88教案网

你的位置: 教案 > 初中教案 > 导航 > 数轴七年级数学教案(二十四篇)

数轴七年级数学教案

发表时间:2025-10-24

数轴七年级数学教案(二十四篇)。

在日常学习、工作和生活中,许多人不断提升自己。为了高效学习,掌握正确的方法非常重要。以下是小编整理的七年级数学数轴教案,希望对大家有所帮助。

⬣ 数轴七年级数学教案 ⬣

掌握正确的学习方法,养成良好的学习习惯是学习成功的必经之路,与小学生相比,初中生的学习方法显得更加多样和复杂,学习内容的变化要求初中生做到:

1、学会合理安排自己的学习时间,以免造成学习上的忙乱。

2、课堂上,要求学生认真听讲,学会记听课笔记。

3、随着学习内容的扩大加深,要求学生能够学会独立思考,对学习材料进行逻辑加工,做到学得活、记得牢、用得上。

如何尽快适应初中学习?

“入学时进了全年级前30名,其中考试后退到200多名,准是没有认真学习”。前几天,各中学其中考试成绩一下来,一位家长看到上初一的孩子来了个“开门黑”,便一筹莫展,学校举办家长会,家长感觉没有面子,也不愿参加。石家庄市20中教学主任鄢桂凤老师介绍,初一上学期能否尽快适应新的学习环境,对整个中学阶段的学习将起到非常重要的作用,初一学生考试成绩下降,在很大原因上是还没有适应初中学习,这是父母抱怨、责骂是没有意义的,应该积极帮助孩子尽快适应新的学习环境。

初一上学期,家长应配合孩子实现三个方面的转变:

1、学习方法的转变。小学阶段,学生的学习科目相对较少,能按时完成作业就可以了,以语文为例,只要把课本上的知识基本掌握,考试就不成问题,但初中阶段,课程设置增多,考试题更为灵活,讲究活学活用,学生必须改变以往写完作业万事大吉的做法,主动复习当天所学的知识,除了老师所留的作业,还应该多做参考资料,加深理解,拓宽知识面,由依赖性学习向主动、独立性学习转变。

2、生活习惯的转变。中学课程紧,内容多,在学生生活上必须有规律,紧张起来,制订适合自己的作息时间表并自觉遵守,保证作息有规律。

3、看电视的转变。一些家长不许孩子看电视,其实翻翻一些高、中考题就会发现,部分考题与电视有不小的联系,如上海市近年高考题有一题目就是让考生推荐看一部电影(电视剧、或戏曲),因此学生应将电视作为学习的工具,有目的的有意识的看,不能在电视前一看就是一两小时,或总看一些连续剧,应选择与学习有关的积极向上、能陶冶情操的影视剧。

三种学习方法

学习成绩的好坏,往往取决于是否有良好的学习习惯,特别是思考习惯。

一、总是站在系统的高度把握知识

很多同学在学习中习惯于跟着老师一节一节的走,一章一章的学,不太对意章节与学科整体系统之间的关系,只见树木,不见森林。随着时间推移,所学知识不断增加,就会感到内容繁杂、头绪不清,记忆负担加重。事实上,任何一门学科都有自身的知识结构系统,学习一门学科前首先应了解这一系统,从整体上把握知识,学习每一部分内容都要弄清其在整体系统中的位置,这样做往往使所学知识更容易把握。

二、追根溯源,寻求事物之间的内在联系

学习最忌死记硬背,特别是理科学习,更重要的是弄清楚道理,所以不论学习什么内容,都要问为什么,这样学到的知识似有源上水,有木之本。即使你所提的问题超出了中学知识范围,甚至老师也回答不出来,但这并不要紧,要紧的是对什么事都要有求知欲,好奇心,这往往是培养我们学习兴趣的重要途径,更重要的是养成这种思考习惯,有利于思维品质的训练。

三、发散思维,养成联想的思维习惯

在学习中我们应经常注意新旧知识之间、学科之间、所学内容与生活实际等方面的联系,不要孤立的对待知识,养成多角度地去思考问题的习惯,有意识地去训练思维的流畅性、灵活性及独创性,长期下去,必然会促进智力素质的发展。知识的学习主要通过思维活动来实现的,学习的核心就是思维的核心,知识的掌握固然重要,但更重要的是通过知识的学习提高智力素质,智力素质提高了,知识的学习会变得容易。所以上面讲的学习的三个学习习惯实质上是三种思维习惯。学习的重点就是学会如何思考。

三种学习境界

一、第一层为苦学

提起学习就讲"头悬梁、锥刺股","刻苦、刻苦、再刻苦"。处于这种层次的同学,觉得学习枯燥无味,对他们来说学习是一种被迫行为,体会不到学习中的乐趣。长期下去,对学习必然产生了一种恐惧感,从而滋生了厌学的情绪,结果,在他们那里,学习变成了一种苦差事。

二、第二层为好学

所谓"知之者不如好之者",达到这种境界的同学,学习兴趣对学习起到重大的推动作用。对学习的'如饥似渴,常常注到废寝忘食的地步。他们的学习不需要别人的逼迫,自觉的态度常使他们能取得好的成绩,而好的成绩又使他们对学习产生更浓的兴趣,形成学习中的良性循环。

三、第三层为会学

学习本身也是一门学问,有科学的方法,有需要遵循的规律。按照正确的方法学习,学习效率就高,学的轻松,思维也变的灵活流畅,能够很好地驾御知识。真正成为知识的主人。

目前,中学生的学习中,第一层居多,第二层为少数,第三层次更少。我们应当明确,学习的一个重要目标就是要学会学习,这也是现代社会发展的要求。21世纪中的文盲将是那些不会学习的人。所以,同学们在学习中应追求更高的学习境界,使学习成为一件愉快的事,在轻轻松松中学好各门功课。

⬣ 数轴七年级数学教案 ⬣

一、数学学习方法的重要性

前苏联教学论专家巴班斯基曾指出的:"教学方法是由学习方式和教学方式运用的协调一致的效果决定的。"从国际教育改革和发展趋势来看,教会学生学习、教会学生积极主动发展是世界各国的共同目标。在人类进入信息时代的新世纪,人们将面临知识不断更新,学习成为贯穿人的一生的事情,一方面不仅要关注学生素质发展的全面完善以及个性的健康和谐发展,另一方面还要关注到学生的学习和发展,更为重要的是要让学生愿意学习,学会学习,掌握学习的方法、技能,能够积极主动的学习。

二、数学学习的常用方法

我国要求尊重学生的学习主体地位,要真正把学生作为学习的主人翁看待;关注学生的学习过程,倡导学生主动参与,使学生在自主、合作、探究的方式中积极主动地进行学习活动;培养学生的创新精神与实践能力。特别是对于初中一年级,要为学生学习数学知识打下良好基础,数学学习方法的学习显得更具有时代性和前瞻性。数学学习方法指导是一个由非智力因素、学习方法、学习习惯、学习能力多元组成的统一整体,因此,应以系统整体的观点进行学法指导,目的在于使学生加强学习修养,激发学习动机;指导学生掌握科学的学习方法;指导学生学习数学的良好习惯,进而提高学习能力及效果。

(1)正确认识数学学习方法的重要性。

启发学生认识到科学的学习方法是提高学习成绩的重要因素,并把这一思想贯穿于整个教学过程之中。可以通过讲述数学名人的故事,激励学生,我结合《数轴》一课的内容,在班上讲述笛卡尔在病床上发现数轴,最终开创了用数轴表示有理数的故事。让孩子懂得了获得数学知识,学习数学的方法才是关键。在班级中,我多次召开数学学法研讨会,让学习成绩优秀的同学介绍经验,开辟黑板报专栏进行学习方法的讨论。

(2)形成良好的非智力因素

非智力因素是学习方法指导得以进行的基础。初一学生好奇心强烈,但学习的持久性不长,如果在教学中具有积极的非智力因素基础,可以使学生学习的积极性长盛不衰。

<1>激发学习动机,即激励学生主体的'内部心理机制,调动其全部心理活动的积极性。比如在学习《概率初步认识》一课中,教学引入时,我根据学生喜欢玩扑克牌的爱好,和他们来讲扑克游戏,引发学生的兴趣,使学生产生强烈的求知欲。有的课教师还可以运用形象生动、贴近学生、幽默风趣的语言来感染学生。

<3>养成良好的数学学习习惯。有的孩子习惯"闷"题目,盲目的以为多做题就是学好数学的方法,这个不良的学习习惯,在平时的教学中老师一定要注意纠正。

(3)指导学生掌握科学的数学学习方法。

①合理渗透。在教学中要挖掘教材内容中的学法因素,把学法指导渗透到教学过程中。例如我在进行《完全平方公式》教学时,很多孩子老是漏掉系数2乘以首尾两项,于是我就给他们编了首顺口溜,"头平方,尾平方,头尾组合2拉走",这样选取生动、有趣的记忆法来指导学生学习,有利于突破知识的难点。

②随机点拨。无论是在授课阶段还是在学生练习阶段,教师要有强烈的学法指导意识,抓住最佳契机,画龙点睛地点拨学习方法。

③及时总结。在传授知识、训练技能时,教师要根据教学实际,及时引导学生把所学的知识加以总结。我在完成一个单元的学习之后都让孩子们养成自己总结的习惯,使单元重点系统化,并找出规律性的东西。

④迁移训练。总结所学内容,进行学法的理性反思,强化并进行迁移运用,在训练中掌握学法。

数学学习能力包括观察力、记忆力、思维力、想象力、注意力以及自学、交往、表达等能力。学习活动过程是一个需要深入探究的过程。在这一过程中,教师要挖掘教材因素,注意疏通信息渠道,善于引导学生积极思维,使学生不断发现问题或提出假设,检验解决问题,从而形成勇于钻研、不断探究的习惯,架设起学生由知识向能力、能力与知识相融合的桥梁。总之,初一是学生知识奠定的根基时期,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,学法与教法结合,课堂与课后结合,教师指导与学生探求结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方。为日后进一步进行数学学习打好良好的基础。

⬣ 数轴七年级数学教案 ⬣

1、做好预习:单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

2、认真听课:听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记记方法,记疑点,记要求,记注意点。

3、认真解题:课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。

4、及时纠错:课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

5、学会总结:冯老师说:数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。

6、学会管理:管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。

老师称,这可是大考复习时最有用的资料,千万不可疏忽。目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的`实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。提高听课质量要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由听会转变为会听。有疑必问是提高学习效率的有效办法学习过程中,遇到疑问,抓紧时间问老师和同学,把没有弄懂,没有学明白的知识,最短的时间内掌握。建立自己的错题本,经常翻阅,提醒自己同样的错误不要犯第二次。从而提高学习效率。

怎样才能打好初一的数学基础

(1)细心地发掘概念和公式

很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了单个字母或数字也是代数式。二是,对概念和公式一味的死记硬背,缺乏与实第2页际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

(2)总结相似的类型题目

这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到任它千变万化,我自岿然不动。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。 总结归纳是将题目越做越少的最好办法。

⬣ 数轴七年级数学教案 ⬣

同学们,

大家好!

刚才三位同学结合自己的体会,分别阐述了树立目标的重要性和自己科学的学习方法,魏老师又给大家上了一节生动的激励课,听完以后我也倍受鼓舞。相信同学们已经产生了强烈的共鸣吧。

心理学家曾做过一个实验——组织三组人分别向着十公里外的三个村子进发。

第一组的人既不知道村庄的名字,又不知道路程有多远,只告诉他们跟着向导走就行了。刚走出两三公里,就开始有人叫苦,走到一半时,有人几乎愤怒了,越往后走,他们的情绪就越低落。

第二组的人知道村庄的名字和路程有多远,但路边没有里程碑,只能凭经验来估计行程的时间和距离。走到一半的时候,大多数人想知道已经走了多远,比较有经验的人说“大概走了一半的路程了。”当走到全程的四分之三时,大家情绪开始低落。当有人说“快到了,快到了!”大家有振作起来,加快了行进的步伐。

第三组的人不仅知道村子的名字、路程,而且公路旁每隔一公里就有一块里程碑。人们边走边看里程碑,每缩短一公里大家便有一小阵的快乐。

心理学家得出这样的结论——当人们行动有了明确的目标,并能把自己的行动不断和目标加以对照,人们行动的动机就会得到维持和加强,就会自觉地克服一切困难,努力达到目标。

相信每一个同学都有自己的人生理想和目标,而实现它就必须从现在的一个个小目标的达成做起,就像通往村庄的一个个里程碑,每实现一个就离你理想又进了一步。

学习也是如此。只有有了一学年的目标,一学期、一个月、一周、一天的目标,学习起来才会有努力的方向,才会全身心地投入其中,才能把学习当作生活的需要,当成一种享受,你才能体会到学习带来的乐趣,才会学有所得,学有所成。你制定的目标越切合实际、越高,你的进步就会越快,最终取得的成就就越大。

当然,树立目标不等于实现目标,这是一个艰苦的过程,需要我们付出努力。我想通过几个往届学生的实例,送给同学们几个关键词。

XX年德州一中唯一被保送北大的张萌同学,初中时毕业于我们班。在她身上有很多优秀的品质,今天就说其中之一——一节数学自习课,老师发两张数学题,一张要求课堂完成,一张是晚上的作业。一般情况下是大多数同学能完成一张的四分之三,她几乎能完成两张。用其他同学的话说“老师,她学习的时候,你就是在她耳边叫她,她都听不见。”同学们说使她有这样高效率学习成果的品质是什么?——专注力。

XX年德州二中考入北大的李婵也是我们班的毕业生。那年高考收到录取通知书之后,一群学生来我家玩,她曾说过:“老师,刚上初中时,我们什么都不懂,后来想起来真是浪费了很多时间,高中后越来越觉得时间不够用,我们可见上厕所都不用走的`,都是一路小跑”而且在整整一个上午热热闹闹的侃大山人群中,她略显格格不入,因为其他人聊得什么星,什么游戏,她一概茫然不知。同学们发现她的可贵品质是什么吗?——惜时,心地纯净。

XX年今年我们班又有一名毕业生魏天予因为物理竞赛被保送了清华大学。7分钟面试征服了评委老师。他被保送后第一时间到学校找我报喜,他说“老师,准备竞赛是一个非常艰苦的过程,我做了得有上万道竞赛题,同时又怕落下其它学科,只能自己加倍地努力,老师我后来数了一下,我曾有87天没有洗过澡,但功夫终于没白费”接着他又跟我说“老师,你一定要告诉你现在和以后的学生,什么减负啊,素质教育啊,不管什么时候,不管怎么提,学习是必需的!”当时他来学校时是刚刚被保送,不用参加两个月以后的高考了,应该很轻松很放肆地痛快玩了吧?可他当时是先到书店买了大学英语教材来的,说“因为竞赛其它学科我还是落下了一些,我得利用这段时间补上,我已经报了新东方,马上要去北京学习了。”同学们,他的这份坚韧、坚持,不懈努力的精神不也值得我们学习吗?

现在正在南京读研的申耀阳,是一个很有个性的女孩儿。当时在我们班上学时还有晚自习,每天晚自习后她回到家第一件事就是扔下书包,打开电视,看她喜欢的电视剧,妈妈在一旁催促“学习去吧,这就快考试了。”“是我考试还是你考试”,小丫头说话一直很冲,妈妈也很无奈。但是,眼睛瞄着挂钟呢,只要到了她给自己规定的时间,不管故事情节有多吸引人,马上果断地回自己的房间开始学习。这种品质叫什么——自制力。

去年通过公务员考试考到国家公安部的姚凯,他有一个特点就是——只要是他做过的题保证不丢分,这种品质叫——认真、严谨。

给大家举这些实例,就是想告诉大家,成功不是无缘无故的,成功也不是遥不可及的,他就在我们身边。在她们身上都有着许多可贵的值得学习的东西。希望他们的成功能带给你一点启发和力量,也许下一个就是你!

最后衷心地祝愿在座的同学们明确目标,坚持不懈,珍惜时间,讲究方法,认真严谨,提高效率。20xx年的中考相信你们会为三中书写新的辉煌,你们将成为三中的骄傲!

⬣ 数轴七年级数学教案 ⬣

教学内容:

教科书第25页的例1和第25、26页的乘法交换律,完成“做一做”中的题目和练习五的第1——5题。

教学目的:

使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

教学重点难点:

乘法的意义和乘法交换律

授课类型:

新授课练习课

教学方法:

讨论法、讲授法

授课时间:

一课时

教具准备:

多媒体

教学过程:

一、复习

教师出示复习题。

1、同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?

2、同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?

3、小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

上面这些题哪些可以用乘法计算?为什么?

二、新课

1、教学例1出示例1的插图,再提问:要求盘里一共有多少个鸡蛋可以怎样求?还可以怎样求?

用加法计算:5+5+5+5+5+5=30(个)

用乘法计算:5×6=30(个)

解答这道题用乘法计算简便还是用加法计算简便?

求几个相同加数的和的简便运算,叫做乘法。

在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

注意:一个数和1相乘,仍得原数。例如:1×3=33×1=31×1=1

一个数和0相乘,仍得0。例如:0×3=03×0=00×0=0

2、教学乘法交换律。

让学生再看例1的插图,然后教师提问:要求一共有多少个鸡蛋,同乘法计算还可以这样列式?学生回答后,教师板书:6×5=30(个)

比较一下这两个乘法算式,有哪些相同?有哪些不同?

学生发言后,教师边说边板书:两个数相乘,交换因数的`位置,它们的积不变,这叫做乘法的交换律。

用字母表示:a×b=b×a

三、巩固练习:

1、做第26页“做一做”的题目。先让学生独立做,然后再集体核对。

2、做练习五的第3、4题。学生独立做完后,再集体核对。

四、作业:练习五的第1、2、5题。

小结:今天我们学了什么?什么叫乘法的交换律?

附板书:乘法的意义和乘法交换律

用加法计算:5+5+5+5+5+5=30(个)

用乘法计算:5×6=30(个)

求几个相同加数的和的简便运算,叫做乘法。

在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

注意:一个数和1相乘,仍得原数。例如:1×3=33×1=31×1=1

一个数和0相乘,仍得0。例如:0×3=03×0=00×0=0

两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

用字母表示:a×b=b×a

⬣ 数轴七年级数学教案 ⬣

一、教学目标

1.使学生学会口算两位数乘一位数、整十数乘一位数的方法。

2.通过观察、交流等活动培养学生的观察能力、口头表达能力和演绎推理能力。

3.联系生活,培养学生用所学知识解决实际问题的能力和良好的数感。

二、教学重点

整十数乘一位数的口算方法。

三、教学难点

发现口算乘法的规律。

四、教学具准备

课件、口算题卡。

五、教学过程

(一)复习旧知

1.口算下面各题(出示口算题卡):

30×450×5300×7200×860×4

32×325×242×223×311×8

2.指名让学生说说30×4、200×8、42×2的口算方法。

(二)学习新知

1.探究两位数乘一位数的`口算方法。

(1)出示例题,要求学生认真看图。

(2)观察主题图,你能发现哪些数学信息?能提出什么数学问题?

生:我发现每筐装15盒草莓,买了3筐,一共有多少盒?

(3)怎样列式?15×3

(4)说说你是怎样算的?

预设1:

10×3=30

5×3=15

30+15=45

预设2:

小结:两位数乘一位数时,先用两位数中十位上的数字与一位数相乘,再用两位数中个位上的数字与一位数相乘,最后再将两个积相加。

2.探索整十数乘一位数口算方法

(1)分组进行讨论150×3的结果是多少,你是怎样想的?

(2)小组交流,汇报各种想法:

150×3=100×3=300

50×3=150

300+150=450

(对于学生的方法,尽可能板书在黑板上,方便全体同学了解不同方法的口算过程。)

(3)学生独立完成P41/做一做,然后在组内说说你是怎样想的?

115=144=156=234=

1105=1404=1506=2304=

(4)观察:上述算式中,一个因数末尾0的个数与积末尾0的个数有什么关系?

师生共同归纳小结:整十数乘一位数时,先把因数中0前面的数字与一位数相乘,然后在乘积的末尾添上1个0。

(三)巩固练习

1.比一比,看谁算得快。

(四)课后小结:这节课你有什么收获?还有什么问题吗?

⬣ 数轴七年级数学教案 ⬣

本单元教学分数乘法,是在理解了分数的意义,掌握了分数加、减法计算的基础上编排的。能进一步理解分数的意义,为教学分数除法打下基础。教学内容以计算为主,包括分数与整数相乘、分数与分数相乘。教学要求是理解算理、掌握算法,能应用于分数连乘计算和解决实际问题中去;在探索算法、总结法则的过程中发展数学思考的能力。下表是全单元教学内容的编排。

分数与整数相乘

用乘法求几个相同分数的和(例1)

用乘法求整数的几分之几是多少(例2)

求一个数的几分之几是多少的实际问题(例3) 练习八

分数乘分数

分数乘分数(例4、例5)

分数连乘(例6) 练习九

倒数

倒数的意义,求倒数的方法(例7) 练习十

整理与练习

教材在编排上有以下特点。

第一,以计算法则的教学为编排主线,把运算的意义、方法以及实际应用的教学有机结合在一起,优化了全单元的内容结构。

乘法运算的范围从整、小数扩大到分数,其意义、算法以及实际应用都有较大的发展。因此,分数乘法的意义、计算法则、解决实际问题是本单元的三个重要内容。教材以计算为主线,在研究算法的过程中体会运算意义,通过运算概念的完善、发展,进一步理解算法;在解决实际问题的背景中教学计算知识,应用学到的算法解决实际问题。意义、法则、应用三方面的有机结合,优化了知识结构,能充分发挥教学的功能和价值。如,例1从做绸花要用多少米绸带的实际问题引出分数乘整数的计算问题,把原来的乘法概念扩展到分数范围,激活已有的知识经验;应用同分母分数加法的知识,体会并得出分数乘整数的计算方法,既解决了做绸花的实际问题,又解决了新的计算课题。又如,例2为解决做绸花的实际问题列算式101/2和102/5,联系现实的数量关系体会这些算式的具体含义,得出求一个数的几分之几是多少,可以用乘法计算的结论,发展了乘法的意义。在计算两个乘法算式时,巩固了分数与整数相乘的算法。

第二,知识发展线索清晰,前后联系紧密,各道例题的教学任务明确。下图是本单元教材里的计算知识结构图。

先教学整数乘分数,后教学分数乘分数,符合简单到复杂的编排原则。而且,整数乘分数还能与整数乘法建立联系,应用整数乘法知识,为分数乘法的教学开好头。

整数乘分数先是求几个相同分数的和,再是求整数的几分之几是多少。前者在运算意义上与整数乘法一致,算法是例1的重点。正由于运算意义和整数乘法一致,可以把整数乘分数转化成同分母分数相同,体会并得出整数乘分数的计算法则。后者在运算意义上有很大的扩展,乘法不仅能求几个相同加数连加的和,还能求一个数的几分之几是多少,这是例2的教学重点。而例2的算法,在前面已经解决了。

分数乘分数先教学基础知识,再培养计算技能。例4和例5要把求一个数的几分之几是多少的认识迁移到分数乘分数,深入理解分数乘法的意义,还要解决分数乘分数的算法,并形成统摄分数乘整数、分数乘分数的计算法则。所以,这两道例题着重教学基础知识。例6教学分数连乘,巩固计算法则的同时,培养分子、分母交叉约分的技能。

第三,编排倒数知识,为分数除法作准备。

分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

一、 例1着重教学分数与整数相乘的算法。

首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,充分利用已有的知识、经验,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘法算式;营造探索的氛围,放手让学生创新分数乘整数的方法。

例1的第(1)个问题求3个相同分数的和。在代表1米绸带的线条图上,已经表示出做1朵绸花用的绸带3/10米,要求学生继续涂色表示做3朵绸花所用的米数。通过涂色,体会实际问题里的数学问题是求3个3/10是多少,看到做3朵绸花用的绸带是9/10米,激活已有的乘法概念以及同分母分数加法的知识。于是,一些学生会列加法算式3/10+3/10+3/10,另一部分学生会列乘法算式33/10或3/103。比较加法算式和乘法算式,实现原有运算概念的迁移:求几个相同分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式33/10和3/103都可以。让学生研究分数乘整数的算法,把分子相加、分母不变加工成分子与整数相乘,分母不变,获得新的计算方法。尤其是在方框里填数: 3/10+3/10+3/10=□+□+□/10=□□/10,经历分子相加转化成分子与整数相乘的过程,建构了新的计算方法。

例1的第(2)个问题求做5朵同样的绸花一共用绸带的米数,不再从分数加法过渡到分数乘法,直接写出乘法算式,并用分数乘整数的方法计算。把例1的学习成果作为例2的教学资源,进一步体验应用分数乘整数解决相同分数连加的问题比较简便,巩固运算的意义和方法。这道例题还指导了分数乘法中的约分,兔子卡通先把分子与整数相乘,再把积约分化简。大象卡通先约分,再相乘。前一种方法学生比较熟悉,在计算分数加、减法时,经常先按法则计算,再化简结果。后一种方法由于先约分,算得的积是最简分数,而且相乘也更简单。要指导学生理解并喜欢大象卡通那样的算法,对下面继续教学分数乘分数有好处。

二、 例2着重教学用乘法求一个数的几分之几是多少。

10朵绸花的1/2是几朵?10朵绸花的2/5是几朵?这些问题学生在三年级(下册)认识分数里曾经解答过。那时的解答是通过102、1052这些整数乘除运算进行的。例2再次教学这些实际问题,要应用分数乘法的知识解答,概括出求一个数的几分之几是多少,用乘法计算这个结论,并用于解决其他求一个数的几分之几是多少的问题中去。

在例2之前,乘法只用于求相同加数的和。教学例2之后,乘法还可以求一个数的几分之几。这是乘法概念的扩展。为了帮助学生理解乘法的新含义,例2在编写时注意了以下三点:

首先是加强分数的意义。用10朵花平均分成2份,其中1份是红花的图画,对10朵的1/2作出具体而形象的解释。一方面让学生在体验10朵的1/2的意义时,想到102=5这种算法。另一方面又利用十分熟悉的102促进对10的1/2的理解。教学10朵的2/5,让学生在图画里圈出绿花,经历把10朵花平均分成5份,其中2份是绿花的操作过程,以及1052的计算过程,体会10的2/5的含义。

然后是讲述新知识。教材说:求10朵的1/2是多少,可以用乘法计算。并写出算式101/2。还说求10朵的2/5是多少,可以用102/5。在分数意义的平台上,指出分数乘法的实际应用。利用101/2和102/5这两个实例,概括出求一个数的几分之几是多少,用乘法计算。这个结论发展了原来的乘法概念,使乘法有了新的应用领域。

沟通新旧算法的联系,更好地理解分数乘法。如果比较算式101/2和102,能够发现它们都是求10的1/2是多少,都是把10平均分成2份。虽然运算不同,意义却是相通的。同样,算式102/5和1052都是把10平均分成5份,求其中的2份,都是求10的2/5是多少。例题在教学分数乘法的初始阶段,安排这些可对比的内容,让学生反复体验分数乘法。

练一练加强概念。第1题先涂色表示12个圆的1/3、20个方格的4/5,感受一个数的几分之几的意义。再列式121/3、204/5计算,进行较抽象的思考并用数学方法解决求一个数的几分之几的问题。两者结合,加强了分数乘法的概念。第2题用求一个数的几分之几描述图示的数量关系,在现实问题数学问题数学方法的`过程中,进一步体验求一个数的几分之几是多少,用乘法计算。

例2列出的算式都是分数乘整数,它们的计算方法已在例1里教学。所以101/2、102/5都可以让学生计算,要提醒他们先约分,再相乘,尽量使计算过程简便些。

三、 例3用分数乘法解决实际问题。

例2以及练习八第6~11题都是求一个数的几分之几是多少的实际问题。编排例3继续教学解决实际问题,是因为比一个数多(或少)几分之几是较难理解的数量关系,而这些关系又普遍存在于实际问题中。无论从知识的教学还是从知识的应用考虑,都需要单独编排例题。

解答例3的关键是理解红花比黄花多1/10、绿花比黄花少2/5的含义。从本质上讲,它们仍然是一个数的几分之几,但是比较难懂。教材用条形图呈现三种花的朵数关系,表示黄花朵数的直条刚好是10格,表示红花的直条比黄花多1格,形象地表达了红花比黄花多1/10。例题还通过红花比黄花多的是多少朵的1/10这个问题,引导学生仔细研究图意,正确理解红花比黄花多的朵数相当于黄花的1/10。从而明白,求红花比黄花多多少朵,就是求黄花的1/10是多少朵,即50朵的1/10是多少。

比一个数少几分之几是比一个数多几分之几的变式,安排在试一试里教学。在例3的条形图上,如果把表示黄花的直条平均分成5份(每2格看成1份),绿花比黄花少这样的2份。所以,绿花比黄花少2/5的含义是: 绿花比黄花少的朵数相当于黄花的2/5。教材要求学生仿照红花比黄花多1/10那样,在条形图的直观支持下,分析并理解数量关系。通过独立解决变式的问题,实现比一个数多几分之几向比一个数少几分之几的认知迁移。

第44页第14题分析比一个数多(少)几分之几的意义是概念专项练习。在说分数的意义时,要先指出把什么看作单位1,平均分成多少份,然后指出什么是这样的几份。如皮球的个数比足球多2/5,应该把足球个数看作单位1的量,把它平均分成5份,皮球比足球多的个数相当于这样的2份。这题要把数量关系式补充完整,数量关系式可以视为一种数学模型。从解题角度上看数量关系式,它有助于列出算式或列出方程;从思维角度上看数量关系式,把文字叙述的数量关系改写成关系式,压缩了思维过程,精简了数学语言,表达了思考结果;从教学角度上看数量关系式,它能进一步加深理解概念,及时暴露认识的偏差。如果对比一个数多(少)几分之几的理解不正确,一定会在写出的数量关系式上有所表现。仍以皮球的个数比足球多2/5为例,如果在等号右边填出皮球的个数,就是概念错误造成的。解答第15~17题,都要以正确的数量关系为前提,教材编排第14题的意图是十分清楚的。

四、 例4、例5构建分数乘法的计算法则。

分数乘分数的计算方法并不复杂,记住和应用算法也不难。但是,理解为什么可以这样计算却很不容易,是再次应用分数概念开展演绎推理的过程。教材编排两道例题教学分数乘分数,充分发挥数、形结合的作用,让学生体会分子相乘、分母相乘是合理的。

构建分数乘法的计算法则,要把分数乘整数的算法纳入分数乘分数的算法之中,使前者成为一般算法里的特殊情况。教材在两道例题后的试一试里完成这个内容的教学。

例4是首次感知分数乘分数的意义和算法。先在长方形里涂色表示它的1/2,再画斜线表示1/2的几分之几,让学生在图上体会数量关系和运算的含义,看出结果。教材依次安排了三项学习活动:第一项活动是分别说出两个长方形中画斜线部分各占1/2的几分之几,引出新的数学问题: 1/2的1/4、1/2的3/4。得出这两个数学问题要仔细观察每个图里把1/2平均分成几份,斜线画了其中的几份,就能知道左图中画斜线的部分占1/2的1/4,右图中画斜线的部分占1/2的3/4。第二项活动要列出1/2的1/4、1/2的3/4的算式。应用初步形成的分数乘法概念,从求一个数的几分之几用乘法计算推理得出1/2的1/4可以用1/21/4计算,1/2的3/4可以用1/23/4计算。在写两道算式时,体会一个数不仅是整数,也能是分数,进一步完善了分数乘法的概念。第三项活动从图中看出两道算式的积。因为1/2的1/4是长方形纸的1/8,1/2的3/4是长方形纸的3/8,所以1/21/4=1/8、1/23/4=3/8。在看图与写出积的过程中,初步感知分子相乘的得数是积的分子,分母相乘的得数是积的分母。

例5继续体会分数乘分数的算法。已给出了两道算式2/31/5和2/34/5,还在两个长方形里涂色表示了2/3。第一项学习活动是画图计算给出的两道算式。在画图前要先想算式的意义,才会正确画图和看到算式的积。如2/31/5是求2/3的1/5是多少,要把表示2/3的那个部分平均分成5份,用斜线画出其中的1份。斜线部分占长方形的2/15,2/15就是2/31/5的积。又如2/34/5是求2/3的4/5是多少,要把表示2/3的那块涂色部分平均分成5份,用斜线画出其中的4份,由此得到2/34/5的积是8/15。第二项活动在乘法算式的右边写出积,让学生在写2/15和8/15的时候,感受积的分子2和8是两个乘数的分子的乘积,积的分母15是两个乘数的分母的乘积。

两道例题的教学线索不同,认知程度也不同。例4经历看图写式得积的过程,感受分子相乘、分母相乘的可能性。例5通过看式画图得积体验分子相乘、分母相乘的合理性。两道例题都让学生感受分数乘分数的算法,逐渐形成计算法则。

第55页应用整数都能写成分母是1的分数这个知识,把2/113和45/6都改写成分数乘分数的形式,使分子相乘的积作分子,分母相乘的积作分母也适用于分数乘整数的计算,成为分数乘法的计算法则。

五、 例6教学分数连乘的算法和技巧。

例6用线段图表示数量关系,整理解题思路。先画一条线段表示一班做的绸花朵数,由于二班做的朵数是一班的8/9,所以把表示一班朵数的线段平均分成9份,便于画出表示二班朵数的线段。教材要求学生画表示三班做花的朵数,画的时候要分析3/4的意思,理解这里是把二班做的朵数看作单位1。通过画图就能很快知道应先算二班做的朵数。

例题先分步列式解答,再列综合式解答。教学要以综合算式为主,因为在综合算式里要讲分数连乘的算法。关于分数连乘计算有两点内容:一是各个乘数的分子连乘的得数是积的分子,各个乘数的分母连乘的得数是积的分母。二是要尽量先约分,再相乘。就是说,要把分子、分母之间能够进行的约分都完成以后,相乘就简单了。两点内容学生都能接受,先充分地约分可能会不大适应。教学不必在为什么这样约分上纠缠,学生有计算结果应是最简分数的认识,能够理解计算过程中要尽可能地约分。教学要清楚地展示约分活动,如整数135和分母9之间的约分,分子8和分母4的约分。在练一练里还要指导不相邻的分子与分母的约分,如22/275/119/10中的分母27和分子9的约分,帮助学生逐渐掌握约分的技巧。

六、 例7教学倒数的知识。

倒数的知识主要是两点: 一点是倒数的概念,另一点是求倒数的方法。前一点是基础知识,后一点是计算分数除法所需要的基本技能。建立倒数概念之后,求一个数的倒数就容易了。因此,例7十分重视概念的形成以及对概念的准确把握。

教学从寻找乘积是1的分数开始。在8个分数中能找到3对乘积是1的分数,这项貌似游戏的活动凸显了倒数是乘积为1的两个数之间的关系,这也是教学倒数概念必须掌握的内涵。教材里三个卡通的交流,说的都是两个分数相乘的积是1,突出了倒数概念的一个内涵。下面的文字叙述强调两个数互为倒数,还以3/8和8/3为例,帮助学生体会互为倒数的意思指甲是乙的倒数,乙也是甲的倒数,这是倒数概念的又一个内涵。

求已知数的倒数分三个层次教学: 先求3/5、2/5等分数的倒数,然后求5、1等整数的倒数,最后是0没有倒数。观察互为倒数的两个分数,发现它们的分子、分母刚好互换位置,一方面进一步体会了互为倒数的两个数的乘积是1,另一方面找到了写出一个数的倒数的方法。写整数的倒数,从概念出发,寻找与整数相乘等于1的那个分数,体会如果把整数看作分母是1的分数,那么它的倒数也是调换分子、分母位置得到的那个数。教材要求学生理解0没有倒数,并作出相应的解释。这是因为0和任何数相乘都得0,不存在与0相乘能得到1的数。

第51页第4题里有四组数。第(1)组数都是真分数,它们的倒数都是假分数。第(2)组数都是大于1的假分数,它们的倒数都是真分数。第(3)组数的分子都是1,它们的倒数都是整数。第(4)组数都是整数,它们的倒数都是几分之一的数。让学生发现这些规律,是为了巩固倒数概念,熟练掌握求倒数的方法。

⬣ 数轴七年级数学教案 ⬣

一、教学目标

(一)知识与技能

通过在具体情境中探究,进一步理解乘法的意义,学会用加、减、乘法运算解决实际问题。

(二)过程与方法

让学生经历多角度观察的过程,理解解决问题的多种策略,培养学生思维的灵活性。

(三)情感态度和价值观

培养学生初步的应用意识和解决生活问题的能力,积累解决此类问题的经验,体验学习数学的乐趣。

二、目标分析

学生在掌握乘法的意义和乘法口诀的基础上,灵活运用加、减、乘法运算解决实际问题,

体验解决问题的一般过程,同时鼓励学生从自己理解的角度出发,分析问题、解决问题,从而培养学生思维的灵活性。

三、教学重难点

教学重点:经历用加、减、乘法运算解决稍复杂的实际问题的过程,掌握解决问题的一般方法。

教学难点:理解多样化的解决问题的策略,培养思维的灵活性。

四、教具准备

课件

五、教学过程

(一)复习导入,揭示课题

1.图文并茂,复习旧知

(1)看图列式计算:(课件演示)

①一支钢笔9元

②一共有多少朵花?

(2)汇报交流:

①95=45(元)

②631=17(朵))、62+5=17(朵)或35+2=17(朵)

2.以旧引新,揭示课题

这节课我们就一起学习运用加、减、乘法运算解决生活中的实际问题。

【设计意图】复习环节设计了两道题,第1题复习求总价的实际问题,让学生回顾用乘法解决生活实际问题;第2题的设计稍微灵活一些,可以引导学生从横行和竖列两个不同的角度观察,从而发现不同的解决方法,培养思维灵活性的同时,为新课学习奠定基础。

(二)合作探究,解决问题

1.小组合作,构建方法

(1)理解题意,收集信息。

①学生读题:(课件呈现例5题目)

二(1)班准备租车参观科技馆。有2名教师和30名学生,租下面的客车,坐得下吗?

②小组交流:从题中获得了哪些信息?(教师和学生共有32人要乘车)

(2)明确问题,分析过程。

①理解坐得下吗的'含义。

引导学生明确:有32人要乘车,一共需要多少个座位呢?(32个座位)如果车子的座位比32个少就怎样?(坐不下)什么情况下就坐得下呢?

②说说解决过程。

学生交流:先求车子的座位数,再比较看看能不能坐得下。

(3)看懂图意,尝试解决

①不同角度观察座位示意图:可以引导学生从横、竖两个角度说一说;还可以从其他不同角度思考,只要合理都给予肯定。

②学生根据不同观察,尝试列式解决。

③汇报交流:学生说说自己的想法和算式。

预设:

解法一:74=28(个) 解法二: 84=32(个) 解法三:58=40(个)

28+5=33(个) 32+1=33(个) 407=33(个)

④比较作答:根据计算结果比较回答能不能坐得下。

(二)反思过程,小结方法

学生说说像这样解决实际问题的过程,应注意什么?

【设计意图】本环节的教学旨在引导学生读懂题意、看懂图意的基础上,从不同的角度寻求不同的解决策略。充分发挥学生的主体性,培养他们理解问题、分析问题与解决问题的能力,同时培养他们思维的灵活性。

(三)多种形式,综合应用

1.基础练习

(1)完成教材第84页做一做。

学生独立解决,然后说说自己的想法。即怎样求鸡蛋的个数,重点引导学生交流从不同角度思考解决问题的方法。

(2)小英准备了25元,想买6本日记本和1个铅笔盒,如图:

她准备的钱够吗?

2.提升训练

(1)找规律,填一填。

1+2+3=23

1+2+3+4+5=35

1+2+3+4+5+6+7=( )( )

(2)根据上面的规律算一算,我们一共学习了多少句乘法口诀呢?

【设计意图】练习设计的目的之一是巩固新知,因此,在基础练习中提供给学生充分的解决问题的空间,进一步发散学生的思维。在提升训练中,设计找规律的问题,旨在培养学生发现规律的能力,同时系统回顾乘法口诀,一举两得。

四、全课总结,畅谈收获

谈谈这节课学了哪些知识?

⬣ 数轴七年级数学教案 ⬣

一、教学目标

【知识与技能】

了解数轴的概念,能用数轴上的点准确地表示有理数。

【过程与方法】

通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

【情感、态度与价值观】

在数与形结合的过程中,体会数学学习的乐趣。

二、教学重难点

【教学重点】

数轴的三要素,用数轴上的点表示有理数。

【教学难点】

数形结合的思想方法。

三、教学过程

(一)引入新课

提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

(二)探索新知

学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的`相对位置呢?

学生活动:画图表示后提问。

提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

提问3:你是如何理解数轴三要素的?

师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

(三)课堂练习

写出数轴上点A,B,C,D,E表示的数。

(四)小结作业

提问:今天有什么收获?

引导学生回顾:数轴的三要素,用数轴表示数。

课后作业:

课后练习题第二题;思考:到原点距离相等的两个点有什么特点?

⬣ 数轴七年级数学教案 ⬣

学习目标:

1.知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示;

2.了解数形结合的数学思想。

3.进一步理解有理数与数轴上的点的对应关系;巩固在数轴上由数找点、由点读数的方法;

4.会借用数轴直观的进行有理数的大小比较,体会数形结合的数学思想。

重点:

是掌握数轴的概念和画法,明确其三要素缺一不可;利用数轴比较有理数的大小,并归纳出一般规律。

难点:

数轴上的点与有理数的对应关系的理解是难点。教学中要求学生多动手,增强对形的感性认识,培养动手、动脑和实际操作能力。

教学过程:

一、自主学习

(一)、自学课文

(二)、导学练习

1.有理数包括哪些数?0是正数还是负数?

2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?

3.思考:

①零上25℃用正数_____表示。0℃用数____表示;零下10℃用负数_____表示。

②什么叫数轴?数轴要具备哪三个要素?

③原点表示什么数?原点右方表示什么数?原点左方表示什么数?

④表示+2的点在什么位置?表示-3的点在什么位置?

⑤原点向右0.5个单位长度的A点表示什么数?原点向左1 个单位长度的B点表示什么数

4.数轴的画法,有哪几个步骤?

5. 我们还可以更简便的得出数轴的定义:规定了 、 和 的直线叫做数轴。 、 和 是数轴的'三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。直线也不一定是水平的。

6.温度计里的大小:观察温度计的刻度,发现上边的温度总比下边的高。类似地,在数轴上表示的两个数, 的数总比 的数大。

进一步观察数轴,发现所有的负数都在0的 ,所有的正数都在0的 ,这说明什么?

正数都 0;负数都 0;正数 一切负数。

(三)自学疑难摘要:

组长检查等级:

二 、合作探究

1.判断下图中所画的数轴是否正确?如不正确,指出错在哪里?

2.把下面各小题的数分别表示在三条数轴上:

(1)2,-1,0, ,+3.5

(2)-5,0,+5,15,20;

(3)-1500,-500,0,500,1000。

想想看,第(3)小题数据比较大,那怎样表示呢?

3.把下列各组数用号连接起来.

(1) 10, 2,

(2) 100,0,0.01;

(3) ,4.75,3.75。

三、展示提升

1、每个同学自主完成二中的练习后先在小组内交流讨论。

2、每个组根据分配的任务把自己组的结论板书到黑板上准备展示。

3、每个组在展示的过程中其他组的同学认真听作好补充和提问。

四、反馈与检测

1.判断下图中所画的数轴是否正确?

2.下面数轴上的点A、B、C、D、E分别表示什么数?

3.将-3、1.5、 、-6、2.25、 、-5、1各数用数轴上的点表示出来。

4.画一条数轴,并在上面标出下列的点。

100 200 300

⬣ 数轴七年级数学教案 ⬣

教学目标:

1、知识与技能:

(1)借助数轴理解相反数的概念,会求一个数的相反数。

(2)培养学生观察、猜想、验证等能力,初步形成数形结合的思想。

2、过程与方法:

在教师的指导下,让学生通过观察、比较,归纳出相反数的概念和性质。

重点、难点

1、重点:理解相反数的意义,会求一个数的相反数。

2、难点:对相反数意义的理解。

教学过程:

一、创设情景,导入新课

请两位同学背靠背,一个向左走5步,另一个向右走5步,如果向右走为正,向左、向右分别记作什么?(生答:+5、-5),+5与-5这样成对出现的数就是为们今天要学习的相反数。

二、合作交流,解读探究

1、(出示小黑板)

教师提出问题:上图中数轴上的点B和点D表示的数各是什么?有什么关系?

学生活动:分小组讨论,与同伴交流。

教师活动:请几位同学说出他们讨论的结果,指出点B表示+2.6,点D表示-2.6,它们只有符号不同,到原点的距离都是2.6。

2、(板书):如果两个数只有符号不同,那么我们将其中一个数叫做另一个数的`相反数,也称这两个数互为相反数。

0的相反数是0。

3、学生活动:

在数轴上,表示互为相反数的两个点有什么关系?

学生代表回答后,小结:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。

4、练习填空:

3的相反数是;-6的相反数是;-(-3)=;-(-0.8)=;

学生活动:在练习本上解答,并与同伴交流,师生共同订正。

归纳:化简多重符号时,一个正数前不管有多少个“+”号,都可全部省去不写;一个数前有偶数个“-”号,也可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号。

三、应用迁移,巩固提高

1、课本P10第1题。

2、填空:

(1)xx的相反数是;

(2)xx的相反数是;

(3)xx的相反数是2/3。

3、如果一个数的相反数是它本身,则这个数是。

4、若α、β互为相反数,则α+β= 。

5、-(-4)是的相反数,-(-2)的相反数是。

6、化简下列各数的符号

-(-9)=; +(-3.5)= ;

-=;-{-[+(-7)]}= 。

7、若-x=10,则x的相反数在原点的侧。

8、若x的相反数是-3,则;若x的相反数是-5.7,则。

四、总结反思

本节课学习了相反数的意义,并认识了相反数在数轴上的特征,数a的相反数是-a,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。

五、课后作业

课本P13习题1.2A组第3、4题。

⬣ 数轴七年级数学教案 ⬣

教学目标

1.了解数轴的概念和数轴的画法,掌握数轴的三要素;

2.会用数轴上的点表示有理数,会利用数轴比较有理数的大小;

3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

教学建议

一、重点、难点分析

本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础

二、知识结构

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的.重要思想方法,本课知识要点如下表:

定义

三要素

应用

数形结合

规定了原点、正方向、单位长度的直线叫数轴

原 点

正方向

单位长度

帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数

比较有理数大小,数轴上右边的数总比左边的数要大

在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

⬣ 数轴七年级数学教案 ⬣

一、课题

2.1数怎么不够用了(2)

二、教学目标

1.使学生理解有理数的意义,并能将给出的有理数进行分类;

2.培养学生树立分类讨论的思想。

三、教学重点和难点

重点

难点

有理数包括哪些数.

有理数的分类及其分类的标准.

四、教学手段

现代课堂教学手段

五、教学方法

启发式教学

六、教学过程

(一)、从学生原有的认知结构提出问题

1.什么是正、负数?

2.如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明.

3.任何一个正数都比0大吗?任何一个负数都比0小吗?

4.什么是整数?什么是分数?

根据学生的回答引出新课.

(二)、讲授新课

1.给出新的整数、分数概念

引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数,即

2.给出有理数概念

整数和分数统称为有理数,即

有理数是英语“Rational number”的译名,更确切的译名应译作“比

3.有理数的分类

为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?

待学生思考后,请学生回答、评议、补充.

教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,即

并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.

(三)、运用举例 变式练习

例1

将下列数按上述两种标准分类:

例2

下列各数是正数还是负数,是整数还是分数:

课堂练习

25、-100按两种标准分类.

2、下列各数是正数还是负数,是整数还是分数?

(四)、小结

教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?

七、练习设计

1.把下列各数填在相应的括号里(将各数用逗号分开):

正整数集合:{ …};

负整数集合:{ …};

正分数集合:{ …};

负分数集合:{ …}.

2.填空题:

的.数是______,在分数集合里的数是______;

(2)整数和分数合起来叫做______,正分数和负分数合起来叫做______.

3.选择题

(1)-100不是

A.有理数 B.自然数 C.整数 D.负有理数

(2)在以下说法中,正确的是[ ]

A.非负有理数就是正有理数

B.零表示没有,不是有理数

C.正整数和负整数统称为整数

D.整数和分数统称为有理数

八、板书设计

数怎么不够用了(2)

(一)知识回顾 (三)例题解析 (五)课堂小结

(二)观察发现 例1、例2

(四)课堂练习 练习设计

九、教学后记

在传授知识的同时,一定要重视数学基本思想方法的教学.关于这一点,布鲁纳有过精彩的论述.他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力.不但使数学学习变得容易,而且会使得别的学科容易学习.显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和发展数学能力.

为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内容形式地传授.本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点:

1.分类的标准不同,分类的结果也不相同;

2.分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属于不同的两类.

⬣ 数轴七年级数学教案 ⬣

教学目标

1. 能结合实例,了解一元一次不等式组的相关概念。

2. 让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。

3. 提高分析问题的能力,增强数学应用意识,体会数学应用价值。

教学重、难点

1..不等式组的解集的概念。

2.根据实际问题列不等式组。

教学方法

探索方法,合作交流。

教学过程

一、 引入课题:

1. 估计自己的.体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。

2. 由许多问题受到多种条件的限制引入本章。

二、 探索新知:

自主探索、解决第2页“动脑筋”中的问题,完成书中填空。

分别解出两个不等式。

把两个不等式解集在同一数轴上表示出来。

找出本题的答案。

三、 抽象:

教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)

⬣ 数轴七年级数学教案 ⬣

教学目标:

1、能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。

2、在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。

3、了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。

教学重点:

同底数幂乘法的运算性质,并能解决一些实际问题。

教学过程:

一、复习回顾

活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:

二、情境引入

活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。

三、讲授新课

1.利用乘方的意义,提问学生,引出法则:计算103×102.

解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10(乘法的结合律)=105.

2、引导学生建立幂的运算法则:

将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有即am·an=am+n.

3、引导学生剖析法则

(1)等号左边是什么运算?

(2)等号两边的底数有什么关系?

(3)等号两边的指数有什么关系?

(4)公式中的底数a可以表示什么

(5)当三个以上同底数幂相乘时,上述法则是否成立?

要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

四、应用提高

活动内容:

1、完成课本“想一想”:a?a?a等于什么?

2、通过一组判断,区分“同底数幂的.乘法”与“合并同类项”的不同之处。

3、独立处理例2,从实际情境中学会处理问题的方法。

4、处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp

五、拓展延伸

活动内容:

计算:

(1)—a2·a6

(2)(—x)·(—x)3

(3)ym·ym+1

(4)?7?8?73

(5)?6?63

(6)?5?53?5?。

(7)?a?b?a?b?75422

(8)?b?a?a?b?

(9)x5·x6·x3

(10)—b3·b3

(11)—a·(—a)3

(12)(—a)2·(—a)3·(—a)

六、课堂小结

活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。

七、布置作业

1、请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。

2、完成课本习题1.4中所有习题。

⬣ 数轴七年级数学教案 ⬣

【教学目标】

引导学生通过常规分析,得出解题思路,经历提出问题,自探问题,应用知识的过程,自主总结出解题办法;

【教学难点】

找出题目中的可有可无的已知条件,说一说为什么可以这样认为

【教学过程】

问:以前学过的有关路程,时间,和速度之间的关系是怎么样的?你能写出它们之间的关系吗?

出示例题:甲、乙两地公路全长352千米。汽车原来从甲地到乙地要11小时,建成高速公路后,汽车每小时速度是原来的'2.5倍。现在汽车从甲地到乙地需要多少小时?

分析:要求现在汽车从甲地到乙地需要多少小时,那么先要求出汽车现在的速度,而汽车现在的速度是原来的2.5倍,那么还得先求出汽车原来的速度。根据`甲乙两地公路全长352千米。汽车原来从甲地到乙要11小时,可以求出汽车原来的速度。

学生写出解答过程:汽车原来的速度:352÷1=32(千米); 汽车现在的速度:32×2.5=80(千米)

现在的时间:352÷80=4.4(小时)

问:用比例的思路该怎么样理解这道题目呢?

分析:甲、乙两地的公路长度一定,汽车的速度和所需的时间成反比例。因为现在的速度是原来的2.5倍,所以原来的时间是现在的

2.5倍。即:11÷2.5=4.4(小时)。

这样解答使得`甲乙两地公路全长352千米成了多余条件,但是又不影响解答问题。

【我们来探索】

一批零件有240个,王师傅单独做需要6小时,李师傅的工作效率是王师傅的1.5倍,那么如果让李师傅单独做这批零件,需要几小时?

【总结】

在解答应用题时要善于应用不同的思路和技巧,巧解问题

【作业】

丁阿姨打一份稿件需4小时,王阿姨的速度是丁阿姨的,那么如果由王阿姨打这份稿件,需要几小时?

丁阿姨打一份稿件需要4小时,王阿姨的速度与丁阿姨的速度比是4:5,那么如果由王阿姨打这份稿件,需要几小时?

⬣ 数轴七年级数学教案 ⬣

一、知识与技能

(1)正确理解乘方、幂、指数、底数等概念。

(2)会进行有理数乘方的运算。

二、过程与方法

通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想。

三、情感态度与价值观

培养探索精神,体验小组交流、合作学习的重要性。

教学重、难点与关键

1.重点:正确理解乘方的意义,掌握乘方运算法则。

2.难点:正确理解乘方、底数、指数的概念,并合理运算。

3.关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义。

四、课堂引入

1.几个不等于零的有理数相乘,积的符号是怎样确定的?

几个不等于零的有理数相乘,积的符号由负因数的'个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。

2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?

五、新授

边长为a的正方形的面积是aa,棱长为a的正方体的体积是aaa

aa简记作a2,读作a的平方(或二次方)。

aaa简记作a3,读作a的立方(或三次方)。

一般地,几个相同的因数a相乘,记作an.即aaa. 这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

⬣ 数轴七年级数学教案 ⬣

一、教学目标

1、认知目标

正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。

2、能力目标

(1).通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

(2).使学生能够灵活地进行乘方运算。

3、情感目标

让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。

二、教学重难点和关键:

1、教学重点:正确理解乘方的意义,掌握乘方运算法则。

2、教学难点:正确理解乘方、底数、指数的`概念,并合理运算,3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。

三、教学方法

考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。

四、教学过程

1、创设情境,导入新课:

这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。

师:假如我现在抽取的是黑3红3黑4红5 (幻灯片放映图片)如何算24?

师:如果四张都是3呢?

生答:-3 - 3×3×(-3)=

师:现在老师把扑克牌拿掉一张红3,变成2个黑3,1个红3,大家有办法凑成24吗?

生:思考几分钟后,有同学会想出的答案

师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)

2、动手实践,共同探索乘方的定义

学生活动:请同学们拿出一张纸进行对折,再对折

问题:(1)对折一次有几层?2

(2)对折二次有几层?

(3)对折三次有几层?

(4)对折四次有几层?

师:一直对折下去,你会发现什么?

生:每一次都是前面的2倍。

师:请同学们猜想:对折20次有几层?怎样去列式?

生:20个2相乘

师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?

简记:……

师:请同学们总结对折n次有几层?可以简记为什么?

2×2×2×2……×2

SHAPE MERGEFORMAT

n个2

生:可简记为:

师:猜想:生:

师:怎样读呢?生:读作的次方

老师总结:求个相同因数的积的运算叫乘方;乘方运算的结果叫幂;(教师解说乘方的特殊性),在中,叫做底数(相同

的因数),叫做指数(相同因数的个数)。

注意:乘方是一种运算,幂是乘方运算的结果。看作是的次方的结果时,也可读作的次幂。

⬣ 数轴七年级数学教案 ⬣

一、 教学内容

人教版七年级数学(上)第一章第四节《有理数的乘除法》,见课本p28.

二、学情分析

在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,我们仍用数轴表示乘法运算过程。

三、 教学目标

1、 知识与技能目标

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、 能力与过程目标

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、 情感与态度目标

通过学生自己探索出法则,让学生获得成功的喜悦。

四、 教学重点、难点

重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

五、教学手段

制作幻灯片,采用多媒体的现代课堂教学手段。

六、教学方法

注意创设问题情景,选择“情景---探索---发现”的教学模式,通过直观教学,借助多媒体吸引学生的注意力,激发学习兴趣。在整个学习过程中,以“自主参与,勇于探索,合作交流”的探索式学法为主,从而达到提高学习能力的目的。

七、 教学过程

1、 创设问题情景,激发学生的求知欲望,导入新课。

前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法,同学们先看下面的问题(出示蜗牛爬的动画幻灯片)

教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题。

2、 学生探索、归纳法则

学生分为四个小组活动,进行乘法法则的探索。

(1)教师出示蜗牛在数轴上运动的问题,让学生理解。

蜗牛现在的位置在点o,规定向右的方向为正,向左的方向为负;现在时间后为正,现在时间前为负

a.+ 2 ×(+3)

+2看作向右运动的速度,×(+3)看作运动3分钟后。

结果:3分钟后的位置

+2 ×(+3)=

b. -2 ×(+3)

-2看作向左运动的速度,×(+3)看作运动3分钟后。

结果:3分钟后的位置

-2 ×(+3)=

c. +2 ×(-3)

+2看作向右运动的速度,×(-3)看作运动3分钟前

结果:3分钟前的位置

+2 ×(-3)=

d. (-2) ×(-3)

-2看作向左运动的速度,×(-3)看作运动3分钟前。

结果:3分钟前的位置

(-2) ×(-3)=

e.被乘数是零或乘数是零,结果是仍在原处。

思考:积的符号与两个因数的符号有什么关系?

积的绝对值与两个因数的绝对值又有什么样的关系?

(2)学生归纳法则

a.符号:在上述4个式子中,我们只看符号,有什么规律?

(+)×(+)=( ) 同号得

(-)×(+)=( ) 异号得

(+)×(-)=( ) 异号得

(-)×(-)=( ) 同号得

b.积的绝对值等于 。

c.任何数与零相乘,积仍为 。

(3)师生共同用文字叙述有理数乘法法则。(出示幻灯片)

3、 运用法则计算,巩固法则。

例1计算:

(1) (-5) ×(-3); (2) (-7)×4; (3) (-3)×9; (4)(-3) ×(- )

引导学生观察、分析例1中(4)小题两因数的关系,得出:

有理数中仍然有:乘积是1的'两个数互为倒数。

例2. 见课本p30页

4、 分层练习,巩固提高。

巩固练习

(1)确定下列两个有理数积的符号:

(2)计算(口答):

① ② ③ ④

⑤ ⑥ ⑦ ⑧

(3)判断下列方程的解是正数、负数还是0。

(1) 4x= -16 (2)-3x=18

(3)-9x=-36 (4)-5x=0

5、小结

(1)有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。

(2)如何进行两个有理数的乘法运算:

先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。

6、作业布置

课本p30页练习1,2,3.

课后反思:

本节内容是学生在小学学习过的乘法以及初中学习了有理数的加法,减法及混合运算的基础上,进一步学习的基本运算,它既是对前面知识的延续,又是以后学习有理数除法等数学知识的铺垫,起了承上启下的作用。对经历有理数乘法法则的探索过程,使学生体验分类讨论的数学思想方法。

教学设计上,强调自主学习,注重交流合作,让学生在自主探索过程中理解和掌握有理数的乘法法则,并获得数学活动的经验,提高学习能力。

⬣ 数轴七年级数学教案 ⬣

教学目的:

(一)知识点目标:有理数的乘法运算律。

(二)能力训练目标:

1.经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。

2.能运用乘法运算律简化计算。

(三)情感与价值观要求:

1.在共同探索、共同发现、共同交流的过程中分享成功的喜悦。

2.在讨论的过程中,使学生感受集体的力量,培养团队意识。

教学重点:

乘法运算律的运用。

教学难点:

乘法运算律的运用。

教学方法:

探究交流相结合。

教学过程:

创设问题情境,引入新课

[活动1]

问题1:有理数的加法具有交换律和结合律,在以前学过的范围内乘法交换律、结合律,以及乘法对加法的分配律都是成立的,那么在有理数的范围内,乘法的这些运算律成立吗?

问题2:计算下列各题:

(1)(一7)×8;

(2)8×(一7);

(5)[3×(一4)]×(一5);

(6)3×[(一4)×(一5)];

[师生]由学生自主探索,教师可参与到学生的讨论中。

像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。我们可以通过问题2来检验。(略)

[师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?

[生]例如:5×[3十(一7)]和5×3十5×(一7);(略)

[师](一5)×(3一7)和(一5)×3一5×7的结果相等吗?

(注意:(一5)×(3一7)中的3一7应看作3与(一7)的和,才能应用分配律。否则不能直接应用分配律,因为减法没有分配律。)

讲授新课:

[活动2]用文字语言和字母把乘法交换律、结合律、分配律表达出来。

应得出:1.一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.

2.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

3.一般地,一个数同两个数的`和相乘,等于这个数分别同这两个数相乘,再把积相加。

[活动3][师生]教师引导学生讨论、交流,从中体会学习的快乐。

3.用简便方法计算:

[活动4]

练习(教科书第42页)

课时小结:

这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。

课后作业:课本习题1.4的第7题(3)、(6)。

活动与探究:

用简便方法计算:

(1)6.868×(一5)十6.868×(一12)十6.868×(十17)

(2)[(4×8)×25一8]×125

⬣ 数轴七年级数学教案 ⬣

教学内容:教科书121-122页,练习二十八的第13题

教学目的:

1、认识直线、线段和射线,能正确识别直线、线段和射线,掌握它们的联系和区别。

2、角和角的符号,知道角的顶点、边和角的大小。

教具准备:多媒体课件,三角板,用学具订成的活动角。

教学过程:

一、直线,线段和射线

1、直线

师:同学们,我们以前曾经认识过直线,还记得直线是什麽样子的吗?

出示课件

师:大家看,老师这儿有一条直线,这条直线是不是就这麽长?它的左边还能再长一些吗?还可以吗?右边呢?

师:直线可以向两边延长,可以延长多少?

那麽,直线除了具有很直的特点外,还可以向两边无限延长,所以我们只能用一条短线来表示直线。那麽,现在我想量一量这条直线有多长,可以吗?

2、线段

师:刚才我们认识过了直线,现在在直线上任取两个点,这两个点中间的部分是什麽?

对,直线上两点间的一段就是线段,这两个点是线段的端点。

观察一下,线段有几个端点?

找一找,生活中有哪些线可以看成线段?

3、射线

师:如果把线段的一端向一端无限延长就可以得到一条新的线,同学们,你认识它吗?

观察一下,射线有什麽特点?

生活中的哪些线可以看成是射线?

4、比较

师:我们认识了直线,线段和射线,那麽这三种线之间有关系吗?有怎样的关系?

生:线段是直线的一部分,射线是直线的一部分

师:比较一下,这三条线的特点,有什麽相同点和不同点?填在下面的表格中

5、练习:判断下面那些线是直线,线段,射线

二:角的认识及大小比较

1、角的认识

师:看屏幕,这儿有一个端点,从这一点可以引出一条射线吗?一共可以引出多少条射线?(出示课件)

师:从一点可以引出无数条射线,下面请你从一点引出2条射线。

这两条射线都是从一点引出来的,也就是说,从一点引出两条射线就组成一个角。

这个点叫什麽?这两条射线叫角的?

角是由几部分组成的?

师:我们认识了角的样子了,你知道用什麽来表示角吗?我们一般用“”来表示,读作:角

举例说明如何表示

2、比较大小

师:我们了解了那麽多角的知识了,大家想不想自己做一个角啊?

让学生用学具插成一个活动角,举起来

比一比(!)两个明显区别的

(2)区别不明显的

让学生讨论如何比较角的大小,汇报,交流

(1)直接观察法

(2)重叠比较法

(3)用量角器测量

师:看屏幕,角是由一点引出的两条射线组成的图形,我们知道射线是无限长的,那麽角的边可以再长一些吗?无论角的.边有多长,它影响角的大小吗?

那麽,角的大小和什麽有关,和什麽无关?

看,老师这儿有一个角(角的边很长),我的这个角最大,你同意吗?

三:总结

师:学到这儿,你都学到了那些知识?

四:巩固练习

1、判断下面说法是否正确,并说明理由

线段是直线的一部分。()

一条直线长5厘米。()

黑板的边是一条射线。()

角的大小与角叉开的大小有关,与边的长短无关。()

手电筒发出的光是直线。()

2、数一数,一共几个角

3、出示一个课件,让学生数一数是几个角。

⬣ 数轴七年级数学教案 ⬣

教材分析:

本课教材内容包括直线、线段、射线和角的认识,数学教案-直线、线段、射线和角。这部分内容是在学生初步认识了线段、角和直角的基础上教学的,是几何形体知识中最基本的概念之一,也是认识三角形等图形的知识以及进一步学习几何形体知识的基础。

学情分析:

学生学习长度单位和角的初步认识时,已会直观描述它们的特点。本课尊重学生的认知规律,从“有限”到“无限”,引导学生认识直线和射线,掌握角的概念。

一、教学内容:苏教版小数教材第七册P109-110线段、射线、直线和角。

二、教学目标

1、认知目标:

使学生进一步认识直线、线段;认识射线;知道直线、线段、射线的区别;认识角和角的符号,知道角的各部分名称、比较角的大小。

2、能力目标:培养学生的观察、对比、综合、记忆及动手协作能力。

3、情感目标:教学生用科学的'眼光观察事物,从而培养学生的学习兴趣。

三、教学重难点

1、重点:认识射线,知道射线与直线、线段的区别和联系;在射线概念的基础上说明角的概念,渗透运动的观点。

2、难点:角的形成。

学生准备:每人准备:两根吸管、一个图钉、一副三角尺。

四、教学过程

(一)线段、射线与直线的认识:

1、出示一条线段:

问:a.这是什么?(板书:线段)

b.你觉得线段有什么特点?(有两个端点)板书,又问:有两个端点的线就是线段?(画曲线)引导:直的(板书)

c. 你也画一条线段吧?(用一句话向大家介绍)(用尺量)谁来重新认识老师的线段?和老师的比比看?(小结:能量出长度----数学专用语-有限长)

d、你周围有线段吗?找一找。

2、画一画:

你能画出一条与线段不同的线吗?

自由练(根据学生实际情况进行适当启发)

3、反馈汇报。(根据学生的反馈选择直线或射线的教学)

(1) 投影展示"直线"

a.问:你画的这条线和线段有什么不同?(没有端点)

b.师:在数学上,我们把这种没有端点,可以向两端无限延长的线叫直线。(板书:直线)

c.你会画直线吗?介绍一下你的直线。和老师的直线比比看,你发现什么?(无限长)

(2) 投影展示"射线"

a.这条线与线段有什么不同之处?(只有一个端点,可以向一端无限延长)

b.说明"射线"的概念。

c.你会画"射线"吗?(自由画,一生板演),介绍射线。

反馈:讲评画法。先定点然后引出一条线。(再画一条巩固)

(3)你在生活中看到过这样的线吗?(自由说一说)

(4)小结:大家说的这些都可以看作是射线。

4、线段、射线与直线的比较

出示三线合一,问:你发现他们之间的联系吗?(学生讨论)

(1)其中一段射线下移。(说明射线是直线的一部分)

(2)(说明线段也是直线的一部分)

5、练习一

(1) P117/1(判断各图是线段、射线还是直线)

(2)过一点画射线。

如果给你一点,你能画出多少条射线?

a.先定点,(30秒画射线比赛)

b.汇报。如果给你时间你还能画吗?

c.电脑演示无数条。

d.公共端点的认识。

(二)角的认识:

1、 观察有公共端点的许多条射线,你发现了什么图形?

自由说(如果学生回答不出,逐步减少射线的条数,小学数学教案《数学教案-直线、线段、射线和角》。)板书:角

2、探索角的秘密。

关于角,你已知道了什么?(找角、试画角等)书本是我们最好的老师,我们再来深入探究角的秘密吧!

3、看书110页自学。

(1) 自学,可以说一说、画一画、比一比。

(2) 小组探讨,确定交流内容。

4、集体交流。(视学生交流情况,老师及时引导)

(1)学生概括得出角的概念。角是由什么组成的吗?(出示没有公共端点的两条射线)你也来画几个角。

画角(先自由画,再一生实物投影演示) 说说你是这么画的?(定点,引出两条射线)

(2)角的各部分名称。

老师引导

用你刚才画的角,同桌介绍角的各部分名称。

(3)角的符号介绍,书写并与小于号比较。你画的角怎么表示?

5、判断下面图形哪些是角,哪些不是。

说说为什么?(注意引导学生运用"概念"去判断)

6、角的大小

学生先找到规律,则边玩边验证。

活动角介绍。玩活动角

a、个人玩 摆大小不同的角(初步感知角的大小与边叉开大小有关)

b、同桌玩 一人拉一角,另一个同学拉出一个比他大的角。(进一步感知)

c、验证:

角的大小与两边叉开的大小有关。

d、多媒体出示一组大小差异很大的角,哪一个角大?(观察法)

多媒体出示一组大小相近的角,哪一个角大?(重叠法,分两步进行,注意让学生讨论概括方法。)

比一比三角板上角的大小,并说给同桌听。

e、出示一组大小相同,边长短不同的角。哪一个角大?

小结:角的大小与边的长短无关。

7、练习四

(1) 判断P121/3

a.线段有两个端点,能量出它的长度。………………………()

b.一条射线长3厘米。…………………………………………()

c.小明画了一条5厘米长的直线。……………………………()

d.小冬用一个能放大10倍的放大镜去看一个角,结果这个角的大小放大了10倍。…( )

(2)练习五:数角

(三)小结:

这节课,你学会了什么?你是怎么学会的?

数学教案-直线、线段、射线和角

⬣ 数轴七年级数学教案 ⬣

教材分析:

本课教材内容包括直线、线段、射线和角的认识。这部分内容是在学生初步认识了线段、角和直角的基础上教学的,是几何形体知识中最基本的概念之一,也是认识三角形等图形的知识以及进一步学习几何形体知识的基础。

学情分析:

学生学习长度单位和角的初步认识时,已会直观描述它们的特点。本课尊重学生的认知规律,从有限到无限,引导学生认识直线和射线,掌握角的概念。

  一、教学内容:苏教版小数教材第七册P109—110线段、射线、直线和角。

二、教学目标:

1、认知目标:

使学生进一步认识直线、线段;认识射线;知道直线、线段、射线的区别;认识角和角的符号,知道角的'各部分名称、比较角的大小。

2、能力目标:培养学生的观察、对比、综合、记忆及动手协作能力。

3、情感目标:教学生用科学的眼光观察事物,从而培养学生的学习兴趣。

三、教学重难点:

1、重点:认识射线,知道射线与直线、线段的区别和联系;在射线概念的基础上说明角的概念,渗透运动的观点。

2、难点:角的形成。

学生准备:每人准备:两根吸管、一个图钉、一副三角尺。

四、教学过程:

(一)线段、射线与直线的认识:

1、出示一条线段:

问:a。这是什么?(板书:线段)

b。你觉得线段有什么特点?(有两个端点)板书,又问:有两个端点的线就是线段?(画曲线)引导:直的(板书)

c。 你也画一条线段吧?(用一句话向大家介绍)(用尺量)谁来重新认识老师的线段?和老师的比比看?(小结:能量出长度————数学专用语—有限长)

d、你周围有线段吗?找一找。

⬣ 数轴七年级数学教案 ⬣

一.设计理念:

贯彻落实数学课程标准,建立新的数学教学理念,实施课程教学民主化,促进开放式教学的深入研究,充分发挥教师的主导作用和学生的主体地位,注重知识的发生、发展过程,充分展示学生的思维过程,使学生经历一个“再发现”的学习过程.向学生提供探究和交流的空间,紧紧抓住“数学思维活动的过程”这条主线,鼓励学生大胆联想、猜想,用自己的语言表述操作过程,主动探索并获取知识,将面向全体落到实处,培养学生的创新精神和实践能力。

二.教材分析:

1.教材的地位和作用:

《线段、射线和直线》是图形认识中非常重要的内容.从知识上讲,直线、射线、线段是最简单、最基本的图形,是研究复杂图形如三角形、四边形等的基础.从本节开始出现的几何图形的表示法、几何语言等,也是今后系统学习几何所必需的知识。本节课的学习起着奠基的作用,重点训练学生动手操作及学会用规范的几何语言边实践边叙述的能力,逐步适应几何的学习及研究方法,从思想方法上讲,直线的得出经历了由感性到理性,由具体到抽象的思维过程,同时线段、射线的表示法是由直线类比得到,渗透了类比的数学思想。

2.教学重点和难点:

重点:线段、射线和直线的概念和表示法。

难点:射线的表示法以及两点确定一条直线的实际应用。

突破难点的关键:鼓励学生动手操作,主动探索和讨论交流。

3.教学目标:

依据课程标准,结合七年级学生的认知结构和年龄特征,确定以下目标:

1.知识目标:

(1).在现实情境中进一步了解线段、射线、直线等简单的平面图形。

(2).通过操作活动,理解两点确定一条直线等事实,积累操作活动经验。

2.能力目标:

(1).让学生经历观察、思考、讨论、操作的过程,培养学生抽象化、符号化的数学思维能力,建立从数学中欣赏美,用数学创造美的思想观念。

(2).能用直尺画经过两个已知点的直线。

3.情感目标:

(1).在探究操作中得出结论,获取成功的体验,激发学习热情,建立自信心。

(2).培养学生独立思考,与同伴合作交流的能力。

三.教法学法分析:

1.采用“实验──探究──发现”的教学过程,鼓励学生动脑、动口、动手参与教学活动,感悟知识的发生、发展过程,充分调动学生学习的积极性、主动性。

2.通过一系列的探究问题组织好学生与学生之间、老师与学生之间的合作交流,充分展示学生的思维过程。在教学过程中,当学生思维受阻或感到困惑时,教师给与必要的引导,做到“引而不灌”。在教师的引导下由学生得出结论。

3.充分体现教师的组织、引导作用,发挥学生的主体地位,通过提供问题情境,鼓励学生动手实践、操作,自主探索与合作交流相结合,引导学生掌握思考问题的方法及解决问题的途径。

四.教学设计

(一)、认识图形

活动内容和步骤:

看一看,观察美丽的图片,从数学角度阐述你观察到的与数学有关的事实,尽可能用数学词汇来表达(电脑动画展示)。

给出火车铁轨、极光、输油管道三幅图片,学生会发现笔直的铁轨可以抽象成直线, 极光可以抽象成射线,输油管道可以抽象呈线段,使学生体会到数学知识来源于实际生活,激发学生的学习兴趣。

极光 铁轨 输油管道

2、想一想,交流小学学过的线段、射线和直线的有关知识。(利用两个激光笔灯演示线段、射线和直线的不同)

3、找一找,在我们的现实生活中,还有那些物体可以近似做线段、射线和直线?(让同学们积极发言,尽量让他们举出尽可能多的例子。)

之后教师板书课题《7.2线段、射线和直线》

4、连一连,请你把左边对图形的描述和右边相应的图形用线连起来:

以A为端点,经过点B的射线

连结A,B两点的线段

经过A,B两点的直线

(二)、表示图形

活动内容和步骤:(教师画出两条长短不一的线段)

如何表示2条不同的线段呢?

(根据线段的特征,学生思考讨论,教师征集各类结果最后适当加以补充引导说明表示方法)

2、如何表示射线呢?

3、直线又该怎样表示?

4、做一做、比一比

⑴用两种方式分别表示图中的两条直线。

⑴ ⑵

⑵已知点O、P、Q(如图),画线段PQ,射线OP,和直线OQ。

⑶图中的几何体有多少条棱?请写出这些表示棱的线段。

⑷请写出图中以O为端点的各条射线。

⑶ ⑷

(三)、合作学习(四人一组)

活动内容和步骤:

画一画

⑴经过一个已知点画直线,可以画多少条?

⑵经过两个已知点画直线,可以画多少条?

做一做

如果你想将一根细木条固定在墙上,至少需要几枚钉子?

想一想:由此得出什么结论?

(小组讨论完成三个问题,通过操作使学生发现直线的一些性质,培养学生的空间观念,思考归纳总结出结论:“经过两点有且只有一条直线”。)

做一做

经过刨平的.木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条这样的墨线,请说出其理由。

比一比

各组试再举一个在日常生活中,能反映“经过两点有且只有一条直线”的实例?

(四)、学生小结后教师整理成表

1、

图形名称 图形 表示法 端点个数 直线

浙教版数学七年级《线段、射线和直线》说课由收集及整理,转载请说明出处

直线AB(BA)

或直线m 没有 射线

射线AB 一个 线段

线段AB(BA)

或线段a 两个 直线的基本性质:经过两点有且只有一条直线。jaB88.CoM

(五)、图片欣赏

构成这两幅美丽图案的是曲线吗?

(六)、布置作业

课本167页作业题A组,B组。C组为选做题。

(七).教学评价:

对学生数学学习效果的评价,既要关注学生知识和技能的理解和掌握,更要关注他们情感与态度的形成与发展;既要关注数学学习的结果,更要关注他们在学习过程中的变化与发展。在数学过程的各个环节中,把学生自我评价、学生互评、教师评价结合起来,实现评价主题的多样化。课堂中采用口答、课堂观察、课后作业等评价方式,多层面了解学生。尊重学生的个体差异,对不同程度的学生提出不同的要求。在整个教学过程中,通过学生参与数学活动的程度,自信心、合作交流的意识,独立思考的习惯,发现问题的能力进行评价,教师以激励性的语言鼓励学生,培养学生创新能力。学生基本能了解直线、射线、线段的性质、表示法,能根据几何语言画出图形,逐步加深对几何语言的认识与运用,完成本节课的教学目标。