高中圆的方程教案
发表时间:2020-11-12高二数学下册《圆的方程》知识点复习。
俗话说,凡事预则立,不预则废。高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生们能够在上课时充分理解所教内容,帮助高中教师缓解教学的压力,提高教学质量。你知道怎么写具体的高中教案内容吗?以下是小编为大家收集的“高二数学下册《圆的方程》知识点复习”欢迎您阅读和收藏,并分享给身边的朋友!
高二数学下册《圆的方程》知识点复习
圆的方程定义:
圆的标准方程(x-a)2+(y-b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
直线和圆的位置关系:
1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.
①Δ>0,直线和圆相交.②Δ=0,直线和圆相切.③Δ<0,直线和圆相离.
方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.
①d<R,直线和圆相交.②d=R,直线和圆相切.③d>R,直线和圆相离.
2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.
3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.
切线的性质
⑴圆心到切线的距离等于圆的半径;
⑵过切点的半径垂直于切线;
⑶经过圆心,与切线垂直的直线必经过切点;
⑷经过切点,与切线垂直的直线必经过圆心;
当一条直线满足
(1)过圆心;
(2)过切点;
(3)垂直于切线三个性质中的两个时,第三个性质也满足.
切线的判定定理
经过半径的外端点并且垂直于这条半径的直线是圆的切线.
切线长定理
从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.
圆锥曲线性质:
一、圆锥曲线的定义
1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆.
2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线.即.
3.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线.当01时为双曲线.
二、圆锥曲线的方程
1.椭圆:+=1(ab0)或+=1(ab0)(其中,a2=b2+c2)
2.双曲线:-=1(a0,b0)或-=1(a0,b0)(其中,c2=a2+b2)
3.抛物线:y2=±2px(p0),x2=±2py(p0)
三、圆锥曲线的性质
1.椭圆:+=1(ab0)
(1)范围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e=∈(0,1)(5)准线:x=±
2.双曲线:-=1(a0,b0)(1)范围:|x|≥a,y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e=∈(1,+∞)(5)准线:x=±(6)渐近线:y=±x
3.抛物线:y2=2px(p0)(1)范围:x≥0,y∈R(2)顶点:(0,0)(3)焦点:(,0)(4)离心率:e=1(5)准线:x=-
练习题:
1、若圆(x-a)2+(y-b)2=r2过原点,则()
A.a2-b2=0B.a2+b2=r2
C.a2+b2+r2=0D.a=0,b=0
【解析】选B.因为圆过原点,所以(0,0)满足方程,
即(0-a)2+(0-b)2=r2,(zWB5.Com 小学作文网)
所以a2+b2=r2.
2、已知定点A(0,-4),O为坐标原点,以OA为直径的圆C的方程是()
A.(x+2)2+y2=4
B.(x+2)2+y2=16
C.x2+(y+2)2=4
D.x2+(y+2)2=16
【解析】选C.由题意知,圆心坐标为(0,-2),半径r=2,其方程为x2+(y+2)2=4.
3、圆(x+2)2+y2=5关于原点(0,0)对称的圆的方程是()
A.(x-2)2+y2=5
B.x2+(y-2)2=5
C.(x+2)2+(y+2)2=25
D.x2+(y+2)2=25
【解析】选A.圆心(-2,0)关于原点对称的点为(2,0),所以所求圆的方程为(x-2)2+y2=5.
延伸阅读
高二数学下册《圆》知识点复习
俗话说,居安思危,思则有备,有备无患。高中教师要准备好教案,这是高中教师的任务之一。教案可以让上课时的教学氛围非常活跃,帮助高中教师有计划有步骤有质量的完成教学任务。关于好的高中教案要怎么样去写呢?下面是小编精心收集整理,为您带来的《高二数学下册《圆》知识点复习》,仅供您在工作和学习中参考。
高二数学下册《圆》知识点复习
1、圆的定义:
平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程
(1)标准方程,圆心,半径为r;
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
当时,表示一个点;当时,方程不表示任何图形。
(3)求圆方程的方法:
一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线,圆,圆心到l的距离为,则有
(2)过圆外一点的切线:
①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圆与圆的位置关系:
通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
设圆,
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当时两圆外离,此时有公切线四条;
当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当时,两圆内切,连心线经过切点,只有一条公切线;
当时,两圆内含;当时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
圆的辅助线一般为连圆心与切线或者连圆心与弦中点
练习题:
1.下列命题:
①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有()
A.0个
B.1个
C.2个
D.3个
2.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆的位置关系是()
A.外离
B.相切
C.相交
D.内含
答案:1.B2.C
高二数学下册《圆的方程》知识点总结人教版
高二数学下册《圆的方程》知识点总结人教版
1、圆的定义
平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程
(1)标准方程,圆心,半径为r;
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
当时,表示一个点;当时,方程不表示任何图形。
(3)求圆方程的方法:
一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线,圆,圆心到l的距离为,则有
(2)过圆外一点的切线:
①k不存在,验证是否成立
②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圆与圆的位置关系
通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
设圆
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当时两圆外离,此时有公切线四条;
当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当时,两圆内切,连心线经过切点,只有一条公切线;
当时,两圆内含;当时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
圆的辅助线一般为连圆心与切线或者连圆心与弦中点
练习题:
1.若圆(x-a)2+(y-b)2=r2过原点,则()
A.a2-b2=0B.a2+b2=r2
C.a2+b2+r2=0D.a=0,b=0
【解析】选B.因为圆过原点,所以(0,0)满足方程,
即(0-a)2+(0-b)2=r2,
所以a2+b2=r2.
2.已知定点A(0,-4),O为坐标原点,以OA为直径的圆C的方程是()
A.(x+2)2+y2=4B.(x+2)2+y2=16
C.x2+(y+2)2=4D.x2+(y+2)2=16
【解析】选C.由题意知,圆心坐标为(0,-2),半径r=2,其方程为x2+(y+2)2=4.
3.圆(x+2)2+y2=5关于原点(0,0)对称的圆的方程是()
A.(x-2)2+y2=5
B.x2+(y-2)2=5
C.(x+2)2+(y+2)2=25
D.x2+(y+2)2=25
【解析】选A.圆心(-2,0)关于原点对称的点为(2,0),所以所求圆的方程为(x-2)2+y2=5.
【举一反三】本题中圆的方程不变,则其关于y轴对称的圆的方程为____________.
【解析】圆心(-2,0)关于y轴对称的点为(2,0),
所以已知圆关于y轴对称的圆的方程为(x-2)2+y2=5.
答案:(x-2)2+y2=5
高二数学下册《直线与方程》知识点复习
高二数学下册《直线与方程》知识点复习
直线的倾斜角:
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α180°
直线的斜率:
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式。
注意:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
直线方程:
1.点斜式:y-y0=k(x-x0)
(x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。
2.斜截式:y=kx+b
直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。该方程叫做直线的斜截式方程,简称斜截式。此斜截式类似于一次函数的表达式。
3.两点式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
如果x1=x2,y1=y2,那么两点就重合了,相当于只有一个已知点了,这样不能确定一条直线。
如果x1=x2,y1y2,那么此直线就是垂直于X轴的一条直线,其方程为x=x1,不能表示成上面的一般式。
如果x1x2,但y1=y2,那么此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不能表示成上面的一般式。
4.截距式x/a+y/b=1
对x的截距就是y=0时,x的值,对y的截距就是x=0时,y的值。x截距为a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推导y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b带入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。
5.一般式;Ax+By+C=0
将ax+by+c=0变换可得y=-x/b-c/b(b不为零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析几何中更常用,用方程处理起来比较方便。
练习题:
例:已知f(x+1)=xsup2;+1,f(x+1)的定义域为[0,2],求f(x)解析式和定义域
设x+1=t,则;x=t-1,那么用t表示自变量f的函数为:(也就是把x=t-1代入f(x+1)=xsup2;+1中)
f(t)=f(x+1)=(t-1)sup2;+1
=tsup2;-2t+1+1
=tsup2;-2t+2
所以,f(t)=tsup2;-2t+2,则f(x)=xsup2;-2x+2
或者用这样的方法——更直观:
令f(x+1)=xsup2;+1中的x=x-1,这样就更直观了,把x=x-1代入f(x+1)=xsup2;+1,那么:
f(x)=f[(x-1)+1]=(x-1)sup2;+1
=xsup2;-2x+1+1
=xsup2;-2x+2
所以,f(x)=xsup2;-2x+2
而f(x)与f(t)必须x与t的取值范围相同,才是相同的函数,
由t=x+1,f(x+1)的定义域为[0,2],可知道:t∈[1,3]
f(x)=xsup2;-2x+2的定义域为:x∈[1,3]
综上所述,f(x)=xsup2;-2x+2(x∈[1,3]
高二数学下册《曲线和方程》知识点复习
一名优秀的教师在教学时都会提前最好准备,教师要准备好教案,这是教师的任务之一。教案可以让学生更好的吸收课堂上所讲的知识点,帮助教师能够井然有序的进行教学。我们要如何写好一份值得称赞的教案呢?以下是小编为大家收集的“高二数学下册《曲线和方程》知识点复习”供大家参考,希望能帮助到有需要的朋友。
高二数学下册《曲线和方程》知识点复习
1.定义
在选定的直角坐标系下,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下关系:
(1)曲线C上的点的坐标都是方程f(x,y)=0的解(一点不杂);
(2)以方程f(x,y)=0的解为坐标的点都是曲线C上的点(一点不漏).
这时称方程f(x,y)=0为曲线C的方程;曲线C为方程f(x,y)=0的曲线(图形).
设P={具有某种性质(或适合某种条件)的点},Q={(x,y)|f(x,y)=0},若设点M的坐标为(x0,y0),则用集合的观点,上述定义中的两条可以表述为:
以上两条还可以转化为它们的等价命题(逆否命题):
为曲线C的方程;曲线C为方程f(x,y)=0的曲线(图形).
2.曲线方程的两个基本问题
(1)由曲线(图形)求方程的步骤:
①建系,设点:建立适当的坐标系,用变数对(x,y)表示曲线上任意一点M的坐标;
②立式:写出适合条件p的点M的集合p={M|p(M)};
③代换:用坐标表示条件p(M),列出方程f(x,y)=0;
④化简:化方程f(x,y)=0为最简形式;
⑤证明:以方程的解为坐标的点都是曲线上的点.
上述方法简称“五步法”,在步骤④中若化简过程是同解变形过程;或最简方程的解集与原始方程的解集相同,则步骤⑤可省略不写,因为此时所求得的最简方程就是所求曲线的方程.
(2)由方程画曲线(图形)的步骤:
①讨论曲线的对称性(关于x轴、y轴和原点);
②求截距:
③讨论曲线的范围;
④列表、描点、画线.
3.交点
求两曲线的交点,就是解这两条曲线方程组成的方程组.
4.曲线系方程
过两曲线f1(x,y)=0和f2(x,y)=0的交点的曲线系方程是f1(x,y)+λf2(x,y)=0(λ∈R).
练习题:
1.设m>1,则关于x,y的方程(1-m)x2+y2=m2-1表示的曲线是()
A.焦点在x轴上的椭圆
B.焦点在y轴上的椭圆
C.焦点在x轴上的双曲线
D.焦点在y轴上的双曲线
答案:D
2.动点P为椭圆x2a2+y2b2=1(a>b>0)上异于椭圆顶点(±a,0)的一点,F1、F2为椭圆的两个焦点,动圆C与线段F1P、F1F2的延长线及线段PF2相切,则圆心C的轨迹为()
A.椭圆
B.双曲线
C.抛物线
D.直线