88教案网

你的位置: 教案 > 小学教案 > 导航 > 平均数小学教学设计

平均数小学教学设计

发表时间:2025-09-06

平均数小学教学设计。

作为一名教师,教学设计是提升教学效率和质量的重要工具。有效的教学设计应明确教学目标、内容、方法和评价方式,以优化课堂体验。以下是关于平均数的教学设计示例,供大家参考和借鉴。

平均数小学教学设计

第一篇 平均数小学教学设计

教学内容:

人教社义务教育教科书第六册第三单元。

设计思路:

本节课要通过一道道练习题的精心设计,来体现以下特点:

一、营造人文的课堂环境。

课堂教学只要以人为本,在整个教学环节中,本人充分尊重学生,给学生提供表现的机会,增强成功的体验,鼓励学生根据自己对平均数问题的理解进行阐释,使教学活动真正面向全体,使不同的学生得到不同的发展。另外,充分尊重学生独特的学习感受,不以教师权威压制学生的思维,而是积极引导学生多角度观察问题、思考问题,使学生敢想、敢说、敢质疑,做到课堂教学体现了尊重学生、理解学生、发展学生、激励学生,从而提高人的教育原则。

二、深刻的思维引领。

本人在练习课教学中呈现的练习题,只要针对学生在学习求平均数问题过程中极易出错的典型问题为着眼点,把学生学习中的“模糊点”,常犯错误有意识引进课堂。让学生的思维火花在探究交流中碰撞,使之明确错因,并主动纠错。然后,有针对性地让学生通过合理的习题进行深度挖掘,举一反三,对学生思维进行深刻、逆向性、批判性的指导和渗透。这样的课堂设计会因习题的多元化而倍显生动精彩,使学生感到一股浓浓的数学味,体验到思维的快感,抵制错源,享受课堂师生的平等交流的快乐,从而更加乐于学习数学。

教学目标:

1、进一步理解平均数的含义,掌握求平均数的方法。

2、通过解决生活实际问题,对学生进行节约资源和环保教育。

重点、难点:

进一步理解平均数的含义,掌握求平均数的方法,利用有关平均数的知识解决生活实际问题。

教学过程:

一、复习:

1、平均数的定义

2、求平均数的方法

二、课堂练习:

(一)基本训练

师:我们已经学会求平均数的方法,下面请同学们看一道习题。

1、判断:

⑴小华所在班级平均身高131厘米,小明所在班级平均身高135厘米,所以小华比小明矮。( )

⑵全体同学为希望工程捐款,平均每人捐款12元,李洁同学可能捐了15元( )

⑶小明语文、数学、英语三科的平均成绩是93分,小明的语文成绩是93分。( )

2、小丽家这一星期用塑料袋情况如下图:

看图填空:

⑴图中每格代表( );

⑵用塑料袋最少的是( );

⑶平均每天用塑料袋( );

⑷你的建议是( )。

3、以小组为单位(6人一组)统计你家上个月用水情况,制成统计图:

姓名合计

用水量

以小组为单位展示汇报后对学生进行节约用水教育。

(二)拓展训练:(课件出示)

1、一个小组有7个同学,他们的体重分别是:39千克、36千克,38千克、37千克、35千克、40千克、34千克。求这个小组的平均体重是多少千克?

2、商店买来5筐苹果,第一筐重38千克,第一筐重39千克,第一筐重43千克,第一筐重34千克,第一筐重36千克,求平均每筐重多少千克?

3、哪一组的成绩好?

4、选择题:想一想:下面哪个列式才对?

5、小丽期末考试中三门的平均成绩是96分,其中语文是89分,英语是100分,她的数学成绩是多少?

6、小华期末考试中四门的平均成绩是92分,其中语文是96分,科学和英语都是87分,他的数学考了多少分?

7、小芳有36本书,小丽有22本书。小芳送几本书给小丽,他们两人的书就同样多?

三、练习小结。

四、作业

1、复习课本第42、43页的内容。

2、做课本第45页的第5题。

3、收集资料:平均数在日常生活中有哪些应用及作用。

附板书设计:

求平均数的练习课

(一)平均数的定义: 几个不相等数-----→相等的数

(求平均数)

1、移多补少

2、计算方法:

(1)先求出总数----→ 把各个部分数加起来。

(2)再求平均数----→ 总数÷份数=平均数

(二)平均数问题的基本数量关系:

总数÷份数=平均数

平均数×份数=总数

总数÷平均数=份数

第二篇 平均数小学教学设计

一、说教材

1、教学内容:北师大版五年级数学下册第八单元《平均数的再认识》

2、教材分析:

随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将“统计与概率”安排为一个重要的学习领域,强调发展学生的统计观念。本单元正是在此基础上,向学生介绍统计的初步知识的。本课则是在学生初步认识统计后进行教学的,它包含两部分,即算术平均数和加权平均数(较复杂的平均数问题)。

3、教学重、难点:求平均数说课稿

平均数是统计工作中常用的一种特征数,它能反映统计对象的一般水平,用途很广泛。所以进一步理解平均数的意义,掌握求平均数的计算方法是教学的重点。而本课的“平均数”又和过去学过的“平均数”的方法不同,弄清“全部数据的总和”与“全部数据的个数”之间的对应关系就是教学的难点。

4、教学目标

在学生计算出平均数的.基础上应充分引导学生理解“平均数”概念所蕴含的丰富、深刻的统计与概率的背景,帮助他们认识到平均数在现实生活中的实际意义与广泛应用,并能在新的情境中运用它去解决实际问题,从而获得必要的发展。基于这样的认识我们定为:

知识目标:使学生进一步理解平均数的含义,掌握求算术平均数的方法。

能力目标:能从现实生活中发现问题,并根据需要收集有用的信息,培养学生的策略意识和应用数学解决实际问题的能力。

情感目标:通过小组学习活动培养学生的合作精神和创新品质,体验数学与生活的紧密联系,促进学生个性和谐发展。

二、说教法:

“求平均数”作为一类应用题,若教学内容脱离生活实际,会使学生感到枯燥乏味。因此要积极创设真实的、源于生活的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程,充分发挥教师的主导作用,扮演好组织者、引导者与合作者的角色。

三、说学法:

在学法指导上,努力营造平等、民主、和谐、安全的教学氛围,充分发挥学生的主体性,通过观察、操作、比较、分析等活动,让每个学生积极参与,根据自己的体验,用自己的思维方式主动探究,去发现、构建数学知识。通过小组合作中的互相讨论交流,让学生从中学会与他人交往,分享同伴的成功,解释自己的想法,倾听别人的意见,获得积极的情感体验。教师还要让学生进行自己我反思,自主评价,以提高解决问题和综合概括的能力。

四、说教学过程:

五年级下册数学平均数的再认识教学设计

教学内容 平均数的再认识

教学目标

1、结合生活实际再进一步理解平均数的意义的基础上,掌握求平均数的方法。

2、能运用平均数解决简单的实际问题,体会平均数在实际生活中的应用。

3、在探索知识的过程中,增强学好数学的信心,提高自主学习的能力。

教学重点

难点 掌握求平均数的方法。

体会平均数在实际生活中的应用。

教具准备:多媒体

教学课时:1课时

教学过程

一、情境引入。

1、出示:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2米的儿童免费乘车。1.2米这个数据是如何得到的呢?

2、学生质疑,说一说你的看法。

二、新授。

1、解决疑惑。

学龄前儿童,即0-6岁的儿童,而这就意味着0-6岁的儿童身高普遍不会超过1.2米,那么我们首先就要调查一下0-6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的平均数来解决问题。

出示平均数的意义:一组数据中所有数据之和除以数据的个数。它是反映数据集中趋势的一项指标,具有代表性。

2、求平均数的方法。

出示:“新苗杯”少儿歌手大奖赛的成绩统计表。

评委1 评委2 评委3 评委4 评委5 平均分

选手1 92 98 94 96 100

选手2 97 99 100 84 95

选手3 90 98 87 85 90

(1)把统计表填写完整,并排出名次。

(2)在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?

(3)按照上述的记分方法重新计算3位选手的最终成绩,然后排出名次。

3、教授解题策略。

题中数据众多,无法直接比较,可以先求出每位选手的平均成绩,再进行比较,这样就容易排出名次。

求平均数的方法:总数量÷总份数=平均数。

选手1:(92+98+94+96+100)÷5=96(分)

选手2:(97+99+100+84+95)÷5=95(分)

选手3:(90+98+87+85+90)÷5=96(分)

4、计算完毕请补充统计表,并排出最终名次。

板书设计

平均数的再认识

平均数的意义。

求平均数的方法:总数量÷总份数=平均数。

第三篇 平均数小学教学设计

教学目标:

1、知道平均数的含义和求法。

2、加深对“平均数”和“平均分”意义的理解。

3、运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。

4、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。

教学重难点:

重点:理解平均数的含义,掌握求平均数的方法:“移多补少”、“先合并再平分”的实际意义和应用。

难点:理解平均数的含义,让学生知道平均数是一个不“真实”的数。

教学过程:

一、创设情境,初步感知

1、问题引入:现在黑板上摆两排圆形磁铁第一排有9个,第二排有5个,我想请同学们帮忙,重新整理一下,使每排磁铁同样多。

2、感知。

(1)学生思考,想移的过程(2)教师操作引导:现在每排都有7个,7是这组数的什么数?

(3)像这样把几个不同的数,通过“移多补少”、“先求和再平分”的方法,得到相同的数,就是这几个数的平均数。

师:今天,我们就来认识一下“平均数”这个新朋友。(板书课题)[设计意图:从生活导入,自然引出平均数的概念,让学生初步感知平均数是表示一组数据的一般情况,为后面深化对平均数意义的理解做好了铺垫。] 二、合作探究,深化理解

1.操作:

师:在黑板上用圆形磁铁摆:第一排放8个,第二排放4个,第三排放3个,注意摆的时候,要一一对应地摆齐。

2.学生合作探究:

师:平均每排有多少个圆形磁铁?你是怎样想的?

3.交流汇报a.移多补少:只要从8个中拿1个放到第二行的4个中,拿2个放到第三行的3个中,它们就一样多了,所以这三行圆形磁铁的平均数是5。

b.先算总数再平均分:把三行圆形磁铁合在一起,先求出一共几个,然后再除以3就可得到这三行的圆形磁铁的平均数。

[设计意图:“活动”是儿童感知世界,认识世界的主要方式,也是儿童社会交往的最初方式。在这个环节中,为学生提供了大量的活动材料──圆形磁铁,让学生通过摆来体验和感悟新知识。学生的手、脑、眼、口等多种器官直接参与了学习活动,不仅解决了数学知识高度抽

象性与儿童思维发展具体形象性的矛盾,而且使全体学生都积极主动参与,培养了合作能力和探究精神,使学生在生活化的情景中感受数学,体验数学,经历了知识的形成过程,开发了学生的思维。]

4、教学例1

(1)、出示情景图,收集数学信息师:为了保护环境,我们学校三年级6班的第一小组同学利用课余时间收集矿泉水瓶,做环保小卫士,请同学们仔细观察统计图。从图中你知道哪些数学信息?

生:小明收集15个,小亮收集11个

生:小红比小兰多收集2个……

师:他们平均每人收集多少个?你是怎样理解“平均每人收集多少个”的?

生:就是让我们求出平均数。

师:你同意他的说法吗?你是怎样理解的?

(2)利用情境图,处理数学信息A:移多补少师:怎样才能让他们收集的瓶子变得一样多呢?利用这个统计图,你们有什么办法解决平均每人收集了多少个矿泉水瓶这个问题?

生:小明给小亮2个,小红给小兰一个,他们收集的个数就一样多了。都是13个

师:这13个是不是他们每个人实际收集的瓶子数量?(不是)那么13应该叫做这组数的什么数?(平均数)生:13就是14、12、11、15这组数的平均数B:先求和再平均分师:如果没有这个统计图,这四位同学只是告诉你自己收集了几个瓶子,你还其它方法求出他们平均每个人收集多少个瓶子吗?生:先求和再除以4.就可以求出他们平均每人收集多少个瓶子。

生:14+12+11+15=52(个) 52÷4=13(个)师:13是这组数的什么数?(平均数)生:13就是14、12、11、15这组数的平均数

C:理解平均数是一个不“真实”的数。

师:平均每人收集13个瓶子,表示每个同学都收集13个瓶子吗?你能举举例子说说吗?生:不是生:他们平均每人收集13个,但是小明实际收集了15个,小兰实际收集了12个。

师:这个平均数和平均分不一样,平均数比较好的表现了这一小组的整体水平,并不表示每一个人真的收集了13个瓶子师:现在同学们来观察平均数13和原来这一组数,你发现了什么?

生1:小红和小明收集的瓶子个数比平均数多的,小兰和小亮收集的瓶子个数比平均数少。[励志的句子 WWw.DJZ525.Com]

生2:平均数在最大的数和最小的数之间。

生3:“平均数是一个虚的数,比最小的数大一些,比最大的数小一些,在它们中间。”

生4:“平均数不是某一个人具体的收集瓶子数量,它代表的是几个人收集瓶子的平均水平。”

D:归纳“平均数”的含义师:同学们,你们真是太棒了!平均数正如你们所说,平均数的大小在最大的数和最小的数之间。它不是一个“真实”的数,而是表示的是这组数的平均水平,并不一定这一组数都等于平均数,有些数可能比平均数大,有些数可能比平均数小。

E:小结求平均数的方法,知道平均数在生活中的运用。

师:通过刚才的`学习你能说一说求平均数有几种方法?根据学生回答板书:

1、移多补少

2、先求和再平均分师:虽然这两种方法都可以求出平均数,但是我们做题时要根据实际情况来选择合适的方法。数量少,相差不大,用移多补少的方法简单;数量多,相差大,用先求和再平均分。

师:用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常要用到。如平均产量、平均速度、平均成绩、平均身高等等。

『设计意图:从生活中搜集,整理数据,并求出平均数,使学生体会“平均数”反映的某段时间内具有代表的数据,在实际生活、工作中人们可以运用它对未来的发展趋势进行预测。计算的引入,使学生乐意并有更多精力投入到现实的、探索性的数学活动中去。』

三、巩固应用

1、算一算在一次数学测验中,小芳得了98分,小强得了96分,小明和小兰都得91分。你能算出这四位同学的平均成绩吗?

2、辨一辨

(1)白沙县第一小学的老师平均年龄是38岁,那么王老师一定是38岁。

(2)白沙县第一小学全体同学向希望工程捐款,平均每人捐款3元。陈良同学不可能捐4元。

3、想一想:

星期天,小丽高高兴兴去学游泳。她碰到一个难题,原来游泳池的水平均深是126厘米,小丽身高134厘米,她在这个游泳池中学游泳会有危险吗?□会□不会□可能会□可能不会师:平均水深只是一个代表数,他的实际水深并不知道,可能比126厘米高,可能比126厘米深,我们在对待实际问题时就应该根据实际情况分别对待。

[设计意图:深化了学生对“平均数”概念的理解,让学生体验了事件发生的可能性,提升了他们数学交流的能力。]

四、全课总结.这节课,你有什么收获?

[设计意图:引导知识穿线,自己和大家共同分享自己的收获,对自己的学习进行自我评价。]

五、拓展延伸,深化提高

1、刚才我们利用平均数解决了这么多的问题,其实,生活中很多问题都需要用平均数的知识来解决。想一想,你能举出生活中的实例吗?看谁是有心人,试着说一说。

[设计意图:让学生用数学的眼光观察生活,让他们时刻体会原来数学在生活中无处不在。]授课时间:3月27日下午第一节课教学反思教学中,我培养学生多角度地思考问题,迁移类推能力,很注意学生在什么知识点上会产生思维障碍,就在这个地方解决,为了弄清例2怎样计算,让学生运用例1探索的方法,类推迁移,尝试做,增强学生的感性认识。然后类推到“做一做”练习之中。

积极引探,发挥两主作用。课标指出:教学过程中,要充分发挥教师的主导作用和学生学习的积极性、主动性。教学时,教师通过积极的“引”,来激发学生主动地“探”,使教与学产生共振,和谐发展。教师出示例2时,问与例1相对有什么不同?启发学生积极思维;

让学生主动探索出:求平均数先算什么,后算什么,同时注意培养学生的归纳思维能力。

精心设计练习。大纲指出:“练习是使学生掌握知识,形成技能,发展智力的重要手段。练习主要在课内进行,练习要有层次,有针对性,讲究方式,使全班学生都得到较多的练习机会等。”我在课堂练习中,除基本训练打基础外,还出示了“尝试题”,诱发学生学习的积极性,边算边讨论,成功地解答尝试题后,教师还根据本节课的教学重、难点,设计了三个层次的专项练习:

1.基本训练。

2.变式练习。

3.游戏练习。为学生设计多层次的尝试思维情景,让学生看有所思,练有所想。

加强了信息交流,促进尝试成功。尝试成功的重要条件之一是学生讨论,是在学生获得自己的努力结果之后进行的生动活泼、独具一格的“语言和思维训练”,这种讨论使师生之间、学生之间在情感上得到交流和满足,有利于培养学生的数学语言表达能力和分析推理能力,发展学生思维,加深理解教材。我在课堂教学中设计了三次学生讨论,教师根据学生输送的信息,针对学习新知识的缺陷,作画龙点睛式的讲解,确保学生系统地掌握知识。与此同时,我也参与讨论,及时了解情况,并根据学生反馈的信息,及时进行针对性的讲解,以“教”促“学”,“学”中有“教”,密切了教与学的关系,保证了尝试成功。

第四篇 平均数小学教学设计

【教学目标】

1.结合具体事例,经历认识平均数、求平均数以及讨论平均数意义的过程。

2.初步体会平均数的作用,能计算平均数,了解平均数的实际意义。

3.积极参加数学活动,体会用“平均成绩”说明问题的公平性。

【教学重点】

体会学习平均数的作用,了解平均数的实际意义,学会平均数的计算方法。

【教学难点】

理解平均数的意义,掌握求一组数据平均数的'方法,能正确计算一组数据的平均数。

【教学准备】

PPT课件。

【教学过程】

一、导入新课

操作中体验“同样多”,引出平均数。

(PPT课件出示教材第85页例1)

师:要使每个笔筒放的铅笔一样多,可以怎样做?每个笔筒放几支?

学生充分表达不同的想法,最后形成一致意见。

师:每个笔筒平均放3支,这样每个笔筒里的铅笔就同样多了,这个数量3在数学上我们叫做平均数。

师:今天我们就一起学习平均数。(板书课题:认识平均数)

二、探究新知

1.认识平均数。

师:四(1)班一、二组同学进行投球比赛,每人投10个,投篮结果如下:

(PPT课件出示)

师:你能读出哪组的成绩好吗?你是怎样知道的?

全班进行讨论,鼓励学生大胆说出自己的想法,学生可能出现比总数情况,这样不公平,教师要引导学生考虑怎样比较才“公平”。师生总结得出:算出每个组的平均成绩来比较最公平。(学生自己尝试计算。)

学生交流计算的方法和结果,用自己的语言描述每个组的平均成绩,并根据两个组的平均成绩说明哪个组的成绩好。

师:通过上面的计算,你知道平均数是怎样计算出来的吗?

师生总结得出:平均数=总数量÷总份数。

2.求平均数。

师:亮亮把自己家一个星期丢弃塑料袋的情况作了统计,你能计算出平均每天丢弃几个塑料袋吗?(PPT课件出示统计表)

学生自己计算,然后交流计算方法和结果。

师:“3个”是每天实际丢弃塑料袋的个数吗?

学生充分发表自己的意见。了解求出的3个“不是实际每天丢弃塑料袋的个数,而是算出的一个平均数”。

三、巩固新知

1.完成教材第86页“练一练”第1,2题。

2.完成教材第86页“问题讨论”。

四、课堂小结

这节课你学到了什么?

五、布置作业

完成《·同步课时练习》相关习题。

第五篇 平均数小学教学设计

教学内容:

教科书第43页例1及相关练习

教学目标:

1、体悟“平均数”的实际意义。

2、探索求“平均数”的多种方法,并能根据具体情况灵活解答。

3、培养学生估算的能力,能对数据分析结果作出简单的推断和预测。

4、体会“平均数”在现实生活中的实际意义及广泛应用,逐步具有自主探索与合作交流的意识和能力。

教学重点、难点:

灵活选用求平均数的`方法解决实际问题。理解平均数的意义

教具、学具准备:

PPT等

教学流程:

一、谈话引入、初步感知平均数

1、学生交流课前收集到的有关平均数的信息。

2、师提问:为什么你们认为平均年龄、平均工资、人均住房面积这些都是平均数呢?能解释一下它是什么意思吗?

3、师:看来大家对“平均数”或多或少都有些了解。这节课,我们就去数学王国探索一下有关“平均数”的奥秘。 板书:平均数 你想了解平均数的哪些知识呢?

4、师:看来同学们对平均数充满了好奇,一起进入迷宫探秘。

二、构建新知

1.理解含义,探求方法。

观察棋子,提出问题。(多媒体显示)

师提问:看着你面前的棋子,你获得了哪些信息?你还想提出什么数学问题?

2、感悟“平均数”的实际意义。

动手操作:以小组为单位研究怎样才能使三排棋子同样多。

师提问:现在每排棋子都是几个?这个数,你能给他取个名字吗?

这个平均数4与原来每排棋子的个数有什么关系呢?

3、探索求平均数的不同方法。

师:四人小组合作,想一想还有没有别的方法可以求出平均数,并且把你们小组独特的方法取个名字!等一下我们来评选最佳创意奖和最佳命名奖。比一比,哪个小组最爱动脑筋!

①小组活动讨论。

②汇报交流。(生说方法多媒体显示棋子移动过程)

移多补少! 先假设后均分。先求和再均分。

三、初步应用,内化拓展。

师:刚才同学们通过讨论、尝试不但知道了什么是平均数,而且探索出了许多求平均数的方法。那么你们能解决有关平均数的实际问题吗?

四、课堂总结

1、你现在所认识的平均数是什么?

2、理解平均数是个虚的数。

五、随堂作业

第六篇 平均数小学教学设计

一.目标和目标解析

1.通过本节教与学的活动,使学生了解平均数(加权平均数)的统计意义,理解“权”的意义和作用,学会计算加权平均数.教学中,以具体实例研究为载体,了解平均数可以描述一组数据的“平均水平”,理解“权”反映数据的相对“重要程度”,体会“权”的作用,使学生更全面的理解加权平均数,正确运用加权平均数解决实际问题.2.通过对加权平均数的学习,经历运用数据描述信息,作出推断的过程,体验统计与生活的联系,形成和发展统计观念,体会权的统计思想,养成用数据说话的习惯和实事求是的科学态度.3.通过具体问题的解决,培养学生严谨的统计精神,思维的深刻性.通过设计“我来决策”等教学活动,让学生学会从不同的侧面有侧重地对评价对象进行全面的客观的考察和评价,培养科学严谨的数学精神和思维的深刻性.

二.教学过程设计

活动一:创设情景,建立模型,揭示概念

问题

1以前的学习,使我们对平均数由有了一些了解,知道平均数可以作为一组数据的代表,描述数据的“平均水平”,本节课我们将在实际问题情境中,进一步体会探讨平均数的统计意义. 在一次数学考试中,七年级1班和2班的考生人数和平均成绩如下表:

(1)谈谈表格中“86分”所反映的实际意义.

(2)求这两个班的平均成绩,并和同伴交流你的计算方法.

预设:问题(2)可能会出现下面两种解法:

引导学生对比、分析、讨论,初步理解权的意义.设计目的:

问题(1)中,86分是七年级1班46名学生的数学成绩“取长补短”均衡的结果,反映该班46名学生数学成绩的一般“平均水平”,设计的目的是引导并体会平均数的统计意义.

问题(2)中,以“任务布置──发现问题──生成问题──研究问题──解决问题”为教学程序,经历操作、观察、对比、分析、交流等探索活动,初步了解“权”的意义,解释计算加权平均数的理论依据,为概念的引入作铺垫.

活动方式:以实际问题为研究载体,以自主参与、交流合作为教学形式,以多媒体动画演示辅助为教学手段,引导学生积极参与数学探究活动,发展数学思维.本活动中,教师应关注学生:

①参与数学活动的主动性和数学思维的深刻性;

②实际问题中体验平均数的统计意义和初步了解权的意义;

③体会算术平均数与加权平均数的区别与联系.

学生归纳:

1.平均数反映的是数据的平均水平,;

2.“权”反映了数据的相对“重要程度”;

3.算术平均数与加权平均数的本质一致的,算术平均数是各数据的权为1的加权平均数,当数据的权相同时,加权平均数与算术平均数是相同的;当数据的权数不同时,加权平均数能更好地反映数据的平均水平,应当计算加权平均数.问题2 某市三个郊县的人数与人均耕地面积如下表:

求这个市三个郊县的人均耕地面积 (精确到0.01公顷).

追问1:用算术平均数的方法求三郊县的人均耕地面积合理吗?为什么?

追问2: 0.

15、0.21和0.18这三个数中,那个数对总人均耕地面积的影响更大一些,你是怎么看出来的?这三个数的权分别是什么?你如何计算该市三个郊县的人均耕地面积的?

设计目的:以求三郊县人均耕地面积为研究载体,进一步引导学生认识加权平均数,渗透平均数的统计意义,理解权的意义以及为什么要采用加权平均数;在具体问题情景中,逐步建立并抽象出加权平均数这一数学模型;通过两种不同计算方法的比较,进一步体会算术平均数和加权平均数的区别与联系.活动方式:独立完成本问题任务,认真思考两个追问问题,交流看法和意见,教师做必要的指导或点拨,加深对权的意义的理解和用加权平均数计算的合理性;建立数学模型,抽象出加权平均数的计算方法.学生归纳:

(1)上例中15,7,10分别是0.

15、0.

21、0.18三个数据的权,平均数0.17称为三个数0.

15、0.

21、0.18的加权平均数,反映三个郊县人均耕地面积的平均水平.

(2)若已知n个数及其对应的权,则这n个数的加权平均数可求.活动二:实例分析,指导应用,体验概念

1.统计某一植树小组所有同学的植树情况,其中有5人各植树8棵,有3人各植树7棵,有2人各植树10棵,求平均每人植树的棵数.思考:各项的权分别是多少?如何计算植树的平均棵树?

2.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下:

(1)如果公司想招一名口语能力强的翻译,听、说、读、写成绩按3:3:2:2 的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看应该录取谁?

问题3 招聘口语能力强的翻译时,公司侧重于哪些方面的成绩?给出的比值是否能体现这些方面更加“重要”?听、说、读、写四种成绩的权分别是多少?数据对应的权表示的含义是什么?

设计意图:在变式中理解权的含义.

问题4 如果现在要招聘一名笔译翻译,你能给各数据制定一个合适的权吗?制定的依据是什么?最后计算的结果与你设想的一样吗?试一试,比较你与其他同学设计的不同结果,谈谈你对数据权的作用的新认识.

设计意图:在系统中整体理解数据、权和平均数.通过解决实际问题,加深对权的作用的理解,探究权对平均数的影响.此处,借助于Excel的数据处理功能,给数据赋以不同的权,展示出现的不同计算结果,便于学生观察分析,从而更好地体现权的“掌控”作用.

问题5 若听、说、读、写的成绩分别按20%、20%、30%、30%的比例计入总成绩,如何计算应试者的平均成绩(百分制)?与(2)相比,数据权的表现形式发生了怎样的变化?

设计意图:进一步体会数据权的不同表现形式. (自主合作,共同比较,交流分析,体会权的“掌控”能力.)

活动三:拓展创新,我来决策,感悟概念 一家广告公司欲招聘广告策划人员一名,对A、B、C三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示:

假如你是该公司老总,请发挥你的才智,给每项成绩赋予适当的权数,并通过计算进行选拔.设计目的:创设情景,为学生创造参与数学活动的机会,亲身经历数学活动的过程,积累数学经验,在感受数学知识的同时获得成功的体验,强化数学的应用意识,增强学数学的积极性和热情;借助于Excel的.数据处理功能,展示不同的权数下的不同结果,深入体会权的意义和作用.活动方式:猜想──设计──计算──体会──交流.

活动四:归纳小结,自主反思,优化概念

1.从下面的关键词中任选一个或几个,展示自己的演说才能,谈谈你本节课的收获或体会:

知识、方法、反思、猜想、交流、愉快、困惑、生活

2.布置作业:教科书P127页,练习第1题、第2题.设计目的:通过回顾和反思,让学生对数据的权的作用和加权平均数的意义有进一步的认识和理解,通过学生归纳和教师释疑,让学生优化概念、内化知识,同时让学生看到自己的进步,增强学生运用数学解决实际问题的信心,促进形成良好的心理品质.活动方式:反思学习过程,归纳并形成知识体系,交流体会和感受.三.目标检测设计(时间:15分钟;满分50分)

(一)填空题:(每题5分,共20分)

1.在“人与自然知识竞赛”中,七年级甲班5名同学的得分如下:9分、8分、9分、8分、9分.则这5名同学的平均成绩:= .

2.某人打靶,前3次平均每次中靶9环,后7次平均每次中靶8环,此人10次打靶的平均成绩:= .

3.从每公斤10元的水果糖中取出5公斤,每公斤12元的软糖中取出3公斤,每公斤9元的酥糖中取出2公斤,这三种糖混在一起后,这种“杂拌糖”应定价为每公斤 元.

4.若m个数的平均数是a,n个数的平均数是b,则这m+n个数的平均数是 .

(二)解答题:

5.(20分)某市去年7月下旬各天的最高气温统计如下:

(1) 计算该市七月下旬的平均气温.(5分) (2) (1)中所得到的平均数叫做

35、

34、

33、

32、28这5个数的 平均数.(5分)

(3) 在上面的5个数据中,35的权是 ,34的权是 ,28的权是 .(5分)

(4) 如果把35和28的权调换一下,平均气温是多少?与(1)的计算结果相比较发生了怎样的变化?由此你认为权在实际问题中的重要意义是什么?(10分)

6.(10分)某学校规定:学生的学期总评成绩由三部分组成:平时作业、期中测验、期末测验.小明同学的平时作业、期中测验、期末测验的数学成绩依次是98分、80分、90分.(1)若三项成绩分别按50%、20%、30%的比例计入学期总评成绩,这学期小明的数学总评成绩是多少?

(2)若三项成绩分别按5:2:3的比例计入学期总评成绩,小明的数学总评成绩是多少?

第七篇 平均数小学教学设计

一、情境激趣,引出问题。

师:同学们,在欢庆节日的时候,我们总喜欢挂上气球,渲染出浓浓的节日气氛,今天,我们来进行一次吹气球比赛,怎么样?

生:好!

师:一、二组作一队,三、四组作一队,你们商量起个名字吧。

一、二组:我们叫希望队。

三、四组:我们叫英雄队。

师:怎么比呢?

生:两队同学都来吹,在规定的时间里,哪队吹的气球多,哪队就获胜。

师:可老师没带那么多气球来,怎么办?

生:每队选几个代表吧。

师:各选几人?

生:选两人。

师:好,各队再派两个人拿好他们吹的气球,时间为一分钟。比赛结果:希望队:4个6个。英雄队:5个3个,希望队(欢呼起来):我们赢了。

师:你们是怎么知道胜负的?

生:比总数,希望队共有10个,而英雄队一共只有8个。

师:还有别的比较办法吗?

生:从希望队的6个里拿出1个,将4个补齐5个,就正好与英雄队的5个相等,而希望队剩下的5个比英雄队剩下的3个多,所以希望队赢了。

师:你真了不起!想出了移多补少的办法。现在我正式宣布:希望队获得冠军。(希望队非常得意,齐说一声“ye”,英雄队有些不甘心。)

师:看英雄队的小华跃跃欲试的样子,就让他也来参加吹气球吧。比赛再次开始。

师:算出结果。

生:希望队共有10个,英雄队共有12个。师(热情洋溢地)宣布:英雄队获得冠军。(英雄队欢呼起来。)

希望队(=地说):不行,不行,他们队多一个人,我们队也要加一个人。

师:看来人数不相等,用比总数的方法来决定胜负是不公平的,那么怎样比较才公平呢?

生:我们队也多加人。

师:不增加人,有什么好办法吗?

二、解决问题,探求新知。

生:把希望队两个人吹的气球总数除以2,把英雄队3个人吹的气球总数除以3,再进行比较。

师:为什么?

生:这实际上是求出各队平均每人吹的气球数。

师:能列出算式吗?

生:10÷2=5(个)12÷3=4(个)。

师:哪队赢了?能说出理由吗?

生:希望队。因为希望队平均每人有5个气球,而英雄队平均每人只有4个气球,所以说希望队赢。

师:英雄队虽然输了,但也不要气馁,你们课后还可以再比。

师:希望队中“5个”气球是谁吹的?

生:谁的也不是,“5个”表示平均每人吹的气球数。

师:这队中最多的是几个?最少的又是几个?5个与它们相比怎么样?

生:最多的是6个,最少的是4个,5个大于4个,小于6个。

师:可见,“5个”表示的既不是希望队的`水平,也不是最低水平,而是表示处在这个和最低之间的一个平均水平,咱们就把表示平均水平的这个数叫做平均数。学生归纳求平均数的方法,即:总数÷份数=平均数。

三、自主探索,合作交流。

1、求出小组的平均年龄。

(1)各组同学将自己的年龄填入教师发的表格,求出小组的平均年龄。

(2)请各小组汇报,比较出年龄组和最低年龄组,估算出全班平均年龄。

2、情境判断。

(1)江宁一组的平均年龄是10岁,所以江宁一定是10岁。

(2)小青的年龄是全班最小的,所以他的年龄一定小于他们组的平均年龄。

(3)张俊一组的平均年龄是9岁,小禹一组的平均年龄是8岁,所以张俊的年龄一定大于小禹。

四、联系实际,拓展深化。

1、尝试练习。

师:课前,同学们都收集了家里拥有的家用电器的件数,请各组同学记在分发的统计表上,并算出每组家庭平均拥有的家用电器数。

师:这是第三组同学家拥有的家用电器情况统计表,请同学们算一下,他们组平均每户家庭拥有几件家用电器。

师:从第三组中平均每户家庭拥有的家用电器件数,你想到了什么?

生:家用电器进入千家万户,人民生活水平提高了。

生:人们拥有的家用电器越来越多,耗电量也越来越大,我们要节约用电。

师:你们的想法真好,家用电器为我们带来了方便,但也消耗了大量的电力资源,节约用电要从我做起。

2、灵活求平均数。

师:同学们,我想请我们班的歌手——方瑞为大家高歌一曲,你们现场打分,满分是10分,每一组亮一个分。

师:现在有8个分,你们认为哪个分最合适呢?

生:要计算平均分。师说明在实际生活中,为了反映真实水平,有时计算平均分要去掉一个分和一个最低分,再算平均分。

生:去掉一个分10分和一个最低分7分,列式计算是:(10+10+8+9+8+9)÷4。

师:方弯池塘平均水深110厘米,咱们班的小飞身高135厘米,不会游泳,如果他去那里学游泳,会不会有危险?

生:我认为小飞能去游泳,因为小飞身高135厘米,而湖水深度只有110厘米。

生:我认为小飞不能去游泳,因为湖水的平均深度是110厘米,最深处可能大于135厘米,所以小飞去游泳有危险。

五、总结评价、自布作业。

师:在这节课的学习中,你有什么收获或遗憾?你准备给自己布置什么样的作业?

生:我学会了什么是平均数,如何求平均数。

生:令我遗憾的是:生活中还有许多求平均数的问题,这节课没有做,课后我要去做一样。

生:我要求出我前几个单元的数学平

生:我要求出我们小组同学的平均身高。

第八篇 平均数小学教学设计

一、 复习铺垫,导入新课

小明利用五一假期,查找了一些有关小动物寿命的数据,并制作成了下面这张统计表。请同学们看大屏幕。

出示动物寿命统计表:

小猫老鼠大象乌龟

寿命/年6251152 提问:看了这张统计表,你发现了什么?(乌龟的寿命最长,老鼠的寿命最短。)

谈话:借助统计,我们常常能发现一些有趣的现象和规律。今天我们继续研究统计。(板书:统计)

【说明:利用动物寿命统计表这一学生感兴趣的材料,复习相关旧知,导入新课,自然贴切,有利于调动学生学习的积极性和主动性。】

二、 创设情境,自主探索

1. 呈现套圈情境。

多媒体演示“套圈比赛”的场景。

谈话:三年级第一小组的男、女生在进行套圈比赛,每人套15个圈,这两张统计图分别表示男生和女生套中的个数。

2. 引入平均数。

出示男、女生套圈成绩统计图。

①提问:从统计图中,你知道了什么?

结合学生的想法,相机进行引导。

想法一:男生有4人,女生有5人。(为比较总数预设)

想法二:男生每人套中的个数,谁来介绍女生没人套中的个数。

②男生套得准一些还是女生套得准一些?你有什么方法?

和你的同桌说说自己的`想法。

想法一:女生套得准一些,因为套中的最多的是吴燕。

追问:那套中的个数最少是男生还是女生,所以套中最多的是女生,套中最少的也是女生。用一个人的成绩代表整个队的成绩,这样合适吗?还有其他的方法吗?

想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。

③追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?因为参与套圈的人数不相等,比较总数,是不公平的。

可以怎么办呢?

想法三:分别求出男、女生平均每人套中的个数,哪个队平均每人套中的个数多,哪个队就套得准。(比平均数)。

追问:这样比公平吗?(公平)我们就用这种方法试一试。

【说明:富有启发性的“追问”,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】

4. 理解平均数。

④操作:你知道男生平均每人套中多少个圈吗?

请同学们仔细观察统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。

学生可能出现两种方法:一是移多补少;二是先求和再求平均数。

⑤引入:男生中谁套中得最多?谁套中得最少?根据这个信息,你有什么好方法求出男生平均每人套中多少个圈?

可以把张明套中的一个移给李小刚,另一个移给陈晓燕。——移多补少

反馈时,学生边讲解移多补少的过程,教师利用课件动态演示。

⑥还有其他的方法吗?

引导列式:6 + 9 + 7 + 6 = 28(个)⑦28表示什么?

28 ÷ 4 = 7(个)⑧7表示什么意思?(图中的红色线条就表示了男生套中的平均数)

⑨你能看出,7比谁套中的个数多?比谁套中的个数少?

小结:平均数比最大的数小,比最小的数大

【说明:将学生对平均数的探求发端于操作,让学生在活动中获得有关平均数的多种求法。】

⑩提问:根据你的发现,谁能猜一猜女生队平均每人套中的个数一定在什么范围之内?(在5~9之间)可以通过哪些方法来验证?

⑾谈话:女生平均每人套中多少个圈呢?你是怎样知道的?请你独立完成在书上。10+4+7+5+4=30(个)

30÷5=6(个)

⑿说说为什么要除以5而不除以4?(女生有5人,要用5人的总数平均分成5份)

⒀现在求出女生平均每人套中6个圈,是不是女生每人都套中6个呢?为什么?

仔细观察女生套圈成绩统计图,得出结论:平均数代表的是一个整体水平。

提问:现在你能判断男生套得准还是女生套得准吗?

⒁在解决男生、女生平均套中多少个圈这两个问题,有什么相同和不同?

相同:⑴求平均数的方法,得出数量关系。(板书:总数÷份数=平均数)

⑵平均数比最大的数小,比最小的数大大。

⑶平均数都是代表了一个整体的水平。

不同:总数不同,人数不同,平均数也不同。

第九篇 平均数小学教学设计

教材分析:

平均数是简单统计中的一个重要概念,是用来表示统计对象的一般水平,描述数据集中程度的一个统计量。用它可以反映一组数据的总体水平,也可以对不同数据进行比较,在日常生活中,经常遇到平均数的概念。

本小节安排了两个例题,例1教学平均数的意义和平均数的求法,选用了收集塑料瓶这一紧密联系学生实际的生活实例,让学生在生活中去学习知识,解决问题。同时,又给学生渗透了环保的意识。例2中给出两个数据表,让学生根据数据表求出平均数,并进行比较,重点让学生体会平均数可以反映一组数据的总体情况和区别不同数据的总体情况。练习中提供了一些让学生在实际生活中进行调查的练习题,让学生在实践中去了解统计知识,掌握求平均数的方法。

学情分析:

本节课所面对的是四年级的学生,他们已经具备平均分的基础知识,并且有初步的合作意识与合作能力,但是平均数对于学生来说是一个全新的概念,所以应着重让学生理解平均数的意义,并在此基础上掌握计算平均数的方法。这就要求作为老师的我需要结合学生特点采用合适的教学手段,及充分利用教具学具等资源在上课过程中给学生加以引导。

教学目标

1、知识与技能:使学生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意义。

2、过程与方法:初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密联系。

3、情感态度与价值观:在愉悦轻松的课堂里,掌握富有挑战性的知识,丰富生活经验;在活动中增强探索数学的兴趣,积累积极的数学学习体验。

重难点:

重点:理解平均数的含义,会求平均数。

难点:平均数的统计意义。教学准备:PPT、教具。

教学过程:

一、激情引入

师:都说田各庄小学的学生不仅学习成绩好,体育运动方面也很不错。老师想问问你们,你们都喜欢哪项体育运动?(点名回答)

师:你们的爱好还真是很广泛啊,老师认识一个小朋友,他特别喜欢游泳。他非要到这个池塘游泳,你觉得他下水游泳安全吗?小组之内讨论讨论,说说你的观点。(教师巡视,挑出持不同意见的两个代表到台上)

师:这两名同学对这件事的看法不一样,大家听听他们的观点。(相同意见的同学可以补充意见)

师:看大家讨论的这么激烈,等今天咱们学习了平均数的相关知识,就知道是不是安全的。

二:学习新知

师:刘老师所在的学校为了丰富同学们的课余活动,创办了许多社团,我就是环保社团的一员。我们环保社团利用周末的时间捡了很多废旧瓶子,这张就是四名同学捡瓶子的数量统计图,通过这张统计图,你发现了哪些数学信息?(指名回答)

师:每个小组手中都有这个统计图,小组之内合作研究,动手操作,怎么解决这个问题。(教师巡视指导)

师:我看同学们都有了结果,哪个小组派代表上前面来演示一下?(指名上台)

师:就像我们刚才那样,把原来几个不相同的数,通过移多的'补少的,得到一个同样多的数,这个同样多的数就是原来那几个数的平均数。也就是说,我们得到的13是哪几个数的平均数?(学生回答)我们完整的说一遍,13是14、12、11、15的平均数。

师:在数学上,我们把这种求平均数的方法叫“移多补少”,其实,在现实生活中,这种方法是很少用到的,因为当我们遇到的数据又大又多的时候,这种方法比较麻烦。那么,你有其他方法求得平均数吗?小组之内讨论,把结果写在练习纸上。

师:谁来说一说你是怎么解决这个问题的?(指名回答)(教师板书列式计算的方法)

师:老师问一问,这个算式中,每一部分求的是什么?(引导学生概括出总数÷份数=平均数)

师:在数学上,我们把“总数÷份数=平均数”这种方法叫“求和平分”。

师:老师问问你们,求出的平均数是13,就真的代表每个人都捡了13个吗?(不是),我们观察一下,捡的最多的是多少个?最少的是多少个?和平均数比较你发现了什么?(引导学生总结出“最大的数﹥平均数﹥最小的数”)这四个人当中,真的有人捡到13个吗?(没有),也就是说平均数只是一个虚拟的数,它有可能出现在数据中,也有可能根本不会出现。

师:明白了平均数的范围,在以后计算平均数时,我们可以对平均数进行估计,也可以检验我们算出的平均数是不是合理的。

师:我们来看,这是5位同学向灾区捐书的情况,通过这张统计表,你得到哪些数学信息?(指名回答),我们猜测一下,平均数可能是几?(指名回答)下面动手计算出平均数?

三、知识运用

师:除了环保社团,我们看看花样踢毽社团,有什么活动呢?

(播放踢毽比赛的视频)

师:这是踢毽比赛的成绩表,如果你是裁判,你对于比赛结果有异议吗?

生:不公平,人数不同,不应该比较总数,应该比较平均数。

师:我们来思考一下,为什么比较平均数就公平了呢?平均数能代表单个数据吗?(不能)它代表的是这一组数据的总体水平。

师:那同学生动手计算出男女两队的平均成绩,判出胜负。

师:平均数帮我们解决了这场比赛的输赢问题,其实它的作用不止这些,它还能帮我们更好地了解身边的事情,下面拿出你们的调查表,说说你们都调查了什么?(指名回答)你们能动手算出调查的平均数吗?请在练习纸上计算出来。(指名学生上台展示自己的调查及计算)

师:老师看到其他同学也做了很多有意义的调查,其实我们的生活中处处蕴藏着数学,数学就来源于我们的生活,老师希望你们以后多多留心观察。

四、课堂小结

师:今天学得开心吗?谁来说说你今天有什么收获?(指名回答)

五、作业

92页做一做第二题

六、板书

平均数代表总体水平

总数÷ 份数=平均数

(14+12+11+15)÷ 4 =13(个)

最大的数>平均数>最小的数

第十篇 平均数小学教学设计

一、教学目标

(一)知识与技能

理解平均数的意义,初步学会简单的求平均数的方法。

(二)过程与方法

学生经历用平均数知识解决简单生活问题的过程,积累分析和处理数据方法,发展统计观念。初步感知“移多补少”“对应”等数学思想。

(三)情感态度和价值观

感受平均数在生活中的应用价值,体验学习数学解决实际问题的乐趣。

二、教学重难点

教学重点:理解平均数的含义,掌握求平均数的方法。

教学难点:借助“移多补少”的方法理解平均数的意义。

三、教学准备

课件、实物投影。

四、教学过程

(一)创设情境

1.谈话引入。

以幻灯片形式出示教师家的书橱。

现在,我的书架上层有12本书,下层有10本书,我想请同学们帮忙,重新整理一下,使每层书架上的书一样多。

2.感知课题。

(1)学生思考,想象移动的过程。

(2)教师操作并提问:现在每层都有11本书了,这个11是它们的什么数?

(3)教师:像这样把几个不同的数,通过“移多补少”的方法,得到相同的数,就是这几个数的平均数。

今天,我们就来认识一下“平均数”这个新朋友,好吗?

(板书:平均数)

(二)探究新知

1.引发质疑,探索新知。

教师:看到这个课题,你想通过这节课学习到哪些知识?

预设:

(1)平均数是一个什么数?

(2)怎样计算平均数?

(3)平均数在生活中有什么用?

2.理解含义,探求方法。

出示例1,为了保护环境,学校四年级1班的一组同学利用业余时间收集矿泉水瓶,做环保小卫士。

仔细观察统计图,从图中知道了什么?你能根据统计图提出什么问题?

预设:

(1)小红比小兰多收集多少个瓶子?

(2)小明再给小亮几瓶,他俩的瓶子就一样多?

(3)他们平均每人收集了多少个瓶子?

你怎样理解“平均每人收集了多少个瓶子?”你怎样才能让他们的瓶子数量一样多呢?

学生汇报交流。

小结1:求平均数实际就是把多的补给少的,在数学上叫做“移多补少”。

小结2:求平均数也可以采用计算的方法,用他们一共收集的矿泉水瓶个数总和除以人数,得到平均每人收集多少个。

(14+12+11+15)÷4=13(个)。

【设计意图】注重让学生自主探索、合作交流,通过解决平均每人收集多少个矿泉水瓶的.问题,引导学生思考并理解求平均数的方法,掌握“移多补少”以及“先求和再平均分”的数学方法。

3.理解平均数的含义。

教师:刚才我们通过移多补少和计算,求出平均每人收集了13个矿泉水瓶,看这个平均数13,它是不是每个人真正收集的矿泉水瓶数量?

引导学生体会13不是每个人真正收集的矿泉水瓶数量,而是4个人的总体水平。

小结:平均收集13个矿泉水瓶,不是每个人真正收集的数量,是一个“虚拟”的数,反映了这组收集矿泉水瓶数的情况。

教师:生活中你还在哪些地方或什么事情中遇到或用到过平均数吗?举例说一说。

预设:

(1)本周平均最高气温6摄氏度。

(2)三年级学生的平均身高是140厘米。

(3)四年级2班五位同学平均每人捐10本图书。

(4)李莉同学平均每天上学路上花费15分钟。

【设计意图】初步理解平均数的意义,并在现实生活中寻找实例,感受数学源于生活。

(三)知识应用

1.判断。

(1)某小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。

( )

(2)学校排球队队员的平均身高是160厘米,有的队员身高会超过160厘米,有的队员身高不到160厘米。

( )

(3)小明所在的1班学生平均身高1.4米,小强所在的2班平均身高1.5米。小明一定比小强矮。

( )

【设计意图】让学生结合具体情境,进一步理解平均数的含义,初步感受平均数的特点:一组数据的平均数比数据中最大数小,比最小数大。

2.选择。

小明家平均每月用水( )吨。

A.(16+24+36+27)÷365

B.(16+24+36+27)÷12

C.(16+24+36+27)÷4

【设计意图】通过解决平均用水量的问题,巩固所学知识,根据所求问题找准与总数相对应的份数。

(四)全课小结

今天你有什么收获?

再看看开始想解决的问题:(1)平均数是一个什么数?(2)怎样计算平均数?(3)平均数在生活中有什么用?现在能解决了吗?

第十一篇 平均数小学教学设计

教学目标:

1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义。

2.能运用平均数的知识解释简单生活现象,解决简单的实际问题,进一步积累分析和处理数据的方法,发展数感。

3.在生活中增强与他人交流的意识与能力,在解决实际问题的过程中体验运用知识解决问题的乐趣,建立学好数学的信心,渗透品德教育。

教学重点:理解平均数的意义和求平均数的方法。

教学难点:理解平均数的意义。

教学设计思路:

根据学生耳鸣目染的生活现状创设不同层次的问题情景,学生在答题过程中逐步感受求平均数是解决一些实际问题的需要,并通过动手移、合与分的操作和思考交流体会平均数的意义,学会计算简单数据的平均数,从中渗透安全教育。

教学过程

一、创设情境,探究新知。

同学们,现在全区开展“美丽广西.清洁乡村”的活动,作为市民,我们也要为此付出一份力量。你看,阳光学校三(2)班的同学为了响应党的号召,利用课余时间进行捡别人丢弃的矿泉水瓶比赛,他们班共有37人,每 3人为一组,可以分几组还剩几人?37÷3=12(组)……1(人)

【设计意图】:用学生耳鸣目染的生活情景创设问题,即复习了平均分,又为下一个环节做好铺垫。

(一)两队人数相同,比总个数。

他们班每天从2个组中评出一组“美丽之星”,你觉得他们哪一组获星?

出示:

A 组

B 组

生:B组获星。

师:你是怎么比的?

生:当他们人数相等时,比较捡的总个数就能比出哪一组获星。

(二)两组人数不同,比平均数,发现求平均数的方法。

我们再来看看下面两组,看看哪一组获得这天的“美丽之星”出示:

C组

D组

生:我的建议也是比较他们的总数?

生:我有不同意见,人数不同比总数不公平。

师:你很会观察统计表,而且说得很有道理,你们看人数不同比总数不公平。

师:那怎么比才公平呢?

生:减少1个人

生:我认为不好,他们班每3人一组,剩下1个人,这个人不管放在哪个组,都会有一个组是四个人的。我们不能忽视别人的劳动成果。

师:说得多好!你不但会分析问题而且很会做人!

师:人数不同,我们怎么比才公平呢?以四人小组讨论,看看哪一组能想出好办法。

【设计意图】:利用这班分组后多一人的人数冲突,产生人数不同如何比的问题,提升探究问题的兴趣。

(学生小组活动,教师巡视,学生汇报)

生:我们讨论的结果是“平均分”,也就是求C组平均每个人捡得多少个和D组平均每个人捡得多少个。

师:那我们怎样平均分呢?

学生诉说小结:也就是使每组中的每个人捡得同样多。

学生用学具摆一摆也可以在纸上画一画,算一算来探究同样多的方法。

(学生用学具探究方法)

师:谁能把自己的想法和大家分享一下?(师结合学生的汇报,利用课件呈现移多补少的过程,)

师:数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程就叫“移多补少”。【板书】

师:谁来汇报 D组的呢。

师:你是用什么方法找出D组同样多的?

(生讲师再次呈现移多补少过程)

探讨不同的方法引出列式计算。

板书:C组 :(6+9+3)÷3 D组:(2+6+8+4)÷4

=18÷3 =20÷4

=6(个) =5(个)

学生指着板书说说先合后分的方法。

师:你为什么C组除以3, D组除以4呢?

生:因为C组有3人而D组有4人。

归纳得出:总数量÷总份数

谈话:你给我们带来了求平均数的计算方法,同学们都给你掌声了呢,谢谢你!小结:无论是移多补少,还是先合后分,目的只有一个,就是把原来几个不同的数变得一样多。数学上我们把同样多的这个数叫做原来这几个数的平均数。(板书课题:平均数)

完善板书:总数量÷总份数=平均数

【设计意图】:由统计图显示出人数相同,收集个数不同;人数不相同,收集个数不相同两种情况,这样出现更为自然、合理、减缓了求平均数的坡度,强化了学生对平均数的意义和理解,体验到了实际问题的感受。问题的设计为学生的探究活动提供了导引,学生不仅学会了平均数的知识,更重要的是掌握了一种分析和解决问题的方法和策略,培养一种质疑反思的意识和习惯。

二、深入理解平均数的定义(意义)

师:C组的总数量是多少?总份数呢?平均数是?

师指着板书学生汇报,明确6是6、9、3这三个数的平均数,5是2、6、8、4这四个数的平均数。

仔细观察两条平均数的虚线,超于虚线的瓶子和不到虚线的瓶子,你发现了什么? (同桌交流)

生:超出平均数的部分和不到平均数的部分相同。

生:平均数比这里最大的数小一些,比最小的数大一些。

生:平均数是在这组数据的最大数和最小数之间。

师:还有发现吗?

生:C组的数据还有和平均数恰好一样的。

师:C组捡的平均数是6,这个6是谁捡得的个数?是洋洋捡得的个数吗?是花花捡的个数吗?还是晶晶捡的个数?

生:都不是。这6是C组平均每人捡得的个数,是3个数的平均数。

师:你分析得很有道理。

师:我们比较这两组的平均数,哪个组获星了?

生:A组获星了,

师:同学们,课下我们也可以加入他们班的活动,为了美丽广西实行“弯腰行动”吧

【设计意图】:要提升学生发现问题、分析问题、解决问题的能力,教师的问题设计很重要,在此,我组织学生从对统计图红色虚线观察比较,直观地看出超出平均数的部分和不到平均数的部分相同,进而加深理解移多补少来求平均数,感悟平均数的特点。

三、用一用,怎样理解生活中的平均数。

师:我们在分析刚才这些活动结果的.时候用到了平均数,在日常的学习和生活中,大家还在哪里见到过平均数呢?(学生自由交流)

师:同学们都谈论得非常热烈,有平均成绩,平均速度,平均水深,平均年龄……

师:老师也带来一些素材:(课件出示)

小结:从这两个国家男女的平均身高可以看出哪个国家的人身高一些,因为平均数能代表一组数据的总体水平。下节课我们再进一步来研究这方面的知识。

过渡:平均数在我们的生活中有着广泛的应用,接下来我们就分析下面几个有关生活中的平均数吧!

【设计意图】:感受生活中平均数的意义,激发学生解决问题的兴趣。

(一)平均成绩

下表记录了三(2)班同学在大课间进行一分钟垫球比赛冠亚军成绩表,请你算一算谁是冠军

(学生独立填写表格,有的很快就算出了结果,有的还在笔算)

师:你为什么算得这么快?能把你的小窍门告诉大家吗?

生:我利用移多补少的方法从小明第二次移1给第三次,就得平均数99。

师: 你真是个机灵的孩子,我们用“移多补少”的方法看小亮的,是多少?(93)。

用列式计算的同学说说做这道题的体会从而总结出:数量少的容易看出平均数的就用“移多补少”的方法。数量比较多不容易看出的,再用先合后分的方法。

【设计意图】:此环节的练习帮助学生巩固本节课的知识,从中发现优化平均数的方法,提高思维敏捷性。

(二)歌咏比赛平均分

出示

要求算出1号选手的实得分

师:打分最高的是多少分?最低分呢?不计算,你能估计一下1号选手平均得分在什么范围之内吗?猜猜1号选手平均得分是多少?

学生的答案在82到97之间

猜完列式验证自己的答案。

(出示评分规则:去掉一个最高分和一个最低分来确定最后实得分。学生再算最后得分)

小结:平均数在具体的应用过程中还要根据具体的游戏规则,联系实际去思考来发挥它的作用的。我们学到众数,中位数时会进一步比较。

【设计意图】:此环节的练习让学生体会到平均数在实际应用过程中受到最大数和最小数的影响,为了公平起见,还要根据具体的游戏规则来算。从中也为日后学众数和中位数埋下伏笔。

(三)平均水深

老师这里有一道有趣的问题

一条河平均水深是100厘米,小明身高是140厘米,他想:在这条河里学游泳不会有危险。你同意他的观点吗?

生:小河平均水深是100厘米,如果深的地方超过140厘米,小明到河里游泳就会有危险。

(课件出示河的截面图)如果要在河边立一块警示牌,你会怎么写才能让人一眼看出危险性呢?(出示:最深处约250厘米)

出示最近溺水事故案例,希望同学们不要到河里去游泳,注意人生安全!

【设计意图】:平均水深这道题,用学生日常生活常识,知道一般河流水下深浅不一,利用出示截面图和建立警示牌起到警示作用,进而渗透安全教育。用典型的问题将学生的思维引向深处,在解决问题的过程中收获一种思维方式。

四、总结评价,感受成功。

提问:通过这节课的学习,你有哪些收获呢?

从学生回答小结出:平均数介于最大数和最小数之间,还学会了灵活应用两种求平均数的方法。

布置作业:利用今天所学的知识来解决课本P44练习十一的第1、第2题。

课堂赠语:只要同学们善于观察生活,就会发现生活中处处都有数学存在。

五、板书设计

平均数

①移多补少

②先合后分 总数量÷总份数=平均数

C组 :(6+9+3)÷3 D组:(2+6+8+4)÷4

=18÷3 =20÷4

=6(个) =5(个)

第十二篇 平均数小学教学设计

教学内容:《数学》三年级下册第58、59页

教学目标:

1.通过丰富的实例,经历进一步了解“平均数”意义的过程。

2.能够根据具体情境,利用“平均数”解决生活中的实际问题。

3.在解决实际问题的过程中,感受“平均数”在现实生活中的广泛应用。

教学准备:CAI课件。

教学过程:

教学环节

设计意图

教学预设

一、情境创设:

同学们,你们在电视里看过歌手大赛吗?你知道比赛的评分规则吗?

去年暑假,中中央电视台举办了全国少儿艺术大赛,瞧,这是红星小学的王璇参赛的照片,那她当时得了多少分呢?你们想知道吗?(课件出示参赛照片

二、探究与体验;

1.瞧,这是7个评委给她亮出的分数牌,(课件出示评分牌)

95分

95分

96分

85分

98分

93分

你能帮她算算她最后得了多少分吗?在练习本上试试吧。看谁算得又对又快。算完后和同桌说说你的想法。

2.全班交流:

刚才,同学们计算得的很认真,讨论的很热烈,下面谁来告诉大家你的答案,并说说你是怎样想的。

指名回答。

生评价谁算得对。

4.师小结过渡:

是的,在好多电视比寒中,为了体现公平公正的原则,往往采用去掉一个最高分,去掉一个最低分,求剩下的几个评委的平均分的规则评分。但是在体育比赛中还能用这样的评分规则吗?

5.议一议:

师:同学们,你们参加立定跳远比赛吗?老师是怎么给你计分的?下面是王平同学五次试跳的成绩:

第一次

第二次

第三次

第四次

第五次

167厘米

167厘米

167厘米

167厘米

167厘米

那么裁判员最后给出的成绩是多少呢?是怎么算的呢?告诉你吧,他的成绩是169厘米,而不是他的平均成绩:这是怎么回事呢?请同学们四人小组讨论讨论。

全班交流。

6.师小结:同学们说得都很有道理,是的在体育比赛中,为了给每个人更多的机会,鼓励大家超越自我,追求更快、更高、更强的奥运精神,往往用队员的最好成绩作为他的'最后成绩,而不是用他几次试跳的平均成绩。

7.通过以上的学习你了解到了哪些知识?

三、实践与应用;

师过渡:是的,在日常生活中,我们经常要用到求平均数的情况,下面就请同学们开动你的小脑筋认真想一想,下面的问题你能自己解决吗?

1. 出示练一练第1小题。学生独立完成前两步,然后集体订正。

第(3)个问题请同学们同桌交流自己的看法,然后集体交流。

2.出示第2小题,生独立完成,然后集体订正.

3.出示第三小题,生独立完成第一步,然后集体订正。

第二步,首先让学生说说:第四组这几个同学,谁跑得最快,谁跑得最慢?搞清什么是达标。那么50米的达标成绩是10秒,比这个成绩慢的同学就没有达标。想一想是哪个同学呢?和同学说说你和想法。全班交流。

四、拓展与延伸:

出示“问题讨论”让学生读题弄清题意:小明不会游泳,如果水深超过他的身高,就可能有危险,那么这个游泳池的平均水深是1米20厘米,说明了什么?小明会不会有危险?

请同学认真思考,然后和同桌说说你的想法。

从学生生活入手,调动学习的积极性,激发学习兴趣。使学生一开始就进入兴奋的学习状态。

让学生经历观察、思考、计算、交流的过程,培养学生严谨的学习态度及善于与同学交流的好习惯,从而使解题思路更加清晰。

培养学生敢干发表自己不同见解的好品质以及耐心听取别人说话的好习惯。

让学生在讨论中充分发表自己的见解,在交流中增长知识,在交流中培养表达能力,

对本节课新知识进行整合,使学生对新知识通过回顾能牢固地掌握。

在本环节中学生能独立完成的尽量让学生独立完成,师行间巡视,对有困难的学生个别辅导。

对学生普遍感到有困难的题,稍作点拨,让学生通过独立思考、同桌或前后桌交流找到解决问题的方法。

让学生运用刚学过的平均数知识,对在日常生活中遇到的实际问题进行推理、判断,从而使数学知识与学生生活实际相结合。让学生感受到数学的的重要性。

在本环节中如果有同学能完整说出比赛的评分规则,就应该给予鼓励“,你懂得可真多。”如果学生回答不出,就由老师向学生详细说明比赛的评分规则:

为了体现公平公正的原则,在实际比赛中,选手的最后得分是这样计算的;在所有评委所打的分数中,去掉一个最高分,去掉一个最低分,求剩下的几个评委的平均分。

学生可能有以下几种答案

1.(96+95+95+96+85

+98+93)÷7=94(分)

想:我先把7个评委所的评分加起来,然后再除以他们的人数,也就是求出平均分。就是她的最后得分。

(2)(96+95+95+96+93)÷5=95(分)

想:我先去掉一个最高分,去掉一个最低分,再计算剩下5个评委的平均分。

还有可能出现计算错误的现象,让学生找出错误原因。

学生可能出现的回答有;

1.王平最远能跳169厘米,说明他有这样的潜力,应该把这个成绩算做他的最后成绩。

2.因为如果最后算王平的平均成绩的话,就不能反映出一个人的最好水平,所以用平均成绩做为他的最后成绩不公平。

第三个问题让学生说出自己的想法,如可以准备28×7=196(箱),这样可以保证货源充足,其他同学可以提出不同意见,但这样容易造成货物积压,过期饮料就卖不了了。

答案应该是下周应准备和本周售出总数同样多的饮料最合适。

什么叫“达标”;国家颁布了少年儿童各年龄段的体育锻炼标准,达到这个标准的就叫达标了,没有达到这个标准的当然就没有达标了。

“平均水深1米20厘米”,说明这个游泳池有的地方深,有的地方浅,浅的地方可能还不到1米20厘米,深的地方可能会超过1米40厘米,”所以小军在这个池中是有危险的。

第十三篇 平均数小学教学设计

教学要求:

1、通过练习,进一步巩固求平均数的方法。

2、使学生在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

教学重点:

解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

教具学具准备:

课件、统计。

教学过程:

一、理解平均数意义

“1”:说一说题目说的是一件什么事情?

平均水深140厘米是什么意思?是不是处处水深140厘米?

(不是,是有的地方比140厘米深,有的地方比140厘米浅)

“2”:自己看题,同桌讨论。

全班交流:

你认为哪些平均数是合理的,哪些是不合理的,为什么?

(1、3合理,2不合理)

二、求平均数的练习:

1、“3、4、6、7”题。

“3”:从表格里你了解到哪些信息?

独立解答(1)、(2),全班交流。

看了这张表格,你还想到了什么?你还能向大家说说哪些(1)和(2)题没能介绍的情况?

“4”:

(1)先算一算三年级平均每组植树的棵数。

假如今天算出的平均数是11棵,不计算,你能不能判断它是错的?为什么?

假如是6棵呢?为什么?

看着这张统计图,你能不能给出平均数的范围?

(2)哪些小组植树棵数比平均棵数多?哪些比平均棵数少?

“6”:(1)同桌讨论,可以怎么估计?

介绍自己是怎么估计的。

(选取6个数据中处于较中间位置的`一个,再看看其他的移多补少后是否和它较接近,进行调整,学生有合理的方法也应给予肯定)

(2)你还能说出这个小组同学身高的哪些情况?

“7”:独立练习。

“你还发现什么?”尽量让学生从多角度说一说。

2、“5、8”题。

“8”:先说一说这一题的解决过程。

学生以小组为单位,调查、记录、解答问题。

“5”:课堂上老师指导说清要求,课后学生完成。

三、“你知道吗?”

举例:歌唱比赛,评委给一位歌手打分:47、78、80、81、82、82,如果不去掉一个最低分和一个最高分,那么这位选手的最后得分为?

学生计算:(47+78+80+81+82+82)÷6=75

去掉以后,是多少呢?

学生计算(78+80+81+82)÷4 约为80分

看一下评委给的打分,大部分是在80分左右,75分不能真正反映这个情况,怎么会出现这种情况呢,是有一位评委打分过低,所以为了保证最后的结果更客观、公平、合理,一般在评比打分时,会去掉一个最低分和一个最高分。

教学后记:第一题学生讨论十分激烈,最后还是得出了结论,下水是会有危险的,因为深水区可能会超过145厘米。由此强调,平均数在最大数和最小数的中间。

第十四篇 平均数小学教学设计

教学目标:

1、在具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。

2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

3、进一步增强与他人交流的意识与能力,体会运用已学的统计知识解决问题的乐趣,建立学习数学的信心。

教学重难点:

理解平均数的意义,学会求简单数据的平均数。

教学过程:

一、创设情境,自主探究

1.呈现套圈情境。

多媒体演示“套圈比赛”场景。谈话:这是三(1)班第一小队正在进行的套圈比赛,一队是男生,另一队是女生。比赛规则是每人套15个圈,比一比哪一队套得准。下面就请同学们给他们做裁判,好不好?

2.收集整理数据。

多媒体依次演示4个男生和5个女生套圈比赛情况,最后将每个选手卡通像与其套圈结果“定格”组合成一个画面。要求学生根据男、女生套圈成绩,小组合作利用小方块完成统计图(每小组中男生合作完成男生队成绩的统计,女生合作完成女生队成绩的统计)。

【设计意图:运用多媒体对教材例题进行动态处理,能有效地激发学生的学习兴趣。通过“摆”小方块制作统计图,目的是让学生亲历数据收集整理的过程,同时也为后面用“移多补少”的方法求平均数作准备。】

3.引入平均数。

出示男、女生套圈成绩统计图。提问:看了这里的统计图,你发现了什么?要比较哪一队套得准,你准备从哪个方面去比较?结合学生的想法,适时进行引导。想法一:因为吴焱套中的个数最多,所以女生队套得准(比最多)。追问:用一个人的成绩代表整个队的成绩,这样合适吗?想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?可以怎么办呢?想法三:先要求出两个队平均每人套中了多少个,再比较哪个队套得准(比平均数)。追问:这样比公平吗?(公平)我们就用这种方法试一试。(板书:平均)

【设计意图:富有启发性的“追问’’,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】

4.理解平均数。操作:男生平均每人套中多少个呢?女生平均每人套中多少个呢?下面请同学们仔细观察自己面前的统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。提问:怎样求男生平均每人套中的个数?学生可能出现两种方法:一是移多补少;二是先合后分。反馈时,先让学生在实物投影上边操作,边讲解移多补少的过程,教师利用课件动态演示。再让学生说一说怎样用先合后分的方法求平均数(课件动态演示:将统计图中的涂色方块合并起来,再平均分成4份),并引导列式:6+9+7+6=28(个),28÷4=7(个)。

【设计意图:将学生对平均数的探求发端于操作,让学生在活动中获得有关平均数的多种求法。】

谈话:请大家看男生套圈成绩统计图(用红色线条标出平均数,并不断闪烁),图中闪烁的红色线条表示什么?根据学生回答,在前面板书的“平均”后面添上“数“。

观察:图中的平均数与实际每人套中的个数相比,你发现了什么?(平均数比最大的数小,比最小的数大??)多媒体闪烁平均数的取值范围。

提问:根据你的发现,谁能猜一猜女生队平均每人套中的个数一定在什么范围之内?可以通过哪些方法来验证?谈话:女生平均每人套中多少个圈呢?你是怎样知道的?先和小组内的同学一起说一说。反馈时,引导学生交流求女生队平均数的方法及所求平均数的意义。列式计算时注意让学生说说为什么要除以5而不除以4?提问:现在你能判断男生套得准还是女生套得准吗?小结:通过刚才的活动,我们认识了什么?你能结合刚才的例子,说一说平均数表示的意义吗?

【设计意图:多媒体演示与学生的交流有机结合,使学生对求平均数的方法——移多补少、先合后分,平均数的意义及取值范围等建立清晰的表象。同时,将平均数学习嵌入一个完整的统计活动中,较好地突出了平均数的统计意义。】

二、联系实际,拓展应用

我们一起玩闯关游戏好吗?

1、挑战第一关“走进生活”平均数能为我们解决生活中的问题。

(1)想想做做第1题。移动笔筒里的铅笔,看看平均每个笔筒里有多少枝?还可以用其他的方法求出来吗?

(2)想想做做第2题。小丽有这样的3条丝带,这3条丝带的平均长度是多少?请你先估计一下这3条丝带的平均长度是多少?在哪两个数之间?然后学生独立练习,集体校对。

2、挑战第二关“明辨是非”

(1)一条小河平均水深1米,小强身高1.2米,他不会游泳,但他下河玩耍池肯定安全。

(2)大泗学校全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。

(3)学校排球队队员的平均身高是160厘米,李强是学校排球队队员,他的身高不可能是155厘米。

(4)学校篮球队可能有身高超过160厘米的队员。

3、挑战第三关:“合情推测”四(2)班第一小组同学身高情况统计表

学号1 2 3 4 5

身高(厘米)132 134 136 140 142

(1)明明算了他们的平均身高是143厘米,不计算,你能不能知道他算得对不对?

(2)星星公园规定:购买团体票时平均身高不足140厘米的学生可享受七折优惠。如果第一小组同学集体去玩能享受优惠吗?不计算你能知道结果吗?说出你的想法。

【设计意图:练习设计既重视平均数的求法,更重视对平均数意义的`深刻理解。通过估计、预测、判断等一系列数学活动,沟通了数学与现实生活的联系,强化了学生对平均数意义的理解,较好地发展了学生的统计观念和应用意识,闯关游戏更能激发学生的学习兴趣。】

三、总结评价,感情升华

今天我们认识了新朋友“平均数”,你想对它说些什么赞美之词呢?

教后反思:

本节课我从学生的现实生活出发,极力选取学生身边的事例,使生活素材贯串于整个教学的始终,注意将数学与学生生活紧密相连,遵循了数学源于生活、寓于生活、用于生活的理念。通过数学教学,实现了数学的应用价值。

具体地说有以下几个特点:

1.紧密联系学生生活实际,使数学问题生活化。心理学研究表明:当学习的内容与学生熟悉的生活背景越贴近,学生自觉接纳的程度就越高。课一开始,就设计了一个情境,出示学生熟悉的套圈游戏以此来切入主题。这样做使学生感到所学内容不再是简单枯燥的数学,而是非常有趣、富有亲近感,他们被浓厚的生活气息所感动,兴致勃勃地投入到新课的学习之中。

2.充分保障学生自主探索的时间与空间,把学习的自主权与选择权交给学生。《数学课程标准》指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式”,数学教学要努力改变单一的、被动的学习方式,建立和形成有利于发挥学生主体性的多样化的学习方式,促进学生在教师指导下主动地富有个性地学习。要让学生自主探索,在教学中教师要结合教学内容设计出具有开放性的、探索性的数学问题,给学生创设自主探索学习的情境,使之在开放问题的情境下积极主动地进行探索,使数学教学更加丰富多彩,学生学得更加生动、活泼,实现促进学生全面发展的目的。掌握求平均数的方法是本课的重点,学生只有掌握了求平均数的方法,才会解决生活中的求平均数的问题。因此,在这一环节的教学中,让学生自主动手操作学具,在小组合作、探索的过程中,找出求平均数的方法。这样,学生有了学习的自主权和选择权,他们的积极性与创造性得到了充分的发挥。

3、较好的渗透了数学思想和方法。如:在计算平均数前让学生利用平均数的意义进行估计,渗透估算的思想,即培养学生的估算能力又加深了对平均数的理解。总之,本节课较好地体现了教师主导和学生主体作用的和谐统一,实现了数学思想与数学方法的有机结合,符合素质教育要求,较好地达到了创新教育的目的。

第十五篇 平均数小学教学设计

教材学情分析

本单元选取的素材都是学生熟悉的、发生在自己身上及身边的事例。例如:教学主题的例题就是选择的学生日常生活中的活动,在练习八中安排了统计体育成绩,国家金牌取得的趋向,在后面的课后拓展中,让学通统计班上学生喜欢的电视节目以及让学生统计四年级学生阳光体育活动的开展情况。这些内容具有明显的时代气息,且都贴近学生的生活,能过有效的激发学生的学习和解决问题的兴趣。而在新课教学中,让学生用以前学过的知识来统计数据、分析数据进而一步一步的完成复式统计表,并可以从不同的角度去解读或分析问题,有效的发展学生的数据分析观念。

学习者分析

三年级的学生已经掌握了简单的统计以及单式统计表的制作、填写,在此基础上去引导学生一步步掌握理解复式统计表。

教学目标

课程标准:

要求学生能在掌握单式统计表的基础上逐步认识并掌握复式统计表。

知识与技能

1、使学生在具体的统计活动中认识、了解复式统计表,并能正确的填写表格。

2、能根据统计表里收集、整理的数据进行简单的分析。

过程与方法:

1、经历统计的过过程,体会复式统计表的产生。

2、通过小组讨论,体会复式统计表的优越性,增强统计的意识和能力。

情感、态度与价值观:

通过学习,使学生进一步体会统计与现实生活的密切联系,感受学习的乐趣,树立学好数学的信心。

教学重点及解决措施

教学重点:对复式统计表结构的认识,数据的填写及分析。

解决措施:,小组合作、动手操作、谈论等完成复式统计表。

教学难点及解决措施

教学难点:通过数据的整理和分析,使学生能对数据作出简单的判断和预测。

解决措施:通过比较,分析,对数据进行简单的预测。

教学设计思路

学生已经能进行简单的统计,而且能进行制作、填写、分析单式统计表,在此基础上,引导学生学习制作复式统计表。在学生对复式统计表中数据的分析上,让学生体会到复式统计表的优越性。

依据的理论

坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。

教学过程

教学环节

教学内容

所用时间

教师活动

学生活动

设计意图

一、导入新课

学习指导

2分钟

出示课件同学们阳光体育活动照片,并谈谈自己的爱好。

师:我们班的学生都喜欢哪项活动呢?

学生猜测,意见不一。

学生讨论

通过图片展示、谈话,激发学生的学习兴趣。

二、自主探索,构建新知

学生自主探究

10—15分钟

1、复习与铺垫。

(1)选择适当的方法收集数据。

师:在这六项活动中,现在想又快有清楚的知道我们班的学生最喜欢哪项活动,我们该采取什么方式进行调查呢?每位学生只能选一项活动。

集体讨论后共同决定采用男、女生分开统计的方法,老师协助学生现场组织,并进行统计。

(2)完成数据收集与整理。

(3)分析数据

师:从两张表统计的数据中,你获得了什么信息?

学生对表中的数据进行分析。

2、比较与体验

(1)师:这两张表有什么共同之处?

学生通过观察、比较,发现:两张表格统计的项目相同,但是统计的对象不同,数据也不同。

(2)制造冲突。

师提出一些需要对比数据的问题让学生回答。

师:男生喜欢跳绳的人数比女生多还是少?

学生回答(略)

师:男生喜欢足球的人数比女生多还是少?

学生回答(略)

师:解答上面的问题,同学们觉得方便吗?

生:两张统计表,比较起来有些麻烦,要是在一张表上就好了。

师:那怎样把这两张表的内容编成一张表呢?请各学习小组议一议,将手中的两张表折一折、拼一拼。

小组讨论,教师巡视指导。

(3)学生“创造”统计表。

学生介绍经验:将女生的表折去标题和第一行,对准位置放在男生的表格下面;将人数栏分别改为“男生人数”和“女生人数”,将标题改为“男、女生最喜欢的阳光体育活动”。

教师出示复式统计表。

3、完善认知,揭题。

(1)根据表格内容,引出“表头”

(2)引导比较:这张统计表与我们合并前的统计表有什么不同?

(3)出示课题:复式统计表

4、解读信息,体验优点。

出示问题,让学生回答。让学生体验复式统计表在分析数据时便于比较和可整体把握的优越性。

(1)男生最喜欢的阳光体育活动是什么?女生呢?

(2)男生喜欢哪项活动的人数最少?女生呢?

(3)参加调查的一共有多少人?

(4)你对调查的结果有什么看法和建议?

师生配合调查班上学生参加阳光体育活动情况,并完成单式统计表。

学生通过探讨,对单式统计表中的数据进行简单的分析。

学生通过小组合作,动手操作等,亲自制作复式统计表。

学生介绍经验。

通过对复式统计表中数据的分析,让学生体验其优点。

创设学生熟悉的情景,让学生热情投入到单式统计表的完成中去。

老师提醒学生,在统计过程中,“每人限选一种”,避免干扰因素的产生。

选择男女分开统计的 方式,可以很自然的引出复式统计图。因此,在教学中,分别按男、女生进行统计,利用两张但是统计表呈现数据。

首先,提出一个关键问题:“这两张表有什么共同之处?”引发学生对两个独立的统计表进行比较。通过讨论发现可以用更加简洁的方式来表达。

学生通过探讨、操作等,逐步对两个但是统计表进行合并,制作复式统计表。并体会复式统计表的制作过程。

呈现合并好的复式统计表,并提问:“这个表包含那几项内容”?教师引导学生对复式统计表进行解读。尤其对分栏格(表头)进行详细讲解。

在复式统计表下提出这几个需要解决的问题,体现复式统计表的价值所在,使学生更好的体会复式统计表的优越性,培养学生分析数据的能力。

三、巩固练习

当堂训练

8-10分钟

1、第38页第一题。

结合学生的回答,引导学生有序的阅读复式统计表,进一步体验统计表的结构,体会表中所传递的信息

2、第38页第二题。

引导学生根据两个单式统计

表完成复式统计表并对数据进行分析。

进行数据分析,解决问题。

在老师的引导下完成复式统计表,并进行数据分析。

通过本环节的练习,提高学生对本节课所学知识的掌握水平,增强数学的应用意识。

四、回顾所学,积累经验

本课总结

3-5分钟

1、谈谈收获:这节课我们学习了什么内容?你有什么收获?

2、说说作用:到目前为止,我们学了单式统计表和复式统计表。那么,你觉得什么时候用单式统计表,什么时候用复式统计表呢?

3、课后拓展:让学生统计四年级二班学生阳光体育活动开展情况。

学生各抒己见

通过回顾本节课所学,想想运用的方法,把课堂教学传授的知识尽快化为学生的素质,

板书设计

复式统计表

单式 复式统计表

单式 便于比较

丰富

本节课教学激发了学生的学习兴趣,发挥了学生的主体能动性。让学生通过动手操作、小组合作讨论、观察的教学方法,突破了本节课的教学重难点。让学生会认、会填写复式统计表,而且能对复式统计表里的信息做简单的分析。

不足之处:我在课堂上的语言组织能力还不够,老师的话语较多,较复杂。这方面要加强练习。

第十六篇 平均数小学教学设计

【教学目标】

1、通过对数据的整理和对比活动,引导学生经历复式统计表的产生过程,并认识简单的复式统计表,会填写复式统计表,能根据统计表提出并回答简单的问题。

2、使学生在认识、填写、分析复式统计表的过程中,进一步理解统计方法,发展统计观念。

3、激发学生的学习兴趣,培养学生初步的统计意识和创新精神。 【教学重点】引导学生经历复式统计表的产生过程,并认识简单的复式统计表,进行简单的分析。

【教学难点】理解复式统计表,知道使用复式统计表的意义,会对复式统计表进行分析。

【教学准备】ppt课件、 【教学过程】 一、

课前谈话及活动

1、咱们今天先算几道特殊的加法算式。

最后一条:

师:等于什么呢?很多人有自己的想法了,真不错,带着我们的猜想,一起进入今天的课堂吧!

孩子们可以上课了吗?(上课) 二、

创设情境、了解新知

(一)出示数据,直入新课

1、师:孩子们,姜老师请了我班的两个小助手,他们帮我做了一项调查统计,并且分别制成了两张“单式统计表”

师:请看[边说边按课件]让我们静静思考、静静读懂它。 [课件出示单式统计表]

三(1)班学生喜爱的活动统计表

[课件出示单式统计表]

三(2)班学生喜欢的活动统计表

2、回答问题,激发矛盾

师:孩子们,哪个活动是这两个班是喜欢的啊? 预设生[猜测]:玩电脑或其他

师:咦,怎么会有不同的答案呢?(原来刚才三(1)班还没看清楚啊!) 师:那你希望老师把这两张表格怎么放就能一眼看出来呢? 3、逐步合并

(1)左右放置 (2)上下放置 (3)调整活动项目顺序放置 (4)去掉第二张表格的活动及项目名称推上去。

三(1)班学生喜爱的活动统计表

师:为什么可以这样并?(因为两张表的活动项目是相同的,所以可以去掉一张表里的活动项目,直接推上去)

(3)交流讨论

师:[手指活动及人数一列]那么这些是不是都很合理了呢? 师:追问:你觉得这里不合理,你想怎样改呢?

同桌两人一张表格,咱们把它给填完整,把不合理的地方变得更加合理,比比看哪组做得又快又美观。

第十七篇 平均数小学教学设计

教学目标

1.在操作、观察、比较的过程中初步了解抽屉原理,并运用抽屉原理的知识解决简单的实际问题。

重点难点 经历抽屉原理的探究过程,并对抽屉原理的问题模式化

学生笔记(教师点拨) 学 案 内 容

一、知识回顾:(2分钟)

二、学生自学:(15分钟)

(1)自学例1

把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?

(1) 学生思考各种放法。

(2) 第一种放法: 第二种放法:

第三种放法: 第四种放法:

教学过程:

5÷2=2……1 (至少放3本)

7÷2=3……1 (至少放4本)

9÷2=4……1 (至少放5本)

1、提出问题。

不管怎么放,总有一个文具盒里至少放进( )铅笔。为什么?

如果每个文具盒只放( )铅笔,最多放( )枝,剩下()枝还要放进其中的一个文具盒,所以至少有( )铅笔放进同一个文具盒。

(1) 说一说你有什么体会。

二自学例2

1、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几体书?

2、摆一摆,有几种放法。

不难得出,不管怎么放总有一个抽屉至少放进( )本书。

3、说一说你的思维过程。

如果每个抽屉放( )本书,共放了( )本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。

如果一共有7本书会怎样呢?9本呢?

4. 你能用算式表示以上过程吗?你有什么发现?

总结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。

三、小组合作交流(8分钟)

四、教师评价释疑。(10分钟)

五、当堂检测(5分钟)

1. 做一做。

(1)7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

(2) 说出想法。

如果每个鸽舍只飞进( )鸽子,最多飞回( )鸽子,剩下()鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。

2. 做一做

8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

想:每个鸽舍飞进( )鸽子,共飞进( )鸽子。剩下( )鸽子还要飞进其中的1个或2个鸽舍,所以,至少有( )鸽子要飞进同一个鸽舍里。

第十八篇 平均数小学教学设计

教学目标:

1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。

2、过程与方法:通过操作、观察、比较、说理等数学活动,使学生经历鸽巢原理的形成过程,体会和掌握逻辑推理思想和模型思想。

3、情感 态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学习数学的兴趣。

教学重点:经历“鸽巢原理”的探究过程,理解鸽巢原理。

教学难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

教学准备:多媒体课件、铅笔、纸杯、合作探究作业纸。

教学过程:

一、 唤起与生成

1、谈话:同学们,你们喜欢魔术吗?今天,黄老师给大家表演一个小魔术。一副牌,取出大小王,还剩52张牌,请5个同学每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?来,试试看。

2、验证: 抽取,统计。是不是凑巧了,再来一次。表演成功!

3、至少2张是什么意思?(也就是最少2张,最起码2张,反过来,同一花色的可能有2张,也可能是3张、4张、5张...,一句话概括就是至少2张)。

确定是哪个花色了吗 ?(没有)反正总有一个花色,所以,这个数据不管是在哪个花色出现都证明表演是成功的。

4、设疑:你们想知道这是为什么吗?其实这里面蕴藏着一个非常有趣的数学原理,这节课让我们一起去发现!

二、探究与解决

(一)、小组探究:4放3的简单鸽巢问题

1、出 示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

2、审 题:

①读题。

②从题目上你知道了什么?证明什么?

(我知道了把4支铅笔放进3个笔筒中,证明不管怎么放,总有一个笔筒里至少有2支铅笔。)

③你怎样理解“不管怎么放”、“总有” 、“至少”的意思?

“不管怎么放”:就是随便放、任意放。

“总有”: 就是一定有,不确定是哪个笔筒,这个笔筒没有那个笔筒会有。

“至少”: 就是最少,最起码。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。

3、探 究:

①谈 话:看来大家已经理解题目的意思了,眼见为实,就让我们亲自动手摆一摆、放一放,看看有哪几种放法?

②活 动:小组活动,四人小组。

听要求!

活动要求:每个小组都有笔筒和笔,请四个人中面对面的两人一人扶杯子一人放铅笔,另外两人一人口述一人记录,让我们齐心协力,摆出所有情况后,对照题目,看有什么发现。

听明白了吗?开始!

3、反 馈:汇报结果

同学们办法真多,有用画图法,有用数的分解来表示,都很清晰。谁来汇报一下你们的成果?

可以在第一个笔筒中放4支铅笔,其他两个空着。这种放法可以说成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(课件逐一出示)

追 问:谁还有疑问或补充?

预设:说一说你比他多了哪一种放法?

(2,1,1)和(1,1,2)是一种方法吗?为什么?)

只是位置不同,方法相同

5、验证:观察这4种摆法,凭什么说“总有一个笔筒中至少有2支铅笔”?

(1)逐一验证:

第一种摆法(4,0,0),是不是总有一个笔筒至少2支,哪个?放的最多的笔筒里有4支,比2支多也可以吗?

符合总有一个笔筒里至少有2支铅笔。

第二种摆法(3,1,0),符合。哪个?放的最多的笔筒里有3支,符合总有一个笔筒里至少有2支铅笔。

第三种摆法(2,2,0),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

第四种摆法(2,1,1),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

符合条件的那个笔筒在三个笔筒中都是最多的。

(2)设疑:我有一个疑问,第一种摆法(4,0,0)放的最多的笔筒里,放有4支,可以说总有一个笔筒至少有4 支铅笔吗?说成3支也不行吗?

(3)小结:哦,原来是这样,要考虑所有摆法,然后在所有摆法中,圈出每一种摆法中最多的,再从最多的里面找到至少数,就能得出这个结论。

所以,把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

(二)自主探究:5放4的简单鸽巢原理

1、过 渡:依此推想下去

2、出 示:把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有( )支铅笔。

3、猜 想:同学们猜猜看,至少数是几支?(你说、你说)

4、验 证:你们的猜测对吗?让我们来验证一下。

活动要求:

(1)思考有几种摆法?记录下来。

(2)观察每一种摆法,能不能从中找出答案。有困难的可以同桌合作。

好,开始。(教师参与其中)。

5、汇 报:把5支铅笔放进4个笔筒中,共有6种摆法

分别是:5000 、4100、 3200、 3110 、2200、2111

(课件同步播放)

预设:我圈出了每种摆法中,放铅笔最多的那个笔筒,然后发现,放铅笔最多的的笔筒里面至少放有2支铅笔。

6、订 正:有补充的吗?噢,我们来看,这6种摆法,把每种方法里放的(停顿)最多的铅笔圈出来了,分别是5支、4支、3支、2支,从中找到至少数是2支。

7、小 结:恭喜答对的同学!同学们可真是厉害!请看,我们研究了这样的两个问题:

①把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。会讲为什么。

②把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?会求至少数。

不管是对结论的证明还是求解至少数,我们都采用一一列举的方法,罗列出所有摆法,再通过观察,得出结论。

(三)、探究鸽巢原理算式

1、谈 话:哎,如果这里有 100支铅笔放进30个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?

还是让求至少数,还用一一列举的方法来研究,你觉得怎么样?

(好麻烦,是啊, 想想都觉得麻烦!)

2、追 问:数学是一门简洁的科学,那就请同学们想一想,除了通过操作一一列举出来,有没有什么方法能一下子找到结果呢?

其实,我们刚才已经和那一种方法见过面,以4放3为例,请同学们认真观察每一种摆法,分别找一找,哪一种摆法最能说明:总有一个笔筒里至少放有2支铅笔呢?

3、平均分:为什么这样分呢?

生:我是这样想的,先假设每个笔筒中放1支,这样还有1支,这是无论放到哪个笔筒,那个笔筒中就有2支了,所以我认为是对的。(课件演示)

师:你为什么要先在每个笔筒中放1支呢?

生:因为总共只有4支,平均分,每个笔筒只能分到1支。

师:为什么一开始就要去平均分呢?

生:平均分,就可以使每个笔筒中的笔尽可能少一点。也就有可能找到和题目意思不一样的情况。

师:我明白了,但这样能证明总有一个笔筒中肯定会有2 支笔,怎么就证明了至少有2支呢?

生:平均分已经使每个笔筒中的笔尽可能的少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。

师:看来,平均分是保证“至少”数的关键。

4、列式:

①你能用算式表示吗?

4÷3=1……1 1+1=2

②讲讲算式含义。

a、指名讲:假设把4支铅笔平均放进3个笔筒中,每个笔筒放1支,剩下的1支就要放进其中的一个笔筒,1+1=2,所以总有一个笔筒至少有2支铅笔。

b、真棒!讲给你的同桌听。

5、运 用:把5支铅笔放进4个笔筒不管怎么放,总有一个笔筒至少有几支铅笔 请用算式表示出来。

5÷4=1……1 1+1=2

说说算式的意思。

a、同桌齐说。

b、谁来说一说?

师:我们会用除法算式表示平均分的过程,这种方法更为快捷、简明。

(四)探究稍复杂的鸽巢问题

1、加深感悟:我们继续研究这样的问题,边计算边思考:这样的题目有什么特点?结论中的至少数是怎样得到的?

2、题组(开火车,口答结果并口述算式)

(1)6支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔

(2)7支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔

7÷5=1…… 2 1+2=3?

7÷5=1…… 2 1+1=2

出现了两种答案,究竟那种正确?同桌商量商量。不行我再救场(学生讨论)

你认为哪种结果正确?为什么?

质 疑:为什么第二次还要平均分?(保证“至少”)

把铅笔平均分才是解决问题的关键啊。

(3)把笔的数量进一步增加:

8支铅笔放5个笔筒里,至少数是多少?

8÷5=1……3 1+1=2

(4)9支铅笔放5个笔筒里,至少数是多少?

9÷5=1……4 1+1=2

(5)好,再增加一支铅笔?至少数是多少?

还用加吗?为什么 10÷5=2 正好分完, 至少数是商

(6)好再增加一支铅笔,,你来说

11÷5=2……1 2+1=3 3个

①你来说说现在至少数为什么变成3个了?(因为商变了,所以至少数变成了3.)

②那同学们再想想,铅笔的支数到多少支时,至少数还是3?

③铅笔的支数到多少支的时候,至少数就变成了4了呢?

(7)把28支铅笔放进5个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。28÷5=5……3 5+1=6

(8)算的这么快,你一定有什么窍门?(比比至少数和商)

(9) 把m支铅笔放进n个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。(商+1)

3、观察算式,同桌讨论,发现规律。

铅笔数÷笔筒数=商……余数” “至少数=商+1”

你和他们的发现相同吗?出示:商+1

4、质疑:和余数有没有关系?

(明确:与余数无关,因为不管余多少,都要再平均分,所以就用“商+1”)

(五)归纳概括鸽巢原理

1、解答:那现在会求100支铅笔放进30个笔筒中的至少数了吗?

100÷30=3…… 10 3+1=4 至少数是4个

(因为把100支铅笔平均放进30个笔筒中,每个笔筒屉放3支,剩下的10支在平均再放进其中10个笔筒中。所以,不管怎么放,总有一个笔筒里至少放进4支铅笔。)

2、推广:

刚才我们研究了铅笔放入笔筒的问题,其他还有很多问题和它有相同之处。请看:

(1)书本放进抽屉

把8本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么?

8÷3=2……2? 2+1=3

(因为把8本书平均放进3个抽屉,每个抽屉放2本,剩下的2本就要放进其中的2个抽屉。所以,不管怎么放,总有一个抽屉里至少放进3本书。)

(2)鸽子飞进鸽巢

11只鸽子飞进4个鸽笼,至少有几只鸽子飞进同一只鸽笼?

11÷4=2……3? 2+1=3

答:至少有 3只鸽子飞进同一只鸽笼。

(3)车辆过高速路收费口(图)

(4)抢凳子

书、鸽子、同学就相当于铅笔,称为要放的物体,抽屉、鸽笼、凳子就相当于笔筒,统称为抽屉。物体数量大于抽屉数量,类似的问题我们都可以用这种方法解答。

3、建立模型:鸽巢原理:

同学们发现的这个原理和一位数学家发现的一模一样,让我们追溯到150多年以前:

知识链接:(课件)最早指出这个数学原理的,是十九世纪的德国数学家“狄利克雷”,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄利克雷原理”。以上这些问题有相同之处,其实鸽巢、抽屉就相当于笔筒,鸽子、书就相当于铅笔。人们对鸽子飞回鸽巢这个事例记忆犹新,所以像这样的数学问题就叫做鸽巢问题或抽屉问题,它被广泛地应用于现实生活中。运用这一规律能解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

揭示课题:这是我们今天学习的第五单元数学广角——鸽巢问题,它们里面蕴含的这种数学原理,我们就叫做鸽巢原理或抽屉原理。

5、小结:分析这类问题时,要想清楚谁是鸽子,谁是鸽巢?

有信心用我们发现的原理继续接受挑战吗?

3、巩固与应用

那我们回头看看课前小魔术,你明白它的秘密了吗?

1、 揭秘魔术:一副牌,取出大小王,还剩52张牌,你们5 人每人随意抽一张,我知道至少有2张牌是同花色的。

答:因为把5张牌,平均分在4个花色里,每个花色有1张,剩下的1张无论是什么花色,总有一个花色至少是2张。

正确应用鸽巢原理是表演成功的秘密武器!

2、飞镖运动

同学们玩过投飞镖吗?飞镖运动是一种集竞技、健身及娱乐于一体的绅士运动。

课件:张叔叔参加飞镖运动比赛,投了5镖,成绩是41环,张叔叔至少有一镖不低于(? )环。

在练习本上算一算,讲给你的同桌听听。

谁来给大家说说你是怎么想的?(5相当于鸽巢,41相当于鸽子。把......)

41÷5=8……1? 8+1=9

在我们同学身上也有鸽巢问题,让我们先了解一下六年级的情况。

3、我们六年级共有367名学生,其中六(2班)有49名学生。

(1)六年级里至少有两人的生日是同一天。

(2)六(2)班中至少有5人的生日是在同一个月。

他们说的对吗?为什么?

同桌讨论一下。

谁来说说你们的想法?

(1、367人相当于鸽子,365、或366天相当于鸽巢......

? 2、49人相当于鸽子,12个月相当于鸽巢......)

真理是越辩越明!

3、星座测试命运

说起生日,我想起了现在非常流行的星座。采访几位同学,你是什么星座?

你用星座测试过命运吗?你相信星座测试的命运吗?

我们用鸽巢原理来说说你的想法。

全中国13亿人,12个星座,总有至少一亿以上的人命运相同。尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的命,可能吗?这真的很荒谬。用星座测试命运,充其量是一种游戏娱乐一下而已,命运掌握在自己手中。

4、柯南破案:

“鸽巢问题”的原理不仅在数学中有用,在现实生活中也随处可见,看,谁来了?

(课件)有一次,小柯南走在大街上,无意间听到了一位老大爷和一个年轻人的对话:

年轻人:大爷,我最近急用钱,想把我的一个手机号卖掉,价格500元,请问您要吗?

大爷:是什么手机号呢?这么贵?

年轻人:我的手机号很特别,它所有的数字中没有一个数字重复......所以才这么贵的!

老大爷:哦!

听到这里,柯南马上跑过去悄悄提醒老大爷:“大爷,这是一个骗子,您要小心!”并且马上报了警,警察赶到后调查发现这个人果真是个骗子。

聪明的你,知道柯南是根据什么判断那个年轻人是骗子的吗?

(手机号11位数字相当于鸽子。0-9这十个数字相当于鸽巢,11÷10=1…1? 1+1=2,总有至少一个数字重复出现。)

4、 回顾与整理。

这节课我们认识了“鸽巢问题”,其实生活中还有许多的类似于“鸽巢问题”这样的知识等待我们去发现,去挖掘。只要你留心观察加上细心思考,一定会在平凡的事件中有不平凡的发现,也能创造一条真正属于你自己的原理!

下 课!

板书设计:

鸽? 巢? 问? 题

物体? 抽屉 至少数

4? ÷ 3 =? 1……1 1+1=2?

5? ? ÷ 4? =? 1……1? ? ? 1+1=2?

7? ? ÷ 5? =? 1……2? ? ? 1+1=2

9 ÷ 5? =? 1……4? 1+1=2

11 ? ÷? 5? =? 2……1 ? 2+1=3

28 ÷ 5? =? 5……3? 5+1=6

100 ? ÷ 30? =? 3……1 3+1=4?

m ÷ n = 商……余数? 商+1

第十九篇 平均数小学教学设计

教学过程:

1、判断是不是平均分。

(1)课件出示3份糖果,每份3颗,

(2)4个圈,每个圈内2个机器猫

(3)天线宝宝1个、4个、7个

是不是平均分?有什么办法可以变成平均分?

生1:将7个里拿3个到1个中去。

2、观察课本主题图,用平均分的定义说一说图中的分法。

汇报:

生1:把10瓶矿泉水平均分成5份,每份是2瓶

生2:

生3:把15个橘子分成5份,每份是3个

师纠正,生重说。

生4:把30颗糖平均分成5份,每份6颗糖。

3、实践活动:分学习用品

师说要求,将已经准备好的18个铅笔、橡皮、尺子等东西平均分成3份。

小组合作开始分。

展示分法,指名现场演示。

指名4个学生上台,其中1人演示分尺子。1根1根地分。

再指名3个学生上台分铅笔,6只6只地分。

2只2只地分。

师:分的东西不同、方法不一样,但3名小朋友分到的东西都是6份。这样的分法叫做平均分。

4、练习

(1)圈一圈,连一连,填一填

(2)3人获优胜奖,奖品为9块橡皮,3人获一、二、三名,奖品为9只钢笔。奖品怎么分?

小组讨论,汇报,全班交流。

师:生活中,我们有时要平均分,有时不需要平均分。

5、说说有什么收获。

6、练习:我是小小设计师(开放题)

16盒花摆在一个四边形的边上,怎样摆同样多?

展示3种不同的摆法。

7、下课。

第二十篇 平均数小学教学设计

一、说教材

《平均分》是苏教版二年级上册第四单元的内容,是学生学习除法的开始,也是今后学习除法的基础,它是较难理解的数学概念。而除法的含义是建立在“平均分”的基础上的。要突破除法学习的难点,关键是理解分,尤其是“平均分”。因此平均分是除法学习的基础,有着举足轻重的地位。教材设计了各种情境,结合学生的实际生活,向学生提供了充分的实践机会,通过观察了解“每份同样多”,引出“平均分”,再让学生充分参与平均分,分各种实物,让学生建立起“平均分”的概念,学生多次经历“平均分”的过程,并在头脑中形成相应的表象,为学生认识除法打好基础。

根据大纲的要求和教材所处的地位,我确定本节课教学目标如下:

1、让学生经历平均分物体的活动,初步感知平均分的特点,会按每几个一份的要求,将一些物体分成若干份。

2、在活动中培养学生的动手操作能力和语言表达能力。

3、让学生在活动中体验成功的乐趣,提高学习数学的兴趣,并逐步形成自主探索的意识以及与同学合作学习、相互交流的态度。

教学重点:了解平均分的含义,初步了解平均分的方法。

教学难点:通过实践让学生建立平均分的表象。

二、说教法、学法

根据教学的要求,结合教材的特点,为了完成教学任务,我主要采用情景教学法和讲练法,让学生在情景中亲自动手操作,探索,感受知识的形成过程,享受成功的喜悦,并让他们通过观察、讨论,形成知识,然后运用学习成果,把数学知识运用到现实生活中去。培养学生共同合作,相互交流的学习方式。

三、说教学过程

根据教材的内容和学生的认知水平,我设计了以下几个教学过程:

(一)创设情境,感受平均分

(二)实际操作认识平均分

(三)应用拓展,理解平均分

(四)体验成功,回味平均分

第一层:创设情境感受平均分

在这一环节中,我分以下几个步骤来完成:

1、观察猴妈妈怎样分你觉得最公平

2、观察问题

通过让同学们观察,让学生感受到平均分的概念:每份分的同样多。

3、揭示课题

第二层:实际操作认识平均分

1、提出小兔搬8个萝卜,可以平均分几次搬?

2、交流操作的过程和结果,认识理解“平均分”。要给学生充分的交流不同分法的机会。

第三层:拓展应用理解平均分

1、按要求分小棒,交流操作。

2、说一说,把多少平均分,分成了几份,每份是多少?

3、分别做练一练的第1、2、3题,让学生明白平均分就是每份分得的结果一样多。每份分得的结晶果同样多就是平均分,进一步理解和体会“平均分”。