88教案网

你的位置: 教案 > 高中教案 > 导航 > 集合与简易逻辑1.1集合(一)

高中集合教案

发表时间:2020-09-22

集合与简易逻辑1.1集合(一)。

第一章集合与简易逻辑2

1.1集合(一)

课题

§1.1集合(一)

教学目标

1、理解集合的概念和性质。2、了解元素与集合的表示方法。

3、熟记有关数集。4、培养学生认识事物的能力。

教学重点

集合概念、性质

教学难点

集合概念的理解

教学设备

投影仪、多媒体

一、新课引入

在初中数学学习过程中,我们就已经开始接触“集合”。例如:

1、在初中代数里,

①、由所有自然数组成的自然数集;所有整数组成的整数集等等;

②、对于一元一次不等式2X-13来说,所有大于2的实数都是它的解,因此我们称该不等式的解集为X2,表明这个不等式的解是由所有大于2的数组成的集合;

③、大于1小于10的所有偶数。

2.在初中几何里,

①、把垂直平分线看作是到线段两端点距离相等的点的集合;

②、将角平分线看作是到角的两边距离相等的点的集合;

③、把圆看作是到定点的距离等于定长的点的集合。

在生活中,我们也在不知不觉中与“集合”打交道。例如:

①、高一(3)班全体男同学;②、某位同学的所有文具;③、中国的四大发明。

二、进行新课

通过以上实例,我们可以归纳出:

1、集合的定义

(1)集合(集):一般地,某些指定的对象集在一起就成为一个集合(集)。进一步指出:

集合的表示:一般用大括号表示集合,{元素,元素,…元素},那么上几例可表示为……

集合还可用一个大写的拉丁字母表示,如:A={1,3,5,7,9}

常见数集的专用符号:

非负整数集(自然数集):全体非负整数的集合。记作N

正整数集:非负整数集内排除0的集。记作N*或N+

整数集:全体整数的集合。记作Z

有理数集:全体有理数的集合。记作Q

实数集:全体实数的集合。记作R

注:①、自然数集与非负整数集是相同的,也就是说,自然数集包括数0。

②、非负整数集内排除0的集。记作N*或N+。Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

请同学们熟记上述符号及其意义。

(2)元素:集合中每个对象叫做这个集合的元素。集合中的元素常用小写的拉丁字母表示,如:

那么上述例中集合的元素是什么?请同学们另外举出三个例子,并指出其元素。

2、元素与集合的关系:有“属于”∈及“不属于(也可表示为)两种。

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作

如A={2,4,8,16},则4∈A,8∈A,32A.。

3、集合元素的三个特征

问题及解释:

(1)A={1,3},问3、5哪个是A的元素?(确定性)

(2)A={所有素质好的人},能否表示为集合?(确定性)

(3)A={2,2,4},表示是否准确?(互异性)

(4)A={太平洋,大西洋},B={大西洋,太平洋},是否表示为同一集合?(无序性)

由以上四个问题可知,集合元素具有三个特征:

(1)确定性;(2)互异性;(3)无序性。

三、课堂练习

P5---1,2

四、课堂小结

1、集合的概念

2、集合元素的三个特征:(1)确定性;(2)互异性;(3)无序性。

其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的。

“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的。

3、常见数集的专用符号.

五、课外作业

1、P7---1

2、下列各组对象能确定一个集合吗?

(1)所有很大的实数。(不确定)

(2)好心的人。(不确定)

(3)1,2,2,3,4,5.(有重复)

3、若-3∈{m-1,3m,m2+1},求m[m=-1或m=-2]

已知a+b+c=m,A={x|ax2+bx+c=m},判断1与A的关系。[1∈A]

六、板书设计

课题:集合

1、集合的概念

2、常用数集及记法

3、元素的概念

4、集合中元素的特征

七、教学反馈

1、课堂反馈:

2、作业反馈:

延伸阅读

集合与简易逻辑教案


1、设全集为,则有:,。
2、,。
3、,,则有如下关系:
(1)若时,则是的充分条件;
(2)若时,则是的充分不必要条件;
(3)若时,则是的充要条件。
4、由n个元素所组成的集合,其子集有个,即,真子集个,非空的真子集个。
5、如果原命题是若P则,则原命题的否定是若P则非,而原命题的否命题是若非P则非,但对于全称命题其否定则应加以区别。
例如:命题对任意的,的否定为:存在,
6、使用反证法的重要一环是如何正确提出与原结论相反的假定,常见的有:
7、一般地,已知函数,定义域和值域有如下性质:
(1)若的定义域为A,且在集合B上有意义,则。
(2)若的值域为A,且的取值范围为B,则。
(3)若的单调增(减)区间为A,且在区间B上单调递增(减),则。
8、描述法给出的集合,解题中应注意代表元素的属性。有关集合问题的讨论不能遗漏了空集。空集是任何集合的子集,是任何非空集合的真子集。有关集合问题的讨论应注意集合语言转化的等价性。
9、充要条件的判定:
(1)先分清哪是条件,哪是结论,将条件放在左边,结论放在右边;
(2)从条件推到结论,说明条件是充分的;从结论推到条件,说明条件是必要的。
10、非形式复合命题的真假与的真假相反;且形式复合命题,当与同为真时为真,其它情况时为假;或形式复合命题,当与同为假时为假,其它情况时为真。

第一章集合与简易逻辑


第一章集合与简易逻辑

第一教时

教材:集合的概念

目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。

过程:

一、引言:(实例)用到过的“正数的集合”、“负数的集合”

如:2x-13x2所有大于2的实数组成的集合称为这个不等式的解集。

如:几何中,圆是到定点的距离等于定长的点的集合。

如:自然数的集合0,1,2,3,……

如:高一(5)全体同学组成的集合。

结论:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

指出:“集合”如点、直线、平面一样是不定义概念。

二、集合的表示:{…}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}

用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

常用数集及其记法:

1.非负整数集(即自然数集)记作:N

2.正整数集N*或N+

3.整数集Z

4.有理数集Q

5.实数集R

集合的三要素:1。元素的确定性;2。元素的互异性;3。元素的无序性

(例子略)

三、关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作aA,相反,a不属于集A记作aA(或aA)

例:见P4—5中例

四、练习P5略

五、集合的表示方法:列举法与描述法

1.列举法:把集合中的元素一一列举出来。

例:由方程x2-1=0的所有解组成的集合可表示为{-1,1}

例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}

2.描述法:用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例{不是直角三角形的三角形}再见P6例

②数学式子描述法:例不等式x-32的解集是{xR|x-32}或{x|x-32}或{x:x-32}再见P6例

六、集合的分类

1.有限集含有有限个元素的集合

2.无限集含有无限个元素的集合例题略

3.空集不含任何元素的集合F

七、用图形表示集合P6略

八、练习P6

小结:概念、符号、分类、表示法

九、作业P7习题1.1

第一章集合与简易逻辑小结


教学目的:

⒈理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;掌握带绝对值的不等式与一元二次不等式的解法.

⒉理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;进一步了解反证法,会用反证法证明简单的问题;掌握充要条件的意义.

教学重点:

1.有关集合的基本概念;

2.逻辑联结词“或”、“且”、“非”与充要条件

【高考评析】

集合知识作为整个数学知识的基础,在高考中重点考察的是集合的化简,以及利用集合与简易逻辑的知识来指导我们思维,寻求解决其他问题的方法.

【学法指导】本章的基本概念较多,要力求在理解的基础上进行记忆.

【数学思想】

1、等价转化的数学思想;2、求补集的思想;

3、分类思想;4、数形结合思想.

【解题规律】1、如何解决与集合的运算有关的问题:

1)对所给的集合进行尽可能的化简;

2)有意识应用维恩图来寻找各集合之间的关系;

3)有意识运用数轴或其它方法来直观显示各集合的元素.

2.如何解决与简易逻辑有关的问题:

1)力求寻找构成此复合命题的简单命题;

2)利用子集与推出关系的联系将问题转化为集合问题

二、基本知识点:

集合:

1、集合中的元素属性:

(1)(2)(3)

2、常用数集符号:NZQR

3、子集:数学表达式

4、补集:数学表达式

5、交集:数学表达式

6、并集:数学表达式

7、空集:它的性质(1)(2)

8、如果一个集合A有n个元素(CradA=n),那么它有个个子集,

个非空真子集

注意:(1)元素与集合间的关系用符号表示;

(2)集合与集合间的关系用符号表示

解不等式:

1、绝对值不等式的解法:

(1)公式法:|f(x)|g(x)|f(x)|g(x)

(2)几何法

(3)定义法(利用定义打开绝对值)

(4)两边平方

2、一元二次不等式或的求解原理:利用二次函数的图象通过二次函数与二次不等式的联系从而推证出任何一元二次不等式的解集

对应的图形

不等式

△0

△=0

△0

3、分式、高次不等式的解法:

4、一元二次方程实根分布:

简易逻辑:

1、命题的定义:可以判断真假的语句叫做命题

2、逻辑联结词、简单命题与复合命题:

“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题

构成复合命题的形式:p或q(记作“p∨q”);p且q(记作“p∧q”);非p(记作“┑q”)

3、“或”、“且”、“非”的真值判断

(1)“非p”形式复合命题的真假与P的真假相反;

(2)“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;

(3)“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.

4、四种命题的形式:

原命题:若P则q;逆命题:若q则p;

否命题:若┑P则┑q;逆否命题:若┑q则┑p

(1)交换原命题的条件和结论,所得的命题是逆命题;

(2)同时否定原命题的条件和结论,所得的命题是否命题;

(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.

5、四种命题之间的相互关系:

一个命题的真假与其他三个命题的真假有如下三条关系:(原命题逆否命题)

①、原命题为真,它的逆命题不一定为真

②、原命题为真,它的否命题不一定为真

③、原命题为真,它的逆否命题一定为真

6、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法

7、如果已知pq那么我们说,p是q的充分条件,q是p的必要条件

判断两条件间的关系技巧:

(1)(2)

注意:(1)复合命题的三种形式与假言命题中的四种命题的区别

(2)复合命题中的“p或q”与假言命题中的“若p则q”它们的“P”的区别

三、巩固训练

(一)、选择题:

1、下列关系式中不正确的是()

A0B0C0D0

2、下列语句为命题是()

A等腰三角形B对顶角相等C≥0D0是自然数吗?

3、命题“方程|x|=1的解是x=±1”中,使用逻辑联结词的情况是()

A使用了逻辑联结词“或”B使用了逻辑联结词“且”

C使用了逻辑联结词“非”D没有使用逻辑联结词

4、不等式的解集为()

ABCD

5、不全为0的充要条件是()

A都不是0B最多有一个是0

C只有一个是0D中至少有一个不是0

6、≥()

A充分而不必要条件B必要而不充分条件

C充分必要条件D即不充分也不必要条件

7、如果命题则

A即不充分也不必要条件B必要而不充分条件

C充分而不必要条件D充要条件

8、至少有一个负的实根的充要条件是()

ABCD

(二)、填空题:

9、不等式的解集是则==

10、分式不等式的解集为:_______________.

11、命题“”的逆命题、否命题、逆否命题中,真命题有____个.

12、设A=,B=,若AB,则的取值范围是________.

(三)、解答题:

13、解下列不等式

③||

④()

14、利用反证法证明:

15、已知一元二次不等式对一切实数都成立,求的取值范围

16、已知集合A=,求实数的取值范围(表示正实数集合)

第一章集合与简易逻辑1


第一章集合与简易逻辑

第一教时

教材:集合的概念

目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。

过程:

一、引言:(实例)用到过的“正数的集合”、“负数的集合”

如:2x-13x2所有大于2的实数组成的集合称为这个不等式的解集。

如:几何中,圆是到定点的距离等于定长的点的集合。

如:自然数的集合0,1,2,3,……

如:高一(5)全体同学组成的集合。

结论:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

指出:“集合”如点、直线、平面一样是不定义概念。

二、集合的表示:{…}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}

用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

常用数集及其记法:

1.非负整数集(即自然数集)记作:N

2.正整数集N*或N+

3.整数集Z

4.有理数集Q

5.实数集R

集合的三要素:1。元素的确定性;2。元素的互异性;3。元素的无序性

(例子略)

三、关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作aA,相反,a不属于集A记作aA(或aA)

例:见P4—5中例

四、练习P5略

五、集合的表示方法:列举法与描述法

1.列举法:把集合中的元素一一列举出来。

例:由方程x2-1=0的所有解组成的集合可表示为{-1,1}

例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}

2.描述法:用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例{不是直角三角形的三角形}再见P6例

②数学式子描述法:例不等式x-32的解集是{xR|x-32}或{x|x-32}或{x:x-32}再见P6例

六、集合的分类

1.有限集含有有限个元素的集合

2.无限集含有无限个元素的集合例题略

3.空集不含任何元素的集合F

七、用图形表示集合P6略

八、练习P6

小结:概念、符号、分类、表示法

九、作业P7习题1.1