小学数学比的认识教案
发表时间:2020-10-06图形的初步认识导学案。
每个老师上课需要准备的东西是教案课件,大家在仔细规划教案课件。必须要写好了教案课件计划,才能促进我们的工作进一步发展!那么到底适合教案课件的范文有哪些?为了让您在使用时更加简单方便,下面是小编整理的“图形的初步认识导学案”,仅供参考,大家一起来看看吧。
丽星中学七年级数学导学案设计小组负责人:小组长:
预习笔记总第32课时课题:生活中的立体图形2.填一填
正四面体(三棱锥)正方体(四棱柱)正八面体
多面体顶点数(V)面数(F)棱数(E)V+F-E
正四面体
正方体
正八面体
3.
正12面体
顶点数(V)面数(F)棱数(E)V+F-E
【三】学以致用
1.一个凸多面体有12条棱,6个顶点,则这个多面体是几面体?
【四】延伸拓展
如图,第二行的图形围绕红线旋转一周,便能形成第一行的某个几何体,用线连一连.
【五】作业
课本127页习题第1、2、3题
预习笔记
学习目标(1)通过观察认识到我们周围的规则物体能找到与它们相似的立体图形。(2)能正确识别柱体、锥体、圆柱、圆锥……
重点:直观认识规则的立体图形,常见的几何体正确识别与分类.难点:找出各个立体图形的个性特征及它们之间的联系.
【一】预习交流。
一.几何体的分类
(1)柱体包括________和_________
(2)锥体包括________和__________
二.圆柱、棱柱、圆锥、棱锥概念
三.我们都知道,我们的生活空间是一个三维的世界,我们生活中的生活中的物体都是立体的物体,而这些物体中有一部分是较有规则的,如:
生活物体苹果、球天坛顶端塔顶粉笔盒笔筒
类似图形
【二】课堂研讨
1.看一看
在上面的图形中:
(1)图1所表示的立体图形是柱体()
(2)图2所表示的立体图形是柱体()
(3)图3所表示的立体图形是锥体()
(4)图4所表示的立体图形是球体;
(5)图5所表示的立体图形是锥体()
2.说出下列立体图形的名称:
3.判断下列的陈述是否正确:
⑴柱体的上、下两个面不一样大()
⑵圆柱、圆锥的底面都是圆()
⑶棱柱的底面不一定是四边形()
⑷圆柱的侧面是平面()
⑸棱锥的侧面不一定是三角形()
⑹柱体都是多面体()
4.在下面四个物体中,最接近圆柱的是()
相关推荐
认识几何图形(1)导学案
【学习目标】:1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;
2、能由实物形状想象出几何图形,由几何图形想象出实物形状;
3、能识别一些简单几何体,正确区分平面图形与立体图形。
【重点难点】:识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。
【导学指导】
一、知识链接
同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的图形。图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。
二、自主探究
1.几何图形
(1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界;
(2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题:
从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?
我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。
注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。
2.立体图形
思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?
长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。
想一想
生活中还有哪些物体的形状类似于这些立体图形呢?
思考:课本118页图4.1-4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。
3.平面图形
平面图形的概念
线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
思考:课本118页图4.1-5的图中包含哪些简单的平面图形?
请再举出一些平面图形的例子。
长方形、圆、正方形、三角形、……。
思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系?
立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;
立体图形中某些部分是平面图形。
【课堂练习】:
课本119页练习
【要点归纳】:
1、
2、平面图形与立体图形的关系:
立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;
立体图形中某些部分是平面图形。
【拓展训练】
1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.
其中属于立体图形的是()
A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥
图形的平移导学案
为了促进学生掌握上课知识点,老师需要提前准备教案,准备教案课件的时刻到来了。在写好了教案课件计划后,新的工作才会如鱼得水!你们知道哪些教案课件的范文呢?以下是小编为大家收集的“图形的平移导学案”但愿对您的学习工作带来帮助。
第三章图形的平移与旋转
3.1图形的平移(一)
一、问题展示:
1.平移的概念:在平面内,将一个图形沿某个方向移动一定的,这样的图形运动称为,平移不改变图形的和。
2.平移的性质:平移不改变图形的和,故平移前后的两个图形是的.因此平移具有以下性质:(1)对应点所连的线段(或在同一条直线上)且.(2)对应线段(或在同一条直线上)且.(3)对应角.
二、基础练习:
1.下列现象属于平移的是_______________
A.打开抽屉;B.健身时做呼啦圈运动;C.风扇扇叶的转动;D.小球从高空竖直下落;
E.电梯的升降运动;F.飞机在跑道上滑行到停止的运动;
G.篮球运动员投出的篮球运动;H.乒乓球比赛中乒乓球的运动.
2.将线段AB平移1㎝,得到线段A1B1,则点A到A1的距离是.
3.如图所示,△ABC沿BC方向平移到△DEF的位置,若BE=2㎝,则CF=.
4.如图所示,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为()A.6B.8C.10D.12
三、例题讲解:
例1:如图,经过平移,△ABC的顶点A移到了点D
(1)指出平移的方向和平移的距离;
(2)画出平移后的三角形.
例2:(2013.湖南郴州)在下面的方格纸中.
(1)作出△ABC关于MN对称的图形△A1B1C1;
(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?
例3:如图,将四边形ABCD平移后得到四边形EFGH,已知EF=13,GF=12,GH=3,EH=4,且∠D=90,求四边形ABCD的周长和面积.
四、课堂检测:
△ABC经过平移得到△A′B′C′,若∠A=40,∠B=60,则∠C′=______,若AB=4cm,
则A′B′=_________.
2.如右图所示,△ABC沿直角边BC所在直线向右平移到△DEF,则下列结论中,
错误的是()
A.BE=ECB.BC=EFC.AC=DFD.△ABC≌△DEF
3.请将下图的“小鱼”向左平移5格.
4.如图,已知Rt△ABC中,∠C=90,AC=BC=4,现将△ABC沿CB方向平移到△A1B1C1的位置。
比较四边形ACC1O和四边形A1OBB1面积的大小;
若平移的距离为1,求△ABC与△A1B1C1重叠部分的面积;
若设平移的距离为x,△ABC与△A1B1C1重叠部分的面积为S,试用含x的代数式表示.
图形的相似导学案
27.1图形的相似1
学习目标:从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.了解成比例线段的概念,会确定线段的比.
学习过程:
一、依标独学
1、同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?
2、小组讨论、交流.得到相似图形的概念.
相似图形
3、如图,是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?
二、围标群学
实验探究:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的比是多少?
成比例线段:对于四条线段,如果其中两条线段的比与另两条线段的比相等,如(即),我们就说这四条线段是成比例线段,简称比例线段.
【注意】(1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;线段的比是一个没有单位的正数;
(2)四条线段成比例,记作或;
(3)若四条线段满足,则有.
小应用:一张桌面的长,宽,那么长与宽的比是多少?
(1)如果,,那么长与宽的比是多少?
(2)如果,,那么长与宽的比是多少?
三、扣标展示(展示点评)
四、达标测评(当堂训练)
已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm,求北京到上海的实际距离大约是多少km?
分析:根据比例尺=,可求出北京到上海的实际距离.
五、课后反思

