88教案网

你的位置: 教案 > 高中教案 > 导航 > 数列应用题

小学教案比的应用

发表时间:2020-11-19

数列应用题。

一名爱岗敬业的教师要充分考虑学生的理解性,作为教师就要精心准备好合适的教案。教案可以让学生能够在教学期间跟着互动起来,让教师能够快速的解决各种教学问题。那么,你知道教案要怎么写呢?经过搜索和整理,小编为大家呈现“数列应用题”,大家不妨来参考。希望您能喜欢!

课时28数列应用题
【教学目标】
1.综合运用等差、等比数列的知识解决有关一些实际应用问题,其中函数的观点,化归的方法常常在解题过程中起重要作用。
2.培养学生分析问题和解决问题的能力。
【教学难点】
难点是解决数列应用题的建摸
【教学过程】
例1填空题:
⑴一个剧场设置了20排座位,第一排有38个座位,往后每一排比前一排多2个座位,这个剧场共有个座位。

⑵某厂产值的月平均增长率为P,则年平均增长率为。

⑶某种汽车购车时费用为10万元,每年的保险、养路、汽油费共9千元,汽车的年维修费逐年以等差数列递增,第一年为2千元,第2年为4千元,第3年为6千元,……问这种汽车使用年后报废合算?(即汽车的年平均费用最底)

(4)一幢大楼共有n层,现每层指定一人到第k层去开会,问k为______________时,使n层楼的开会人员上、下楼梯所走的台阶和最小?(假设每层楼梯的台阶数都相同)

例2某人2004年初向银行申请个人住房公积金贷款20万元购买住房,月利率3.375‰,按复利计算,每月等额还贷一次,并从贷款后的次月初开始还贷,如果10年还清,那么每月应还贷多少元?

例3某地现有耕地面积10000公顷,计划10年后粮食单产比现在提高22%,人均粮食占有量比现在提高10%。如果人口的年增长率为1%,那么平均每年最多只能减少耕地面积多少公顷(精确到1公顷)?(注:粮食单产=,人均粮食占有量=)

【课后作业】
1、某林场年初有森林木材存量Sm3,木材以每年25%的增长率生长,而每年末要砍伐固定的木材量为xm3。为实现经过2次砍伐以后木材存量增长50%,则x的值应是。
2、1991年,某内河可供船只航行的河段长为1000千米,但由于水资源的过度使用,促使河水断流,从1992年起,该内河每年船只可行驶的河段长度仅为上一年的,则到2000年,该内河可行驶的河段长度为。
3、如图(图见课本P.56第4题)设正三角形△ABC的边长为20cm,取BC边的中点E,作正三角形BDE;取边DE的中点G,作正三角形DFG;如此继续下去,可得到一列三角形△ABC,△BDE,△DFG,…,求前20个正三角形的面积和。jaB88.CoM

4、李刚从2011年1月开始,用零存整取的方式每月在10日发工资时存入银行200元,按银行规定,这种储蓄用单利计算利息,年利率为1.98%,且在取息时需扣除20%的利息税,则到2012年1月10日,李刚由这些存款可以到银行取出多少钱?

5、资料表明,2000年我国工业废弃垃圾达7.4×108t,每吨占地1m2,环保部门每回收或处理1t废旧物资,相当于消灭4t工业废弃垃圾.如果某环保部门2002年共回收处理了104t废旧物资,且以后每年的回收量递增20%。⑴2010年能回收多少吨废旧物资?(结果保留两位有效数字)
⑵从2002年初起到2010年底,可节约土地多少平方米?

6、社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游业,根据规划,本年度投入800万元,以后每年的投入将比上一年减少,本年度估计旅游业收入为400万元,由于该项目的建设对旅游业的促进作用,预计今后旅游业收入每年比上年增加,
⑴设n年(本年度为第一年)总投入为万元,旅游业总收入为万元,写出和的表达式;
⑵至少经过几年旅游业的总收入才能超过总投入?

问题统计与分析

相关阅读

常见的数列求和及应用


一名优秀的教师在教学时都会提前最好准备,作为教师就需要提前准备好适合自己的教案。教案可以让学生们能够在上课时充分理解所教内容,帮助教师掌握上课时的教学节奏。怎么才能让教案写的更加全面呢?下面的内容是小编为大家整理的常见的数列求和及应用,供您参考,希望能够帮助到大家。

常见的数列求和及应用
一、自主探究
1、等差数列的前n项和公式:
=。
2、等比数列的前n项和公式:
①当时,;
②当时,=。
3、常见求和公式有:
①1+2+3+4+…+n=
②1+3+5+…+(2n-1)=
※③=
※④
二、典例剖析
(一)、分组求和法:某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用公式分别求和,从而得出原数列的和。
例1已知,求数列{}的前n项和。

变式练习:已知,求数列{}的前n项和。

(二)、裂项求和法:如果数列的通项公式可转化为形式,常采用裂项求和的方法。特别地,当数列形如,其中是等差数列,可采用此法
例2求和:()

变式练习:已知数列的通项公式,求数列{}的前n项和。

(三)、奇偶并项法:当数列通项中出现时,常常需要对n取值的奇偶性进行分类讨论。
例3求和:

(四)、倒序相加法:此法主要适用数列前后具有“对称性”,即“首末两项之和相等”的形式。
例4求在区间内分母是3的所有不可约分数之和。

变式练习:已知且.求

(五)错位相减法:一般地,如果数列时等差数列,是等比数列,求数列的前项和时,可采用此法,在等式的两边乘以或,再错一位相减。
例5求和:
变式练习:求和:

三、提炼总结:数列的求和是数列的一个重要内容,它往往是数列知识的综合体现,求和题在试题中更是常见,它常用来考察我们的基础知识,分析问题和解决问题的能力。任何一个数列的前n项和都是从第1项一直加到第n项。数列的求和主要有以下几种方法。⑴公式法;⑵分组求和法;⑶裂项求和法;拆项成差求和经常用到下列拆项公式,请补充完整:①=;
②=;
③=;
④=;
⑷奇偶并项法;⑸倒序相加法;⑹错位相减法。
四、课堂检测:
1、已知数列的通项,由所确定的数列的前项之和是()
A.B.C.D.
2、已知数列为等比数列,前三项为则等于()
A.B.C.D.
3、设数列,(1+2+4),…,()的前m项和为2036,则m的值为()
A.8B.9C.10D.11
4、在50和350之间所有末位数是1的整数之和是()
A.5880B.5539C.5280D.4872
5、
6、若,则n=
7、设正项等比数列的首项,前n项和为,且
①求的通项;
②求的前n项和
8、数列中,且满足,
①求数列的通项公式;
②设是否存在最大的整数m,使得任意的n均有>总成立。

数列在日常经济生活中的应用学案


一名优秀负责的教师就要对每一位学生尽职尽责,准备好一份优秀的教案往往是必不可少的。教案可以保证学生们在上课时能够更好的听课,帮助高中教师提高自己的教学质量。那么一篇好的高中教案要怎么才能写好呢?小编特地为大家精心收集和整理了“数列在日常经济生活中的应用学案”,欢迎您参考,希望对您有所助益!

§4数列在日常经济生活中的应用
知能目标解读
1.理解常见储蓄如零存整取、定期自动转存、分期付款及利息的计算方法,能够抽象出所对应的数列模型,并能用数列知识求解相关问题.
2.能够将现实生活中涉及到银行利率、企业股金、产品利润、人口增长、工作效率等实际问题,抽象出数列模型,将实际问题解决.
重点难点点拨
重点:用数列知识解决日常经济生活中的实际问题.
难点:将现实生活中的问题抽象出数列模型,使问题得以解决.
学习方法指导
1.零存整取模型
银行有一种叫做零存整取的业务,即每月定时存入一笔数目相同的资金,这叫做零存;到约定日期,可以取出全部的本利和,这叫做整取.规定每次存入的钱按单利计算,单利的计算是指仅在原有本金上计算利息,对本金所产生的利息不再计算利息.其计算公式为:利息=本金×利率×存期.如果用符号P代表本金,n代表存期,r代表利率,S代表本金和利息和(以下简称本利和),则有S=P(1+nr).
2.定期自动转存模型
(1)银行有一种储蓄业务为定期存款自动转存.例如,储户某月存入一笔1年期定期存款,1年后,如果储户不取出本利和,则银行自动办理转存业务,第2年的本金就是第1年的本利和,即定期自动转存按复利计算.
(2)何谓复利?
所谓复利,就是把上期的本利和作为下一期的本金,在计算时,每一期的本金的数额是不同的,复利的计算公式为S=P(1+r)n.
一般地,一年期满后,借贷者(银行)收到的款额v1=v0(1+a),其中v0为初始贷款额,a为每年的利率;假若一年期满后,银行又把v1贷出,利率不变,银行在下一年期满后可收取的款额为v2=v1(1+a)=v0(1+a)2;…依次类推,若v0贷出t年,利率每年为a,这批款额到期后就会增到vt=v0(1+a)t.我们指出这里的利息是按每年一次重复计算的,称为年复利.
3.分期付款模型
分期付款是数列知识的一个重要的实际应用,在现实生活中是几乎涉及到每个人的问题,要在平时的学习中及时发现问题,学会用数学的方法去分析,解决问题,关于分期付款应注意以下问题:
(1)分期付款分若干次付款,每次付款的款额相同,各次付款的时间间隔相同;
(2)分期付款中双方的每月(年)利息均按复利计算,即上月(年)的利息要计入下月(年)的本金;
(3)分期付款中规定:各期所付的款额连同到最后一次付款时所产生的利息和等于商品售价及从购买到最后一次付款的利息和,这在市场经济中是相对公平的.
(4)分期付款总额要大于一次性付款总额,二者的差额与多少次付款有关,分期付款的次数(大于或等于2)越多,差额越大,即付款总额越多.
注意:
目前银行规定有两种付款方式:(1)等额本息还款法;(2)等额本金还款法.等额本金还款法的特点是:每期还款额递减,利息总支出比等额款法少,等额本金还款法还可以按月还款和按季还款,由于银行结息贯例的要求,一般采用按季还款方式.
4.本节的规律方法
(1)银行存款中的单利是等差数列模型,本息和公式为S=P(1+nr).
(2)银行存款中的复利是等比数列模型,本利和公式为S=P(1+r)n.
(3)产值模型:原来产值的基础数为N,平均增长率为P,对于时间x的总产值为y=N(1+P)x.
(4)分期付款模型:a为贷款总额,r为年利率,b为等额还款数,则b=.
5.数列模型在实际问题中的应用
数列应用题一般是等比、等差数列问题,其中,等比数列涉及的范围比较广,如经济上涉及利润、成本、效益的增减,在人口数量的研究中也要研究增长率问题,金融问题更要涉及利率问题等.
6.建立数学模型的过程
解决该类题的关键是建立一个数列模型{an},利用该数列的通项公式或递推公式或前n项和公式求解问题.
基本步骤如下表所示:?
知能自主梳理
1.(1)单利:单利的计算是仅在原有本金上计算利息,对本金所产生的利息,其公式为利息=.若以P代表本金,n代表存期,r代表利率,S代表本金和利息和(以下简称本利和),则有.
(2)复利:把上期末的本利和作为下一期的,在计算时每一期本金的数额是不同的.复利的计算公式是.
2.(1)数列知识有着广泛的应用,特别是等差数列和等比数列.例如银行中的利息计算,计算单利时用数列,计算复利时用数列,分期付款要综合运用、数列的知识.
(2)解决数列应用题的基本步骤为:①仔细阅读题目,认真审题,将实际问题转化为
;②挖掘题目的条件,分析该数列是数列,还是
数列,分清所求的是的问题,还是问题.③检验结果,写出答案.
[答案]1.(1)不再计算利息本金×利率×存期S=P(1+nr)(2)本金S=P(1+r)n
2.(1)等差等比等差等比(2)①数列模型②等差等比项求和
思路方法技巧
命题方向单利计算问题
[例1]有一种零存整取的储蓄项目,它是每月某日存入一笔相同的金额,这是零存;到一定时期到期,可以提出全部本金及利息,这是整取.它的本利和公式如下:
本利和=每期存入金额×[存期+存期×(存期+1)×利率].
(1)试解释这个本利公式.
(2)若每月初存入100元,月利率5.1‰,到第12月底的本利和是多少?
(3)若每月初存入一笔金额,月利率是5.1‰,希望到第12个月底取得本利和2000元,那么每月应存入多少金额?
[分析]存款储蓄是单利计息,若存入金额为A,月利率为P,则n个月后的利息是nAP.
[解析](1)设每期存入金额A,每期利率P,存入期数为n,则各期利息之和为
AP+2AP+3AP+…+nAP=n(n+1)AP.
连同本金,就得:本利和=nA+n(n+1)AP=A[n+n(n+1)P].
(2)当A=100,P=5.1‰,n=12时,
本利和=100×(12+×12×13×5.1‰)=1239.78(元).
(3)将(1)中公式变形得
A==≈161.32(元).
即每月应存入161.32元.
[说明]单利的计算问题,是等差数列模型的应用.
变式应用1王先生为今年上高中的女儿办理了“教育储蓄”,已知当年“教育储蓄”存款的月利率是2.7‰.
(1)欲在3年后一次支取本息合计2万元,王先生每月大约存入多少元?
(2)若“教育储蓄”存款总额不超过2万元,零存整取3年期教育储蓄每月至多存入多少元?此时3年后本息合计约为多少元?(精确到1元)
[解析](1)设王先生每月存入A元,则有
A(1+2.7‰)+A(1+2×2.7‰)+…+A(1+36×2.7‰)=20000,利用等差数列前n项和公式,
得A(36+36×2.7‰+×2.7‰)=20000,
解得A≈529元.
(2)由于教育储蓄的存款总额不超过2万元,所以3年期教育储蓄每月至多存入≈555(元),这样,3年后的本息和为:
555(1+2.7‰)+555(1+2×2.7‰)+…+555(1+36×2.7‰)=555(36+36×2.7‰+×2.7‰)
≈20978(元).
命题方向复利计算问题
[例2]某人参加工作后,计划参加养老保险.若第一年年末存入p元,第二年年末存入2p元,…,第n年年末存入np元,年利率为k.问第n+1年年初他可一次性获得养老金(按复利计算本利和)多少元?
[分析]分期存款,应利用“本利和本金×(1+利率)”分段计算.第1年年末存入的p元,到第n+1年年初,逐年获得的本利和构成公比为1+k的等比数列,即第一年的本利和为p(1+k)n-1;同理,第2年年末存入2p元,…第n年年末存入np元的本利和依次为2p(1+k)n-2,…,np.
[解析]设此人第n+1年年初一次性获得养老金为Sn元,则Sn=p(1+k)n-1+2p(1+k)n-2+…+(n-1)p(1+k)1+np,①
把等式两边同时乘以1+k,得(1+k)Sn=p(1+k)n+2p(1+k)n-1+…+(n-1)p(1+k)2+np(1+k).②
②-①,得kSn=p(1+k)n+p(1+k)n-1+…+p(1+k)-np=-np.
所以Sn=.
故第n+1年年初他可一次性获得养老金为元.
[说明]“复利计算”就是“利息生利息”,也就是在存款过程中,到约定期时,将上次存款的本利和全部转为下一次的本金.求所有n次的本利和,就转化为求等比数列的前n项和.复利计算是银行常用于定期自动转存业务的方法,在这里也是等比数列在实际问题中的具体应用,体现了数学的应用价值,更是学生对知识的应用能力的体现.复利计算问题不但应用于银行储蓄业务中,在其他经济领域也有应用.
变式应用2某家庭打算在2020年的年底花40万元购一套商品房,为此,计划从2011年年初开始,每年年初存入一笔购房专用款,使这笔款到2020年年底连本带利共有40万元.如果每年的存款数额相同,依年利率2.50%并按复利计算,问每年年初应该存入多少钱?(不考虑利息税)
[解析]设每年年初应存入x万元,那么2011~2020年年底本利和依次为:
a1=1.025x,
a2=(1.025+1.0252)x,
a3=(1.025+1.0252+1.0253)x,

a7=(1.025+1.0252+…+1.0257)x.
若这笔款到2020年年底连本带利共有40万元,则有a7=(1.025+1.0252+…+1.0257)x=40,
运用等比数列的前n项和公式,化简得x=≈5.171(万元),
所以每年年初大约应存入5.171万元.
命题方向数列在分期付款中的应用
[例3]小陆计划年初向银行贷款10万元用于买房,他选择10年期贷款,偿还贷款的方式为:分10次等额归还,每年一次,并从贷后次年年初开始归还,若10年期贷款的年利率为4%,且年利息均按复利计算,问每年应还多少元?(计算结果精确到1元)
[分析]本题属于分期付款模型,如果注意到按照贷款的规定,在贷款全部还清时,10万元贷款的价值与还款的价值总额应该相等,则可以考虑把所有的款项都转化为同一时间来计算.10万元在10年后(即贷款全部付清时)的价值为105(1+4%)10元.
[解析]设每年还款x元,则第1次偿还x元,在贷款全部付清时的价值为x(1+4%)9;第2次偿还的x元,在贷款全部付清时的价值为x(1+4%)8;第10次偿还的x元,在贷款全部付清时的价值为x元,于是有105(1+4%)10=x(1+4%)9+x(1+4%)8+x(1+4%)7+…+x.
由等比数列求和公式,得
105×1.0410=x,
1.0410=(1+0.04)10≈1.4802.
∴x≈≈12330.
答:每年约应还12330元.
[说明]解决分期付款问题的数学方法是等比数列求和,用到的等量关系即分期所付的款连同到最后一次所付款时的利息之和,等于商品售价与从购物到最后一次付款时的利息之和.
变式应用3某工厂为提高产品质量,扩大生产需要大量资金,其中征地需40万元,建新厂房需100万元,购置新机器需60万元,旧设备改造及干部工作培训需15万元,流动资金需40万元,该厂现有资金125万元,厂内干部30人,工人180人,干部每人投资4000元,工人每人投资1000元(不记利息仅在每年年底利润中分红),尚缺少资金,准备今年年底向银行贷款,按年利率9%的复利计算,若从明年年底开始分5年等额分期付款,还清贷款及全部利息,问该厂每年还款多少万元?(精确到0.1万元)
[解析]因扩大生产急需的资金共有40+100+60+15+40=255(万元).已知筹集到资金为125+0.4×30+0.1×180=155(万元),资金缺口为255-155=100(万元).设每次向银行还款x万元,则贷款100万元,五年一共还清本金和利息共计100(1+9%)5万元.第一次还款到第五年年底的本利和为x(1+9%)4万元;第二次还款到第五年年底的本利和为x(1+9%)3万元;第三次还款到第五年年底的本利和为x(1+9%)2万元;第四次还款到第五年年底的本利和为x(1+9%)万元;第五次还款(无利息)为x万元.由题意得x+x(1+9%)+x(1+9%)2+x(1+9%)3+
x(1+9%)4=100×(1+9%)5.即=100×1.095,所以x≈25.7.故该厂每年还款25.7万元.
探索延拓创新
命题方向数列在日常生活中其他方面的应用
[例4]甲、乙两人连续6年对某农村养鸡业的规模进行调查,提供了两条不同信息,如图所示.
甲调查表明:由第1年每个养鸡场出产1万只鸡上升到第6年平均每个养鸡场出产2万只鸡.
乙调查表明:由第1年30个养鸡场减少到第6年10个养鸡场.请您根据提供的信息回答:
(1)第2年养鸡场的个数及全村出产鸡的总只数;
(2)到第6年这个村养鸡业的规模比第1年扩大了还是缩小了?请说明理由.
(3)哪一年的规模最大?请说明理由.
[分析]审清题意,弄清图甲表示每个养鸡场平均出产鸡的只数(单位:万只),图乙表示该村所拥有的养鸡场的个数(单位:个).
[解析](1)由图可知:第2年养鸡场的个数是26个,每个养鸡场平均出产1.2万只鸡,那么全村出产鸡的总只数是S2=26×1.2=31.2(万只).
(2)第1年总共出产鸡的只数是S1=30×1=30(万只);第6年总共出产鸡的只数是S6=2×10=20(万只),由此得出S6S1,这说明规模缩小了.
(3)由图可知:每年平均每个养鸡场出产的鸡的只数所满足的数列为an=1+(n-1)×0.2=0.2n+0.8(1≤n≤6).每年的养鸡场的个数所满足的数列为bn=30-4(n-1)=-4n+34(1≤n≤6).
第n年出产的鸡的只数满足的数列为Sn=anbn
=(-2n2+9n+68)=-(n-)+(1≤n≤6).
因为n∈N+,故当n=2时,Sn最大,即第2年规模最大.
[说明]依此图像建立等差数列模型,问题就能得到解决.每年的总出产量则要与二次函数联系,n为正整数不能忽略,利用数列与函数的关系解决,是本类问题的特色.
名师辨误做答
[例5]某工厂去年的产值为138万元,预计今后五年的每年比上一年产值增长10%,从今年起计算,第5年这个工厂的产值是多少元?(精确到万元)
[误解]依题意,该工厂每年的产值组成一个等比数列{an}.
其中a1=138,q=1+10%=1.1,n=5.
∴a5=a1q4=138×1.14≈202(万元).
[辨析]138万元是去年的产值,从今年算起,则a1=138×1.1,由于首项弄错而造成错误.
[正解]依题意,该工厂每年的产值组成一个等比数列{an}.其中a1=138×1.1,
∴a5=a1q4=138×1.1×1.14
=138×1.15≈222(万元).
课堂巩固训练
一、选择题
1.预测人口的变化趋势有多种方法.“直接推算法”使用的公式是pn=p0(1+k)n(k-1),其中pn为预测期人口数,p0为初期人口数,k为预测期内年增长率,n为预测期间隔年数.如果在某一时期有-1k0,那么在这期间人口数()?
A.呈上升趋势B.呈下降趋势C.摆动变化D.不变
[答案]B?
[解析]∵-1k0,
∴0k+11,pn0,?
又∵==1+k1,
∴pn+1pn.?
即数列{pn}为递减数列.
2.某同学在电脑上设置一个游戏,他让一弹性球从100m高处自由落下,每次着地后又跳回到原来高度的一半再落下,则第10次着地时所经过的路程和为()?
A.199.8mB.299.6mC.166.9mD.266.9m
[答案]B
[解析]由题意知,弹球第1次着地时经过的路程是100m,从这时到弹球第2次着地时共经过了2×m,从这时到弹球第3次着地时共经过2×m,……,到第10次时应为2×m.?
∴S10=100+2×+2×+…+2×=100+100(1++…+)=100+
≈100+199.6=299.6(m).
3.某工厂生产总值连续两年的年平均增长率依次为p%,q%,则这两年的平均增长率是()
A.B.p%q%
C.D.
[答案]D
[解析]设该工厂最初的产值为1,经过两年的平均增长率为r,则(1+p%)(1+q%)=(1+r)2.
于是r=-1.
二、填空题
4.某工厂2011年的月产值按等差数列增长,第一季度总产值为20万元,上半年总产值为60万元,则2011年全年总产值为元.
[答案]200
3a1+d=20
[解析]由题意,得,
6a1+d=60
a1=
解得.
d=
所以S12=12×+×=200.
5.(2011湖北理,13)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为升.
[答案]
[解析]本题考查等差数列通项公式、前n项和公式的基本运算.
设此等差数列为{an},公差为d,?
a1+a2+a3+a4=3,?4a1+6d=3,a1=,
则∴解得
a7+a8+a9=4,3a1+21d=4,d=,
∴a5=a1+4d=+4×=.
课后强化作业
一、选择题
1.某沿海渔村,近几年不断挖掘经济收入来源,除了渔业收入外,还增加了海滨休闲度假服务业的开发,使本村经济有了较快发展,2008年全村财政收入95933万元,比上年增长7.3%,如果在今后的几年内全村财政收入都按此年增长率增长,那么到2012年末全村财政收入大约为()
A.115000万元B.120000万元C.127000万元D.135000万元
[答案]C?
[解析]2012年末全村的财政收入为95933×(1+0.073)4≈127000(万元).故选C.
2.某人从2011年1月份开始,每月初存入银行100元,月利率是2.8‰(每月按复利计算),到12月底取出本利和应是()
A.1223.4元B.1224.4元C.1222.1元D.1225.0元
[答案]C?
[解析]一月份开始存入银行,到12月底本利和是a1=100(1+2.8‰)12;
二月份开始存入银行,到12月底本利和是a2=100(1+2.8‰)11;?
…;
12月份开始存入银行,到12月底本利和是a12=100(1+2.8‰).
则数列{an}构成等比数列,
S12=
=≈1222.1(元).
3.农民收入由工资性收入和其他收入两部分构成.2003年某地区农民人均收入为3150元(其中工资性收入为1800元,其他收入为1350元),预计该地区自2004年起的5年内,农民的工资性收入将以每年6%的年增长率增长,其他收入每年增加160元.根据以上数据,2008年该地区农民人均收入介于()?
A.4200元~4400元B.4400元~4600元
C.4600元~4800元D.4800元~5000元
[答案]B
[解析]将2003年记作第1年,该地区农民人均收入第n年为an,?
则a1=3150,a2==1800×(1+6%)+1350+160,…,an=1800×(1+6%)n-1+1350+(n-1)×160.
2008年该地区农民人均收入为a6=1800×(1+6%)6-1+1350+(6-1)×160≈4558.81.故选B.
4.根据市场调查结果,预测某种家用商品从年初开始的n个月内累积的需求量Sn(万件)近似地满足Sn=(21n-n2-5)(n=1,2,…,12).按此预测,在本年度内,需求量超过1.5万件的月份是()
A.5月、6月B.6月、7月?
C.7月、8月D.8月、9月
[答案]C
[解析]设第n个月份的需求量超过1.5万件.则
Sn-Sn-1=(21n-n2-5)-[21(n-1)-(n-1)2-5]>1.5,?
化简整理,得n2-15n+54<0,即6<n<9.∴应选C.
5.通过测量知道,温度每降低6℃,某电子元件的电子数目就减少一半.已知在零下34℃时,该电子元件的电子数目为3个,则在室温27℃时,该元件的电子数目接近()
A.860个B.1730个C.3072个D.3900个
[答案]C?
[解析]由题设知,该元件的电子数目变化为等比数列,且a1=3,q=2,由27-(-34)=61,
=10,可得,a11=3210=3072,故选C.
6.一个卷筒纸,其内圆直径为4cm,外圆直径为12cm,一共卷60层,若把各层都视为一个同心圆,π=3.14,则这个卷筒纸的长度为(精确到个位)()
A.14mB.15mC.16mD.17m
[答案]B?
[解析]纸的厚度相同,且各层同心圆直径成等差数列,则l=πd1+πd2+…+πd60=60π
=480×3.14=1507.2(cm)≈15m,故选B.
7.现存入银行8万元,年利率为2.50%,若采用1年期自动转存业务,则5年末的本利和是万元.?
A.8×1.0253B.8×1.0254C.8×1.0255D.8×1.0256
[答案]C
[解析]定期自动转存属于复利计算问题,5年末的本利和为8×(1+2.50%)5=8×1.0255.
8.某房屋开发商出售一套50万元的住宅,可以首付5万元,以后每过一年付5万元,9年后共10次付清,也可以一次付清(此后一年定期存款税后利率设为2%,按复利计算)并优惠x%,为鼓励购房者一次付款,问优惠率应不低于多少?(x取整数,计算过程中参考以下数据:1.029=1.19,1.0210=1.2,1.0211=1.24)()
A.15%B.16%C.17%D.18%
[答案]B
[解析]由题意,知50(1-x%)(1+2%)9≤5(1.029+1.028+…+1.02+1).整理,得
1-x%≤==0.8403,∴x%≥15.97%,
∴一次付款的优惠率应不低于16%.
二、填空题
9.据某校环保小组调查,某区垃圾量的年增长率为b,2007年产生的垃圾量为a吨,由此预测,该区下一年的垃圾量为吨,2012年的垃圾量为吨.
[答案]a(1+b)a(1+b)?5
[解析]2007年产生的垃圾量为a吨,下一年的垃圾量在2007年的垃圾量的基础之上增长了ab吨,所以下一年的垃圾量为a(1+b)吨;2012年是从2007年起再过5年,所以2012年的垃圾量是a(1+b)5吨.
10.某彩电价格在去年6月份降价10%之后经10,11,12三个月连续三次回升到6月份降价前的水平,则这三次价格平均回升率是.?
[答案]-1
[解析]设6月份降价前的价格为a,三次价格平均回升率为x,则a×90%×(1+x)3=a,
∴1+x=,x=-1.
11.某大楼共有20层,有19人在第1层上了电梯,他们分别要去第2层至第20层,每层1人,而电梯只允许停1次,可只使1人满意,其余18人都要步行上楼或下楼,假设乘客每向下走1层的不满意度为1,每向上走一层的不满意度为2,所有人的不满意度之和为S,为使S最小,电梯应当停在层.
[答案]14
[解析]设停在第x层,则S=[1+2+…+(20-x)]×2+[1+2+…+(x-2)]=+421,
∴x=时取最小值,而x∈{2,3,…,20},?
∴x=14时取最小值.
12.某工厂生产总值的月平均增比率为p,则年平均增长率为.
[答案](1+p)12-1
[解析]设年平均增长率为x,原来总产值为a,由题意得a(1+x)=a(1+p)12,
∴x=(1+p)12-1.
三、解答题
13.某城市2002年底人口为500万,人均居住面积为6平方米,如果该城市每年人口平均增长率为1%,每年平均新增住房面积为30万平方米,到2012年底该城市人均住房面积是多少平方米?增加了还是减少了?说明了什么问题?(精确到0.01平方米)
[解析]设2002年,2003年,…,2012年住房面积总数成等差数列{an},人口数组成等比数列{bn},
则2002年:a1=500×6=3000(万平方米),b1=500(万).
2003年:a2=a1+d=3000+30=3030(万平方米),b2=b1×q=500×(1+1%)=505(万).

2012年:a11=a1+10d=3000+10×30=3300(万平方米),b11=b1×q10=500×(1+1%)10=500×1.0110≈552(万).?
所以人均住房面积是≈5.98(平方米).?
答:该城市人均住房面积约5.98平方米,人均住房面积反而减少了,说明计划生育的重要性.
14.某林场2008年底森林木材储存量为330万立方米,若树林以每年25%的增长率生长,计划从2009年起,每年冬天要砍伐的木材量为x万立方米,为了实现经过20年木材储存量翻两番的目标,每年砍伐的木材量x的最大值是多少?(lg2≈0.3)
[解析]设从2008年起的每年年底木材储存量组成的数列为{an},则
a1=330
an+1=an(1+25%)-x=an-x
则an+1-4x=(an-4x),
即=.
∴{an-4x}是以330-4x为首项,公比为的等比数列,即an=(330-4x)()n-1+4x.
∴a21=(330-4x)()20+4x.
令a21≥4a1,即(330-4x)()20+4x≥4×330.
由lg2≈0.3,可求得()20=100,代入上式整理得396x≤31680,
解得x≤80(万立方米).
答:每年砍伐量最大为80万立方米.
15.某企业2003年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从今年起每年比上一年纯利润减少20万元.今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n年(今年为第一年)的利润为500(1+)万元(n为正整数).?
(1)设从今年起的前n年,若该企业不进行技术改造的累计纯利润为An万元,进行技术改造后的累计纯利润为Bn万元(需扣除技术改造资金),求An、Bn的表达式;
(2)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?
[解析](1)依题设,An=(500-20)+(500-40)+…+(500-20n)=490n-10n2;
Bn=500[(1+)+(1+)+…+(1+)]-600=500n--100.
(2)Bn-An=(500n--100)-(490n-10n2)
=10n2+10n--100=10[n(n+1)--10].
因为函数y=x(x+1)--10在(0,+∞)上为增函数,
当1≤n≤3时,n(n+1)--10≤12--100;?
当n≥4时,n(n+1)--10≥20--100.?
∴仅当n≥4时,BnAn.
答:至少经过4年,该企业进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润.
16.银行按规定每经过一定时间结算存(贷)款的利息一次,结息后即将利息并入本金,这种计算利息的方法叫复利.现在某企业进行技术改造,有两种方案.甲方案:一次性贷款10万元,第一年便可获利1万元,以后每年比前一年增加30%的利润;乙方案:每年贷款1万元,第一年便可获利1万元,以后每年比前年多获利5千元,两种方案,使用期限都是十年,到期一次性归还本息,若银行贷款利息按年息10%的复利计算,比较两种方案,哪个获利更多?(计算数据精确到千元,1.110=2.594,1.310=13.786)
[解析]方案甲:十年获利中,每年获利数构成等比数列,首项为1,公比为1+30%,前10项和为S10=1+(1+30%)+(1+30%)2+…+(1+30%)9.?
所以S10=≈42.62(万元).
甲方案净获利42.62-25.94≈16.7(万元).?
乙方案获利构成等差数列,首项为1,公差为,前10项和为
T10=1+(1+)+(1+2×)+…+(1+9×)
==32.50(万元),?
而贷款本息总数为
1.1+[1+(1+10%)+…+(1+10%)9]=1.1+≈17.04(万元),?
乙方案净获利32.50-17.04≈15.5万元.
比较两方案可得甲方案获利较多.

2012届高考数学备考复习:数列求和及综合应用


一名爱岗敬业的教师要充分考虑学生的理解性,教师要准备好教案,这是教师的任务之一。教案可以让学生更好地进入课堂环境中来,让教师能够快速的解决各种教学问题。关于好的教案要怎么样去写呢?下面是小编为大家整理的“2012届高考数学备考复习:数列求和及综合应用”,相信能对大家有所帮助。

专题三:数列
第二讲数列求和及综合应用

【最新考纲透析】
1.了解数列求和的基本方法。
2.能在具体问题情景中识别数列的等差、等比关系,并能用有关知识解决相应问题。
3.了解等差数列与一次函数、等比数列与指数函数的关系。

【核心要点突破】
要点考向1:可转化为等差、等比数列的求和问题

考情聚焦:1.可转化为等差或等比数列的求和问题,已经成为高考考查的重点内容之一。
2.该类问题出题背景选择面广,易与函数方程、递推数列等知识综合,在知识交汇点处命题。
3.多以解答题的形式出现,属于中、高档题目。
考向链接:某些递推数列可转化为等差、等比数列解决,其转化途径有:
1.凑配、消项变换——如将递推公式(q、d为常数,q≠0,≠1)。通过凑配变成;或消常数转化为
2.倒数变换—如将递推公式(c、d为非零常数)取倒数得
3.对数变换——如将递推公式取对数得
4.换元变换——如将递推公式(q、d为非零常数,q≠1,d≠1)变换成,令,则转化为的形式。
例1:(2010福建高考文科T17)数列{}中=,前n项和满足-=(n).
(I)求数列{}的通项公式以及前n项和;
(II)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值。
【命题立意】本题考查数列、等差数列、等比数列等基础知识,考查运算求解能力,考查函数方程思想、化归转化思想。
【思路点拨】第一步先求的通项,可知为等比数列,利用等比数列的前n项和求解出;第二步利用等差中项列出方程求出t
【规范解答】(I)由得,又,故,从而
(II)由(I)从而由S1,t(S1+S2),3(S2+S3)成等差数列可得解得。
【方法技巧】要求数列通项公式,由题目提供的是一个递推公式,如何通过递推公式来求数列的通项。题目要求的是项的问题,这就涉及有关“项”与“和”如何转化的问题。一般地,含有的递推关系式,一般利用化“和”为“项”。
要点考向2:错位相减法求和
考情聚焦:1.错位相减法求和,是高中数学中重要的数列求和方法,是近年来高考的重点考查内容。
2.该类问题背景选择面广,可与等差、等比数列、函数、不等式等知识综合,在知识交汇点处命题。
3.多以解答题的形式出现,属于中、高档题。
考向链接:几种求通项及求和方法
(1)已知,求可用叠加法,即
(2)已知,求可用叠乘法,即
(3)设{}为等差数列,为等比数列,求数列的前n项和可用错位相减法。
例2:(2010海南宁夏高考理科T17)设数列满足,
(Ⅰ)求数列的通项公式:
(Ⅱ)令,求数列的前n项和.
【命题立意】本题主要考查了数列通项公式以及前项和的求法,解决本题的关键是仔细观察形式,找到规律,利用等比数列的性质解题.
【思路点拨】由给出的递推关系,求出数列的通项公式,在求数列的前n项和.
【规范解答】(Ⅰ)由已知,当时,
而,满足上述公式,
所以的通项公式为.
(Ⅱ)由可知,

从而②
①②得

【方法技巧】利用累加法求数列的通项公式,利用错位相减法求数列的和.
要点考向3:裂项相消法求和
考情聚焦:1.裂项相消求和是高中数学中的一个重要的数列求和方法,是近年来高考的重点考查内容。
2.该类问题背景选择面广,可与等差、等比数列、函数、不等式等知识综合,在知识交汇点处命题。
3.多以解答题的形式出现,属中、高档题目。
考向链接:裂项求和的几种常见类型
(1);
(2);
(3);
(4);
(5)若是公差为d的等差数列,则

(6);
(7)
(8)。
例3:(2010山东高考理科T18)已知等差数列满足:,,的前n项和为.
(1)求及;
(2)令(nN*),求数列的前n项和.
【命题立意】本题考查等差数列的通项公式与前n项和公式的应用、裂项法求数列的和,考查了考生的逻辑推理、等价变形和运算求解能力.
【思路点拨】(1)设出首项和公差,根据已知条件构造方程组可求出首项和公差,进而求出求及;(2)由(1)求出的通项公式,再根据通项的特点选择求和的方法.
【规范解答】(1)设等差数列的公差为d,因为,,所以有
,解得,
所以;==.
(2)由(1)知,所以bn===,
所以==,
即数列的前n项和=.
【方法技巧】数列求和的常用方法:
1、直接由等差、等比数列的求和公式求和,注意对公比的讨论.
2、错位相减法:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.
3、分组转化法:把数列的每一项分成两项,使其转化为几个等差、等比数列,再求解.
4、裂项相消法:主要用于通项为分式的形式,通项拆成两项之差求和,正负项相消剩下首尾若干项,注意一般情况下剩下正负项个数相同.
5、倒序相加法:把数列正着写和倒着写相加(即等差数列求和公式的推导过程的推广).
要点考向4:与不等式有关的数列问题
考情聚焦:1.数列综合问题,特别是数列与不等式的综合问题是高考中经常考查的重要内容。
2.该类问题可与函数的单调性、基本不等式、导数函数等知识交汇,综合命题。
3.多以解答题的形式出现,属高档题。
例4:(2010天津高考文科T22)在数列中,=0,且对任意k,成等差数列,其公差为2k.
(Ⅰ)证明成等比数列;
(Ⅱ)求数列的通项公式;
(Ⅲ)记,证明.
【命题立意】本小题主要考查等差数列的定义及前n项和公式、等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法.
【思路点拨】(Ⅰ)(Ⅱ)应用定义法证明、求解;(Ⅲ)对n分奇数、偶数进行讨论.
【规范解答】(I)由题设可知,,,,,。从而,所以,,成等比数列.
(II)由题设可得
所以
.
由,得,从而.
所以数列的通项公式为或写为,.
(III)由(II)可知,,
以下分两种情况进行讨论:
当n为偶数时,设n=2m
若,则,
若,则
.
所以,从而
(2)当n为奇数时,设.
所以,从而
综合(1)和(2)可知,对任意有

【高考真题探究】
1.(2010天津高考理科T6)已知是首项为1的等比数列,是的前n项和,且,则数列的前5项和为()
(A)或5(B)或5(C)(D)
【命题立意】考查等比数列的通项公式、前n项和公式.
【思路点拨】求出数列的通项公式是关键.
【规范解答】选C.设,则,
即,,.
2.(2010天津高考文科T15)设{an}是等比数列,公比,Sn为{an}的前n项和.
记设为数列{}的最大项,则=.
【命题立意】考查等比数列的通项公式、前n项和、均值不等式等基础知识.
【思路点拨】化简利用均值不等式求最值.
【规范解答】

∵当且仅当即,所以当n=4,即时,最大.
【答案】4.
3.(2010安徽高考理科T20)设数列中的每一项都不为0.
证明:为等差数列的充分必要条件是:对任何,都有

【命题立意】本题主要考查等差数列与充要条件等知识,考查考生推理论证,运算求解能力.
【思路点拨】证明可分为两步,先证明必要性,适宜采用列项相消法,再证明充分性,可采用数学归纳法或综合法.
【规范解答】已知数列中的每一项都不为0,
先证
若数列为等差数列,设公差为,
当时,有,
即对任何,有成立;
当时,显然也成立.
再证
对任意,有①,
②,
由②-①得:-
上式两端同乘,得③,
同理可得④,
由③-④得:,所以为等差数列
【方法技巧】
1、在进行数列求和问题时,要善于观察关系式特点,进行适当的变形,如分组、裂项等,转化为常见的类型进行求和;
2、对数列中的含n的式子,注意可以把式子中的n换为或得到相关的式子,再进行化简变形处理;也可以把n取自然数中的具体的数1,2,3…等,得到一些等式归纳证明.
4.(2010安徽高考文科T21)设是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线相切,对每一个正整数,圆都与圆相互外切,以表示的半径,已知为递增数列.
(1)证明:为等比数列;
(2)设,求数列的前项和.

【命题立意】本题主要考查等比数列的基本知识,利用错位相减法求和等基本方法,考察考生的抽象概括能力以及推理论证能力.
【思路点拨】(1)求直线倾斜角的正弦,设的圆心为,得,同理得,结合两圆相切得圆心距与半径间的关系,得两圆半径之间的关系,即中与的关系,可证明为等比数列;
(2)利用(1)的结论求的通项公式,代入数列,然后采用错位相减法求和.
【规范解答】

【方法技巧】
1、对数列中的含n的式子,注意可以把式子中的n换为或得到相关的式子,再进行化简变形处理;
2、在进行数列求和问题时,要善于观察关系式特点,进行适当的处理,如分组、列项相消、错位相减等,转化为常见的类型进行求和.
5.(2010江苏高考T19)设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列.
(1)求数列的通项公式(用表示);
(2)设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为.
【命题立意】本题主要考查等差数列的通项、求和、基本不等式以及不等式的恒成立问题等有关知识,考查探索、分析及论证的能力.
【思路点拨】(1)先求,然后利用的关系求解;(2)利用(1)中所求利用基本不等式解决.
【规范解答】(1)由题意知:,

化简,得:

当时,,适合情形.
故所求.
(2)(方法一)
,恒成立.
又,,
故,即的最大值为.
(方法二)由及,得,.
于是,对满足题设的,,有

所以的最大值.
另一方面,任取实数.设为偶数,令,则符合条件,且.
于是,只要,即当时,.
所以满足条件的,从而.
因此的最大值为.
6.(2010重庆高考理科T21)在数列中,=1,,其中实数。
(1)求的通项公式;
(2)若对一切有,求的取值范围。
【命题立意】本小题考查归纳、猜想解题,考查数学归纳法及其应用,考查数列的基础知识,考查运算求解能力,考查化归与转化思想,考查分类讨论的思想.
【思路点拨】(1)先求出数列的前几项,归纳猜想得出结论,再用数学归纳法证明;(2)对恒成立问题进行等价转化,
【规范解答】(1)【方法1】:由,,

,猜测(),
下面用数学归纳法证明
当n=1时,等式成立;
假设当n=k时,等式成立,即,则当n=k+1时,
综上可知,对任何都成立.
【方法2】:由原式,
令,则,,因此对有
因此,,。又当n=1时上式成立。
因此,,。
(2)【方法1】:由,得
因,所以
解此不等式得:对一切,有或,其中
易知(因为的分子、分母的最高次项都是2,且系数都是8,所以极限值是);用放缩法得:
,所以,
因此由对一切成立得;
又,易知单调递增,故对一切成立,因此由对一切成立得:
,从而c的取值范围为.
【方法2】:由,得,
因,所以对恒成立.
记,下分三种情况讨论。
(i)当即或时,代入验证可知只有满足要求
(ii)当时,抛物线开口向下,因此当正整数k充分大时,,不符合题意,此时无解。
(iii)当,即或时,抛物线开口向上,其对称轴必在直线的左侧,因此,在上是增函数。
所以要使对恒成立,只需即可。
由解得或
结合或得或
综合以上三种情况,的取值范围为.
【方法技巧】(1)第(1)问有两种方法解答:①归纳猜想并用数学归纳法证明;②数列的迭代法(或累加消项法);(2)第(2)问中对条件“恒成立”进行等价转化,转化为一元二次不等式求解或转化为二次函数进行讨论;(3)放缩法的运用

【跟踪模拟训练】
一、选择题(每小题6分,共36分)
1.已知{an}为等差数列,若-1,且它的前n项和Sn有最大值,那么使Sn0的n的最大值为()
(A)11(B)20(C)19(D)21
2.已知等比数列{an}中,a2=1,则其前3项的和S3的取值范围是()
(A)(-∞,-1]
(B)(-∞,0)∪(1,+∞)
(C)[3,+∞)
(D)(-∞,-1]∪[3,+∞)
3.首项为b,公比为a的等比数列{an}的前n项和为Sn,对任意的n∈N*,点(Sn,Sn+1)在()
(A)直线y=ax+b上
(B)直线y=bx+a上
(C)直线y=bx-a上
(D)直线y=ax-b上
4.在数列中,若存在非零整数,使得对于任意的正整数均成立,那么称数列为周期数列,其中叫做数列的周期.若数列满足,如,当数列的周期最小时,该数列的前2010项的和是()
5.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是()
(A)289(B)1024(C)1225(D)1378
6.(2010届安徽省安庆市高三二模(文))已知实数、满足:(其中是虚数单位),若用表示数列的前项和,则的最大值是()
A.12B.14C.15D.16
二、填空题(每小题6分,共18分)
7.已知等比数列满足,且,则当时,
________
8.类比是一个伟大的引路人。我们知道,等差数列和等比数列有许多相似的性质,请阅读下表并根据等差数列的结论,类似的得出等比数列的两个结论:,
9.将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0-1三角数表,从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n次全行的数都为1的是第_______行;第61行中1的个数是_______.
三、解答题(10、11题每题15分,12题16分,共46分)
10.已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*).
(1)证明数列{an+1}是等比数列;
(2)令f(x)=a1x+a2x2+…+anxn,求函数f(x)在点x=1处的导数f′(1).
11.已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2.数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式;
12.在数列中,.
(1)求的值;
(2)求数列的通项公式;
(3)求的最大值.

参考答案
一、选择题
1.【解析】选C.∵等差数列{an}中,-1且它的前n项和Sn有最大值,∴a100,a110,故a11-a10.
即a11+a100,而a10+a100,
∴使Sn0的n的最大值为19.
2.
3.
4.D
5.【解析】选C.从图中观察知
图1中an=1+2+…+n=
图2中bn=n2,
显然1225在an中n=49,
在bn中n=35.
6.D
二、填空题
7.
8.,
9.【解析】①第1次全行的数都是1的是第1行,
第2次全行的数都是1的是第3行,
第3次全行的数都是1的是第7行,
……
第n次全行的数都是1的是第2n-1行,
②由上面结论知第63行有64个1,
则1100……0011……61行
1010……101……62行
1111……11……63行
从上面几行可知第61行数的特点是两个1两个0交替出现,最后两个为1,
∴在第61行的62个数中有32个1.
答案:2n-132
三、解答题
10.【解析】(1)由已知Sn+1=2Sn+n+5,
∴n≥2时,Sn=2Sn-1+n+4,
两式相减,得Sn+1-Sn=2(Sn-Sn-1)+1,
即an+1=2an+1.
从而an+1+1=2(an+1).
当n=1时,S2=2S1+1+5,
∴a1+a2=2a1+6,
又a1=5,∴a2=11,
∴a2+1=2(a1+1),故总有an+1+1=2(an+1),n∈N*.
又∵a1=5,∴an+1≠0,
即{an+1}是以a1+1=6为首项,2为公比的等比数列.
(2)由(1)知an=3×2n-1.
∵f(x)=a1x+a2x2+…+anxn,
∴f′(x)=a1+2a2x+…+nanxn-1.
11.【解析】(1)依题意可设f(x)=ax2+bx(a≠0),
则f′(x)=2ax+b.
由f′(x)=6x-2得a=3,b=-2,
所以f(x)=3x2-2x.
又由点(n,Sn)(n∈N*)均在函数y=f(x)的图象上得Sn=3n2-2n.
当n≥2时,an=Sn-Sn-1
=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5;
当n=1时,a1=S1=3×12-2×1=1=6×1-5.
所以an=6n-5(n∈N*).
12.【解析】(1)由且…)
得.
(2)由变形得

是首项为公比为的等比数列
即()
(3)①当是偶数时
随增大而减少
当为偶数时,最大值是.
②当是奇数时
随增大而增大且
综上最大值为

【备课资源】
1.已知等比数列{an}的公比q0,前n项的和为Sn,则S4a5与S5a4的大小关系是()
(A)S4a5=S5a4(B)S4a5S5a4
(C)S4a5S5a4(D)不能确定

2012届高考数学数列的综合应用知识梳理复习教案


教案67数列的综合应用
一、课前检测
1.猜想1=1,1-4=-(1+2),1-4+9=1+2+3,……的第n个式子为。
答案:

2.用数学归纳法证明,在验证成立时,左边所得的项为(C)
A.1B.1+C.D.

二、知识梳理
1.等差、等比数列的应用题常见于:产量增减、价格升降、细胞繁殖等问题,求利率、增长率等问题也常归结为数列建模问题。
⑴生产部门中有增长率的总产量问题.例如,第一年产量为,年增长率为,则每年的产量成等比数列,公比为.其中第年产量为,且过年后总产量为:
⑵银行部门中按复利计算问题.例如:一年中每月初到银行存元,利息为,每月利息按复利计算,则每月的元过个月后便成为元.因此,第二年年初可存款:
=.
注意:“分期付款”、“森林木材”型应用问题
⑴这类应用题一般可转化为等差数列或等比数列问题.但在求解过程中,务必“卡手指”,细心计算“年限”.对于“森林木材”既增长又砍伐的问题,则常选用“统一法”统一到“最后”解决.
⑵利率问题:①单利问题:如零存整取储蓄(单利)本利和计算模型:若每期存入本金元,每期利率为,则期后本利和为:
(等差数列问题);②复利问题:按揭贷款的分期等额还款(复利)模型:若贷款(向银行借款)元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,分期还清.如果每期利率为(按复利),那么每期等额还款元应满足:
(等比数列问题).

⑶分期付款应用题:为分期付款方式贷款为a元;m为m个月将款全部付清;为年利率.
2.将实际问题转化为数列问题时应注意:
(1)分清是等差数列还是等比数列;
(2)分清是求an还是求Sn,特别要准确地确定项数n.

3.数列与其他知识的综合也是常考的题型,如:数列与函数、不等式、解析几何知识相互联系和渗透,都是常见的题型。

4.强化转化思想、方程思想的应用.

三、典型例题分析
题型1以等差数列为模型的问题
例1由于美伊战争的影响,据估计,伊拉克将产生60~100万难民,联合国难民署计划从4月1日起为伊难民运送食品.第一天运送1000t,第二天运送1100t,以后每天都比前一天多运送100t,直到达到运送食品的最大量,然后再每天递减100t,连续运送15天,总共运送21300t,求在第几天达到运送食品的最大量.
剖析:本题实质上是一个等差数列的求通项和求和的问题.
解:设在第n天达到运送食品的最大量.
则前n天每天运送的食品量是首项为1000,公差为100的等差数列.
an=1000+(n-1)100=100n+900.
其余每天运送的食品量是首项为100n+800,公差为-100的等差数列.
依题意,得
1000n+×100+(100n+800)(15-n)+×(-100)=21300(1≤n≤15).
整理化简得n2-31n+198=0.
解得n=9或22(不合题意,舍去).
答:在第9天达到运送食品的最大量.

变式训练1数列{an}中,a1=6,且an-an-1=an-1n+n+1(n∈N*,n≥2),则这个数列的通项an=________.答案:(n+1)(n+2)
解:由已知等式得nan=(n+1)an-1+n(n+1)(n∈N*,n≥2),则ann+1-an-1n=1,所以数列{ann+1}是以a12=3为首项,1为公差的等差数列,即ann+1=n+2,则an=(n+1)(n+2).n=1时,此式也成立.

小结与拓展:对数列应用题要分清是求通项问题还是求和问题。

题型2以等比数列为模型的实际问题
例2(2005年春季上海,20)某市2004年底有住房面积1200万平方米,计划从2005年起,每年拆除20万平方米的旧住房.假定该市每年新建住房面积是上年年底住房面积的5%.
(1)分别求2005年底和2006年底的住房面积;
(2)求2024年底的住房面积.(计算结果以万平方米为单位,且精确到0.01)
剖析:本题实质是一个等比数列的求和问题.
解:(1)2005年底的住房面积为
1200(1+5%)-20=1240(万平方米),
2006年底的住房面积为
1200(1+5%)2-20(1+5%)-20=1282(万平方米),
∴2005年底的住房面积为1240万平方米,2006年底的住房面积为1282万平方米.
(2)2024年底的住房面积为
1200(1+5%)20-20(1+5%)19-20(1+5%)18-…-20(1+5%)-20
=1200(1+5%)20-20×
≈2522.64(万平方米),
∴2024年底的住房面积约为2522.64万平方米.
评述:应用题应先建立数学模型,再用数学知识解决,然后回到实际问题,给出答案.

变式训练2从2002年1月2日起,每年1月2日到银行存入一万元定期储蓄,若年利率为p,且保持不变,并约定每年到期存款均自动转为新一年的定期存款,到2008年1月1日将所有存款及利息全部取回,则可取回的钱的总数为____万元.
答案:[(1+p)7-(1+p)]
解:存款从后向前考虑
(1+p)+(1+p)2+…+(1+p)5
==[(1+p)7-(1+p)].
注:2008年不再存款.
小结与拓展:对数列应用题要分清是求通项问题还是求和问题。

题型3数列与函数、不等式等问题的综合应用
例3(文)在数列{an}中,a1=1,3anan-1+an-an-1=0(n≥2,n∈N).
(1)试判断数列{1an}是否为等差数列;(2)设{bn}满足bn=1an,求数列{bn}的前n项为Sn;
(3)若λan+1an+1≥λ,对任意n≥2的整数恒成立,求实数λ的取值范围.
解:(1)∵a1≠0,∴an≠0,∴由已知可得1an-1an-1=3(n≥2),故数列{1an}是等差数列.
(2)由(1)的结论可得bn=1+(n-1)×3,所以bn=3n-2,
∴Sn=n(1+3n-2)2=n(3n-1)2.
(3)将an=1bn=13n-2代入λan+1an+1≥λ并整理得λ(1-13n-2)≤3n+1,
∴λ≤(3n+1)(3n-2)3n-3,原命题等价于该式对任意n≥2的整数恒成立.
设Cn=(3n+1)(3n-2)3n-3,则Cn+1-Cn=(3n+1)(3n-4)3n(n-1)0,故Cn+1Cn,
∴Cn的最小值为C2=283,∴λ的取值范围是(-∞,283].

变式训练3已知数列{an}的前n项和为Sn,对任意n∈N*都有Sn=23an-13,若1Sk9(k∈N*),则k的值为________.答案:4
解:∵Sn=23an-13,∴S1=23a1-13=a1,a1=-1.an=Sn-Sn-1(n1),即an=(23an-13)-(23an-1-13)=23an-23an-1,整理得:anan-1=-2,∴{an}是首项为-1,公比为-2的等比数列,Sk=a1(1-qk)1-q=(-2)k-13,∵1Sk9,∴1(-2)k-139,即4(-2)k28,仅当k=4时不等式成立.

小结与拓展:数列的综合问题常与函数、方程、不等式等知识相互联系和渗透.

四、归纳与总结(以学生为主,师生共同完成)
1.等差、等比数列的应用题常见于:产量增减、价格升降、细胞繁殖等问题,求利率、增长率等问题也常归结为数列建模问题.解应用题的关键是建立数学模型,转化为数学问题,要加强培养转化意识.
2.将实际问题转化为数列问题时应注意:
(1)分清是等差数列还是等比数列;
(2)分清是求an还是求Sn,特别要准确地确定项数n.
3.数列的综合问题常与函数、方程、不等式等知识相互联系和渗透.
4.强化转化思想、方程思想的应用.