国所有的八年级学生进入肯德基(或麦当劳)消费的情况吗?

4)简单分析一下以上两个问题的原因。

二.新课:

为了了解你所在地区的老年人的健康状况,你准备怎样收集数据?

学生答:抽样调查.

下面分别是小明和小颖的调查结果:

小明在公园调查了1000名老年人,他们一年中生病的次数如图:

小颖在医院调查了1000名老年人,他们一年中生病的次数如图:

提问:比较一下两个人的数据的差别,是什么原因造成的?

下面是小华调查了10名老年邻居,他们一年中生病的次数在下表:

你同意他的做法吗?

学生:他调查的人数太少,不能用来推断全地区的老年人的健康状况.

你对他们三个的做法有什么看法?说说你的理由.

(让学生讨论交流,给出自己的理由,老师给予鼓励.)

结论:上面三个同学的做法都没有注意到抽样是样本的代表性和广泛性.

那么我们在抽样的时候应该注意什么?样本的代表性和广泛性你怎么理解?

(让学生继续讨论交流,老师引导)

议一议:

为了了解你所在地区的老年人的健康状况,你认为该怎样收集数据?

(分组讨论,合作完成,老师引导学生从调查目的,总体,个体,样本几个方面来思考,让学生自己想出抽样的方法.)

如果没有讨论出类似的方案,就提问:

小华利用派出所的户籍网随即调查了该地区的10%的老年人,发现他们一年中平均生病3次左右,你认为他的调查方式如何?

想一想:(学生边讨论边让他们小结)

你能举例说明什么时候应该采用抽样调查的方式收集数据吗?(让学生能说出抽样调查的优点和缺点.)

就你举的例子说说抽样时应该注意什么?

做一做:

在你们举的例子中选一个例子,设计一个方案来调查它.

在上面的过程中,如果有人提出抽样只要样本的数量大就能保证结果的准确这种观点,就给出下面的阅读材料:(或者作为欣赏)

大样本一定能保证调查结论的准确吗?

1936年,美国文学文摘杂志根据1000万户电话用户和从该杂志订户所收回的意见,断言兰登将以370:161的优势在总统选举中击败罗斯福,但结果是罗斯福当选了,文学文摘大丢面子,原因和在呢?

原来,1936年能装上电话或订阅文学文摘的人,在经济上都相对富裕,而收入不太高的大多数选民选择了罗斯福.文学文摘的教训表明,抽样调查时,既要关注样本的大小,又要关注样本的代表性.

作业:

1.为了完成任务,你认为采用什么样的调查方式更合适?

(1)了解你们班的同学周末时间是如何安排的;

(2)了解一批圆珠笔芯的使用寿命;

(3)了解我过八年级学生的视力情况.

2.电视台需要在本市调查节目的收视率,每个看电视的人都要被问到吗?对一所中学学生的调查结果能否作为该节目的收视率?你认为对不同的地区,不同年龄,不同背景的人所做的调查结果会一样吗?

相关知识

数据的收集与处理


第五章数据的收集与处理
——回顾与思考
教学目标
(一)知识认知要求
1.回顾收集数据的方式.
2.回顾收集数据时,如何保证样本的代表性.
3.回顾频率、频数的概念及计算方法.
4.回顾刻画数据波动的统计量:极差、方差、标准差的概念及计算公式.
5.能利用计算器或计算机求一组数据的算术平均数.
(二)能力训练要求
1.熟练掌握本章的知识网络结构.
2.经历数据的收集与处理的过程,发展初步的统计意识和数据处理能力.
3.经历调查、统计等活动,在活动中发展学生解决问题的能力.
(三)情感与价值观要求
1.通过对本章内容的回顾与思考,发展学生用数学的意识.
2.在活动中培养学生团队精神.
教学重点
1.建立本章的知识框架图.
2.体会收集数据的方式,保证样本的代表性,频率、频数及刻画数据离散程度的统计量在实际情境中的意义和应用.
教学难点
收集数据的方式、抽样时保证样本的代表性、频率、频数、刻画数据离散程度的统计量在不同情境中的应用.
教学过程
一、导入新课
本章的内容已全部学完.现在如何让你调查一个情况.并且根据你获得数据,分析整理,然后写出调查报告,我想大家现在心里应该有数.
例如,我们要调查一下“上网吧的人的年龄”这一情况,我们应如何操作?
先选择调查方式,当然这个调查应采用抽样调查的方式,因为我们不可能调查到所有上网吧的人,何况也没有必要.
同学们感兴趣的话,下去以后可以以小组为单位,选择自己感兴趣的事情做调查,然后再作统计分析,然后把调查结果汇报上来,我们可以比一比,哪一个组表现最好?
二、讲授新课
1.举例说明收集数据的方式主要有哪几种类型.
2.抽样调查时,如何保证样本的代表性?举例说明.
3.举出与频数、频率有关的几个生活实例?
4.刻画数据波动的统计量有哪些?它们有什么作用?举例说明.
针对上面的几个问题,同学们先独立思考,然后可在小组内交流你的想法,然后我们每组选出代表来回答.
(教师可参与到学生的讨论中,发现同学们前面知识掌握不好的地方,及时补上).
收集数据的方式有两种类型:普查和抽样调查.
例如:调查我校八年级同学每天做家庭作业的时间,我们就可以用普查的形式.
在这次调查中,总体:我校八年级全体学生每天做家庭作业的时间;个体:我校八年级每个学生每天做家庭作业的时间.
用普查的方式可以直接获得总体情况.但有时总体中个体数目太多,普查的工作量较大;有时受客观条件的限制,无法对所有个体进行普查;有时调查具有破坏性,不允许普查,此时可用抽样调查.
例如把上面问题改成“调查全国八年级同学每天做家庭作业的时间”,由于个体数目太多,普查的工作量也较大,此时就采取抽样调查,从总体中抽取一个样本,通过样本的特征数字来估计总体,例如平均数、中位数、众数、极差、方差等.
上面我们回顾了为了了解某种情况而采取的调查方式:普查和抽样调查,但抽样调查必须保证数据具有代表性,因为只有这样,你抽取的样本才能体现出总体的情况,不然,就会失去可靠性和准确性.
例如对我们班里某门学科的成绩情况,有时不仅知道平均成绩,还要知道90分以上占多少,80到90分之间占多少,……,不及格的占多少等,这时,我们只要看一下每个学生的成绩落在哪一个分数段,落在这个分数段的分数有几个,表明数据落在这个小组的频数就是多少,数据落在这个小组的频率就是频数与数据总个数的商.
刻画数据波动的统计量有极差、方差、标准差.它们是用来描述一组数据的稳定性的.一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.
例如:某农科所在8个试验点,对甲、乙两种玉米进行对比试验,这两种玉米在各试验点的亩产量如下(单位:千克)
甲:450460450430450460440460
乙:440470460440430450470440
在这个试验点甲、乙两种玉米哪一种产量比较稳定?
我们可以算极差.甲种玉米极差为460-430=30千克;乙种玉米极差为470-430=40千克.所以甲种玉米较稳定.
还可以用方差来比较哪一种玉米稳定.
s甲2=100,s乙2=200.
s甲2<s乙2,所以甲种玉米的产量较稳定.
三.建立知识框架图
通过刚才的几个问题回顾思考了我们这一章的重点内容,下面构建本章的知识结构图.
四、随堂练习
例1一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个大商场同类产品销量的40%.由此在广告中宣传,他们的产品在国内同类产品的销售量占40%.请你根据所学的统计知识,判断该宣传中的数据是否可靠:________,理由是________.
分析:这是一道判断说理型题,它要求借助于统计知识,作出科学的判断,同时运用统计原理给予准确的解释.因此,该电脑生产厂家凭借挑选某城市经销本产品情况,断然说他们的产品在国内同类产品的销量占40%,宣传中的数据是不可靠的,其理由有二:第一,所取样本容量太小;第二,样本抽取缺乏代表性和广泛性.
例2在举国上下众志成城抗击“非典”的斗争中,疫情变化牵动着全国人民的心.请根据下面的疫情统计图表回答问题:
(1)图10是5月11日至5月29日全国疫情每天新增数据统计走势图,观察后回答:
①每天新增确诊病例与新增疑似病例人数之和超过100人的天数共有__________天;
②在本题的统计中,新增确诊病例的人数的中位数是___________;
③本题在对新增确诊病例的统计中,样本是__________,样本容量是__________.
(2)下表是我国一段时间内全国确诊病例每天新增的人数与天数的频率统计表.(按人数分组)
①100人以下的分组组距是________;
②填写本统计表中未完成的空格;
③在统计的这段时期中,每天新增确诊
病例人数在80人以下的天数共有_________天.
解:(1)①7②26③5月11日至29日每天新增确诊病例人数19
(2)①10人②11400.1250.325③25
五.课时小结
这节课我们通过回顾与思考这一章的重点内容,共同建立的知识框架图,并进一步用统计的思想和知识解决问题,作出决策.
六.课后作业:
七.活动与探究
从鱼塘捕得同时放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1.5,1.6,1.4,1.6,1.3,1.4,1.2,1.7,1.8(单位:千克).依此估计这240尾鱼的总质量大约是
A.300克B.360千克C.36千克D.30千克

数据的收集、整理与描述


老师工作中的一部分是写教案课件,大家应该要写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们到底知道多少优秀的教案课件呢?小编特地为您收集整理“数据的收集、整理与描述”,欢迎阅读,希望您能够喜欢并分享!

第十章数据的收集、整理与描述
本章小结
小结1本章概述
数据是对现实生活中被调查对象具体情况的反映,它是统计学中最基础的内容,对我们的实际行动有着重大的决策作用.本章知识来源于生活,又直接指导生活,教材通过调查学生对电视节目的喜爱情况,经历了全面调查的过程,探索了抽样调查的方法,在理解条形图、扇形图、折线图的基础上,掌握用直方图描述数据的步骤,最后探究了从数据谈节水的课题,感受到数据的作用,增强了节水意识.
小结2本章学习重难点
【本章重点】了解简单的收集、整理、描述和分析数据的全过程,通过实例理解频数的概念,了解频数分布的意义和作用,会列频数分布表,画频数分布直方图.
【本章难点】根据实际问题设计简单的调查表.
小结3中考透视
本章内容实际应用性特别强,中考试题中越来越多地考查了本章的题目,且分值也有上升的趋势.题目难度不是很大,一般以填空、选择形式为主,以解答题形式出现的情况也在逐步增多.主要考查点有:(1)会收集、整理数据,会选取合适的统计图表示不同的问题;
(2)能通过具体实际问题辨认总体、个体、样本三个基本概念;(3)会用样本估计总体;(4)能对数据给出简单的分析.分值占6~8分.

知识网络结构图
专题总结及应用
一、知识性专题
专题1普查与抽样调查的识别
【专题解读】普查是对总体中每个个体进行的调查,范围广、数据详细,而抽样调查范围有局限性,数据不全面.
例1下列调查中,哪些适合做普查?哪些适合做抽样调查?
(1)了解一批灯泡的使用寿命;
(2)了解2011年全国婴儿的出生率;
(3)新华书店为了做好开学课本的发行工作,需了解某市的学生数;
(4)某市公安局为了抓捕一名逃犯,对辖区内的旅馆进行住宿情况调查.
分析本题主要考查普查与抽样调查的识别.
解:(1)适合抽样调查.
(2)适合抽样调查.
(3)适合普查.
(4)适合普查.
【解题策略】不宜做普查的原因一般体现在:(1)总体中个体数目太大,工作量大;
(2)调查具有破坏性.
二、规律方法专题
专题2抽样调查适合何种情况
【专题解读】当受客观条件限制,无法对所有个体进行普查时,应进行抽样调查,例如,为了了解某城市一天的汽车进入量,我们无法准确把握住城市的每个出入口,无法进行普查,这时,只能采用抽样调查的方式进行调查.当调查具有破坏性、不允许普查时,可进行抽样调查,例如,灯泡使用寿命的调查,对一万件产品进行调查因为此调查具有破坏性,只能采取抽样调查,若采用普查,会损坏一万只灯泡,是不实际的.
例2下列抽样调查选取样本的方法是否合适?
(1)为调查江苏省的环境污染情况,调查了长江以南的南京市、常州市、苏州市、镇江市、无锡市的环境污染情况;
(2)从100名学生中,随机抽取2名学生,测量他们的身高来估算这100名学生的平均身高;
(3)从一批灯泡中随机抽取50个进行试验,估算这批灯泡的使用寿命;
(4)为了了解中央电视台第一套节目的收视率,对所有上网的家庭进行在线调查.
分析本题主要考查样本的合理选取.
解:(1)不合适.
(2)不合适.
(3)合适.
(4)不合适.
【解题策略】简单随机抽样调查是否合适,主要看是否满足:(1)样本具有代表性;
(2)样本容量足够大;(3)对每个个体都公平.
三、思想方法专题
专题3用样本估计总体思想
【专题解读】会根据数据反映的集中程度、离散程度的不同需要,选择合适的统计量;会根据统计结果作出合理的判断和预测.
例3某地区为筹备召开中学生运动会,指定要从某校八年级9个班中抽取48名女生组成花束队,要求队员的身高一致,现随机抽取10名八年级某班女生体检表(各班女生人数均超过20人),身高如下(单位:厘米):
165162158157162162154160167155
(1)求这10名学生的平均身高;
(2)该校能否按要求组成花束队?并说明理由.
分析本题主要考查用样本估计总体的思想.
解:(1)这10名学生的平均身高为=160.2(厘米).
(2)能.理由如下:由于样本中的162厘米出现的次数最多,从而可估计一个班级至少有6名女生的身高为162厘米.从而可估计全校身高为162厘米的女生人数为6×9=5448,所以该校能按要求组成花束队.
专题4数形结合思想
【专题解读】涉及有关统计图表的问题,需要从统计图表中准确提取信息,恰当地分析统计图表中数据的含义.
例42012年1月7日,第十届厦门国际马拉松赛将在鹭岛鸣枪开跑,如图l0-35所示的是本次全程马拉松、半程马拉松、10公里赛程、5公里赛程的各项参赛人数占全体参赛人数比例的扇形统计图.
(1)求参加全程马拉松赛的人数占全体参赛人数的百分比;
(2)已知参加10公里赛程的人数为7200人,求参加全程马拉松赛的人数.
分析本题综合考查从扇形统计图中获取信息的能力,可结合扇形统计图提供的信息及题意解答此题.
解:(1)参加全程马拉松赛的人数所占的百分比为l-34.4%-12.9%-35.5%=17.2%.
(2)全体参赛人数为7200÷34.4%≈20930(人).
参加全程马拉松赛的为20930×17.2%≈3600(人).
【解题策略】掌握扇形统计图的意义是解决本题的关键.
2011中考真题选
1.(2011江苏扬州,3,3分)下列调查中,适合用普查方式的是()
A.了解一批炮弹的杀伤半径B.了解扬州电视台《关注》栏目的收视率
C.了解长江中鱼的种类D.了解某班学生对“扬州精神”的知晓率
【答案】D
2.(2011四川重庆,5,4分)下列调查中,适宜采用抽样调查方式的是()
A.调查我市中学生每天体育锻炼的时间
B.调查某班学生对“五个重庆”的知晓率
C.调查一架“歼20”隐形战机各零部件的质量
D.调查广州亚运会100米决赛参赛运动员兴奋剂的使用情况
【答案】A
3.(2011重庆綦江,2,4分)下列调查中,适合采用全面调查(普查)方式的是()
A.对綦江河水质情况的调查.B.对端午节期间市场上粽子质量情况的调查.
C.对某班50名同学体重情况的调查.D.对某类烟花爆竹燃放安全情况的调查.
【答案】:C
4.(2011江苏南京,4,2分)为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是
A.随机抽取该校一个班级的学生
B.随机抽取该校一个年级的学生
C.随机抽取该校一部分男生
D.分别从该校初一、初二、初三年级中各班随机抽取10%的学生
【答案】D
5.(20011江苏镇江,4,2分)某地区有8所高中和22所初中,要了解该地区中学生的视力情况,下列抽样方式获得的数据最能反映该地区中学生视力情况的是()
A.从该地区随机选取一所中学里的学生
B.从该地区30所中学生里随机选取800名学生
C.从该地区的一所高中和一所初中各选取一个年级的学生
D.从该地区的22所初中里随机选取400名学生
答案【B】
6.(2011重庆市潼南,4,4分)下列说法中正确的是
A.“打开电视,正在播放《新闻联播》”是必然事件
C.数据1,1,2,2,3的众数是3
D.一组数据的波动越大,方差越小
【答案】B
7.(2011湖北宜昌,3,3分)要调查城区九年级8000名学生了解禁毒知识的情况,下列调查方式最合适的是()
A.在某校九年级选取50名女生
B.在某校九年级选取50名男生
C.在某校九年级选取5Q名学生
D.在城区8O00名九年级学生中随机选取50名学生
【答案】D

综合验收评估测试题
(时间:120分钟满分:120分)
一、选择题
1.要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是()
A.选取该校一个班级的学生
B.选取该校50名男生
C.选取该校50名女生
D.随机选取该校50名九年级学生
2.下列抽查的样本合适的是()
A.在大学生中调查青年娱乐的主要方式
B.在公园里调查老年人的健康状况
C.调查一个班级里学号为3的倍数的同学,以了解学生对学校管理的意见
D.调查某生活小区的人均收入,以了解全市的人均收入
3.下列调查适合普查的是()
A.调查2011年6月份市场上某品牌饮料的质量
B.了解中央电视台直播北京奥运会开幕式的全国收视率情况
C.环保部门调查5月份黄河某段水域的水质情况
D.了解全班同学本周末参加社区活动的时间
4.期末统考中,A校优秀人数占20%,B校优秀人数占25%,比较两校优秀人数()
A.A校多于B校B.B校多于A校
C.A,B两校一样多D.无法比较
5.可以清楚地表示出部分与总体之间的关系的是()
A.条形统计图B.折线统计图
C.扇形统计图D.所有统计图均可
6.有两所初级中学A校和B校,在校学生人数均为1000人,现根据如图10-36所示的统计图得到以下统计结果:①A校男生比女生多20人;②B校男生比女生少60人;③若两校合起来,则女生比男生多20人;④A校男生比B校男生多50人其中正确的结果为
()
A.①③B.②④C.②③D.①④
7.某公司销售部有营销人员25人,销售部为了制定某种商品的销售定额,统计了25人某月的销售量,如下表所示:
每人销售量(件)600500400350300200
人数(人)144673

则描述上面的数据最合适的统计图是()
A.折线图B.扇形图C.条形图D.直方图
8.第五次人口普查,我国每10万人中拥有各种受教育程度的人数如下:具有大学程度的为3611人;具有高中程度的为11146人;具有初中程度的为33961人;具有小学程度的为35701人.如图10-37所示,根据以上数据作出的示意图正确的是()
9.一次数学测验以后,张老师根据某班成绩绘制了如图10-38所示的扇形统计图(80~89分的百分比因故模糊不清),若80分以上(含80分)为优秀等级,则本次测验的优秀率为()
A.32%B.68%
C.36%D.88%
10.体育老师对九年级(1)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得的数据绘制成频数分布直方图,如图10-39所示,由图可知“最喜欢篮球”的频率是()
A.0.16B.0.24C.0.3D.0.4
二、填空题
11.已知一组数据共20个:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66.落在64.5~66.5内的数据的频数是,
频率是.
12.为了了解中学生的身体发育情况,对某中学同年龄的60名同学的身高进行了测量.经统计,身高在148.5~151.5cm内的频数为3,则这一组的频率为.
13.某校七年级学生有1080人购买校服,校服按大小共分小号、中号、大号、加大号四种,在调查到的数据中,小号、中号、大号出现的频数分别是250,420和280,则加大号出现的频率是.
14.在“抛1枚硬币”的游戏中,抛5次出现1次正面,抛50次出现31次正面,抛6000
次出现2980次正面,抛9999次出现5006次正面.
(1)四次抛硬币,出现正面的频率各是;
(2)用一句话概括出此游戏中的规律:.
15.某校九年级一班数学单元测试全班学生成绩的频数分布直方图如图10-40所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率.
16.根据国家统计局5月23日发布的公告显示,今年第一季度的GDP值为43390亿元,其中,第一、第二、第三产业所占比例如图10-41所示,根据图中数据可知,今年第一季度第一产业的GDP值约为亿元.(结果精确到0.01亿元)
17.在一扇形统计图中,若扇形的圆心角为90,则此扇形表示的部分占总体的%.
18.某班全班同学在“献爱心”活动中都捐了图书,捐书的情况如下表:
每人捐书的册数(册)5101520
相应捐书的人数(人)172242
根据题目所给的条件,回答下列问题.
(1)该班的学生共有人;
(2)全班一共捐了册图书;
(3)若该班所捐图书按如图10-42所示的比例分别送给山区学校、本市兄弟学校和本校其他班级,则送给山区学校的书比送给本市兄弟学校的书多册.
三、解答题
19.学期结束前,学校想调查学生对七年级数学华师大实验教材的意见,特向七年级300名学生作问卷调查,其结果如下:非常喜欢的有150人,喜欢的有100人,有一些喜欢的有42人,不喜欢的有8人(如图10-43所示).
(1)计算出每种意见的人数占调查人数的百分比;
(2)作出反映调查结果的扇形统计图;
(3)从条形统计图上你能得出什么结论?说说你的理由.
20.某中学为了了解该校学生阅读课外书籍的情况,学校决定围绕“在艺术类、科技类、动漫类、小说类、其他类课外书籍中,你最喜欢的课外书籍种类是什么?(只写一类)”的问题,在全校范围内随机抽取部分同学进行问卷调查,并将调查问卷适当整理后绘制成如图10-44所示的条形统计图.
(1)在本次抽样调查中,最喜欢哪类课外书籍的人数最多?有多少人?
(2)求出该校一共抽取了多少名同学进行问卷调查;
(3)若该校有800人,请你估计这800人中最喜欢动漫类课外书籍的有多少人.

21.学校医务室对九年级学生的用眼习惯所作的调查结果如下表所示,表中空缺的部分反映在扇形图和条形图中(如图10-45所示).
编号项目人数(人)比例
1经常近距离写字36037.50%
2经常长时间看书
3长时间使用电脑52
4近距离地看电视11.25%
5不及时检查视力24025.00%
(1)请把三个图表中的空缺部分补充完整;
(2)请提出一个保护视力的口号(15字以内).

参考答案
1.D
2.C[提示:样本具有代表性,抽查具有随机性.]
3.D
4.D[提示:两校学生人数未知,无法比较.]
5.C[提示:扇形统计图的特点是可以清楚地表示出部分与总体的关系.]
6.B[提示:A校男生520人,女生480人;B校男生470人,女生530人.]
7.D[提示:条形图能较直观地反映各种销售量的人数.]
8.B[提示:从大学、高中、初中、小学依次递增.]
9.B[提示:79分(含79分)以下的百分比为32%,用1减去32%,即是所求.]
10.D
11.80.4[提示:64.5~66.5内,即为65,66两个数字的个数.]
12.0.05[提示:频率=.]
13..[提示:用数据总数减去小、中、大号的频数得加大号的频数,加大号的频率为.]14.(1)0.2,0.62,0.497,0.5(2)抛的次数越多,正面出现的频率就越接近50%
15.0.316.3241.23[提示:第一产业占7.47%.第一产业的GDP值为43390×7.47%≈3241.23(亿元).]
17.25[提示:×100%=0.25×100%=25%.]
18.(1)45(2)405(3)162[提示:17+22+4+2=45(人).(2)17×5+22×10+15×4+20×2=405(册).(3)405×(60%-20%)=162(册).]
19.解:(1)150÷300×100%=50%,100÷300×100%≈33.3%,42÷300×100%=14%,8÷300×100%≈2.7%.(2)如图10-46所示.(3)从条形统计图上可以看出,非常喜欢和喜欢的人占大多数,只有少部分不喜欢,可见这一套教材的受欢迎程度较高.
20.解:(1)最喜欢小说类课外书籍的人数最多,有20人.(2)由图可知2+8+12+20+8=50(名),一共抽取了50名同学.(3)由样本估计总体,得800×=192(人),这800人中最喜欢动漫类课外书籍的约有192人.
21.解:(1)补全的表如下表所示,补全的统计图如图10-47所示.(2)略
编号项目人数(人)比例
1经常近距离写字36037.50%
2经常长时间看书20020.83%
3长时间使用电脑525.42%
4近距离地看电视10811.25%
5不及时检查视力24025.00%

数据的收集、整理与描述教案


老师工作中的一部分是写教案课件,大家应该要写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们到底知道多少优秀的教案课件呢?小编特地为您收集整理“数据的收集、整理与描述教案”,欢迎阅读,希望您能够喜欢并分享!

第十章数据的收集、整理与描述
第1课时10.1统计调查(一)
教学目标1、了解全面调查的概念;2、会设计简单的调查问卷,收集数据;3、掌握划记法,会用表格整理数据;4、会画扇形统计图,能用统计图描述数据;5、经历统计调查的一般过程,体验统计与生活的关系.
教学重点:全面调查的过程(数据的收集、整理、描述)
教学难点:绘制扇形统计图
教学过程
一、问题导入
在日常生活中,我们可能遇到下面一些问题:
(1)中央电视台《青年歌手大奖赛》的收视情况怎样?
(2)班级里同学出生主要集中在哪一年?
(3)本年度最受欢迎的影片是哪几部?
要解决这些问题,需要进行统计调查。
二、数据的收集
问题1:现在我们如果要了解全班同学对新闻、体育、动画、娱乐四类电视节目的喜爱情况,你怎样才能知道结果?
举手表决、问卷调查等。
问卷调查是一种比较常用的调查方式,采用这种方式要设计好调查问卷。
你认为设计调查问卷应包括哪些内容?
问卷设计的内容应包括调查中所提的问题、答案选项以及要求等。
就上面的问题我们可以设计如下的调查问卷:、
如果想了解男、女生喜爱节目的差异,问卷中还应该包含什么内容?
应加“男□女□(打勾)”这一项.
问卷设计好后,请每位同学填写,然后收集起来。例如,调查的结果是:
DCADBCADCDCDABDDBCDBDBDCDBDCDBABBDDDCDBD
注意:用字母代替节目的类型,可方便统计.
三、数据的整理
从上面的数据中你容易看出全班同学喜爱各类节目的情况吗?为什么?
不容易。因为这些数据杂乱无章,不容易发现其中的规律。
为了更清楚地了解数据所蕴含的规律,需要对数据进行整理。你认为应该怎样整理我们收集到的数据?
划“正”字。这就是所谓的划记法。
下面我们利用下表整理数据。
全班同学最喜爱节目的人数统计表:
节目类型划记人数百分比
A新闻
410%
B体育正正1025%
C动画正820%
D娱乐正正正
1845%
合计4040100%

上表可以清楚地反映全班同学喜爱各类节目的情况。
四、数据的描述
为了更直观地看出上表中的信息,我们还可以用条形统计图和扇形统计图来描述数据。
绘制条形统计图[投影7]
绘制扇形统计图
我们知道,扇形图用圆代表总体,每一个扇形代表总体的一部分。扇形图通过扇形的大小来反映各个部分占总体的百分比。扇形的大小是由圆心角的大小决定的,所以,我们只要知道圆心角的度数就可以画出代表某一部分的扇形。
因为组成扇形图的各扇形圆心角的和是3600,所以只需根据各类节目所占的百分比就可以算出对应扇形圆心角的度数。
新闻:3600×10%≈360,体育:3600×25%=900,动画:3600×20%=720,娱乐:3600×45%=1620.在一个圆中,根据算得的圆心角的度数画出各个扇形,并注明各类节目的名称及相应的百分比。
你能根据上面的条形统计图和扇形统计图直接说出全班同学喜爱各类电视节目的情况吗?
在上面的调查中,我们利用调查问卷得到全班同学喜爱电视节目的数据,利用表格整理数据,并用统计图进行直观形象的描述。通过分析表和图,了解到了全班同学喜爱电视节目的情况。在这个调查中,全班同学是要考察的全体对象,我们对全体对象都进行了调查,像这样考察全体对象的调查叫做全面调查。例如,2000年我国进行的第五人口普查,就是一次全面调查。请你举出一些生活中运用全面调查的例子.
五、课堂练习:课本137页第1、2题。
六、课堂小结
1、本节课我们经历了全面调查的一般过程,知道了利用问卷调查来收集数据,利用表格来整理数据,利用条形统计图和扇形统计图来描述数据。
2、学会了设计调查问卷和扇形统计图的画法。
作业:课本P142第6题
第2课时10.1统计调查(二)
教学目标1、经历数据的收集、整理和分析的模拟过程,了解抽样调查、样本、个体与总体等统计概念;2、初步感受抽样调查的必要性,初步体会用样本估计总体的思想。
教学重点:抽样调查、样本、总体等概念以及用样本估计总体的思想
教学难点:样本的抽取
教学过程
一、问题导入
要了解一罐八宝粥里各种成分的比例,你会怎么做?把一罐八宝粥铺开在一个盆子里查看。这样可行吗?这样方便吗?为此我们必须找到一种方便合理的调查方法才行。
二、抽样调查及有关概念
问题2某校有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,怎样进行调查?
可以用全面调查的方法对全校学生逐个进行调查,然后整理收集到的数据,统计出全校学生对四类电视节目的喜爱情况。
这样做,当然好,可以准确、全面地了解情况。但是,由于学生人数比较多,这样做又会有许多弊病,你能说说吗?
花费的时间长,消耗的人力、物力大。你能找到一种既省时省力又能解决问题的调查方法吗?
可以抽取一部分学生进行调查.
这种只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况的方法就是抽样调查。这里要考查的全体对象称为总体,组成总体的每一个考查对象称为个体,被抽取的那些个体组成一个样本,样本中个体的数目称为样本容量。上面问题中全校学生是总体,每一名学生是个体,我们从总体中抽取的部分学生是一个样本,抽取的学生数就是样本容量。例如抽取100名学生,样本容量就是100。
注意:抽样调查还适用一些具有破坏性的调查,如关于灯泡寿命、火柴质量等。
三、样本的抽取
抽样调查的关键是样本的抽取,如果抽取的样本得当,就能很好地反映总体的情况,否则,抽样调查的结果会偏离总体情况。上面的问题,抽取样本的要求是什么呢?
一、抽取的学生数目要适当。如果抽取的学生数太少,那么样本就不能很好地反映总体的情况;如果抽取的学生人数太多,那么达不到省时省力的目的。我们可以取100名学生作为一个样本。
二、要尽量使每一个学生抽取到的机会相等。例如,可以在2000名学生的注册学号中,用电脑随机抽取100个学号,调查这些学号对应的100名学生。
你还能想出使每个学生都有相等机会被抽到的方法吗?
从2000名学生的注册学号中,用电脑抽取能被5整除的100个学号,调查这些学号对应的学生;放学或上学时在校门口随机访问100名学生,等等。
这种总体中的每一个个体都有相等机会被抽到的抽样方法是一种简单随机抽样。
现在你能回答“要了解一罐八宝粥里各种成分的比例,你会怎么做?”这个问题了吗?
搅拌均匀后,舀一勺查看,用所得的结果估计这罐八宝粥成分的比例。
四、样本的处理
和全面调查一样,对收集的数据要进行整理。下面是某同学抽取样本容量为100的调查数据统计表。
抽样调查100名学生最喜爱节目的人数统计表
节目类型划记人数百分比
A新闻正
88%
B体育正正正正
2424%
C动画正正正正正正3030%
D娱乐正正正正正正正
3838%

从上表可以看出,样本中喜爱娱乐节目的学生最多,是38%,据此可以估计出,这个学校的学生中,喜欢娱乐节目的人最多,约为38%。类似地,由上表可以估计这个学校喜爱其他节目的学生人数的百分比。
表格中的数据也可以用条形统计图和扇形统计图来表示描述。

五、课堂练习:课本P140练习1、2、3。
六、课堂小结
1、个体、总体、样本、样本容量及抽样调查的概念;
2、抽取样本的要求:(1)抽取的样本容量要适当;(2)要尽量使每一个个体被抽取到的机会相等——简单随机抽样。
3、全面调查和抽样调查的优缺点是什么?
全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查;抽样调查具有花费少、省时的特点,但没有全面调查准确,受样本选取的影响比较大。
作业:课本P141第3题w
第3课时10.1统计调查(三)
教学目标1、经历较复杂问题的处理过程,感受分层抽样的必要性,掌握分层抽样的方法;2、学会从样本中分析、归纳出较为正确的结论,增强用统计方法解决问题的意识。
教学重点:分层抽样的方法和样本的分析、归纳
教学难点:分层抽样方案的制定
教学过程
一、复习导入
什么是抽样调查?什么是简单随机抽样?
仔细观察我们身边周围,抽样调查的应用是十分普遍的。有些问题总体量不大,个体差异程度小,只需进行简单随机抽样就可以了,有些问题总体量大,个体差异程度较大,必须有更好的抽样方法才行。
二、分层抽样
问题3某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐四类节目的喜爱情况。
(1)能不能用问题2中对学生的调查数据去估计整个地区电视观众的情况呢?为什么?
不能。一是样本容量太小;二是学生、成年人、老年人喜欢的电视节目往往有明显不同.
所以要了解整个地区观众的情况,需要在更大范围内抽取样本。
(2)如果抽取一个容量为1000的样本进行调查,你会怎样调查?
由于各年龄段对节目爱好有明显的不同,而同一个年龄段对节目的喜爱又存在共性,因此可以对青少年、成年人、老年人各人群分别独立进行简单随机抽样,使每个年龄段都能抽取一定的人数来代表所在的人群,然后汇总调查结果。
这里还有一个问题,每个年龄段抽取的人数怎么确定呢?
可以根据各年龄段实际人口的比例分配,以确保每一个年龄段都有相应比例的代表。
如果青少年、成年人、老年人的人数比例为2︰5︰3,那么各年龄段抽取的人数分别是多少?

青少年成年人老年人合计
抽取的人数2005003001000

先将总体分成几个年龄段(层),然后再在各年龄段(层)中进行简单随机抽样,这是一种分层抽样。
分层抽取的样本与这个地区所有观众的年龄结构基本相同,与在整个地区直接进行简单随机抽样相比,更具有代表性。
三、样本的分析:下表是用分层抽样进行调查并整理得到的数据。
人数年龄
节目类型段青少年成年人老年人合计百分比
A新闻1613712027327.3%
B体育501188225025%
C动画56572814114.3%
D娱乐781887033633.6%
合计2005003001000100%

请你自己画条形统计图和扇形统计图描述上表中的数据。
从上表中可以大致估计整个地区观众对四种节目的喜爱情况,你能谈谈吗?
此外,还可以估计各个年龄段中观众对某类节目喜爱的情况。
例如,估计各个年龄段中观众对动画类节目和娱乐类节目喜爱的情况。
能根据上表中的数据进行估计吗?为什么?不能。因为不同年龄层抽取的人数不相等。
那么根据什么来进行估计呢?
可根据不同年龄层中喜爱动画和娱乐类节目的百分比来估计。如表:

青少年成年人老年人
动画28%11.2%9.3%
娱乐39%37.6%23.3%
从表中你看到了什么?不同年龄段的观众对节目喜爱不尽相同。
用什么方式可以直观地反映这种变化呢?折线统计图。
下图是不同年龄段观众喜爱娱乐和动画类节目的折线统计图。
从上图中可以清楚地看到,随着年龄的增加,观众对动画类、娱乐类的喜爱程度逐渐下降。
四、课堂练习:课本P142第5题.
五、课堂小结
1、对于总体量大,个差异程度较大的问题,需要采取分层抽样的方法确定样本,这样可使样本更具有代表性。
2、对样本进行分析、归纳,得出的结论可以用来估计总体的情况,这就是统计的思想。
作业:

第4课时10.2直方图(一)
教学目标1、理解频数、频数分布的意义,学会制作频数分布表;2、学会画频数分布直方图和频数折线图。
教学重点:学会画频数分布直方图
教学难点:确定组距和组数
教学过程
一、导入新课
收集数据、整理数据、描述数据是统计的一般过程。我们学习了条形图、折线图、扇形图等描述数据的方法,今天我们学习另一种描述数据的统计图——直方图。
二、频数分布直方图
问题4为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛。为此收集到这63名同学的身高(单位:㎝)如下:
158、158、160、168、159、159、151、158、159、168、158、154、158、154、169、158、158、158、159、167、170、153、160、160、159、159、160、149、163、163、162、172、161、153、156、162、162、163、157、162、162、161、157、157、164、155、156、165、166、156、154、166、164、165、156、157、153、165、159、157、155、164、156
选择身高在哪个范围的学生参加呢?
为了使选取的参赛选手身高比较整齐,需要知道数据(身高)的分布情况,即在哪些身高范围内的学生比较多。
为此我们把这些数据适当分组来进行整理。
1、计算最大值与最小值的差(极差)最小值是149,最大值是172,它们的差是23。
说明身高的变化范围是23㎝.
2、决定组距与组数
把所有的数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距。
作等距分组(各组的组距相同),取组距为3㎝(从最小值起每隔3㎝作为一组)。
将数据分成8组:149≤x<152,152≤x<155,…,170≤x<173.
注意:①根据问题的需要各组的组距可以相同或不同;②组距和组数的确定没有固定的标准,要凭借经验和所研究的具体问题来决定;③当数据在100个以内时,按照数据的多少,常分成5~12组,一般数据越多分的组数也越多。
3、频数分布表
对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数)。用表格整理可得频数分布表:
频数分布表
身高分组划记频数
149≤x<152
2
152≤x<155正一6
155≤x<158正正
12
158≤x<161正正正
19
161≤x<164正正10
164≤x<167正
8
167≤x<170
4
170≤x<173
2
从表格中你能看出应从哪个范围内选队员吗?
可以看出,身高在155≤x<158,158≤x<161,161≤x<164三个组的人数最多,一共有12+19+10=41人,因此,可以从身高在155~164㎝(不含164㎝)的学生中选队员。
4、画频数分布直方图
为了更直观形象地看出频数分布的情况,可以根据上表画出频数分布直方图。
上面小长方形的面积表示什么意义?
小长方形的面积=组距×=频数.
可见,频数分布直方图是以小长方形的面积来反映数据落在各个小组内的频数的多少。
等距分组时,各小长方形的面积(频数)与高的比是常数(组距)。因此,画等距分组的频数分布直方图时,为画图与看图方便,通常直接用小长方形的高表示频数。
这样,上面的频数分布图可画成下面的形式:
三、频数分布折线图
在频数分布直方图的基础上,我们还可以用频数折线图来描述频数的分布情况。
首先取直方图的每一个长方形上边的中点,然后在横轴上直方图的左右取两个频数为0的点,它们分别与直方图左右相距半个组距。
例如,在上面的直方图的左边取点(147.5,0),在直方图右边取点(174.5,0),将所取的这些点用线段依次连接起来,就得到频数分布折线图。
四、课堂小结
频数分布直方图是描述数据的又一方式,画频数分布直方图的关键是确定组距和组数,而这一点没有固定的标准,要凭借经验和所研究的具体问题来决定。频数分布折线图也是描述频数分布情况的一种方式。
作业:课本P150第1题
第5课时10.2直方图(二)
教学目标:掌握频数分布直方图和频数折线图的画法,并能用频数分布直方图解释数据中蕴含的信息,进一步体会统计图表在描述数据中的作用。
教学重点:画频数分布直方图
教学难点:解释数据中蕴含的信息
教学过程
一、复习导入
上节课我们学习了画频数分布图,回忆一下,画频数分布直方图有哪些步骤?怎样确定组距和组数?
二、例题
看下面的例子:
为了考察某种大麦穗长的分布情况,在一块试验田时抽取了100个麦穗,量得它们的长度如下表(单位:㎝):
6.56.46.75.85.95.95.24.05.44.6
5.85.56.06.55.16.55.35.95.55.8
6.25.45.05.06.86.05.05.76.05.5
6.86.06.35.55.06.35.26.07.06.4
6.45.85.95.76.86.66.06.45.77.4
6.05.46.56.06.85.86.36.06.35.6
5.36.45.76.76.25.66.06.76.76.0
5.56.26.15.36.26.86.64.75.75.7
5.85.37.06.06.05.95.46.05.26.0
6.35.76.86.14.55.66.36.05.86.3
列出样本的频数分布表,画出频数分布直方图。
解:1、计算最大值与最小值的差是多少?
最大值-最小值的差:7.4-4.0=3.4(㎝)
2、决定组距和组数:组距取多少时组数合适?
取组距0.3㎝,那么可分成12组,组数合适。
3、列频数分布表
分组划记频数
4.0≤x<4.3一1
4.3≤x<4.6一1
4.6≤x<4.9
2
4.9≤x<5.2正5
5.2≤x<5.5正正一11
5.≤x<5.8正正正15
5.8≤x<6.1正正正正正
28
6.1≤x<6.4正正
13
6.4≤x<6.7正正一11
6.7≤x<7.0正正10
7.0≤x<7.3
2
7.3≤x<7.6一1
合计100

4、画频数分布直方图
仔细观察上面的表和图,这组数据的分布规律是怎样的?
麦穗长度大部分落在5.2㎝至7.0㎝之间,其他区域较少。长度在5.8≤x<6.1范围内的麦穗个数最多,有28个,长度在4.0≤x<4.3,4.3≤x<4.6,4.6≤x<4.9,7.0≤x<7.3,7.3≤x<7.6范围内的麦穗个数很少,总共只有7个。
三、课堂练习
P149练习(1)你认为组距是多少比较合适?为什么?
5组,因为100个数据以内可以分5~12组,这里有48个数据,分5组或6组比较合适。
(2)画出直方图。
作业:P151第4、5题。

第6、7课时10.3从数据谈节水
教学目标:①使学生经历收集、整理、分析数据,得出结论的过程,从中体会节水的重要性.
②通过分析数据,得出结论,让学生体会用数据分析问题的过程,提出合理化建议,感受数学给生活带来的价值.③通过具体的数据,使学生了解节水的重要性.,进一步体会统计图表在描述数据中的作用。
教学重点:学会收集、分析数据,从中得出结论,并能针对有关问题,给出解决办法.
教学难点:如何找到合理解决缺水问题的办法.
教学过程
活动一:
阅读课本的“背景资料”,从中收集数据,画出统计图,并回答下列问题:
(1)地球上的水资源和淡水资源分布情况怎么样?
(2)我国农业和工业耗水量情况怎么样?
(3)我国不同年份城市生活用水的变化趋势怎么样?
(4)根据国外的经验,一个国家的用水量超过其可利用水资源的20%,就有可能发生“水危机”,依据这个标准,我国1990年是否曾出现“水危机”?
学生阅读资料,通过小组合作、讨论的形式完成活动一.
活动二:
收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:
(1)家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?
(2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?
(3)全班同学家庭人均日用水量的平均数是多少?按生活基本日均需水量(BWR)50升的用水标准,这个平均数是否超过用水标准?
(4)如果每人每天节约用水10升,按13亿人口计算,一天可以节约多少吨水?按BWR标准计算,这些水可提供给1个人多少年的生活用水?
(5)你还可以得到哪些信息?
(教师巡视,指导各小组开展调查实验活动)
活动三,资料展示:(投影)我国水资源利用情况的有关资料,讨论工农业生产及生活中节约用水的好办法.
课堂小结1.当前水资源状况.2.节约水资源带来的价值.3.节约水资源的办法
作业
整理本节课内容,统计相关数据;查找有关“节约水资源”的课题报告;并分析课题报告的写法.

第8、9课时本章小结
一、知识结构

二、回顾与思考
1、统计调查的一般过程是什么?统计调查对我们有什么帮助?
统计调查一般包括收集数据、整理数据、描述数据和分析数据等过程;可以帮助我们更好地了解周围世界,对未知的事物作出合理的推断和预测。
2、全面调查和抽样调查是收集数据的两种方式。什么是全面调查?什么是抽样调查?它们各有什么优缺点?
考察全体对象的调查叫做全面调查。
只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种方法是抽样调查。
全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且某些具有破坏性的调查不宜用全面调查;抽样调查花费少、时间短,节省人力、物力、财力,破坏性小;结果往往不如全面调查准确,且样本选取不当,会增大估计总体的误差。
3、实际调查中常常采用抽样调查的方法获取数据。抽样调查的要求是什么?
(1)每个个体被抽到的机会相同;(2)样本容量要适当。
4、利用统计图表描述数据是统计分析的重要环节。对于收集到的数据加以整理,并用统计图表描述出来,这有什么作用?
帮助我们从数据中获得信息,得出结论。
5、如何画扇形图、频数分布直方图和频数分布折线图?各种统计图都有什么特点?
根据各部分所占的百分比计算出各部分所对应的圆心角,从而把一个圆分成几部分,标上百分比,写出名称,就得到了扇形统计图。
绘制频数分布直方图:①计算最大值与最小值的差;②决定组距和组数;
③列频数分布表④画频数分布直方图。
首先取直方图中每一个长方形上边的中点,然后在横轴上直方图的左右取两个频数为0的点,它们分别与直方图左右相距半个组距,将所取的这些点用线段依次连接起来,就得到频数折线图。
条形图能够显示每组中的具体数据;扇形图能够显示部分在总体中所占的百分比;折线图能够显示数据的变化趋势;频数分布直方图能够显示数据的分布情况。
三、例题导引
例1测得某市2月份1~10日最低气温随日期变化折线图如图所示。(1)最高气温为2℃的天数为天;(2)该市这10天气温变化趋势图;(3)写一条有关的结论:.
例1图

例2某校学生在“暑假社会实践”活动中组织学生进行社会调查,并组织评委对学生写的调查报告进行统计,绘制了统计图,请根据该图回答下列问题:(1)学生会抽取了多少份调查报告?(2)若等第A为优秀,则优秀率为多少?(3)学生会共收到调查报告1000份,请估计该校有多少份调查报告的等第为E?

例3初中学生的视力状况已受到全社会的广泛关注。某市有关部门对全市20万名初中学生视力状况进行了一次抽样调查,从中随机抽查了10所中学全体学生的视力情况,图(1)、图(2)是2004年抽样情况统计图。请你根据两图解答以下问题:(1)2004年这10所中学学生的总人数是多少?(2)2004年这10所中学学生的视力在4.35以上的人数占全市中学生总人数的百分比是多少?(3)2004年该市参加中考的学生达66000人,请你估计2004年该市这10所中学参加中考的学生共有多少人?