88教案网

你的位置: 教案 > 小学教案 > 导航 > 人教版五年级上册《简易方程-解方程(1)》数学教案

小学数学教案五年级

发表时间:2021-10-08

人教版五年级上册《简易方程-解方程(1)》数学教案。

人教版五年级上册《简易方程-解方程(1)》数学教案

教学内容:教材P67~68例1、例2、例3及练习十五第1、2、7题。

教学目标:

知识与技能:使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

过程与方法:利用等式的性质解简易方程。

情感、态度与价值观:关注由具体到一般的抽象概括过程,培养学生的代数思想。

教学重点:理解“方程的解”和“解方程”之间的联系和区别。

教学难点:理解形如a±x =b的方程原理,掌握正确的解方程格式及检验方法。

教学方法:创设情境;观察、猜想、验证.

教学准备:多媒体。

教学过程

一、情境导入

谈话:同学们,咱们玩一个猜一猜的游戏好吗?出示一个盒子,让学生猜一猜里面可能有几个球呢?(学生思考后会说,可以是任意数。)

教师继续通过多媒体补充条件,并出示教材第67页例1情境图。

问:从图上你知道了哪些信息?

引导学生看图回答:盒子里的球和外面的3个球,一共是9个。

并用等式表示:x +3=9(教师板书)

二、互动新授

1.先让学生回忆等式的性质,再思考用等式的性质来求出x 的值。

学生思考、交流,并尝试说一说自己的想法。

2.教师通过天平帮助学生理解。

出示教材第67页第一个天平图,让学生观察并说一说。

长方体盒子代表未知的x 个球,每个小正方体代表一个球。则天平左边是x +3个球,右边是9个球,天平平衡,也就是列式:x +3=9。

观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办?

(右边也要拿掉3个球。)

追问:怎样用算式表示?学生交流,汇报:

x +3-3=9-3

x =6

质疑:为什么两边都要减3呢?你是根据什么来求的?

(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。)

你们的想法对吗?出示第3个天平图,证实学生的想法是对的。

3.师小结:刚才我们计算出的x =6,这就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解 解方程)

4.引导:谁来说一说,方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解;求解的过程就是解方程。

师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。

5.验算:x =6是不是正确答案呢?我们怎么来检验一下?

引导学生自主思考,并在小组内交流自己的想法。

通过学生的回答小结:可以把x =6的值代入方程的左边算一算,看看是不是等于方程的右边。

即:方程左边=x +3

=6+8

=9

=方程右边

让学生尝试验算,并注意指导书写。

6.出示教材第68页例2情境图。

让学生观察图,理解图意并用等式表示出来:3x =18

引导学生:通过刚才解方程的经验尝试解决这个题。

学生自主尝试解决,教师巡视指导。

汇报解题过程:等式的两边同时除以3,解得x =6。

根据学生的回答,师板书:3x =18

质疑:你是根据什么来解答的?

引导小结:根据等式的性质:等式两边同时乘或除以一个不为O的数,左右两边仍然相等。

让学生尝试检验计算结果是否正确。

7.出示教材第68页例3,并让学生尝试解答。

由于此题是“a-x “类型,有些学生在做题时可能会出现困难,不知道怎么做。有些学生可能会在等号两边同时加上”x “,但x 在等号的右边,不会继续做了。

教师可以引导学生思考,根据等式的性质,只要等式的两边同时加或减相等的数或式子,左右两边仍然相等,那么我们可以同时加上”x “。

通过计算让学生发现,等号左边只剩下”20“,而右边是”9+x “。

继续引导学生思考:20和9+x 相等,可以把它们的位置交换,继续解题。学生继续完成答题,汇报。根据汇报板书:

8.讨论:解方程需要注意什么?让学生自主说一说,再汇报。

小结:根据等式的性质来解方程,解方程时要先写”解“,等号要对齐,解出结果后要检验。

三、巩固拓展

1.完成教材第67页”做一做“第1、2题。

2.完成教材第68页”做一做“第1、2题。学生自主计算解答,并集体订正答案。

3教材第70~71页练习十五第1、2、7题。

四、课堂小结。师:这节课你学会了什么知识?有哪些收获?

引导总结:

1.解方程时是根据等式的性质来解。

2.使方程左右两边相等的未知数的值,叫做方程的解。

3.求方程解的过程叫做解方程。

布置作业:

板书设计:

解方程(1)

例1: 例2: 例3:

x -3=9 方程左边=x +3 3x =18 20 - x =9

x +3-3=9-3 =6+3 3x ÷3=18÷3 20- x + x =9+x

x =6 =9 x=6 20=9+x

=方程右边 9+x =20

所以,x =6是方程的解 9+x -9=20-9

x =ll

使方程左右两边相等的未知数的值,叫做方程的解。求方程解的过程叫做解方程。

延伸阅读

人教版五年级上册《解方程(1)》数学教案


人教版五年级上册《解方程(1)》数学教案

第5单元 简易方程

第9课时 解方程(1)

【教学内容】:教材P67~68例1、例2、例3及练习十五第1、2、7题。

【教学目标】:

知识与技能:使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

过程与方法:利用等式的性质解简易方程。

情感、态度与价值观:关注由具体到一般的抽象概括过程,培养学生的代数思想。

【教学重、难点】

重 点:理解“方程的解”和“解方程”之间的联系和区别。

难 点:理解形如a±x =b的方程原理,掌握正确的解方程格式及检验方法。

【教学方法】:创设情境,观察、猜想、验证.

【教学准备】:多媒体。

【教学过程】

一、情境导入

谈话:同学们,咱们玩一个猜一猜的游戏好吗?出示一个盒子,让学生猜一猜里面可能有几个球呢?(学生思考后会说,可以是任意数。)

教师继续通过多媒体补充条件,并出示教材第67页例1情境图。

问:从图上你知道了哪些信息?

引导学生看图回答:盒子里的球和外面的3个球,一共是9个。

并用等式表示:x+3=9(教师板书)

二、互动新授

1.先让学生回忆等式的性质,再思考用等式的性质来求出x 的值。

学生思考、交流,并尝试说一说自己的想法。

2.教师通过天平帮助学生理解。

出示教材第67页第一个天平图,让学生观察并说一说。

长方体盒子代表未知的x 个球,每个小正方体代表一个球。则天平左边是x +3个球,右边是9个球,天平平衡,也就是列式:x +3=9。

观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办?

(右边也要拿掉3个球。)

追问:怎样用算式表示?学生交流,汇报:x +3-3=9-3

x =6

质疑:为什么两边都要减3呢?你是根据什么来求的?

(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。)

你们的想法对吗?出示第三个天平图,证实学生的想法是对的。

3.师小结:刚才我们计算出的x =6,这就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解 解方程)

4.引导:谁来说一说,方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解;求解的过程就是解方程。

师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。

5.验算:x =6是不是正确答案呢?我们怎么来检验一下?

引导学生自主思考,并在小组内交流自己的想法。

通过学生的回答小结:可以把x =6的值代入方程的左边算一算,看看是不是等于方程的右边。

即:方程左边= x + 3

= 6 + 3

= 9

= 方程右边

让学生尝试验算,并注意指导书写。

6.出示教材第68页例2情境图。

让学生观察图,理解图意并用等式表示出来:3x =18

引导学生:通过刚才解方程的经验尝试解决这个题。

学生自主尝试解决,教师巡视指导。

汇报解题过程:等式的两边同时除以3,解得x =6。

根据学生的回答,师板书:3x = 18

3x ÷ 3 = 18÷3

x = 6

质疑:你是根据什么来解答的?

引导小结:根据等式的性质:等式两边同时乘或除以一个不为O的数,左右两边仍然相等。

让学生尝试检验计算结果是否正确。

7.出示教材第68页例3,并让学生尝试解答。

由于此题是“a-x “类型,有些学生在做题时可能会出现困难,不知道怎么做。有些学生可能会在等号两边同时加上”x “,但x 在等号的右边,不会继续做了。

教师可以引导学生思考,根据等式的性质,只要等式的两边同时加或减相等的数或式子,左右两边仍然相等,那么我们可以同时加上”x “。

通过计算让学生发现,等号左边只剩下”20“,而右边是”9+x “。

继续引导学生思考:20和9+x 相等,可以把它们的位置交换,继续解题。学生继续完成答题,汇报。根据汇报板书:

20-x = 9 请学生自主尝试检验:方程左边=20-x

20-x +x = 9+x =20-11

20 = 9+x =9

9+x = 20 =方程右边

9+x -9 = 20-9

x = ll

8.讨论:解方程需要注意什么?让学生自主说一说,再汇报。

小结:根据等式的性质来解方程,解方程时要先写”解“,等号要对齐,解出结果后要检验。

三、巩固拓展

1.完成教材第67页”做一做“第1、2题。

2.完成教材第68页”做一做“第1、2题。学生自主计算解答,并集体订正答案。

四、课堂小结

师:这节课你学会了什么知识?有哪些收获?

引导总结:

1.解方程时是根据等式的性质来解。

2.使方程左右两边相等的未知数的值,叫做方程的解。

3.求方程解的过程叫做解方程。

五、作业:教材第70~71页练习十五第1、2、7题。

【板书设计】:

解方程(1)

例1: 例2: 例3:

x -3=9 方程左边=x+3 3x =18 20 - x =9

x +3-3=9-3 =6+3 3x ÷3=18÷3 20- x + x =9+x

x =6 =9 x=6 20=9+x

=方程右边 所以,x =6是方程的解 9+x=20

9+x -9=20-9

x =ll

使方程左右两边相等的未知数的值,叫做方程的解。求方程解的过程叫做解方程。

人教版五年级上册《解方程(2)》数学教案


人教版五年级上册《解方程(2)》数学教案

第5单元 简易方程

第10课时 解方程(2)

【教学内容】:教材P69例4、例5及练习十五第6、8、9、13题。

【教学目标】:

知识与技能:巩固利用等式的性质解方程的知识,学会解ax ±bx=c与a(x ±b)=c类型的方程。

过程与方法:进一步掌握解方程的书写格式和写法。

情感、态度与价值观:在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。

【教学重、难点】

重 点:理解在解方程过程中,把一个式子看作一个整体。

难 点:理解解方程的方法。

【教学方法】:观察、分析、抽象、概括和交流。

【教学准备】:多媒体。

【教学过程】

一、复习导入

1.出示习题。解下面方程:4x =8.6 48.34-x =4.5

学生自主解答练习,并说一说是怎么做的。并在订正的过程中,规范书写。

2.引出:这节课我们来继续学习解方程。(板书课题:解方程)

二、互动新授

1.出示教材第69页例4情境图。

引导学生观察,并说一说图意。再让学生根据图列一个方程。

学生列出方程3x +4=40后,让学生说一说怎么想的。

(一盒铅笔盒有x 支铅笔,3盒铅笔盒就有3x 支铅笔。)

在学生说自己的想法时,引导学生说出把3个未知的铅笔盒看作一部分,4支铅笔看作一部分。

2.让学生试着求出方程的解。

学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。

学生可能会疑惑:方程的左边是个二级运算不知该如何解。

也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)

提问:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?

学生会说:先算出3个铅笔盒一共多少支,再加上外面的4支。

师小结:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?(3x )

让学生尝试继续解答,订正。

根据学生的回答,板书解题过程:

3x +4=40

解: 3x =40-4

3x =36 (先把3x 看成一个整体)

3x ÷3=36÷3

x =12

让学生同桌之间再说一说解方程的过程。

3.出示教材第69页例5:解方程2(x -16)=8。

先让学生说一说方程左边的运算顺序:先算x -16,再乘2,积是8。

思考:你能把它转换成你会解的方程吗?

让学生尝试解方程,再在小组内交流自己的做法,然后集体订正,学生可能会有两种做法:

(1)利用例4的方法来解。

让学生说一说自己的思考,重点说一说把什么看作一个整体?

(先把x -16看作一个整体。)板书计算过程:

2(x -16)=8

解:2(x -16)÷2=8÷2(把x -16看作一个整体)

x -16=4

x -16+16=4+16

x =20

(2)用运算定律来解。

引导学生观察方程,有些学生会看出这个方程是乘法分配律的逆运算。可以运用乘法分配律把它转化成我们学过的方程来解。

根据学生回答,板书计算过程:

2(x -16)=8

解: 2x -32=8 (运用了乘法分配律)

2x -32+32=8+32 (把2x 看作一个整体)

2x =40

2x ÷2=40÷2

x =20

4.让学生检验方程的解是否正确。先说一说如何检验,再自主检验。

(可以把方程的解代入方程中计算,看看方程左右两边是否相等。)

三、巩固拓展

1.完成教材第69页“做一做”第1题。

先让学生分析图意,再列方程解答。解答时,让学生说一说自己的想法,把谁看作一个整体。(可以把5个练习本的总价5x 看作一个整体。)

2.完成教材第69页“做一做”第2题。

先让学生自主解方程,再集体订正。

3.完成教材第71页“练习十五”第8题。

先让学生说一说图意,再列方程解答。特别是第一幅图,要提醒学生天平两边的砝码不一样重,审题要细心。第二幅图,学生可能会列出方程30×2+2x =158,再引导学生观察有两个30和两个x ,可以运用乘法分配律。

四、课堂小结

这节课你学会了什么知识?有哪些收获?

引导总结:

1.在解较复杂的方程时,可以把一个式子看作一个整体来解。

2.在解方程时,可以运用运算定律来解。

五、作业:教材第71~72页练习十五第6、9、13题。

【板书设计】:

解方程

例4:3x +4=40

解: 3x =40-4 (先把3x 看成一个整体)

3x =36

3x ÷3=36÷3

x =12

例5:2(x -16) =8 (把x -16看作一个整体)

方法1: 方法2:

解:2(x -16)÷2=8÷2 解:2x -32=8 (运用了乘法分配律)

x -16=4 x -32+32=8+32 (把2x 看作一个整体)

x -16+16=4+16 2x =40

x=20 2x ÷2=40÷2

X=20

人教版五年级上册《简易方程复习课》数学教案


人教版五年级上册《简易方程复习课》数学教案

第8单元 总复习

第3课时 简易方程复习课

【教学内容】:教材第113页第3题及练习二十五第17、18、19、思考题。

【教学目标】:

知识与技能:通过复习,使学生进一步理解用字母表示数的作用,能用含有字母的式子表示计算公式、运算定律、数量关系;渗透初步的代数思想,体会数学知识与现实生活的密切联系,感受用字母表示数的简洁性。

过程与方法:通过复习,使学生进一步理解方程的意义,理解题中的等量关系,能正确列出方程,并熟练的运用等式的基本性质解方程,养成检验的好习惯。

情感、态度与价值观:通过复习,培养学生的归纳、比较、分析能力,进一步沟通知识间的联系,使学生的知识结构更加系统、完整。

【教学重、难点】

重 点:运用方程解决实际问题。

难 点:根据情境中的等量关系正确列方程解决问题。

【教学方法】:复习回顾,质疑引导;小组合作与独立学习相结合。

【教学准备】:多媒体。

【教学过程】

一、沟通联系,构建网络

1.出示教材第113页第3题(3)

生齐读题。

师:以前我们用算术方法解这一类题,学习简易方程后,又能用列方程来解答,今天这节课我们来复习“简易方程”(板书课题),请你列方程解答。

学生独立完成,师巡视,找出不同的解法展示。反馈,集体订正。

师:列方程解决问题第一步都是要干什么?

师:用字母x 表示未知量。(板书:字母--量)

2、复习用字母表示数。

⑴用字母表示数

师:用字母可以表示一个具体的量,也可以表示一个数,那这个字母“x”可以表示多少?(生反馈)对了,这个字母可以表示所有的数。(板书:数)

⑵用字母表示数量关系。

师:现在有一个“比x 的4倍多13的数”,怎样表示呢?

师:这个含有字母的式子除了表示数,还可以表示什么?

师:用含有字母的式子既能表示一个数,又能表示两个数之间的关系。(数量关系)

⑶师:这些含有字母的式子分别表示什么?请在答题卡上用线连起来。

2a与2a相加 a+2b

2a与2a相乘 4a2

a与b的和的2倍 4a

a与b的2倍的和 2(a+b)

反馈:前两题一题一题问对吗,再问这两题有什么区别?

后两题一题一题问对吗,再问这两题有什么不同?

师:用含有字母的式子表示这些意义真简洁、明了。

3、复习方程与解方程。

⑴复习方程。现在有一个“比x 的4倍多13的数”。

①当x =5时,这个数是多少呢?

师:当x 有一个具体的值时,这个含有字母的式子也有一个具体的值。

②师:如果“比x 的4倍多13的数是45。”现在又该怎样表示?

师:这样的等式我们把它叫做…?(生:方程。)

师:谁来说说什么叫方程?方程与等式有什么关系?举例说明。

⑵复习解方程

师:刚才同学们解了一道方程,这里还有3道方程,你们能解吗?

练习:教材第118页练习二十五第17题,解方程

x ÷1.44=0.4 3.85+1.5x =6.1 6x -0.9=4.5 学生解方程,汇报。

师:我们运用等式的基本性质,在等式两边同时加减同一个数,同时乘或除以同一个不为0的数,逐步简化方程,得到方程的解。在这里所指的数可以是像这样已知的数,也可以是这样用字母表示的未知数。

师:x =1.6是这道方程的解吗?指名口头检验。

4、复习用方程解决问题。

(1)复习用方程解决问题的一般步骤。

师:解方程的目的是为了解决一些实际问题,列方程解决问题有哪些基本步骤?

学生回忆梳理出一般步骤。

师:在这几步中你们认为哪一步是最关键的?

(2)复习数量关系。请你们找出它们的等量关系,并说出方程。

① 一个梯形的面积是265平方米,上底是20米,下底是33米,高x 米。

等量关系式:

列方程式:

师:计算公式也是一种数量关系。

②小明买了8个作业本,每本x 元,付给营业员5元,找回2.6元。

等量关系式:

列方程式:

师:根据不同的等量关系可以列出不同的方程。一般我们选择容易解的方程来解决问题。

师:下面请根据方程选择合适的条件。和同桌说一说你的你的想法。

甲筐有桔子60千克,______________________,乙筐有桔子多少千克?

设:乙筐有桔子X 千克。 列出方程是:2X +4=60

①甲筐比乙筐的2倍还多4千克

②乙筐比甲筐的一半少4千克

③乙筐比甲筐的2倍还多4千克

④甲筐比乙筐的一半少4千克

师:你们补上的条件,正是这道题的关键句子,它能帮助我们找到等量关系。

(2)对比质疑突出优化。

师:让我们回到教材第118页第19题,注意分析题题目的意思,同学们会列方程解答吗?独立完成,反馈。

师:这题与求地球赤道长度那一题有什么不同?有什么相同?(生反馈)

师:看来,在这里,不论是一个未知数还是两个未知数,都能用列方程解答。

二、拓展提高

教材第118页思考题。

一座大桥长2400m,一列火车以每分钟900m的速度通过大桥,从车头开上桥到车尾离开桥共需3分钟,从车头开上桥到车尾离开桥共需3分钟。这列火车长多少米。

分析:如教材第118页图,考虑到火车自身的长度,通过大桥所走的路程包括大桥长度和车长,根据“路程=速度×时间”可设这列火车车长为x m,可列方程:

x +2400=900×3

三、全课小结

师:这节课,我们复习了简易方程,请记住用字母表示数是方程的基础,方程是为列方程解决问题服务的。

四、作业:教材第113页第3题(1)(2)及练习二十五第18题

【板书设计】

简易方程复习

字母--量、数、数量关系

等式的基本性质

关键--等量关系

苏教版数学五年级上册教案 简易方程


作为一小学位老师,我们要让同学们听得懂我们所讲的内容。即使每天晚上一两点都要坚持制定出一份最详细的教学计划。上课自己轻松的同时,学生也更好的消化课堂内容。你知道怎样才制作一份学生爱听的教案吗?以下是小编收集整理的“苏教版数学五年级上册教案 简易方程”,仅供参考,大家一起来看看吧。

复习目标:

1.会用字母表示数、数量、定律和计算公式。

2.理解方程的意义,会判断方程。能解方程并验算。

3.能用方程解决实际问题。

复习过程:

一、概念回顾。

1.什么叫做方程?等式与方程有什么区别和联系?什么叫做方程的解和解方程?

2.用字母表示数应该注意什么?

3.用方程解决问题的步骤是什么?

二、基本练习:

1.方程0.6X=3的解是( )

2.a与b的和的一半是( )。

3.梯形面积计算公式用字母表示是( ),乘法结合律用字母表示是( )。

4.判断。

(1)a×b×8可以简写成ab8。

(2)x+5=4×5是方程。

(3)方程一定是等式。

(4)a的立方等于3个a相加。

(5)a÷b中,a、b可以是任何数。

5.解方程。

10.2-5X=2.2 3×1.5+6X =33 5.6X-3.8=1.8

3(X+5)=24 600÷(15-X)=200 X÷6-2.5=1.1

6.解决问题。

(1)一个三角形的高是6米,底是20米,求面积。(用公式计算。)

(2)妈妈有200元钱,是小红的4倍多20元,小红有多少元?

(3)爸爸的年龄比儿子大32岁,是儿子年龄的9倍,爸爸和儿子各多少岁?

(4)学校买10套课桌用500元,已知桌子的单价是凳子的4倍,每张桌子多少元?

三、作业。

西师大版五年级下册《解方程》数学教案


在每学期开学之前,老师们都要为自己之后的教学做准备。有的老师会在很久之前就精心制作一份教学计划。这样不仅拉进了学生与自己的距离,还让学生学到了知识,那么老师怎样写才会喜欢听课呢?小编收集整理了一些“西师大版五年级下册《解方程》数学教案”,欢迎您参考,希望对您有所助益。

西师大版五年级下册《解方程》数学教案

教学目标:

1、理解等式的基本性质一,并能较熟练地运用它解形如x+a=b的方程。

2、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

3、初步理解“方程的解”、“解方程”的含义,会检验给出的未知数的值是不是某方程的解。

4、培养学生规范书写和自觉检验的好习惯。

教学重点:

1、 对等式的基本性质一的理解和运用。

2、 掌握解形如x+a=b的方程的依据、步骤和书写格式。

3、 能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

教学难点:

1、 掌握解形如x+a=b的方程的依据、步骤和书写格式。

2、 较为熟练地运用形如x+a=b的方程解决简单的实际问题。

教学过程:

教学时由复习方程的意义入手,在出示情境图后提出问题,学生最先想到的是算术方法,此时引导:你能列方程解决这一问题吗?在列出方程600+x=860

后,怎样求x呢?在学生渴望解决这一问题的内在需求的驱使下,展开合作探索活动。

在教学等式的基本性质时,可利用实物演示,通过提问:“怎样变换,能使天平仍然保持平衡呢?”,以引导学生思考,启发学生把两组图的内容归纳成一句话。这样,及时引导学生超脱实例的具体性,实现必要的抽象概括。

这时就可以让学生自己思考、探索x的值的求法,然后在小组讨论后汇报。学生在陈述自己的想法时,不仅要说出自己是怎样推算的,还要请学生说出这样推算的理由。在这一过程中,要特别强调解方程的每一步得到的都是等式,而不是递等式。

教学中还要重视对学生书写的要求,初学时,可要求学生等号对齐。方程两边同时减去一个数的计算过程,开始练习时也要求学生写出来,待熟练之后再简写。无论是解方程还是检验,都要从一开始就强化书写规范,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。

最后引出“方程的解和“解方程”的概念时,要强调:方程的解是一个数,而解方程是一个过程,帮助学生理解、区别这两个概念。

模式方法:观察――实验――讨论――交流――概括结论

作业设计:自主练习1-3题。

讨论要点

1、 教学时,要充分利用天平,让学生通过观察、实验、讨论、交流,帮助学生理解等式的基本性质一。

2、 教学时,要关注学生的算术思维向方程思维的转变。

3、 在检验的问题上,要注重引导学生由算术法的验算向方程法的检验转变。

4、 教学时,要加大引领力度,充分发挥教师的作用。一要做好学生解决问题的思维方式的引领,进一步拓宽学生解决问题的渠道,提高学生解决问题的能力。二是对解方程以及列方程解决问题的思路、步骤及格式的引领。

活动总结

本次教研活动,使老师们更加清楚地了解学生已有的知识基础,较为准确地把握教学的重点和难点。设计较为实际的教学环节,降低学生学习的难度,同时也为教师在教学中围绕重点、突破难点指明了方向。

五年级数学上册简易方程教学反思


教案应该怎么准备?太阳底下最光辉的职业,人类灵魂的工程师,写教案是老师工作的其中一项。教案可以展现老师们工作认真,这是一份小编为您制作的“五年级数学上册简易方程教学反思”期待让您喜欢,欢迎收藏本网站,继续关注我们的更新!

五年级数学上册简易方程教学反思 篇1

学生经历由天平上的具体操作抽象为代数问题的过程,能用等式的性质(天平平衡的道理)列出方程,对于解比较简单的方程,学生并不陌生。

比如:x+4=7学生能够很快说出x=3,但是就方程的书写规范来说,有必要一开始就强化训练,老师规范的板书,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。对于稍复杂的方程要放手让学生去试一试,这样就可以使探究式课堂教学进入一个理想的境界。

不难看出,学生经历了把运算符号“+”看错成了“-”,又自行改正的过程,在这一过程中学生体验到了紧张、焦急、期待,成功的感觉,这时的数学学习已进入了学生的内心,并成为学生生命成长的过程,真正落实了《数学课程标准》中“在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心”的目标,在这个思维过程中,学生获得了情感体验和发现错误又自己解决问题的机会。老师以人为本,充分尊重学生,也体现在耐心的等待,热切的期待的教学行为上,老师的教学行为充满了人文关怀的气息,微笑的脸庞、期待的眼神、鼓励的话语,无时无刻不使学生感到这不仅是数学学习的过程,更是一种生命交往的过程,学生有了很安全的心理空间,不然,他怎么会对老师说“老师,我太紧张了”,这是学生对老师的信任和自己不安的复杂情绪的表现。反思我们的教学行为,如果在课堂中多一些耐心和期待,就会有更多的爱洒向更多的学生,学生的人生历程中就会多一份信心,多一份勇气,多一份灵气。

五年级数学上册简易方程教学反思 篇2

新课程的改革,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元“解简易方程”中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法虽然说让方程的解法找到了本质的东西。老教材中解方程的教学是利用加减乘除各部分之间的关系解决的,学生只要掌握了一个加数=和-另一个加数,减数=被减数-差,被减数=差+减数,一个因数=积÷另一个因数,除数=被除数÷商,被除数=商×除数这些关系式,不管是简单的还是复杂的方程都可以用这些关系式去解。而我们新教材却完全不是这种方法,它是利用天平的平衡原理得到等式的基本性质,即等式的两边同时加上或减去同一个数等式不变,和等式的两边同时乘或除以同一个数(0除外),等式不变进行解方程的 新教材如果能把天平的规律教学得到位,这样就能把等式性质掌握好,等式性质掌握的好了解起方程来也有规律可循了。于是,我在教学时充分地利用天平实物以及课件让学生深入地理解天平的平衡规律,从而顺利地揭示出了等式的性质。这样在解简易方程时学生很容易掌握方法。知道未知数加(或减)一个数时,只要在方程的两边同时减(或加)同一个数,未知数乘(或除)一个数时,只要在方程的两边同时除(或乘)同一个数即可。一般不会出现运算符号弄错的现象了。

为新课奠定了基础。在突破重难点时,我设计借助天平理解解方程的过程,当学生根据例1图意列出方程X+3=9时,我把皮球换成方格出现在大屏幕上时,问学生:“要得出X的值,在天平上应如何操作?”由于问题提的不符合学生实际学习情况,学生一时不知如何回答。我连忙纠正问道:“天平左边有一个X和一个3,怎么让方程左边就剩下X呢?”学生马上回答:“减去3。”师:“天平右边也应该怎么办?”生:“也减去3.”师:“为什么?”生:“天平的两边同时减去相同的数,天平仍然保持平衡。”我因势利导地使学生学习解方程的方法及书写格式。课堂练习时间也不充裕,致使扩展思维题学生没时间去思考,没有达到预想的课堂效果。一节课虽然结束了,却给我留下了难忘的印象,它将永远警示着我认真钻研教材,备好每一节课。

五年级数学上册简易方程教学反思 篇3

一、 填空:

2、王师傅第一天做m个零件,接下来的两天做了3m个零件,平均每天做( )个零件。

3、一桶“森林泉”天然饮用水连桶重9千克,喝掉一半水后,还剩下a千克,桶重( )千克。

4、甲仓库有大米x袋,乙仓库所有大米是甲仓库的3x,那么3x表示( ),x+3x表示( )。

5、比x多12.5的数,在扩大4倍是( )。

6、老王a岁,小李a-18岁,再过c年后他们相差( )岁。

二、 解方程或用方程解。

1、5与10的积比一个数的一半少8.4,求这个数。

2、78除以一个数得8余6,求这个数是多少。

3、7x+0.3=0.12+2x 4、0.27×3-6x=0.51

三、 列方程解题:

1、学校图书馆购买的文艺书比科技书多156本,文艺书的本数是科技书的3倍还多12本,文艺书买了多少本?

2、甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存入4吨,乙仓每天存入9吨,几天后乙仓存粮是甲仓的2倍?

3、甲、乙两辆汽车同时同地相背而行,甲每小时行35千米,乙每小时行47千米,5小时后两车相距多少千米?

摘 要:解方程在小学教育中是一个重要的知识点,在小学教育中占据着非同一般的地位。因此,提升小学生在解方程方面的知识已经迫在眉睫。所以,教师应在小学数学教学中采用具有自己特色的正确的教学方法对学生进行教学,让学生进一步了解小学数学解方程方面的知识,提升小学生在数学学习中的思维学习能力。就教师如何在人教版小学五年级数学教学中教好解方程的知识进行探讨。

新课标把解方程方面的知识编排在第九册的教科书上,给教师在这个阶段的教学带来了很大的不便之处,需要教师花费更多的精力和心血来讲授方程,让学生更能理解方程的基本性质。因此,教师可以在教学中适当改变教授方程知识的顺序,让学生能够在课堂中通过思考问题的本质,并尝试通过自己的研究来理解解未知方程的学习过程,对于解未知方程有一个具体的理解思路,找出解方程的学习规律。因此,教师应该有自己的一套解方程的'教学方式方法。

解方程方面的知识教学方法多种多样,一个好的教学方法是决定学生是否能够更好、更有效率地学习到小学数学解方程的知识点。而由于个人性格上的差异,每个教师在教育中都有一种独具特色的教育方法。

科学地安排教授学习任务对于教师和学生来说是非常有必要的。如果教师想要在解方程方面给学生打下学习的基础,就必须学会科学地安排自己教授的学习任务,这样能使得学生进一步认识到解方程在小学数学教育中的重要性,更加能够理解方程中的基本性质和解方程的一般规律。

一个方程必定有两种及以上的解法,教师可以在教学中用方程的性质引领学生的思维,把复杂的方程逐渐的简单化,尽量与学生的日常生活融为一体,使学生在生活中学习到更多数学方程的新知识,让学生在日常生活中积累一定关于方程的数学知识,使学生在生活中逐渐地了解小学数学解方程的知识;加强小学生自主探索小学数学解方程的能力。例如,小学数学一元一次方程中,“2x+10=22”学生可以通过直接移项得到2x=22-10,合并方程等式的右边得到2x=12,两边再同时除以一个2,就可以得到答案x=6。但是教师如果让学生自己进行解方程运算,就能够找出另外一种解题的方法:先等式两边同时除以2得到x+5=11,再通过移项得到x=6。从方程的解法中,就能够发现第二种解题方法比第一种解法较之简单。所以,教师的教学方法对于学生的学习来说是非常重要的。

沟通是教师与学生进行解方程知识交流的一座桥梁。教师通过在课堂教学中与学生建立良好的师生关系并进行沟通交流,可以启发学生学习小学数学知识的思想,使学生通过观察事物的本质、思考事物本身的性质,慢慢地尝试问题的解决方法,并进行相互讨论、总结,得出方程的解决方案来。所以,教师应该更加倾向于对于学生来说更为有利的交流式教学。

总而言之,小学数学解方程在数学知识中起着非常大的作用。所以作为小学数学教师就必须改良自己的教学方法,整理出一套独具特色的教学方案,改善学生学习数学知识的质量和学习知识的效率。

参考文献:

[1]崔凤莲.对小学阶段根据“等式的性质”解方程的冷思考[J].中国科教创新导刊,(15):111.

[2]顾志能.漫谈小学解方程方法的教学[J].小学教学:数学版,(11):16-18.

[3]沈梓建.小学数学如何进行有效教学[N].学知,.

五年级数学上册简易方程教学反思 篇4

《解简易方程》是九年义务教育人教版小学数学第九册第四单元第二节的教学内容。

2、教学内容的地位、作用和意义本节课的主要内容是方程的定义和应用等式性质解方程,它起着承前启后的作用。从知识结构上看,本节课是在学生学习了一定的算术知识和已具有初步的代数知识的基础上进行教学,教学这一部分内容有助于培养学生抽象思维能力,也是培养学生抽象概括能力的过程,为以后学习解稍复杂的方程和列方程解答应用题打下良好的基础。

结合教材特点和学生实际,我制定了本课的教学目标:

⑴知识与技能:初步理解“方程的解”和“解方程”的意义,并能进行辨析,并会应用等式性质解答简易方程。

⑵过程与方法:通过讨论和辨析,帮助学生理解方程的解和解方程的意义,进一步提高学生比较、分析和概括的能力。

⑶情感、态度与价值观:关注由具体到一般的抽象概括过程,培养学生初步的代数思想。

(1)比较方程的解和解方程这两个概念的含义。

这节课,我主要采用“直观教学法”、“演示操作法”、“观察法”等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,平等交流各自对数学的理解,并通过相互合作共同解决所面临的问题。我设计了如下三个方面的教学手段:

1、用直观的操作和演示,让每位学生在动手操作的过程中理解和归纳出结论。

2、恰当运用现代教学手段,突出重点突破难点,努力促进本节课教学目标的实现。

3、充分利用身边的事物,创设情境,激发兴趣,让学生能在轻松、愉快而且有趣的氛围中理解、掌握知识。

为了使学生获取“解方程”这部分的知识,在课堂教学中,我注重学生学习知识的过程,给学生充分的时间和空间,在特定的数学活动中自主探究、合作交流,激发学生的学习积极性,增强学生学习知识的自信心。让学生动眼观察,动手操作,动脑思考,动口表达,真正理解和掌握方程最基本的知识,培养学生探索、发现和创新能力。

课堂教学是教学的主渠道,根据教学要求为实施教学计划突破教学的重、难点,我将教学过程分为以下几个步骤。

(一)激趣导入,动手操作。针对“解方程”这节课的特点以及结合小学生的年龄特征,上课开始,我借助多媒体,激发学生的学习兴趣。出示天平,杯子,水,然后提问学生:利用这些工具,你能称出一杯水的重量吗?分组讨论后,点名让学生说说他的想法并展示操作的过程,我再借助课件出示学生说的方法,紧接着让学生利用上节课学习的“天平保持平衡的规律”列方程,从复习天平保持平衡的道理入手,引出课题,引导学生质疑,有利于激发学生主动探究、深入学习的积极性。

让学生分组讨论猜一猜x的值是多少,然后我随着学生的回答演示课件。根据学生的回答和课件的演示引出概念———方程的解和解方程,同时出示这两个概念的含义。接着抛出问题让学生独立思考,再组内交流:“方程的解”和“解方程”的两个解有什么不同?根据学生的回答总结出:“方程的解”的解,它是一个数值;“解方程”的解,它是一个演变过程。这样的设计目的在于通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。

借助课件出示例1,然后让学生独立思考该怎么根据题意列方程,之后分组讨论,汇报求解的过程,我再借助多媒体演示,同时根据学生的回答补充、强调一些细节问题,比如解方程的格式、要验算等等。我的设计意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。

课件显示:解方程x—2=15,提示学生这是一个减法的方程,能根据我们学习的加法方程的步骤来解吗?指名学生到黑板上做,然后我再点评,补充强调细节问题。通过这道例题,学生对解简易方程就有一个比较全面的认识。

(2)方程左右两边同时加或减一个相同的数(0除外),使方程左边只剩X,方程左右两边相等。(3)求出X的值。(4)验算。

安排这两层练习,目的是让学生掌握方程的解和解方程这两个概念的不同以及解方程的方法,同时教师也能及时反馈学生的信息,给予当堂指导。

五年级数学上册简易方程教学反思 篇5

新课程的改革,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元“解简易方程”中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法虽然说让方程的解法找到了本质的东西,但是也让我感到了许多困惑

1、从教材的编排上,整体难度下降,有意避开了,形如:45-X=23等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现X前面是减号或除号的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出X在后面的方程,我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受--解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。

2、 内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充X前面是除号或减号的方程的解法。要教他们列方程时怎么避免X前面是除号或减号的方程的出现等等。

五年级数学上册简易方程教学反思 篇6

人教版五年级上册《解简易方程》这个单元中,教材是通过等式的基本性质来解方程,这个方法虽然说使得小学的知识与初中的知识更加的接轨,让方程的解法更加的简单。从教材的编排上,整体难度下降,对学生以后的发展是有利的。但是教材中故意避开了减数和除数为未知数的方程,如:a-x=b或a÷x=b,要求学生根据实际问题的数量关系,列成如x+b=a或bx=a的方程。这样的处理方法,有时也会无法避免地直接和方程思想发生矛盾。例如“爸爸比小明大28岁,小明Х岁,爸爸40岁。”很多学生列出了这样的方程:40-Х=28,方程列的是没有任何问题的,但是应该怎么解呢?允不允许学生用四则运算各部分的关系来解方程?是否该向学生讲解方法?还是让学生把此方程改成教材要求的那样的方程?如果要改成教材要求的方程,那就是在向学生传达这样的思想:这样的列法是不被认可的,那么以后在学习“未知数是减数和除数的方程”时,学生的思维不就又和现在冲突了吗?现在学习的节方程中,学生很容易看见加法就减,看见减法就加,看见乘法就除,看见除法就乘,如把30÷Ⅹ=15的解法教给学生,能熟练掌握并运用的学生很少,对大部分学生来说越教越是糊涂,把本来刚建构的解方程方法打破了。如果不安排,那么每次在出现的时故意回避吗?

在教学列方程解加减乘除解决问题第一课时,我是这样处理的。先出示做一做的题目,这题更接近学生的实际,学生也能更好理解数量关系。小明今年身高152厘米,比去年长高了8厘米。小明去年身高多少?先让学生读题理解题目中有哪几个量?引导学生进行概括,去年的身高、今年的身高、相差数。追问:这三个量之间有怎样的相等关系呢?

去年的身高+长高的8cm=今年的身高

今年的身高-去年的身高=长高的8cm

今年的身高-长高的8cm=去年的身高

你能根据这三个数量关系列出方程吗?学生尝试列方程。几乎全班学生都是正确的。

X+8=152 152-x=8 152-8=x

追问学生你对哪个方程有想法?学生一致认为对第三个方程有想法?生1:这个根本没有必要写x,因为直接可以计算了。生2:x不写,就是一个算式,直接可以算了。我肯定到:列算式解决实际问题时,未知数始终作为一个“解决的目标”不参加列式运算,只能用已知数和运算符号组成算式,所以这样的x就没有必要。接着让学生解这两个方程X+8=152 、152-x=8方程。学生发现152-x=8解出来的解是不正确的。告诉学生减数为未知数的方程我们小学阶段不作要求,所以你们就无法解答了。接着,我再引导学生观察这三个数量关系,他们之间有联系吗?其实减法是加法的逆运算,是有加法转变过来。因此,我们在思考数量关系时,只要思考加法的数量关系,这是顺向思维,解题思路更加直截了当,降低了思考的难度。接着只要把未知数以一个字母(如x)为代表和已知数一起参加列式运算x+b=a,体会列方程解决问题的优越性。这就是我们今天学习的一种新的解决问题的方法——列方程解决问题。

接着用同样的教学方法探究bx=a的解决问题。

我这样的教学不知道是否合理?其实小学生在学习加减法、乘除法时,早就对四则运算之间的关系有所感知,并积累了比较丰富的感性经验。要不要运用等式的性质对学生再加以概括呢?

五年级数学上册简易方程教学反思 篇7

长期以来,在小学教学解简易方程,是依据加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。这种方法到了中学又要另起炉灶,重新开始。根据新课标的要求,人教版教材从小学起就引入等式的基本性质,并以此为基础导出解方程的方法,使学生摆脱算术思维方法中的局限性,有利于加强中小学的知识衔接。

猜想是学生学习数学的一种重要方式,通过让学生综合已有的知识和经验的基础上经历等式的变化过程,不仅让学生体会到数学来源于生活,还为猜想等式的性质奠定了良好的基础。学生一旦作出了猜想,就会迫不及待的想去验证自己的猜想是否正确,从而主动地去探索新知。

任何猜想都必须经过验证,才能确定是否正确,而验证的过程也正是学生主动学习探索数学知识的过程。学生通过自己动手用天平称一称,验证自己的猜想,以一种自主探究的方式进一步认识了等式的性质,为后面学习解方程奠定了良好的基础。“举出生活中的例子”体现了数学来源于生活,学到的数学知识也要应用到生活当中去的理念,让学生体会到数学就在自己的身边。这样的设计不但极大地激发了学生的学习兴趣,还有利于培养学生的自主探究能力和创新能力。

学生在合作操作中,已经对解方程有了一定的基础和认识,能够大概地说出解方程的过程和依据,而又一次让同学之间同桌说一说后再全班交流体现了本节课的学习重点“理解并利用等式的性质解方程”,“为什么要减去3”突破本节课的难点。在这个环节中教师还有针对性地指导了书写的规范性和检验的过程。师生之间的共同探讨,显示了一种平等的师生关系。

练习中学生加深了对“方程的解”的认识,抓住了利用等式的性质这一依据去解方程。不同层次的练习照顾了学生之间学习水平的差异,3X=8.4对等式的性质进行了拓展,有利于发散学生的思维。最后交流学习的收获促进了学生形成积极的学习心理。

人教版五年级上册《方程的意义》数学教案


人教版五年级上册《方程的意义》数学教案

第5单元 简易方程

第7课时 方程的意义

【学习目标】

1.知识与技能:使学生初步理解“等式”、“不等式”和“方程”的意义,并能进行辨析。

2.过程与方法:利用天平的原理,理解不等式和方程。

3.情感、态度与价值观:渗透认识来源于实践的辨证唯物主义思想。

【学习重、难点】

重 点:会用方程的意义去判断一个式子是否是方程。

难 点:会按要求用方程表示出数量关系。

【学习准备】天平、空水杯、水(可根据实际变换为其它实物)

【学习过程】

一、创设情景,引入新课

今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在托盘两端的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。

二、自主探究

学生自学并完成相关练习。

三、例题精讲

1、实物演示,引出方程。

操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克。

第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。

第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。

第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x

第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。

像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。

四、练习设计

1、写方程,加深对方程的认识。

学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它们不是方程的原因。

看书第63页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有未知数(即字母),这也是判断一个式子是不是方程的依据。

2、反馈练习,教材P63做一做第1题。

完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。

3、完成P66练习十四第2题,先让学生说出图意,再根据图意再列出相应的方程。

4、独立完成P66练习十四第3题,评讲时,介绍什么叫数量关系,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,所以方程形式也可能不同。

五、作业:P66练习十四第1题。

人教版五年级上册《实际问题与方程(1)》数学教案


人教版五年级上册《实际问题与方程(1)》数学教案

第5单元 简易方程

第12课时 实际问题与方程(1)

【学习目标】

1. 知识与技能:

初步学会如何利用方程来解应用题

2. 过程与方法:

让学生自主探究,正确地列出方程解应用题。

3. 情感、态度与价值观:

培养学生独立探究的好习惯,并渗透环保教育。

【学习重、难点】

重 点:学会如何利用方程来解应用题

难 点:找题中的等量关系,并根据等量关系列出方程。

【学习准备】课件

【学习过程】

一、复习导入

解下列方程:

x+5.7=10 x-3.4=7.6 1.4x=0.56 x÷4=2.7

学习方程的目的是为了利用方程解决生活中的问题,这节课就来学习如何用方程来解决问题。板书:解决问题。

二、自主探究

学生自学并完成相关练习。

三、例题精讲

教学P73例1。

出示题目。(课件)

出示跳远的图片,从图片上你能获得什么信息?

我们结合这幅图片来了解一下,课件演示。

同学们想想,“学校原跳远纪录是多少米?”

分析,解题。

根据刚才所了解的信息,这个问题中有哪几个关键的数量呢?原纪录、小明的成绩、超出部分。

它们之间有哪些数量关系呢?(板书)

原纪录+超出部分=小明的成绩 ①

小明的成绩-原纪录=超出部分 ②

小明的成绩-超出部分=原纪录 ③

同学们能解决这个问题吗?

学生独立解决问题。

评讲、交流。(侧重如何用方程来解决本题。)

学生展示,可能会是算术方法,也可能列方程。对于算术方法,给予肯定即可。

学生列出的方程可能有:

① x+0.06=4.21 ②4.21﹣x= 0.06 ③4.21﹣0.06= x

每一种方法,都需要学生说出是根据什么列出的方程。

如第一种,学生根据的是“原纪录+超出部分=小明的成绩”这一数量关系(由于左右相等,也称等量关系)所得到的。解出方程,注意书写格式,并记着检验(口头检验)。

对于第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为什么呢?因为x是被减去的,因此,在小学阶段解决问题,列的方程,未知数前最好不是减号。

对于第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个x。

小结

在解决问题中,我们是怎样来列方程的?

将未知数设为x,再根据题中的等量关系列出方程。

四、练习设计

1、解决P73“做一做”中的问题。

从题中知道哪些信息?有哪些等量关系?

用方程解决问题,四人小组交流方法,评讲,特别提醒:别忘了检验。

2、独立完成P75练习十六中的第3题。

3、列方程解答下列各题。

(1)生物小组养黑兔48只,比白兔少8只,白兔有多少只?

(2)一个正方形的周长是36cm,它的边长是多少?

(3)体育用品商店运来120个篮球,是运来足球个数的3倍,运来足球多少个?

简易方程五年级教案9篇


作为一位刚入职不久的新任教师,在授课上的经验比较少。要根据班级同学的具体情况编写教案。这样我们可以在上课时根据不同的情况做出一定的调整,那你们知道有哪些优秀的小学教案吗?请阅读由小编为你编辑的简易方程五年级教案9篇,欢迎你收藏本站,并关注网站更新!

简易方程五年级教案【篇1】

教学内容:教材第106页复习第l~6题。

教学要求:

1.使学生进一步掌握解简易方程的方法,提高解简易方程的

能力。

2.使学生进一步掌握列方程解应用题的步骤和思路,能比较

熟练地找出应用题里数量之间的相等关系,提高列方程解应用题

的能力。

3.使学生进一步认识不同应用题里数量关系的特点,能灵活

地选择恰当的解题方法,培养学生灵活解题的能力。

教学过程:

一、揭示课题

这节课,我们复习解简易方程和列方程解应用题。(板书课题)

通过复习,一方面进一步掌握解简易方程的方法,另一方面要进一

步掌握列方程解应用题的步骤和方法,提高列方程解应用题的能

力。同时要进一步认识列方程解应用题和算术方法解应用题的不

同点,增强根据题目特点选择解题方法的能力,能灵活地选择恰当

的方法解题。

二、复习解方程

1.做复习第1题前两题。

指名两人板演,其余学生做在练习本上。

集体订正。

提问:谁来说一说,这两个方程各是怎样解的?

2.做复习第2题。

指名两人板演,其余学生做在练习本上。

集体订正,让学生说说是根据什么列方程的,每一步表示

什么。

指出:列方程解答这样的题的方法是:先设未知数为工,再顺

着题目的意思列方程,然后再求出方程的解,就是要求的数。

三、复习列方程解应用题

1.复习列方程解应用题的步骤。

按这样的方法可以列方程解文字题,怎样列方程来解应用题

@,请大家说一说,列方程解应用题要按怎样的步骤进行?列方程

解应用题的关键是什么?

2.根据下面的条件说出数量之间的相等关系。

(1)杨树和柳树一共50棵。

(2)杨树比柳树多50棵。

.(3)杨树棵数比柳树棵数的1.5倍少50棵。

(4)甲、乙两辆汽车共行驶120千米。

3.做复习第3题。

(1)学生读题。

提问:这道题用什么方法解比较方便?为什么?

指名学生板演,其余学生做在练习本上。

(2)集体订正,结合提问:

列方程解应用题时第一步做什么?

谁来说一说第二步是什么,你是怎样想的?

第三步解方程对不对?

最后一步是什么?这道题怎样检验?一起看一看答案正

确吗?

(3)指出:列方程解应用题要按照步骤来做。其中最重要的

是找出题里数量之间的相等关系,对照数量之间的相等关系正确

地列出方程。

4。做复习第6题。

(1)让学生默读题目,一边读一边想,每一题用什么方法解答

比较方便。

指名两人板演,其余学生做在练习本上。

(2)检查板演题。

提问:第(1)题用什么方法解答的?为什么用算术方法解答?

第(2)题为什么用方程解答?

说一说,第(1)题解答时是怎样想的?第(2)题列方程时是怎

样想的?

指出:一道应用题,如果顺着题目的意思能直接列出算式求

出问题的结果,就用算术方法解答;如果用算术方法解答是逆思

考,就顺着题目的意思找出数量之间的相等关系,对照等量关系列

方程解答。.,.

5.下面的题适合用什么方法解答?为什么?

(1)①两辆汽车分别从甲、乙两地同时出发,相对而行。一

辆汽车每小时行55千米,另一辆汽车每小时行65千

米,经过1.5小时在途中相遇。甲、乙两地间的公路

长多少千米?

②甲、乙两地间公路长180千米。两辆汽车分别从两地

同时出发,相对而行。一辆汽车每小时行55千米,另

一辆汽车每小时行65千米。经过几小时两辆汽车

相遇?

③甲、乙两地间公路长180千米。两辆汽车分别从两地

同时出发,相对而行,经过1.5小时在途中相遇。已

知一辆汽车每小时行55千米,另一辆汽车每小时行

多少千米?

(2)①山边林场有杨树18行,每行15棵;有柳树行,每行

12棵。杨树比柳树多多少棵?

②山边林场杨树比柳树多102棵。杨树18行,每行15

棵。柳树14行,每行多少棵?

四、课堂小结

这节课复习了列方程解应用题。谁再说一说,列方程解应用

题的步骤怎样?其中最重要的是哪一步?

你知道怎样的题用方程解比较方便?什么样的题适合用算术

方法呢?

五、课堂作业

复习第4、5题。

简易方程五年级教案【篇2】

教学内容:人教版第九册第102页练习二十五的习题。

教学目标:1、通过练习,进一步理解和掌握axb=c这一类简易方程的解法,并能正确解简易方程。

2、养成自觉检验的良好习惯。

3、培养分析推理能力和思维的灵活性,提高解方程的能力。

教学重点:进一步理解和掌握axb=c这一类简易方程的解法。

教学难点:能正确解简易方程。

教学过程:

一、复习温顾。

黑笔

黑笔

黑笔

黑笔

黑笔

红笔

红笔

红笔

8枝8枝8枝8枝8枝x枝x枝x枝

一共70枝

1、根据下面的情景列方程并求方程的解,结合情景说说怎样解方程,每一步算出什么。

黑笔的支数

红笔的支数

共买的支数

85+3x=70

2、把下列解方程和检验过程补充完整。

5x-3.7=8.5

解:5x=8.5○()

()=12.2

x=()○()

x=2.44

检验:把x=2.55代入原方程,

左边=5()-3.7=()

右边=()

左边○右边

所以x=2.55是原方程的解。

8x-414=0

解:8x-()=0

()=56

()=568

x=()

检验:把x=()代入原方程,

左边=()()-414=()

右边=0

左边○右边

所以x=()是原方程的解。

3、解下列方程:

⑴6x=42

⑵6x+35=77

⑶6x+57=77

比较:这几道方程有什么相同和不同?解题后有什么体会?

(这几道题方程的解都是一样的,后几道方程都是由第一道方程演变过来的,每一道方程都比前一道要复杂,解题步骤也相应地增多。体会:再复杂的方程只要解题方法正确,都能化成一般简单的形式。)

二、巩固练习。

1、可以把5x看作减数的是方程()。

A.5x-6=20B.30+5x=75C.30-5x=5D.5x3=202、2x在下列方程中可以看作什么部分数?

①2x+2.5=32.5()②2x-30=60()③2x-35=45()

④2x7=42()⑤302-2x=12()⑥2x12=35()

3、不解方程,你能判断下列方程的解是否正确吗?说说你的方法。

①7x+15=120的解是x=15。()

②5x-36=22的解是x=9。()

③6x5=12的解是x=15。()

④125-3x=30的解是x=10。()

4、解下列方程。(也可以选择第2题的方程其中3题)

4x-7.2=10

0.4(x-5)=16

1.2x+0.160.2=3.2

5、列出方程并求方程的解。

8与5的积减去一个数的4倍,差是20,这个数是多少?

以上各题4人小组独立完成后,先交流订正,再集体订正。

第4、5题,要求做错的题目,订正在练习纸的右栏。

三、错题分析。

1、出示学生作业中的错题,学生分析指出错误,并说说理由。(需批改作业时收集)

2、出示常见的错题。

观察下列各题的解方程是否正确,不正确的指出错处。

7x-3.5=17.5

解:x-3.5=17.57

x-3.5=2.5

x=2.5+3.5

x=6

7x-3.5=17.5

解:x=17.5+3.5

x=21

7x-3.5=17.5

解:x=17.5+3.5

7x=21

x=217

x=3

2x+43=48

解:2x=43

2x=12

2x=48-12

2x=36

x=362

x=18

四、拓展练习。

1、根据方程246-x=80创作情景(编题)或把下列情景补充完整。(视学生情况而定)

情景:学校食堂买来6袋大米,每袋()千克,用去了一些,还剩()千克,()多少千克大米?

2、解下列方程(可以只选择其中两道方程,快的同学可以全部做完)

①6x+57=70+7

②23x+57=70+7

③(3+2x)2=30

3、如果2x+4=16,那么4x+8=()

4、⑴x等于什么数时,3x-9的值等于12?

⑵x等于什么数时,3x-9的值大于12?

简易方程五年级教案【篇3】

教学内容:教材第90页例1,练一练,练习二十第1~~2题

教学要求:

1.使学生学会解eIbJ=c的方程,能正确地求出方程的解。

2.使学生进一步学会检验方程解的方法,培养学生的比较分

析和类推能力,以及良好的学习习惯。

教学过程:

一、复习铺垫

1.复习旧知。

(1)让学生把复习第(1)题做在书上,然后口答,老师板书。

要求学生说一说是怎样想的。

(2)做复习第(2)题。

指名学生板演,其余学生做在练习本上。

集体订正。结合提问每一步解答的依据。

2.引入新课。

我们从刚才的复习中,已经知道几个J加上或减去几个工可

以等于多少个J,还能用算式中各部分之间的关系解方程。今天,

我们以复习的知识为基础,进一步学习解简易方程,(板书课题)学

会解比复习题稍微复杂一点的方程。

二、教学新课

1.出示例1。

提问:左边的2J+4z你能算吗?那么你能解这个方程吗?

指名一人板演,其余做在课本上。

集体订正,让学生说一说思考过程。

谁来说一说怎样检验方程的解对不对?

指名学生口答,老师板书。

提问:怎样检验J=41是不是方程的解?

指名一人板演检验,其余在练习本上检验。

让学生说一说是怎样检验的。

说明:以后解方程,都要重视检验。

提问:今天例1的方程和刚才复习的方程有什么不同的地

方?几个J加几个J的和等于多少的方程要怎样解?

2.教学试一试。

出示1.9J一0.4J=60。

这道题会做吗?请大家做在练习本上,写出检验的过程。

学生口答解题过程,老师板书。

提问:你看到这道题时,是怎样想的?(先把1.9工减去0.4J

得1.5J,再求出方程的解)

3.小结:今天学习的方程是几个J加上或减去几个上等于

多少的方程,解方程时只要先算出左边是几个J,就可以按原来的

方法求出方程的解。

三、巩固练习

1.做练一练第1题。

指名两人板演,其余学生分两组,每组一题做在练习本上。

集体订正。

追问:你认为这两题解方程时哪一步最重要?

2.做练--练第2题。

出示线段图。

提问:图上表示什么意思?(苹果2个工千克,橘子3个J千

克,一共是200千克)

让学生在练习本上列出方程。

指名学生口答所列的方程,老师板书。

提问:这是根据数量之间怎样的相等关系列出的方程?

指出:解这样的题,先要看懂图意,再根据2个I加3个J的

和是200来列出方程解答。

3.做练习二十第2题。

(1)提问:第(1)题怎样列方程?

学生口答,老师板书。

(2)提问:第(2)题设什么为未知数工?这个数的8倍加上这

个数的和是117能列方程吗?

指名两人板演,其余学生做在练习本上。

集体订正。让学生说说8工表示什么,J表示什么;为什么要

列成8J+J=117。

提问:这个方程是怎样解的?

四、课堂作业

解练习二十第2题第(1)小题的方程,练习二十第1题。

[评析:这节课主要有两个特点:(1)引入新例让学生观察后

作适当引导,由学生自己完成解方程,这可以使学生运用旧知学会

新知,从中学到解决问题的方法;(2)在例题之后让学生与旧知比

较,突出新内容的知识点,有利于学生概括出解题方法,也便于学

生把解法类推到下面的题目中。]

简易方程五年级教案【篇4】

复习过程:

一、概念回顾。

1.什么叫做方程?等式与方程有什么区别和联系?什么叫做方程的解和解方程?

2.用字母表示数应该注意什么?

3.用方程解决问题的步骤是什么?

二、基本练习:

1.方程0.6X=3的解是()

2.a与b的和的一半是()。

3.梯形面积计算公式用字母表示是(),乘法结合律用字母表示是()。

4.判断。

(1)ab8可以简写成ab8。

(2)x+5=45是方程。

(3)方程一定是等式。

(4)a的立方等于3个a相加。

(5)ab中,a、b可以是任何数。

5.解方程。

10.2-5X=2.231.5+6X=335.6X-3.8=1.8

3(X+5)=24600(15-X)=200X6-2.5=1.1

6.解决问题。

(1)一个三角形的高是6米,底是20米,求面积。(用公式计算。)

(2)妈妈有200元钱,是小红的4倍多20元,小红有多少元?

(3)爸爸的年龄比儿子大32岁,是儿子年龄的9倍,爸爸和儿子各多少岁?

(4)学校买10套课桌用500元,已知桌子的单价是凳子的4倍,每张桌子多少元?

三、作业。

复习目标:

1.会用字母表示数、数量、定律和计算公式。

2.理解方程的意义,会判断方程。能解方程并验算。

3.能用方程解决实际问题。

简易方程五年级教案【篇5】

教学过程:

一、课前复习

1、判断下面各式是不是方程

30+X=150X-54>806545=207X=56

2、根据题意列方程

(1)山东省高中学历的人数是1002万人,是大专学历的3倍,大专学历的人数是X万人。

(2)山东省总人口是9079万人,其中男人4595万人,女人X万人

(3)山东省乡村人口是5629万人,比城镇人口多2179万人,城镇人口是X万人。

二、合作探索:

1、出示情景图:让学生看图及下面的信息,你知道了哪些信息?(20xx年6月1日黔金丝猴数量已从1993年的600多只,增加到860只。)根据信息你能提出什么问题?

2、提出问题,解决问题。根据学生的回答,教师把问题板书出来:20xx年比1993年大约增加了多少只黔金丝猴?

根据提出的问题,同学讨论应该怎样列式解答。放手让学生自己解答,个别学生老师指导。指名回答。用算术方法解答:860600=260(只)除了算术方法你能根据题意列出含有未知数的方程吗?具有怎样的等量关系?(1993年的只数+增加的只数=20xx年的只数。用x表示增加的只数,可列方程:600+x=860)

3、合作探索,找出解决问题的方法。

这个方程怎样求出x呢?

让学生讨论找出解决问题的方法。我们可以借助天平来研究一下:在天平的左边放上一瓶啤酒,要使天平平衡右边也要放上同等重量的东西,天平才能平衡。如果在左边加上10克重的物体,要使天平平衡右边也要加上10克重的物体,反过来在左边减去10克的物体,要使天平平衡右边也要减去10克的物体,看教材62页图,这说明了什么?(说明了等式的两边同时加上或减去同一个数,等式仍然成立。)

同桌看图讨论:天平左边的盘子里是x,右边的盘子里是20,这时天平平衡那么说明了什么呢?(说明x=20的时候才能使天平平衡,也就是等号两边正好相等。

师小结:我们可以借助这个发现来求出方程里面的未知数x。我们把使方程左右两边相等的未知数就叫做方程的解,x=10是x+10=10+10的解,而求方程的解的过程叫做解方程。解方程和方程的解是两个不同的概念。

4、解方程,体会解方程和方程的解有什么不同?

我们来解600+x=860这个方程,教师一边板书,一边指出解方程的步骤;

先写个解字,然后根据等式两边同时减去一个数等式仍然成立,同时减去600,理解解方程过程的简化书写,并且解题时适当运用简化书写。

教师示范解题过程,关注解和等于号书写要求。

指导检验:X=860是不是正确答案呢?如何检验?教师板书检验过程。

5、课堂练习:出示:X―30=80反馈,关注书写过程并说说检验过程。

三、综合练习:

1、完成书本第64页自主练习1题,学生完成后同桌交流

2、括号里哪一个x的制式方程的解?

43+x=62(x=105x=19)x-56=37(x=19x=93)

先独立思考,学生回答,并说说自己的想法

3、看图列方程。

出示自主练习的第2题,学生看图列式。

提问:什么是等式?什么是方程?解出上述方程。

四、学习回顾:

通过学习,你知道了什么?有哪些收获?个人课堂学习表现如何

学生选择两题(加法方程和减法方程各一个)独立完成,要求写出检验过程,反馈计算情况。

作业设计:

1、基础作业:自主练习1、2、3

2、拓展作业:一点通:部分练习

板书设计:

解简易方程

解;:设大约增加了x只黔金猴。

600+x=860

600+x-600=860-600

X=260

检验:方程左边=600+x

=600+260

=860

=方程右边

所以,x=260是方程600+x=860的解

课后反思:

简易方程五年级教案【篇6】

教学内容:义务教育课程程标准实验教科书数学(人教版)小学数学第9册57-58页的内容。

教学目标:

1、根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。

2、培养学生的分析能力应用所学知识解决实际问题的能力。

3、帮助学生养成自觉检验的良好习惯。

重点、难点:理解并掌握解方程的方法。

教具准备:多媒体课件

教学过程:

一、复习铺垫

1、方程的意义

师:同学们我们前一段时间学了方程的意义,你还记得什么叫方程吗?

生:含有未知数的等式叫方程。

2、判断下面哪些是方程

师:你能判断下面哪些是方程吗?

(1)a+24=73(2)4x<36+17(3)234a>12

(4)72=x+16(5)x+85(6)25y=0.6

生:(1)(4)(6)是方程。

师:你为什么说这三个是方程呢?

生:因为它含有未知数,而且是等式。

二、探究新知

(一)理解方程的解和解方程

1、看图写方程

师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(出示57页天平图)从图中你知道了什么?

生:我知道杯子重100克,水重X克,合起来是250克。

师:你能根据这幅图列出方程吗?

生:100+X=250.

2、求方程中的未知数

师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)

生1:根据加减法之间的关系250-100=150,所以X=150.

生2:根据数的组成100+150=250,所以X=150.

生3:100+X=250=100+150,所以X=150.

生4:假如在方程左右两边同时减去100,那么也可得出X=150.

3、验证方程中的未知数,引出方程的解和解方程两个概念。

师:同学们都很聪明用不同的方法算出X=150,研究对不对呢?

生:对,因为X=150时方程左边和右边相等。

师:这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的呢?请同学们自学课本57页找出什么叫方程的解?什么叫解方程?

学生自学后汇报。(板书)齐读两个概念。

4、辨析方程的解和解方程两个概念

师:方程的解是未知数的值它是一个数,怎样判断一个数是不是方程的解呢?

生:要看这个数能不能使方程左右两边相等。

师:而解方程是求未知数的过程,是一个计算过程它的目的是求出方程的解。同学们要注意两个概念之间的区别与联系。

5、巩固练习,加深理解。

师:完成做一做:X=3是方程5X=15的解吗?X=2呢?(完成后汇报)

生:X=3是方程5X=15的解,因为X=3时方程左右两边相等。

生:X=2不是方程5X=15的解,因为X=2时左边52=10,右边是15,左边和右边不相等,所以X=2不是方程5X=15的解。

(二)解简易方程

1、复习等式的性质

师:前两天我们学会了等式的性质,请根据等式的性质完成填空吗?

(1)如果5+3=8,那么5+3-3=8()

(2)如果50-13=37,那么50-13+13=50()

(3)如果a-7=8,那么a-7+7=8()

(4)如果X+9=45,那么X+9-9=45()

师:你是根据什么填空的?

生:等式的性质。

师:等式有什么性质呢?我们齐来说一遍。

2、理解方程与等式的联系,引出课题。

师:(3)(4)题不但是等式而且是方程,我们知道方程是等式的一部分,所以等式的性质对方程同样适用,今天我们将应用等式的性质来帮我们解方程。(板书课题:解简易方程)

3、出示例1图,列出方程。

师:图上画的是什么?你能列出方程吗?

生:X+3=9

师:这个方程用天平怎么表示呢?

生:天平左边放X个和3个球,右边放9个球。(电脑显示)

4、引导学生思考怎样解方程。

师:我们解方程的目的是求X,怎样使天平一边只剩x呢?

生:天平两边同时减去3个球。(电脑显示)

师:天平两边还平衡吗?怎样反映在方程上呢?

生:方程两边同时减3。(结合学生回答板书)

师:为什么同时减3而不是其它数呢?

生:方程两边同时减3就可以使方程一边只剩X。

5、检验方程的解。

师:X=6是不是方程的解呢?

生:是,因为X=6是方程左边是6+3=9,右边是9,左右两边相等,所以X=6是方程X+3=9的解。

6、强调解方程的格式步骤

电脑显示:解方程要注意:

(1)先写解,等号要对齐。

(2)做完后要注意检验。

7、看书质疑

8、学生练习

师:你会学老师这样解方程吗?请同学们解方程X+3.2=4.6,x+19=30。

9、学生板书练习集体订正

师:你是怎样解这个方程的,为什么方程两边要同时减19.

生:使方程一边只剩X。

师:在这个过程中哪些是解方程,哪些是方程的解。

生:我们计算的过程是解方程,而x=11是方程的解。

10、小组讨论怎样解方程X-2=15,X-1.8=4

师:请同学们小组讨论怎样解方程X-2=15,X-1.8=4说出你这样做的根据

生:我根据方程两边同时加上一个数,方程两过仍然相等来解这两个方程的。

三、实践应用,加深理解

1、下面的方程你打算怎样算。

①X+0.3=1.8

②X-1.5=4

③X-6=7.6

④X+5=32

2、我会填。

(1)含有()的()叫方程。

(2)使方程左右两边相等的()叫方程的解。

(3)求()叫做解方程。

(4)x-15=20这个方程的解是()

3、我会选

(1)+32=76的解是()

A、=42B、=144C、=44

(2)-12=4的解是()

A、=8B、=16C、=23

(3)+8=60的解是()

A、=480B、=52C、=7.5

(4)-3.5=1.5的解是()

A、=5B、=20C、=2

4、看图列方程并解答

5、解决问题

师:请同学们认真观察图,你能根据题意列出方程并解方程吗?

学生练习

四、全课小结,课外延伸

师:这节课你有什么收获?

师:请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。

五、布置作业

1、复习本节课的内容。

2、完成课本63页练习十一第5、6题第1、2横行。

简易方程五年级教案【篇7】

教学目标

1.使学生初步学会这一类简易方程的解法.

2.理解这类方程的格式.

3.进一步掌握解方程的格式.

教学重点

掌握解这一类方程的解法.

教学难点

理解这一类方程的算理.

教学步骤

一、复习引入

(一)复习方程的意义.

1.什么叫方程?

2.什么叫解方程?

(二)用方程表示下面的数量关系.

1.与4的和等于40.

2.的3倍等于40.

3.的3倍加上4等于40.

二、新授教学

(一)教学例2

例2.看图列方程,并求出方程的解.

1.读题,理解题意.

2.分析图意,找等量关系.

3.教师提问

(1)观察图形你都知道了什么?

(2)3盒零4支和多少相等?

(3)怎样列方程?

4.列方程并解答.

(1)教师板书:

(2)教师提问:要想求每盒彩色笔多少支,应当先求什么?解这个方程要先算一步?

(3)教师说明:要把看作是一个数.即;,加数等于和减另一个加数,

那么.

5.学生独立解答.

6.集体订正,板书全部解题过程.

解:(根据加数=和-另一个加数)

(根据因数=积另一个因数)

检验:把代入原方程,

左边=312+4=40,右边=40,

左边=右边,

所以是原方程的解.

7.小结:解这样的方程,关键是要把看作是一个数,先求出,再求出得多少.

8.练习:

(二)教学例3

例3.解方程

1.思考

(1)例3与例2有什么相同点?有什么不同点?

(2)应该先算什么,再算什么,最后算什么?

2.学生独立解答,集体订正.

3.小结:解这一类方程,要先根据四则运算的顺序,把方程中包含的计算算出来,再

把与因数的积看成是一个数,根据四则运算各部分间的关系一步步求出解.

4.练习:解方程

三、课堂小结

今天你学习的解方程与以前所学的解方程有什么不同?

四、巩固练习

(一)口头解下列方程,并说出每一步的根据.

1.

2.

(二)解下列方程,并检验.

1.

2.

3.

(三)在0.5、1.5、2.5、3.5、4这五个数中,

哪个数是方程0.5-1.5=0.5的解?

哪个数是方程220.5-2=4的解?

思考:怎样做比较简单?

五、课后作业

解方程

1.

2.

3.

六、板书设计

解简易方程

例2.看图列方程,并求方程的解

教案点评:

新授部分注意了新旧知识之间的联系与区别,抓住关键,提出具体思考价值的问题,引导学生讨论,在初步理解的基础上进行试做,再通过看书学习,讲清道理,使学生透彻的理解。

练习中注意专项练习与综合练习相结合,有利于学生掌握本课的

简易方程五年级教案【篇8】

教学目标

1.使学生初步理解方程方程的解和解方程的含义。

2.初步掌握解简易方程的方法并会检验。

教学重点

使学生初步掌握解方程的方法和书写格式。

教学难点

帮助学生建立方程的概念,并会应用。

教学步骤

一、铺垫孕伏

1、口算下面各题

2、写出下面各题的式子

(1)一个足球元,3个足球多少元?

(2)减3的差。

二、探究新知

(一)教学方程的意义

1、出示天平:(教师向学生介绍)这是一架天平、可以用来称物品的重量。当天平的指针指在标尺中间时,表示天平平衡,即天平两端的重量相等。

2、介绍等式:在天平的两边上重量相等的物体,左边放20克砝码和30克砝码,右边

放50克砝码。请学生观察。

教师提问:这个天平平衡吗?说明了什么?谁会用等式表示?

(这时天平平衡,说明了天平左右两边的重量相等,等式为)

教师说明:这是一个等式,等号的左边和右边相等。

3、引出方程。(改变天平上的物品和砝码)

教师提问:请同学们观察,天平平衡说明了什么?怎样用式子表示,请同学们试一试。()

教师说明:这个未知数?,如果用来表示就可以写成。

教师提问:这个等式和上面的等式有什么不同?(这个等式含有未知数)

4、列出含有未知数的等式:(出示第三幅图)

教师提问:

(1)这幅图是什么意思?

(2)每个篮球的价钱是元,3个篮球多少元,怎样用式子表示?(3)

(3)3个篮球是234元,怎样用含有未知数的等式表示?

教师板书:

5、总结方程的意义。

教师提问:观察上面三个等式回答问题。这三个等式有什么相同点和不同点?

相同点:都是相等的式子。

不同点:第一个等式不含有未知数,第二个和第三个等式含有未知数

教师板书:象这种含有未知数的等式,叫方程.

6、举例说明什么叫方程。

强调两点:一:含有未知数

二:等式

7、方程与等式的联系与区别,方程与等式之间是什么关系呢?(学生讨论)

小结:所有的方程都是等式,所有的等式不一定都是方程,含有未知数的等式是方程,不含未知数的等式不是方程。

(二)教学方程的解和解方程

1、教师提问:在中,等于多少时方程左边和右边相等?

(时方程左边和右边相等)

在中,等于多少时方程的左边和右边相等?

(时方程的左边和右边相等)

2、教师引导:使方程左右两边相等的未知数的值,叫做方程的解。

谁是方程的解?(是方程的解)

谁是方程的解?(是方程的解)

3、30是上面方程的解吗?为什么?

(30不是上面方程的解,因为它不能使方程左右两边相等)

4、引导学生说明:,是怎样求出来的?

教师板书:求方程的解的过程叫做解方程。

5、例1解方程-8=16

教师提问:

(1)解方程先写什么?等号怎样写?(先写解,等号要对齐)

(2)根据什么计算?

(3)怎样检查解方程是否正确?

教师板书:

解:根据被减数等于减数加差

检验:把代入原方程,

左边,右边

左边=右边

所以是原方程的解。

6、讨论:方程的解和解方程有什么区别?

三、课堂小结

今天你学到了哪些知识?什么叫方程?方程的解和解方程有什么区别?

四、巩固练习

1、填空

(1)含有未知数的()叫做方程。

(2)使方程左右两边相等的(),叫做方程的解。

(3)求方程的解的()叫解方程。

(4)下面的式了中是等式的有();

是方程的有()。

2、判断,对的在括号里打,错的打。

(1)等式都是方程。()

(2)方程都是等式。()

(3)是方程的解。()

(4)也是方程。()

3、选择正确答案填在括号内

(1)的解是()

(2)的解是()

(3)这个式子是()

是方程是等式既是方程又是等式

(4)是方程()的解

五、布置作业

练习二十四4题。

六、板书设计

解简易方程

含有未知数的等式叫做方程。例方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

例1解方程

解:根据被减数等于减数加差

检验:把代入原方程,左边,右边,所以是原方程的解。

教学设计示例

简易方程五年级教案【篇9】

教学要求:使学生理解和初步学会解含有两、三步运算的简易方程,认识解方程的意义和特点。

教学重点:含有两、三步运算的简易方程的解法。

教学难点:解含有两、三步运算的简易方程的算理和算法,能对原方程变形求解。

教学用具:小黑板或投影片若干张。

教学过程:

一、激发

1.复习方程的意义。

2.用方程表示下面的数量关系。

(1)x与4的和等于40。

(2)x的3倍等于40。

(3)x的3倍加上4等于40。

二、尝试

1.出示例2看图列方程,并求出方程的解。

(1)读题,理解题意:先列方程,再求出方程的解。

(2)引导学生分析图意,找出题中的等量关系。

①提问:看图,你都知道了什么?

引导学生回答:知道每盒彩色笔40支,三盒彩色笔是3x支,共有彩色笔是三盒零4支,实际有彩色笔40支。

②提问:3盒零4支和多少相等?

启发学生回答:3盒零4支和40支相等。

(3)生试着列方程,指名回答,师板书:3x+4=40

问:方程的左边表示什么?方程的右边表示什么?

(4)解方程。

①问:要想求每盒彩色笔多少支,应当先求什么?(三盒多少支)

②解这个方程要先算哪一步?(先求3x等于多少)

③师说明:要把3x看作是一个数。即:

3x+4=40

加数加数和

④要求加数等于什么?(加数等于和减去另一个加数)

⑤那么3x=?,你会做吗?试一试!指名板演。

(5)集体订正,板演生讲每一步的根据。

3x+4=40

解:3x=40-4(加数=和-另一个个加数)

x=363(因数=积另一个因数)

x=12

检验:把x=12代入原方程,

左边=312+4=40,右边=40,

左边=右边,

所以x=12是原方程的解。

(6)解这样的方程的关键是什么?(要先把3x看作是一个数,先求出3x,再求出x得多少。)

(7)练习:18-2x=5,生独立做,集体订正,并讲算理。

2.出示例3.63-2x=5

(1)比较例3的方程与刚才解的方程有什么相同点和不同点?相同点:等号右边都是5,等号左边都减去2x;

不同点:练习题等号左边是18减2x的差,例3等号左边是6乘以3的积减去2x的差。

(2)引导学生分析并回答例3应先算什么,再算什么,最后算什么。

(3)生自己解答,做完后与书上对照是否正确。

(4)引导学生小结:解这一类方程,要先根据四则运算的顺序,把方程中包含的计算算出来,再把x与因数的积看成是一个数,根据四则运算各部分间的关系一步步求出解。

3.做一做:解方程3x-126=6,生独立解再订正。

三、应用

1.口头解下列方程,要求说出把什么看作一个数并说出每一步的根据。

69+3=94x-2=105x-39=56

2.解下列方程,并检验。

学生独立解答,教师巡视并指导差生,再订正。

18+15x=212x+3.4=7.22x-4.3=9.7

3.练习二十五第2题,按照指定的顺序解方程,先让学生独立练习,做完后引导学生比较这两个方程及解法的异同点。

4.练习二十五第4题,引导学生回答怎样做比较简单用解方程的方法求解,再检验比较简单。

四、体验

回忆本节课学习了什么知识。

五、作业

练习二十五第3题(前两道题写检验过程)。

沪教版五年级上册《方程》数学教案


沪教版五年级上册《方程》数学教案

教学准备

1. 教学目标

能够根据事物间的等量关系正确列出等式。

学会运用加、减法以及乘、除法之间的关系解一步计算的方程。

理解和掌握简单方程的求解过程,并能正确 书写解题格式与检验方法。

2. 教学重点/难点

学会运用加、减法以及乘、除法之间的关 系来求方程的解。

能够根据事物间的等量关系正确列出等式。

3. 教学用具

教学课件

4. 标签

教学过程

一、新课导入

师:同学们,你们知道“曹冲称象”的故事吗?……那么,在当时的情况下,聪明的曹冲是怎么来称出大象的体重的呢?(生答)

师(归纳):由于大象的重量就相当于那堆石头的重量,因此,只要把那些石头的重量相加,我们就能得到大象的体重了。(媒体演示)

出示等量关系式: 石头的总重量 = 大象的体重

二、新课探索

探究一 认识方程

1. 出示(课本45页的图1)

师:图上的天平处于什么状态?

生:平衡状态

师:天平平衡说明什么?

生:天平左边物体的重量=天平右边物体的重量

师:我们能否把图中的数字和字母带入等量关系式呢?

生:2x=250

2. 出示(课本45页的图2)

师:小丁丁的身高和爸爸一样吗?

生:不一样

师:那么如果他像图上那样站在木凳上呢?

生:那就一样高了。

师:因此我们可以得到的等量关系是?

生:小丁丁的身高+木凳的高度=爸爸的身高

师:如果小丁丁的身高为ycm,凳子的高度为625px,爸爸的身高为4325px 。那么,把这些数字和字母带入等量关系式,我们可得到的式子为?

生:y+25=173

3. 出示(课本45页的图3)

师:你们能看图找到 等量关系式以及相对应的字母式吗?

同桌讨论完成

学生汇报:上排积木的长度=下排积木的长度

所以:x+7=12 3y=12

4. 师生互动,交流总结

出示一些算式请学生分类,并说说你是根据什么进行分类的

2x=250 9 0=810÷ 9 x+7=12 3y=12

67-33=34 y+25=173 3×2=6 5+17=18+4

根据在算式是否有未知数(或字母)来进行分类。

⑴ 2x=250 y+25=173 x+7=12 3y=12

⑵ 3×2=6 5+17=18+4 67-33=34 90=810÷9

师:仔细观察这两组算式,它们有什么共同点和不同点?

[第一组算 式都有未知数(或字母),而第二组算式却没有未知数(或字母)。]

小结:像这样含有未知数的 等式叫方程。

跟进练习:判断下列哪些是方程。

5x-15 32+67=79 24+8=40 -8 7y=42

750÷15=50 4x+12=20

探究二 解方程

1. 出示例题:求出x+3=9中的未知数x

⑴ 师:先请一个同学来说一说求x的方法。(生口述)现在我们把求x的过程用正确的格式表示出来:

x+3=9

解:

x=9-3, 思考: 一个加数 = 和 - 另一个加数

x=6.

⑵ 师:(指例题)我们把使得方程左右两边相等的未知数的值,叫做“方程的解”,像上面,X = 6就是方程x + 3 = 9的解。而我们求方程的解的过程,叫做“解方程”。

⑶ 师:现在我们在回到前面来看看刚才我们求出的未知数的值是不是方程的解呢?

⑷ 学生对练习一进行口头验算。

跟进练习:

1、解方程

10+x=100 x-32=64 x÷11=12

3x=54 70-x=61 72÷x=3

(学生练习)

1. 练一练:对上面的方程进行检验。

(学生互查)

l 说说你是如何进行检验的。

1. 出示例2:解方程:6x=19.8

师:你们愿意再来试一试吗? (学生同桌合作完成)

汇报板书:

6x=19.8

解: x =19.8÷6, 思考:一个因数=积 ÷ 另一个因数

x=3.3.

2. 师:要想知道我们求出的解是否正确,怎么办呢?我们可以用“代入法”进行检验。(讲述方法和格式)

出示:

检验:

把x=3.3代入原方程6x=19.8

方程左边=6×3.3=19.8

方 程右边=19.8

因为左边=右边

所以,x=3.3是原方程6x=19.8的解。

课堂练习:

解方程:

9x=72 51-x=23 624÷x=6 x-82=39

课堂小结

三、本课小结

1. 含有未知数的等式叫做方程;

2. 使方程左右 两边相等的未知数的值,叫做方程的解 。

3. 求方程的解的过程,叫做“解方 程”。

课后习题

四、课后作业

练习册P51

简易方程五年级教案内容11篇


为了给您提供满意的服务,我们不断调整和完善这份“简易方程五年级教案”,希望您能够喜欢。同时,我们也期待您在这里获取所需要的知识。感谢您的阅读和支持。教案和课件都是老师需要精心准备的重要工作,这需要老师耗费大量时间来完成。教案充当着课堂教学的桥梁,起着至关重要的作用。

简易方程五年级教案【篇1】

教学目标

1.使学生初步理解方程方程的解和解方程的含义。

2.初步掌握解简易方程的方法并会检验。

教学重点

使学生初步掌握解方程的方法和书写格式。

教学难点

帮助学生建立方程的概念,并会应用。

教学设计

一、复习准备

(一)口算下面各题。

30+()=50()2=10

(二)列式。

1.一支钢笔元,2支钢笔多少元?

2.与4的和。

二、新授教学

(一)方程的意义

1.介绍天平

这是一架天平、可以用来称物品的重量。当天平的指针指在标尺中间时,表示天平平衡,即天平两端的重量相等。

2.引出方程

(1)出示图片:天平1

教师提问:这个天平平衡吗?说明了什么?谁会用等式表示?

(2)出示图片:天平2

教师提问:请同学们观察,天平平衡说明了什么?怎样用式子表示?

教师板书:20+?=100

教师说明:这个未知数?,如果用来表示就可以写成20+=100.

(3)出示图片:篮球

教师提问:这幅图是什么意思?怎样用含有未知数的等式表示?

教师板书:

3.方程的意义。

教师提问:观察上面三个等式回答问题。这三个等式有什么相同点和不同点?

相同点:都是相等的式子。

不同点:第一个等式不含有未知数,第二个和第三个等式含有未知数。

教师板书:象这种含有未知数的等式,叫方程。

教师强调:含有未知数、等式

4.思考:方程和等式之间到底是什么关系呢?

(1)出示图片:等式与方程

(2)小结:所有的方程都是等式,但是等式不一定都是方程。

(二)教学例1

1.方程的解

教师提问:在中,等于多少时方程左边和右边相等?

在中,等于多少时方程的左边和右边相等?

教师说明:使方程左右两边相等的未知数的值,叫做方程的解。

如:是方程的解

是方程的解

2.解方程

教师板书:求方程的解的过程叫做解方程。

3.教学例1

简易方程五年级教案【篇2】

教学内容:教材第91页例2、练一练,练习二十第3~6题。

教学要求:

1.使学生学会解oJ土凸=c(凸表示两数之积)的方程,能正确

求出方程的解。

2.进一步培养学生分析推理的能力和良好的学习习惯。

教学过程:

一、复习引新

1.复习解方程。

做第9l页复习题。

指名两人板演,其余学生做在练习本上。

2.引入新课。

,出示例2的方程。

提问:这个方程与刚才解的方程有什么不同的地方?

说明:这个方程比刚才解答的方程要多一步计算,这就是今

天要学习的解简易方程。(板书课题)

二、教学新课

教学例2。

提问:这道题是6J减去什么的差等于207你觉得这道题开

始要怎样解?为什么先算6.8乘27

指名学生板演解方程,其余学生做在练习本上。

集体订正,结合提问学生是怎样想的。

让学生在练习本上写出检验过程,检查方程的解对不对。

提问:怎样检验方程的解?

指出:解这个方程时,按运算顺序能先算的一步就先算出来,

然后再求方程的解,其中又把6J暂时看做一个数。

[评析:这里在引出例题时,让学生通过与已经学过的方程对

比,认识其不同之处,有利于引发学生的思路。在学生初步具有解

法思路后,让学生自己解方程,并说明理由,这有利于培养学生主

动学习的能力和分析推理的能力。]

三、巩固练习

1.做练一练第1题。

指名两人板演,其余学生分两组,每组一题做在课本上。

集体订正,提问先算什么,再把什么看做一个数来解方程的。

2.做练--练第2题。

指名两人板演,其余学生分两组,每组一题做在课本上。

3.做练--练第3题。

小黑板出示。

学生依次检查每一题,说明各错在哪里。结合说明一个数减

几个J,要把几个J看做一个数,只有几个J减几个J时才能先算

出得多少个工;在解方程时,还要正确应用四则运算算式中各部分

之间的关系式,这是解方程的依据。

让学生改在课本上,口答方程的解。

4.做练习二十第4题。

学生分组练习,每组一题做在练习本上。

提问:第一个方程是什么?按怎样的顺序解方程的?

第二个方程是什么?按怎样的顺序解方程的?

指出:像第一个方程,先要求出是几个工等于什么,再求方程

的解;像第二个方程,要按运算顺序,先算的一步能先算,就要先算

出来,再求方程的解。

5.做练习二十第6题。

出示线段图。

提问:第(1)题表示的是什么意思?(3J加2J的和是95)可

以列怎样的方程?(板书)

第(2)题表示的是什么意思?(2个12加3个工的和是87)怎

样列方程?(板书)

指出:方程一定要根据题意表示的数量之间的相等关系

来列。

四、课堂小结

这节课我们学习的方程可以这样解:按运算顺序,要先算的

能算出结果就把这一步先求出来,再求方程的解;不能先算的就把

这一步看做一个数,去一步一步求方程的解。

简易方程五年级教案【篇3】

教学目标:

1、初步学会如何利用方程来解应用题

2、能比较熟练地解方程。

3、进一步提高学生分析数量关系的能力。

教学重难点:找题中的等量关系,并根据等量关系列出方程。

教学准备:课件

教学过程:

一、复习导入

解下列方程:

x+5.7=10x-3.4=7.61.4x=0.56x4=2.7

学习方程的目的是为了利用方程解决生活中的问题,这节课就来学习如何用方程来解决问题。板书:解决问题。

二、新知学习。

1、教学例3.

(1)出示题目。(课件)

出示洪泽湖的图片,介绍到:洪泽湖是我国五大淡水湖之一,位于江苏西部淮河下游,风景优美,物产丰富。但每当上游的洪水来临时,湖水猛涨,给湖泊周围的人民的生命财产带来了危险。因此,密切注视水位的变化情况,保证大坝的安全十分重要,如果湖水到了警戒水位的高度,就要引起高度警惕,超出警戒水位越多,大坝的危险就越大。下面,我们来就来看一则有关大坝水位的新闻。谁来当主持人,为大家播报一下。

今天上午8时,洪泽湖蒋坝水位达14.14m,超过警戒水位0.64m.

我们结合这幅图片来了解一下,课件演示警戒水位、今日水位,及其关系。

同学们想想,警戒水位是多少米?

(2)分析,解题。

根据刚才所了解的信息,这个问题中有哪几个关键的数量呢?警戒水位、今日水位、超出部分。

它们之间有哪些数量关系呢?(板)

警戒水位+超出部分=今日水位①

今日水位警戒水位=超出部分②

今日水位超出部分=警戒水位③

同学们能解决这个问题吗?

学生独立解决问题。

(3)评讲、交流。(侧重如何用方程来解决本题。)

学生展示,可能会是算术方法,也可能列方程。对于算术方法,给予肯定即可。

学生列出的方程可能有:

①x+0.64=14.14②14.14﹣x=0.64③14.14﹣0.64=x

每一种方法,都需要学生说出是根据什么列出的方程。

如第一种,学生根据的是警戒水位+超出部分=今日水位这一数量关系(由于左右相等,也称等量关系)所得到的。解出方程,注意书写格式,并记着检验(口头检验)。

对于第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为什么呢?因为x是被减去的,因此,在小学阶段解决问题,列的方程,未知数前最好不是减号。

对于第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个x。

(4)小结

在解决问题中,我们是怎样来列方程的?

将未知数设为x,再根据题中的等量关系列出方程。

三、练习。

(5)解决做一做中的问题。

从题中知道哪些信息?有哪些等量关系?

用方程解决问题,四人小组交流方法,评讲,特别提醒:别忘了检验。

(6)独立完成练习十一中的第8题。

四、课堂小结

这节课学习了什么?(板书课题:列方程解应用题)还有什么问题?

简易方程五年级教案【篇4】

教学内容:方程的意义和解简易方程(一)(教材第96~97页的内容、例1和做一做,练习二十四第1~5题。)

教学要求:使学生初步认识方程的意义,知道方程的解和解方程的区别以及解简易方程的一般步骤。

教学重点:掌握解方程的依据、步骤和书写格式。

教学难点:方程的解和解方程两个概念间的联系及区别。

教学用具:简易天平、砝码、标有20、30和?的方木块、

画有P.97页上图的挂图、小黑板或投影片若干张。

教学过程:

一、激发

根据加法与减法、乘法与除法的关系,说出求下面各数的方法。

1.一个加数=()

2.被减数=()

3.减数=()

4.一个因数=()

5.被除数=()

6.除数=()

二、尝试

1.方程的意义

(1)出示简易天平,将天平、砝码摆在讲台上,这是一台天平,它是用来用来称物品的重量的。怎样用它来称物品的重量呢?在天平的左边盘内放置所称的物品,右边盘内放置砝码。当天平的指针在标尺中间时,表示天平平衡,即天平两端的重量相等。砝码上所标的重量就是所称物品的重量。

(2)师演示如何用天平称物品。(称出的物品同P.105页上图。)

(3)问:那么,使天平平衡的条件是什么呢?(天平左、右两边的重量相等。)天平的指针指在什么地方才能说明天平是平衡的?(指针必须指在刻度线的中央。)

(4)教师强调说明:天平两边放上重量相等的物品时,天平就平衡。反过来说,天平保持着平衡,就说明天平两边所放的物品重量相等。

(5)问:那么,我们能不能用式子来表示出这种平衡的情况呢?试试看!先让学生自由地说一说,根据学生的发言,教师写出算式20+30=50。

问:20+30=50是一个什么式子?(等式。)

(6)什么叫等式呢?(等式表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。)

(7)师改变天平上所放的物品和砝码,使之与P.105页的下图相同。引导学生观察、思考并回答下列问题:

①图中的天平是否平衡?说明了什么?(图中的天平是平衡的,因为指针指在天平刻度线的中央。说明天平左、右两边的重量相等。)

②怎样用式子来表示这种平衡的情况呢?再试试看!

板书;20十?=100。

③?是不是要求的未知数?我们以前学习过,一般用什么

字母表示未知数?(师生共同把等式20+?=100改写成20+x

=100)

④20+x=100是一个什么式子?(也是一个等式。)

⑤这道等式与20+30=50有什么不同?(这是一个含有未知数的等式。)

⑥左盘中这个标有?的方木块应该是多少克,才能使天平保持平衡呢?这就是这个等式中的x是多少才能使等式左、右两边正好相等呢?可以是一个随便的重量吗?

生自由说,师总结:这里的x所表示的未知重量不是随便确定的,它必须是使天平保持平衡的重量,也就是说未知数所代表的数值必须使等号左、右两边正好相等。

⑦同学们观察一下天平,想一想,x应该代表什么数呢?(因为左边未知的方块重80克才能使天平平衡,所以x=80。)

师在20+x=100的右边板书:x=80。

(8)师出示P.106页上图。引导学生观察,启发学生思考下列问题:

①这幅图的图意是什么?(这幅图告诉我们,每个篮球的价钱是x元,3个篮球的总价是234元。)

②每个篮球的价钱是x元,3个篮球的总价还可以怎样表示?(还可以表示为3x元。)

③谁能根据图意写出一个等式来?(3x=234。)

④想一想,这个等式有什么特点?(这也是一个含有未知数的等式。)

⑤当x等于多少时,这个等式中的等号左、右两边正好相等?(当x=78时,这个等式中的等号友、右两边正好相等。)

师在3x=234的右边板书:x=78。

(9)引导学生归纳总结出方程的意义及方程与等式之间的关系。师指出:像这样一些等式:20+x=100、3x=234、x-8=5、x6=7叫做方程。

师再板书几个一般的等式,形成如下的板书:

方程一般等式

20+x=10020+80=100

3x=234378=234

x-8=513-8=5

x6=7426=7

师引导学生观察上面的等式,思考并回答下面的问题。

①方程是不是一种等式?(是等式。)

②方程与一般的等式相同吗?你发现方程有什么特点?

③谁能说一说什么是方程?先指名让学生说,然后师归纳总结。板书:含有未知数的等式,叫做方程。

方程与等式之间有什么关系呢?我们可以用这样的图来表示。师请学生观察这幅图,并说一说它的含义。

根据学生的发言,教师加以引导,使学生明确:等式包括方程,等式的范围比方程的范围大;一切方程都是等式,但等式不一定是方程。

(10)练一练:做一做。

2.解简易方程(一)。

(1)理解方程的解和解方程的含义。

①请学生阅读书上的内容,回答什么叫方程的解?什么叫做解方程。

②指名回答,这两个概念有什么区别?(师讲解:方程的解指的是一个数,它表示未知数等于的多少时使方程中等号的左右两边相等。例如,当x=80时,20+x=100的等号左右两边相等。而方程的解是指求出这个未知数的演算过程。我们以前做过的一些求未知数的题目,实际上就是解方程。方程的解是解方程的过程中的一部分,它们既有联系,又有区别。)

(2)出示例1:解方程x-8=16。

①x在这道减法算式中相当于什么数?(被减数)

②根据四则运算各部分之间的关系,被减数应该怎么求?

③解方程的步骤和书写格式是怎样的?

师讲解:首先要写解字,然后根据四则运算之间各部分的关系及运算定律进行思考;x-8=16,根据被减数等于减数加差,所以x=16+8,x=24。运算的根据可以不写,每个等式占一行,各行的等号要对齐。求出x的值后,还要进行检验,以判断它是不是原方程的解。

接着,师一边板书,一边指出检验的方法及书写格式。并且强调,以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。

(3)练一练:做一做。

三、应用

练习二十四第1、2题。

教师巡视,注意学生解方程的过程、书写格式及检验的过程是否符合规定,发现错误,及时纠正。

四、体验

这节课我们学习了什么?

(方程的意义和解简易方程的步骤和书写格式。知道了判断一个式子是不是方程,先要看它是不是等式,再看它是否含有未知数。解方程时,先耍弄清x在算式中相当于什么数,再根据四则运算之间的关系求出方程的解。书写时,要注意先写解字,上、下行的等号要对齐,注意不能连等。)

五、作业

练习二十四第3、4、5题。

简易方程五年级教案【篇5】

教材分析:

“用字母表示数”是义务教育教科书人教版五年级上册第五单元《简易方程》中的第一部分内容。这部分内容是在学生已经学习了整数的加、减、乘、除四则运算以及常见的数量关系和几何计算公式的基础上进行的的。它是今后进一步学习简易方程、周长、面积、体积等字母公式的基础。它是学生学习数的概念方面的一次重大发展,是学生有算术到代数的重要转折点,也是学生进一步学习代数知识的基础。

学情分析:

1.学生已经接触过一些用字母表示的计算公式和预案算律,对简单的实际问题中的基本数量关系也比较熟悉,学生用字母表示数的必要性和作用已有了一定的感性认识,有一定的观察、分析、概括能力,这些都有助于学生的学习。

2.学生已有生活经验和学习该内容的经验:学生对日常生活中使用字母表示电视台标、地名、组织等给人们带来许多方便的现象有一定的了解。

3.学生学习该内容的困难:学生是第一次接触用字母表示数的方法,从熟悉的算式引出含有字母的式子,从具体的数到用字母表示数是认识上的一次飞跃,对学生来说是相当困难的,也非常不适应。因此,教学中应充分利用现实情境,让学生再体会数量关系的基础上,理解用字母表示数的意义,体会用字母表示数的优越性。

教学目标:

1.在现实情境中,学习和理解字母表示数的意义,能结合具体情境,利用字母表示数进行表达与交流,体会用字母表示数的简洁性。

2.在探索数量关系的过程中,进一步发展学生数感、符号感。

3.通过数学活动来激起学生的学习热情,培养学习兴趣。

教学设计特点:

1、在现实情境中体验和理解用字母表示数的意义。

利用向袋子里放笔的情境,让学生感受用字母表示数的必要性。

2、在对比交流中,深化理解概念。

利用前后袋子笔的数量关系,理解用字母表示数的意义。

教学过程

一、导入新课,提出问题

直接出示课题。提问:你在哪些地方见过用字母表示的?

学生举例,教师小结:在数学中也经常用字母表示数,看屏幕上“用字母表示数”,你能提出与这节课有关的问题吗?

二、互动探究

1.用字母表示数

咱们班一共有()人,老师带来了()笔。

情境一:现在老师在袋子里中放笔,向一号袋子里放1支,用数字1表示。放2支,用数字2表示,现在请一名学生偷偷的放笔后,老师放笔,你知道是几支笔吗?

预设:学生用数字猜测

提问:你们能确定这些答案是正确的吗?

预设:学生用字母表示

追问:你是怎么想的?

讨论分析:我们不确定里面有几支笔,但对于a你知道些什么(引出范围)

2.用字母表示数量关系

情境二:向袋子里加2支笔

提问:现在你能确定里面有几支笔吗?那你怎么表示呢?

预设:a

反馈:用a表示合适吗?

另一个字母b

反馈:与原来袋子不同了,不能用a表示(不同的未知数用不同的字母表示)

a+1

比较分析:b和a+1哪个更好

反馈:a+1既能表示2号袋子里的笔,又能表示比1号袋子多了一支笔

练习:天凝小学503班男生人数为a人,女生人数为a+6人,你能得到哪些数学信息呢?

爸爸比小红的年龄大30岁,用你自己喜欢的方式表示爸爸和小红的年龄。

假设小红的年龄是10岁,你知道爸爸的年龄吗?

3.用字母表示计算公式

每支笔为2元,你知道老师买这笔需要多少钱吗?全校所有需要的笔呢?(2n)

刚才我们用2n表示全校所有笔的价钱,4m你认为可以解决什么问题呢?

三、课堂小结

简易方程五年级教案【篇6】

教学内容:教科书第113~114页的例5、例6,完成做一做中的题目和练习二十八的第1~4题。

教学目的:使学生初步学会axbx=c这一类简易方程的解法,培养学生分析、推理能力和思维的灵活性。

教具准备:

教学过程:

一、复习。

投影出示复习题:

(1)2x=24.42x+10=24.4

(2)2x+25=24.42x-25=24.4

每做完一题,让学生说一说解题的根据是什么。

二、新授。

1.教学例5。

小黑板出示一道一般应用题:一个工地用汽车运土,每辆车运5吨。一天上午运了4车,下午运了3车。这一天一共运土多少吨?

请一名学生读题,投影片出示下图。

指名学生说出题里的已知条件,然后学生在练习本上独立解答。做完后,根据学生回答板

解法一:54+53解法二:5(4+3)

问:如果每辆车运5.5吨该怎样解答呢?(将图中的5吨改为5.5吨。)

板书:解法一:5.54+5.53

解法二:5.5(4+3)

问:如果每辆车运x吨该怎样解答呢?(将图中的5吨改为x吨。)

根据学生回答板书:

解法一:x4+x3

解法二:x(4+3)

师:省略乘号,x4+x3写成4x+3x;

x(4+3)写成(4+3)x

板书:解法一:4x+3x解法二:(4+3)x

问:那么4x+3x的计算结果是多少呢?我们观察一下图上的内容,结合上面的两种解法,想一想4x表示什么?(表示4个x。)3x表示什么?(表示3个x。)4x+3x就是(4+3)个x,也就是7x。所以4x+3x=7x。这一天一共运了7x吨。

问;在上面的计算中,4x+3x=(4+3)x实际应用了什么定律?(乘法的分配律)

想一想,如果我们把问题改成上午比下午多运多少吨?该怎样列式?(指名学生列出算式:4x-3x或(4-3)x。4x-3x计算结果是多少呢?(引导学生思考:4个x减3个x就是(4-3)个x,所以4x-3x=x。这一天上午比下午多运x吨。)

指导看书,课本第113页例5。

2、课堂练习。

(1)P113做一做

着重讨论:如:7b+b就是7个b加1个b,等于(7+1)个b,是8个b即8b)

(2)练习二十八第1题。着重讨论b-0.4b=0.6b

3、教学例6。

投影出示:

让学生认真观察图上的内容,看图列方程。指名学生回答,教师板书:7x+9x=80

学生在练习本上做,教师巡视,发现问题,及时纠正。指名学生说一说解题过程,教师根据学生回答板书,再让学生说一说检验过程。

指导看书,课本114页,例6。

4.课堂练习。

教科书114页做一做。

5.小结。

我们今天学习的解方程与以前的有什么不同?(相加或相减的两个数都含有未知数x。)解这样的方程应怎样做呢?(运用乘法分配律,把未知数前面的数先加、减,得出一个含有未知数的数,再求出未知数x的值。)

三、巩固练习。

做练习二十八第2题第一栏,第3、4题。

课后小结:

简易方程五年级教案【篇7】

教学要求:

使学生进一步掌握用字母表示数,求含有字母的式子的值,以及解含有二、三步计算的简易方程的方法,并能正确地设未知数列方程解文字叙述题。培养和提高学生分析、推理及解方程的能力。

教学步骤:

一、基础训练

1.教材第116页练习二十八第8题。

2.教材第116页练习二十八第6题。

二、练习指导

1.揭示课题,巩固练习(板书)。

2.指导练习。

(1)解方程,请说明解题思路:

①4x一2.5=1.1②17+x一5=18③1215一4x=112

④6.2x一3.5x=54⑤x+0.36x=13.6⑥5x+7x一3=9

让学生观察思考,进行讨论:

题①把4x看作一个被减数进行转化得出:4x=1.1+2.5

题②可把17+x看作一个被减数转化为:17+x=18+5

题③先整理后得180一4x=112,再把4x看成一个减数转化。

题④先求出剩下的X的个数把左边式子化简即可转化为最简单的方程:2.7X=54。

题⑤先求共有几个X,把左边化简得:1.36X=13.6(X表示1x即1个X)

题⑥先处理左边为12x一3=9,再把12x看作被减数进行转化。

通过以上多种转化方法的实施,最终都使一个多步的方程转为最简单的一步方程。这就是解方程的基本思路。

(2)教材116页练习二十八:

①第7题,每小题要求把x的值代人两个式子分别求出数值,再同①右边的数比较大小。练习时可以先以第1小题第一个式子为例,让学生说说解题方法及思考过程,其余的让学生独立完成。

②第9题,题目的问法具有一定的实际意义,解题方法也比较灵活。有助于培养学生灵活运用所学的知识解决简单实际问题的能力。

算出了什么就能知道能不能按时完成任务?教师可引导学生独立思考,这道题有哪些不同的解决方法,要鼓励学生想出不同的方法,然后共同讨论,订正:

解法一:可求出实际完成任务的天数,再和计划天数比较。

1200(56016)34.3天,34.3<40,说明能按时完成任务。

解法二:可以分别求出计划的日产量和实际的日产量,然后加以比较。

120xx0=3056016=3530<35,说明能按时完成任务。

解法三:先求出实际日产量,然后乘以40,得出的积与计划产量比较。

5601640=1400个1400>1200,说明能按时完成任务。

③第10题,培养学生发散性思维,答案多种多样,且有无数种。对能动脑筋编出二、三步运算方程的学生要给予表扬。对中差生可引导他们参照已学过的类型编,并要求学生通过检验,判别所编的方程是否符合要求。

④第11题。填人相同的数,只要把□换成X,就很容易求解。从而使学生体会到用字母表示数,便于分析问题和解决问题。

⑤第12题:方程两边都出现了X,怎么求解?借助天平平衡的图示,容易想到:两边各拿走一个X,可得到2X=100求解。也可把等号右边看作两个加数,根据和减去一个加数得另一个加数,得3X一X=100,再求解。

三、课堂练习

教材第115一116页练习二十八第5、6题。

作业辅导

1.教材116页练习二十八第7、9、10、11、12题。

2.找一找右边的方程是从左边到右边的哪个方程转化而来的,把它们用线连起来。

4x十5=197x=13十8

7x一8=134X=19一5

1.3x3=2.65x=18

15x=81.3x=2.63

2.54一4x=14.8x=6.6+3

4.8x一3=6.64x=2.54一1

0.7x+3x=7.43x=12+3

5x一2x一3=123.7x=7.4

3.一匹布长36米,裁了10件大人衣服和8件儿童衣服,每件大人衣服用布2.4米,每件儿童衣服用布多少米?

先用算术方法解答:

如果设每件儿童衣服用布x米,完成下列方程:

+=36

板书设计:

解简易方程

依次出示各习题

教后感:

简易方程五年级教案【篇8】

一.学生学习情况分析

本学期,我所教五年级两个班的学生数学成绩一直以来都存在着较严重的问题:基础不扎实甚至偏差,学习习惯没有培养起来;学习主动性欠缺,方法单一,疏于动脑;计算不准确,综合分析、概括和归纳的能力较为薄弱,在实际应用中对数量关系找得不准确,理解不到位,前后知识的联系不够紧密;对于知识规律性的探索和应用上欠灵活,掌握得不够牢固,成绩很不理想。

通过半个学期的教学,两个班学生的整体精神面貌有了较大改进,计算能力和解决问题的能力也有了不小的提高;在第一单元的考试很不理想的情况下,两个班的学生能积极的端正学习态度,绝大部分学生参加了学校的补差辅导班,在一边学习新知识一边复习旧知识的基础上,第二单元的检测有了较大的进步;不少后进生开始学数学、爱数学,学习的兴趣大为增强,良好的学习习惯逐渐形成培养起来。

本单元的知识与前后知识的联系较为紧密,在以往教学中,已逐渐让学生认识和体会方程的意义和解法,如利用课本35页第12题、46页第九题、53页19题等题目的练习。在教学第四单元前,为了更好地了解和促进学生的计算能力,并加强对解简易方程的计算,举行了一次口算能力的前测,在40道检测题中,有2人全对,占总人数的2%;有22人对35题以上,占总人数的25%;两个班的总平均分为26.8分。但是,在以往的教学中,学生习惯了用算术法思考,总想着用条件求问题,未能淡化条件,建立与问题相关的最明显的相等关系;因此在列方程解应用题的教学中,要加强分析等量关系的训练,结合线段图,写出等量关系,建立代数意识。

二、单元教学目标

1.知道用字母表示数的意义和和作用,能用字母表示数和常见的数量关系;能根据字母的取值,求含有字母的式子的值。

2.理解方程的意义,知道方程与等式,方程的解与解方程的区别,会解简易方程.

3.掌握列方程解应用题的一般步骤;能根据题意找出等量关系;能根据题目中数量关系的特点灵活选择用方程法或算术法来解应用题。

三、单元学习内容的前后联

四、教学重点、难点

教学重点:1.让学生知道用字母表示数的意义和作用,并能用字母表示数或常见的数量关系;能根据字母所取的值,求含有字母的式子的值。

2.理解:方程、方程的解、解方程的含义,会解简易方程并检验。

3.掌握列方程解应用题的一般步骤,并能正确列出方程。

教学难点:1.根据量与量之间的关系,理解含有字母的式子的的含义.

2.理解并掌握解含有二、三步运算的简易方程的方法与原理。

3.掌握根据题意找数量间相等关系的方法,并能正确列出方程解应用题。

五、单元评价要点

1.能知道用字母表示数的意义和作用,并能用字母表示数,用字母表示数量关系。

2.会根据字母的取值,求含有字母的式子的值。

3.能正确地解简易方程并检验。

4.能准确地找出等量关系,列出方程解应用题.

5.能根据题目中的数量关系的特点灵活选择解题方法。

六、各小节教学目标及课时安排

简易方程五年级教案【篇9】

教学要求:

一、使学生进一步掌握小数和复名数改写说的方法,巩固已学过的数的大小比较的方法。

二、使学生进一步掌握解简易方程的思路,以及整数、小数四则混合运算的顺序不,提高计算能力。

三、使学生进一步理解三步计算应用题的数量关系,加深认识应用题的解题思路,进一步掌握应用题的特点,灵活选择解题方法,更加明确列方程解应用题的步骤、方法;及其解题的关键和思路。

教学过程:

一、揭示课题

二、复习数的大小比较

1、名数的改写

3.2吨=()千克5厘米=()米

3吨50千克=()吨3.5吨=()吨()千克

提问:你是怎样想的?

2、做期初复习第7题。

三、复习解方程和混合运算

1、做期初复习第8题。

2、做期初复习第9题。

提问:按照运算顺序,这里的4道题要怎样算?有没有简便算法?

四、复习应用题

1、做期初复习第10题。

提问:这道题用什么方法解比较恰当?为什么?数量之间有怎样的相等关系?长方形的面积怎样计算?三角形的面积呢?你能列方程解答吗?

追问:你是根据什么来列方程的?你认为列方程解应用题的关键是什么?

2、做期初复习第11、12题。

让学生说说为什么用这种方法做,是根据什么数量关系列式的,每一步表示什么。

五、作业

期初复习第9题。

简易方程五年级教案【篇10】

教学目标

1.使学生初步理解方程方程的解和解方程的含义.

2.初步掌握解简易方程的方法并会检验.

教学重点

使学生初步掌握解方程的方法和书写格式.

教学难点

帮助学生建立方程的概念,并会应用.

教学设计

一、复习准备

(一)口算下面各题.

30+()=50()2=10

(二)列式.

1.一支钢笔元,2支钢笔多少元?

2.与4的和.

二、新授教学

(一)方程的意义

1.介绍天平

这是一架天平、可以用来称物品的重量.当天平的指针指在标尺中间时,表示天平平衡,即天平两端的重量相等.

2.引出方程

(1)出示图片:天平1

教师提问:这个天平平衡吗?说明了什么?谁会用等式表示?

(2)出示图片:天平2

教师提问:请同学们观察,天平平衡说明了什么?怎样用式子表示?

教师板书:20+?=100

教师说明:这个未知数?,如果用来表示就可以写成20+=100.

(3)出示图片:篮球

教师提问:这幅图是什么意思?怎样用含有未知数的等式表示?

教师板书:

3.方程的意义.

教师提问:观察上面三个等式回答问题.这三个等式有什么相同点和不同点?

相同点:都是相等的式子.

不同点:第一个等式不含有未知数,第二个和第三个等式含有未知数.

教师板书:象这种含有未知数的等式,叫方程.

教师强调:含有未知数、等式

4.思考:方程和等式之间到底是什么关系呢?

(1)出示图片:等式与方程

(2)小结:所有的方程都是等式,但是等式不一定都是方程.

(二)教学例1

1.方程的解

教师提问:在中,等于多少时方程左边和右边相等?

在中,等于多少时方程的左边和右边相等?

教师说明:使方程左右两边相等的未知数的值,叫做方程的解.

如:是方程的解

是方程的解

2.解方程

教师板书:求方程的解的过程叫做解方程.

3.教学例1

例1.解方程-8=16

(1)教师提问:解方程先写什么?根据什么计算?

(2)教师板书:

解:根据被减数等于减数加差

(3)怎样检查解方程是否正确?

检验:把代入原方程,

左边,右边

左边=右边

所以是原方程的解.

4.讨论:方程的解和解方程有什么区别?

三、课堂小结

今天你学到了哪些知识?什么叫方程?方程的解和解方程有什么区别?

四、巩固练习

(一)填空

1.含有未知数的()叫做方程.

2.使方程左右两边相等的(),叫做方程的解.

3.求方程的解的()叫解方程.

4.下面的式了中是等式的有();

是方程的有().

(二)判断,对的在括号里打,错的打.

1.等式都是方程.()

2.方程都是等式.()

3.是方程的解.()

4.也是方程.()

(三)选择正确答案填在括号内.

1.的解是()

①②

2.的解是()

①②

3.这个式子是()

①是方程②是等式③既是方程又是等式

4.是方程()的解

①②

五、课后作业

(一)解下列方程.(第一行两小题要写出检验过程.)

(二)用方程表示下面的等量关系,并求出方程的解.

1.加上35等于91.

2.的3倍等于57.

3.减3的差是6.

4.7.8除以等于1.3.

六、板书设计

解简易方程

含有未知数的等式叫做方程.使方程左右两边相等的未知数的值,叫做方程的解.

求方程的解的过程叫做解方程.

例1解方程

解:根据被减数等于减数加差

检验:把代入原方程,

左边,

右边,

所以是原方程的解.

教案点评:

该教学设计既重视过程,又重视结论;既重视知识的教学,又重视能力的培养。教师采取边讲边练、讲练结合的形式,为学生提供了更多的参与学习的机会。

简易方程五年级教案【篇11】

教学目标

1.使学生初步学会这一类简易方程的解法.

2.知道计算这类方程的道理.

教学重点

掌握解这一类方程的解法.

教学难点

理解这一类方程的算理.

教学过程

一、复习引入

(一)解下列方程

(二)乘法分配律的意义是什么?用字母怎样表示?

二、教学新授

(一)教学例5

例5.一个工地用汽车运土,每辆车运吨,一天上午运了4车,下午运了3车.这一天共运土多少吨?

1.读题,理解题意.

2.出示图片:示意图

3.教师提问:通过观察这幅图,你都知道了什么?

教师板书:

上午下午一天

4.教师说明:这个式子中含有两个未知数,这就是今天要学习的解简易方程.

板书课题:解简易方程.

5.学生分组讨论计算方法.

(1)表示4个,表示3个,一共是(4+3)个,也就是.

(2)可以根据乘法分配律把4和3相加,就是(4+3)个,.

6.教师说明:两种思考方法既有联系又有区别,最后的结果都是正确的.

教师板书:

=(4+3)=

答:这一天共运土吨.

7.思考:上午比下午多运的吨数是多少?怎样列式?

教师提示:1个,可以写成.1可以省略不写.

8.教师小结

一个式子中如果含有两个的加减法,可以根据乘法分配律和式子所表示的意义,将前面的因数相加或相减,再乘,计算出结果.

9.练习

(二)教学例6

例6.解方程

1.教师提问

(1)这个方程有什么特点?

(2)应该怎样解答?

2.学生独立解答.

教师板书:

解:

检验:把代入原方程.

左边=75+95=80,右边=80,

左边=右边

所以是原方的解.

3.练习

解方程3.6-0.9=5.4(要写出检验过程)

三、课堂小结

今天这节课你学到了哪些知识?解这类方程时要注意什么?

四、巩固练习

(一)填空.

1.表示()加(),一共是()个,得().

2.表示()减(),是()个,得().

3.().

(二)直接写得数.

(三)判断正误,对的画,错的画.

1.()

2.()

3.()

(四)用线段把下面每个方程与它的解连起来.

+13=33=0

3-=80=10

1.8=54=20

6.7-60.3=6.7=30

9+=0=40

五、布置作业

(一)解方程.(第一行两小题要写出检验过程)

苏教版数学五年级上册教案 简易方程(第五课时)


每一位任课老师,为了能够给学生给一个最简单易懂的教学思路。在上课前要仔细认真的编写一份全面的教案。在上课时遇到各种教学问题都能够快速解决,你们知道那些比较有创意的教学方案吗?下面是由小编为大家整理的苏教版数学五年级上册教案 简易方程(第五课时),供大家参考,希望能帮助到有需要的朋友。

教学目标:

1、初步学会如何利用方程来解应用题

2、能比较熟练地解方程。

3、进一步提高学生分析数量关系的能力。

教学重难点:找题中的等量关系,并根据等量关系列出方程。

教学准备:课件

教学过程:

一、复习导入

解下列方程:

x+5.7=10 x-3.4=7.6 1.4x=0.56 x÷4=2.7

学习方程的目的是为了利用方程解决生活中的问题,这节课就来学习如何用方程来解决问题。板书:解决问题。

二、新知学习。

1、教学例3.

(1) 出示题目。(课件)

出示洪泽湖的图片,介绍到:洪泽湖是我国五大淡水湖之一,位于江苏西部淮河下游,风景优美,物产丰富。但每当上游的洪水来临时,湖水猛涨,给湖泊周围的人民的生命财产带来了危险。因此,密切注视水位的变化情况,保证大坝的安全十分重要,如果湖水到了警戒水位的高度,就要引起高度警惕,超出警戒水位越多,大坝的危险就越大。下面,我们来就来看一则有关大坝水位的新闻。谁来当主持人,为大家播报一下。

“今天上午8时,洪泽湖蒋坝水位达14.14m,超过警戒水位0.64m.”

我们结合这幅图片来了解一下,课件演示警戒水位、今日水位,及其关系。

同学们想想,“警戒水位是多少米?”

(2) 分析,解题。

根据刚才所了解的信息,这个问题中有哪几个关键的数量呢?警戒水位、今日水位、超出部分。

它们之间有哪些数量关系呢?(板)

警戒水位+超出部分=今日水位①

今日水位—警戒水位=超出部分②

今日水位—超出部分=警戒水位③

同学们能解决这个问题吗?

学生独立解决问题。

(3) 评讲、交流。(侧重如何用方程来解决本题。)

学生展示,可能会是算术方法,也可能列方程。对于算术方法,给予肯定即可。

学生列出的方程可能有:

① x+0.64=14.14 ②14.14﹣x= 0.64 ③14.14﹣0.64= x

每一种方法,都需要学生说出是根据什么列出的方程。

如第一种,学生根据的是“警戒水位+超出部分=今日水位”这一数量关系(由于左右相等,也称等量关系)所得到的。解出方程,注意书写格式,并记着检验(口头检验)。

对于第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为什么呢?因为x是被减去的,因此,在小学阶段解决问题,列的方程,未知数前最好不是减号。

对于第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个x。

(4) 小结

在解决问题中,我们是怎样来列方程的?

将未知数设为x,再根据题中的等量关系列出方程。

三、 练习。

(5) 解决“做一做”中的问题。

从题中知道哪些信息?有哪些等量关系?

用方程解决问题,四人小组交流方法,评讲,特别提醒:别忘了检验。

(6) 独立完成练习十一中的第8题。

四、 课堂小结

这节课学习了什么?(板书课题:列方程解应用题)还有什么问题?

人教版五年级上册《实际问题与方程(4)》数学教案


人教版五年级上册《实际问题与方程(4)》数学教案

第5单元 简易方程

第16课时 实际问题与方程(4)

【教学内容】:教材P79例5及练习十七第5、11、13题。

【教学目标】:

知识与技能:结合具体事例,学生自主尝试列方程解决稍复杂的相遇问题。

过程与方法:根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。

情感、态度与价值观:体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。

【教学重、难点】

重 点:正确寻找数量间的等量关系式。

难 点:创设情境提高学生的学习兴趣,并利用画线段图的方法帮助学生分析理解等量关系。

【教学方法】:创设情境、知识迁移、自主探究、合作交流。

【教学准备】:多媒体。

【教学过程】

一、复习导入

1.复习:我们学过有关路程的问题,谁来说一说路程、速度、时间之间的关系?

学生回答:路程=速度×时间。

2.引导:一般情况下,咱们算的路程问题都是向同一个方向走的。那么,想一想,如果两个人同时从一段路的两端出发,相对而行,会怎样?(相遇)

3.揭题:今天我们就利用方程来研究相遇问题。

二、互动新授

1.出示教材第79页例5。

引导学生观察,并思考题中的已知条件和要求的问题是什么?

学生自主回答:已知:小林和小云家相距4.5千米,小林的骑车速度是每分钟250m,小云的骑车速度是每分钟200m。问题:两人何时相遇?

2.质疑:求相遇的时间是什么意思?

引导学生明白:这里的路程已经不是一个人行驶了,而是两个人行驶的路之和。相遇的时间就是两个人共同行使全程用的时间。

3.活动:让学生上台走一走演示相遇,并用画线段图的方法分析数量关系。

出示线段图,教师讲解线段图:

先用一条线段表示全程,小林与小云分别从相对的方向出发,经过一段时间后相遇,也就是行完了全程。

追问:从线段图中,你知道了什么?

学生交流,汇报:小林骑的路程+小云骑的路程=总路程。

4.质疑:现在能不能求出小林骑的路程和小云的路程呢?

引导学生汇报:都不能求出,因为他们行驶的时间不知道。

再思考:他们两个行驶的时间一样吗?为什么?

学生交流后会发现:他们是同时出发,所以相遇时行驶的时间应该也是一样的,可以把他们行驶的时间都设为x 。

5.让学生根据分析,尝试列方程解答问题。

小组交流,汇报,教师根据学生的汇报板书(见板书设计):

引导学生对这两种方法进行比较:通过比较可以知道这两种方法是运用了乘法分配律。

引导小结:在相遇问题中有哪些等量关系?

板书:甲速×相遇时间+乙速×相遇时间=路程

(甲速+乙速)×相遇时间=路程

三、巩固拓展

出示例题:北京到上海的路程是1463千米,甲乙两列火车分别同时从北京和上海开出,相向而行。乙车每小时行87千米,经过7小时相遇。甲车每小时行多少千米?

指名学生读题,找出已知所求,引导学生根据复习题的线段图画出线段图,并解答。

解:设甲车平均每小时行x 千米。

87×7+7x =1463

x =122

答:甲车平均每小时行122千米。

四、课堂小结

师:这节课你学会了什么知识?有哪些收获?

引导总结:

1.通过画线段图可以清楚地分析数量之间的相等关系。

2.解决相遇问题要用数量关系:甲速×相遇时间+乙速×相遇时间=路程;(甲速+乙速)×相遇时间=路程。

3.列方程解求速度、相遇时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确地解答。

五、作业:教材第81、82页练习十七第5、11、13题。

【板书设计】:

实际问题与方程(4)

小林骑的路程+小云骑的路程=总路程

解:设两人x 分钟后相遇。

方法一:0.25x +0.2x =4.5 方法二: (0.25+0.2)x =4.5

0.45x =4.5 0.45x =4.5

0.45x ÷0.45=4.5÷0.45 0.45x ÷0.45 =4.5÷0.45

x =10 x =1O

答:两人10分钟后相遇。