88教案网

你的位置: 教案 > 初中教案 > 导航 > 中考数学专题:动态几何与函数问题

高中函数与方程教案

发表时间:2021-04-08

中考数学专题:动态几何与函数问题。

做好教案课件是老师上好课的前提,大家在认真准备自己的教案课件了吧。写好教案课件工作计划,才能规范的完成工作!你们会写多少教案课件范文呢?下面是小编精心收集整理,为您带来的《中考数学专题:动态几何与函数问题》,希望对您的工作和生活有所帮助。

中考数学专题8动态几何与函数问题

【前言】

在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。其中通过图中已给几何图形构建函数是重点考察对象。不过从近年中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。

【例1】

如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与轴负半轴上.过点B、C作直线.将直线平移,平移后的直线与轴交于点D,与轴交于点E.

(1)将直线向右平移,设平移距离CD为(t≥0),直角梯形OABC被直线扫过的面积(图中阴影部份)为,关于的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,且NQ平行于x轴,N点横坐标为4,求梯形上底AB的长及直角梯形OABC的面积.

(2)当时,求S关于的函数解析式.

【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。很多考生看到图二的函数图像没有数学感觉,反应不上来那个M点是何含义,于是无从下手。其实M点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N点表示移动距离超过4之后阴影部分面积就不动了。脑中模拟一下就能想到阴影面积固定就是当D移动过了0点的时候.所以根据这么几种情况去作答就可以了。第二问建立函数式则需要看出当时,阴影部分面积就是整个梯形面积减去△ODE的面积,于是根据这个构造函数式即可。动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。

【解】

(1)由图(2)知,点的坐标是(2,8)

∴由此判断:;

∵点的横坐标是4,是平行于轴的射线,

∴直角梯形的面积为:.....(3分)

(2)当时,

阴影部分的面积=直角梯形的面积的面积(基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系)

∴.

.

【例2】

已知:在矩形中,,.分别以所在直线为轴和轴,建立如图所示的平面直角坐标系.是边上的一个动点(不与重合),过点的反比例函数的图象与边交于点.

(1)求证:与的面积相等;

(2)记,求当为何值时,有最大值,最大值为多少?

(3)请探索:是否存在这样的点,使得将沿对折后,点恰好落在上?若存在,求出点的坐标;若不存在,请说明理由.

【思路分析】本题看似几何问题,但是实际上△AOE和△FOB这两个直角三角形的底边和高恰好就是E,F点的横坐标和纵坐标,而这个乘积恰好就是反比例函数的系数K。所以直接设点即可轻松证出结果。第二问有些同学可能依然纠结这个△EOF的面积该怎么算,事实上从第一问的结果就可以发现这个矩形中的三个RT△面积都是异常好求的。于是利用矩形面积减去三个小RT△面积即可,经过一系列化简即可求得表达式,利用对称轴求出最大值。第三问的思路就是假设这个点存在,看看能不能证明出来。因为是翻折问题,翻折之后大量相等的角和边,所以自然去利用三角形相似去求解,于是变成一道比较典型的几何题目,做垂线就OK.

【解析】

(1)证明:设,,与的面积分别为,,

由题意得,.

,.

,即与的面积相等.

(2)由题意知:两点坐标分别为,,(想不到这样设点也可以直接用X去代入,麻烦一点而已)

当时,有最大值.

(3)解:设存在这样的点,将沿对折后,点恰好落在边上的点,过点作,垂足为.

由题意得:,,,

,.

又,

.(将已知和所求的量放在这一对有关联的三角形当中)

,,

,,解得.

存在符合条件的点,它的坐标为.

【例3】

如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动。设运动的时间为t(秒)。

(1)设△BPQ的面积为S,求S与t之间的函数关系式;

(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?

(3)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由。

【思路分析】本题是一道和一元二次方程结合较为紧密的代几综合题,大量时间都在计算上。第三讲的时候我们已经探讨过解决动点问题的思路就是看运动过程中哪些量发生了变化,哪些量没有变化。对于该题来说,当P,Q运动时,△BPQ的高的长度始终不变,即为CD长,所以只需关注变化的底边BQ即可,于是列出函数式。第二问则要分类讨论,牢牢把握住高不变这个条件,通过勾股定理建立方程去求解。第三问很多同学画出图形以后就不知如何下手,此时不要忘记这个题目中贯穿始终的不动量—高,过Q做出垂线以后就发现利用角度互余关系就可以证明△PEQ和△BCD是相似的,于是建立两个直角三角形直角边的比例关系,而这之中只有PE是未知的,于是得解。这道题放在这里是想让各位体会一下那个不动量高的作用,每一小问都和它休戚相关,利用这个不变的高区建立函数,建立方程组乃至比例关系才能拿到全分。

【解析】

解:(1)如图1,过点P作PM⊥BC,垂足为M,则四边形PDCM为矩形。

∴PM=DC=12

∵QB=16-t,∴S=×12×(16-t)=96-t

(2)由图可知:CM=PD=2t,CQ=t。热以B、P、Q三点

为顶点的三角形是等腰三角形,可以分三种情况。

①若PQ=BQ。在Rt△PMQ中,,由PQ2=BQ2

得,解得t=;

②若BP=BQ。在Rt△PMB中,。由BP2=BQ2得:

即。

由于Δ=-704<0

∴无解,∴PB≠BQ…

③若PB=PQ。由PB2=PQ2,得

整理,得。解得(舍)(想想看为什么要舍?函数自变量的取值范围是多少?)

综合上面的讨论可知:当t=秒时,以B、P、Q三点为顶点的三角形是等腰三角形。

(3)设存在时刻t,使得PQ⊥BD。如图2,过点Q作QE⊥ADS,垂足为E。由Rt△BDC∽Rt△QPE,

得,即。解得t=9

所以,当t=9秒时,PQ⊥BD。

【例4】

在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).

(1)当t=2时,AP=,点Q到AC的距离是;

(2)在点P从C向A运动的过程中,求△APQ的面积S与

t的函数关系式;(不必写出t的取值范围)

(3)在点E从B向C运动的过程中,四边形QBED能否成

为直角梯形?若能,求t的值.若不能,请说明理由;

(4)当DE经过点C时,请直接写出t的值.

【思路分析】依然是一道放在几何图形当中的函数题。但是本题略有不同的是动点有一个折返的动作,所以加大了思考的难度,但是这个条件基本不影响做题,不需要太专注于其上。首先应当注意到的是在运动过程中DE保持垂直平分PQ这一条件,然后判断t可能的范围.因为给出了AC和CB的长度,据此估计出运动可能呈现的状态.第一问简单不用多说,第二问做出垂线利用三角形内的比例关系做出函数.第三问尤其注意直角梯形在本题中有两种呈现方式.DE//QB和PQ//BC都要分情况讨论.最后一问则可以直接利用勾股定理或者AQ,BQ的等量关系去求解.

解:(1)1,;

(2)作QF⊥AC于点F,如图3,AQ=CP=t,∴.

由△AQF∽△ABC,,

得.∴.

∴,

即.

(3)能.

①当DE∥QB时,如图4.

∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.

此时∠AQP=90°.

由△APQ∽△ABC,得,

即.解得.

②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.

此时∠APQ=90°.

由△AQP∽△ABC,得,

即.解得.

(4)或.

【注:①点P由C向A运动,DE经过点C.

方法一、连接QC,作QG⊥BC于点G,如图6.

,.

由,得,解得.

方法二、由,得,进而可得

,得,∴.∴.

②点P由A向C运动,DE经过点C,如图7.

【例5】

如图,在中,,,,分别是边的中点,点从点出发沿方向运动,过点作于,过点作交于

,当点与点重合时,点停止运动.设,.

(1)求点到的距离的长;

(2)求关于的函数关系式(不要求写出自变量的取值范围);

(3)是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.

【思路分析】本题也是一道较为典型的题。第一问其实就是重要暗示,算DH的长度实际上就是后面PQ的长度,在构建等腰三角形中发挥重要作用。算DH的方法很多,不用累述。第二问列函数式,最重要的是找到y(QR)和x(BQ)要通过哪些量练联系在一起.我们发现RQ和QC所在的△QRC和△BAC是相似的,于是建立起比例关系得出结果.第三问依然是要分类讨论,但凡看到构成特殊图形的情况都要去讨论一下.不同类之间的解法也有所不同,需要注意一下.

解:(1),,,.

点为中点,.

,.

,.

(2),.

,,

,,

即关于的函数关系式为:.

(3)存在,分三种情况:

①当时,过点作于,则.

,,

,,

,.

②当时,,

③当时,则为中垂线上的点,

于是点为的中点,

,.

综上所述,当为或6或时,为等腰三角形.

【总结】通过以上的例题,大家心里大概都有了底。整体来说这类函数型动态几何题是偏难的,不光对几何图形的分析有一定要求,而且还很考验考生的方程、函数的计算能力。解决这类问题需要注意这么几个点:首先和纯动态几何题一样,始终把握在变化中不动的量将函数的变量放在同一组关系中建立联系,尤其是找出题中是否有可以将这些条件联系起来的相似三角形组来构造比例关系。其次要注意特殊图形如等腰三角形,直角梯形等的分类讨论。第三要注意函数自变量的取值范围,合理筛选出可能的情况。最后就是在计算环节认真细心,做好每一步。

第二部分发散思考

【思考1】

如图所示,菱形的边长为6厘米,.从初始时刻开始,点、同时从点出发,点以1厘米/秒的速度沿的方向运动,点以2厘米/秒的速度沿的方向运动,当点运动到点时,、两点同时停止运动,设、运动的时间为秒时,与重叠部分的面积为平方厘米(这里规定:点和线段是面积为的三角形),解答下列问题:

(1)点、从出发到相遇所用时间是秒;

(2)点、从开始运动到停止的过程中,当是等边三角形时的值是秒;

(3)求与之间的函数关系式.

【思路分析】此题一二问不用多说,第三问是比较少见的分段函数。需要将x运动分成三个阶段,第一个阶段是0≤X≤3,到3时刚好Q到B.第二阶段是3≤X≤6,Q从B返回来.第三阶段则是再折回去.根据各个分段运动过程中图形性质的不同分别列出函数式即可.

【思考2】

已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.

(1)填空:菱形ABCD的边长是、面积是、高BE的长是;

(2)探究下列问题:

①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;

②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值.

【思路分析】依然是面积和时间的函数关系,依然是先做垂线,然后利用三角形的比例关系去列函数式。注意这里这个函数式的自变量取值范围是要去求的,然后在范围中去求得S的最大值。最后一问翻折后若要构成菱形,则需三角形APQ为等腰三角形即可,于是继续分情况去讨论就行了。

【思考3】

已知:等边三角形的边长为4厘米,长为1厘米的线段在的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点与点重合,点到达点时运动终止),过点分别作边的垂线,与的其它边交于两点,线段运动的时间为秒.

(1)线段在运动的过程中,为何值时,四边形恰为矩形?并求出该矩形的面积;

(2)线段在运动的过程中,四边形的面积为,运动的时间为.求四边形的面积随运动时间变化的函数关系式,并写出自变量的取值范围.

【思路分析】第一问就是看运动到特殊图形那一瞬间的静止状态,当成正常的几何题去求解。因为要成为矩形只有一种情况就是PM=QN,所以此时MN刚好被三角形的高线垂直平分,不难。第二问也是较为明显的分段函数问题。首先是N过AB中点之前,其次是N过中点之后同时M没有过中点,最后是M,N都过了中点,按照这三种情况去分解题目讨论。需要注意的就是四边形始终是个梯形,且高MN是不变的,所以PM和QN的长度就成为了求面积S中变化的部分。

这一类题目计算繁琐,思路多样,所以希望大家仔细琢磨这8个经典题型就可以了,中考中总逃不出这些题型的。只要研究透了,面对它们的时候思路上来的就快,做题自然不在话下了。

第三部分思考题解析

【思考1解析】

解:(1)6.

(2)8.

(3)①当0时,

②当3时,

=

③当时,设与交于点.

(解法一)

过作则为等边三角形.

(解法二)

如右图,过点作于点,,于点

过点作交延长线于点.

【思考2解析】

解:(1)5,24,

(2)①由题意,得AP=t,AQ=10-2t.

如图1,过点Q作QG⊥AD,垂足为G,由QG∥BE得

△AQG∽△ABE,∴,

∴QG=,…………………………1分

∴(≤t≤5).

……1分

∵(≤t≤5).(这个自变量的范围很重要)

∴当t=时,S最大值为6.

②要使△APQ沿它的一边翻折,翻折前后的两个三角形组

成的四边形为菱形,根据轴对称的性质,只需△APQ为等腰三角形即可.

当t=4秒时,∵点P的速度为每秒1个单位,∴AP=.

以下分两种情况讨论:

第一种情况:当点Q在CB上时,∵PQ≥BEPA,∴只存在点Q1,使Q1A=Q1P.

如图2,过点Q1作Q1M⊥AP,垂足为点M,Q1M交AC于点

F,则AM=.由△AMF∽△AOD∽△CQ1F,得

,∴,

∴.

∴CQ1==.则,∴.

第二种情况:当点Q在BA上时,存在两点Q2,Q3,

分别使AP=AQ2,PA=PQ3.

①若AP=AQ2,如图3,CB+BQ2=10-4=6.

则,∴.

②若PA=PQ3,如图4,过点P作PN⊥AB,垂足为N,

由△ANP∽△AEB,得.

∵AE=,∴AN=.

∴AQ3=2AN=,∴BC+BQ3=10-

则.∴.

综上所述,当t=4秒,以所得的等腰三角形APQ

沿底边翻折,翻折后得到菱形的k值为或或.

【思考3解析】

过点作垂足为点,

在中,

若不小于,

踏板离地面的高度至少等于3.5cm.

26.(10分)

(1)过点作,垂足为.

则,

当运动到被垂直平分时,四边形是矩形,

即时,四边形是矩形,

秒时,四边形是矩形.

(2)当时,

相关知识

九年级数学动态几何与函数问题


每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。是时候对自己教案课件工作做个新的规划了,未来的工作就会做得更好!究竟有没有好的适合教案课件的范文?小编收集并整理了“九年级数学动态几何与函数问题”,供大家参考,希望能帮助到有需要的朋友。

中考数学重难点专题讲座

第八讲动态几何与函数问题

【前言】在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。其中通过图中已给几何图形构建函数是重点考察对象。不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。【例1】如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与轴负半轴上.过点B、C作直线.将直线平移,平移后的直线与轴交于点D,与轴交于点E.(1)将直线向右平移,设平移距离CD为(t≥0),直角梯形OABC被直线扫过的面积(图中阴影部份)为,关于的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,且NQ平行于x轴,N点横坐标为4,求梯形上底AB的长及直角梯形OABC的面积.(2)当时,求S关于的函数解析式.

【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。很多考生看到图二的函数图像没有数学感觉,反应不上来那个M点是何含义,于是无从下手。其实M点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N点表示移动距离超过4之后阴影部分面积就不动了。脑中模拟一下就能想到阴影面积固定就是当D移动过了0点的时候.所以根据这么几种情况去作答就可以了。第二问建立函数式则需要看出当时,阴影部分面积就是整个梯形面积减去△ODE的面积,于是根据这个构造函数式即可。动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。【解】(1)由图(2)知,点的坐标是(2,8)∴由此判断:;∵点的横坐标是4,是平行于轴的射线,∴∴直角梯形的面积为:.....(3分)(2)当时,阴影部分的面积=直角梯形的面积的面积(基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系)∴∵∴.∴.【例2】已知:在矩形中,,.分别以所在直线为轴和轴,建立如图所示的平面直角坐标系.是边上的一个动点(不与重合),过点的反比例函数的图象与边交于点.(1)求证:与的面积相等;

中考动态几何专题复习教案


中考复习专题(六)动态几何
教学目标:通过解决动态几何问题培养学生联系发展的动态观,用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程.
教学重、难点:将运动过程中的各个时刻的图形分类画图,由“动”变“静”;另一方面还要善于抓住在运动过程中某一特殊位置的等量关系和变量关系,并特别关注一些不变量和不变关系或特殊关系以及特定的限制条件.
教学过程:
一、题型归析
动态几何就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性;就其运动对象而言有点动、线动、面动;就其运动形式而言有平动、旋转、翻折、滚动等.动态几何问题常常集几何、代数知识于一体,数形结合,有较强的综合性,题目灵活、多变,动中有静,动静结合,能够在运动变化中发展学生空间想象能力,全面考查学生的综合分析和解决问题的能力,是近几年中考命题的热点,常常在中考中起到甄选的作用.
二、例题解析:
(一)动点型(以动点为背景,设置问题)
例1.已知直角梯形ABCD中,AD⊥CD,CD=1,AB=4,AD=4,P为AD上一动点,令
AP为x..
(1)AP为多少时,BP⊥CP?
(2)若△PBC的面积为S,求S与x的函数关系式,并写出自变量的取值范围.
分析:(1)设P点停在AD上的某点(如图2)时,BP⊥CP,即可利用△CDP∽△PAB,求出x值.
提示:(2)=梯形ABCD-△CDP-△PAB
方法总结:不要被“动”迷惑!“动”中求“静”,“静”中求解.
(二)动线型(以线运动为背景设置问题)
例2.如图3,在直角坐标系中,点P的坐标为(2,0),⊙P经过原点0,点A、B、C的坐标分别是(-1,0),(0,b),(0,3),且0<b<3.当点B在线段OC上移动时,直线AB与⊙P有哪几种位置关系?请求出每种位置关系时,b的取值范围.
分析:当AB与⊙P恰好相切时(如图4),设切点为M,连接PM,得PM⊥AM,易证△ABO∽△APM,求出OB的长,问题得到解决.
方法总结:求“静”时,应找出最佳位置.
(三)动形型(以图形运动为背景设置问题)①②
例3.如图5,正三角形ABC的边长为厘米,⊙O的半径为R厘米,当圆心O从点A出发,沿着路线AB----BC----CA运动,回到A点时,⊙O随着O点运动而运动.
⑴若R=厘米,求⊙O首次与BC相切时,求AO的长.
⑵在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,R的取值范围及相应切点的个数.
⑶设⊙O在整个移动过程中,在⊿ABC内部,⊙O未经过的部分面积为S,在S>0时,求S关于R的函数关系式,并写出自变量的取值范围.
寄后语:
1.“动中求静,以静制动”是解决动态几何最有效的方法.
2.在“动”中找到最恰当的位置“静”下来是解决问题的起点.
3.在“静”下来后,能抓住“静”时的特征,寻找解决问题的突破口,是你迈向成功的关键.
三、诊断自测
1.如图7,在矩形中,动点从点出发,沿→→→方向运动至点处停止.设点运动的路程为,的面积为,如果关于的函数图象如图8所示,则当时,点应运动到()A.处B.C.处D.处
2.在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值).
3.在⊿ABC中∠C=,AC=4,BC=3,P为AC上一动点,作PM∥AB交BC于M,作PN∥BC交AB于N,设AP为x.(1)用含x的代数式表示PM、PN、CM长.
(2)若四边形PNBM的面积为S,求S与x的函数关系式,并写出自变量的取值范围.

中考数学专题:多种函数交叉综合问题


老师会对课本中的主要教学内容整理到教案课件中,大家在认真写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们了解多少教案课件范文呢?下面是由小编为大家整理的“中考数学专题:多种函数交叉综合问题”,供您参考,希望能够帮助到大家。

中考数学专题5多种函数交叉综合问题

【例1】将直线沿轴向下平移后,得到的直线与轴交于点,与双曲线交于点.

⑴求直线的解析式;

⑵若点的纵标为,求的值(用含有的式子表示).

【思路分析】这种平移一个一次函数与反比例函数交与某一点的题目非常常见,一模中有多套题都是这样考法。题目一般不难,设元以后计算就可以了。本题先设平移后的直线,然后联立即可。比较简单,看看就行.

【解析】将直线沿轴向下平移后经过x轴上点A(),

设直线AB的解析式为.

则.

解得.

∴直线AB的解析式为.

图3

(2)设点的坐标为,

∵直线经过点,

∴.

∴.

∴点的坐标为,

∵点在双曲线上,

【例2】如图,一次函数的图象与反比例函数的图象相交于A、B两点.

(1)求出这两个函数的解析式;

(2)结合函数的图象回答:当自变量x的取值范围满足什么条件时,

【思路分析】第一问直接看图写出A,B点的坐标(-6,-2)(4,3),直接代入反比例函数中求m,建立二元一次方程组求k,b。继而求出解析式。第二问通过图像可以直接得出结论。本题虽然简单,但是事实上却有很多变化。比如不给图像,直接给出解析式求的区间,考生是否依然能反映到用图像来看区间。数形结合是初中数学当中非常重要的一个思想,希望大家要活用这方面的意识去解题。

【解析】

解:(1)由图象知反比例函数的图象经过点B(4,3),

∴.∴m=12.-

∴反比例函数解析式为.

由图象知一次函数的图象经过点A(-6,-2),B(4,3),

∴解得--

∴一次函数解析式为.

(2)当0x4或x-6时,.

【例3】已知:如图,正比例函数的图象与反比例函数的图象交于点

(1)试确定上述正比例函数和反比例函数的表达式;

(2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?

(3)是反比例函数图象上的一动点,其中,过点作直线轴,交轴于点;过点作直线轴交轴于点,交直线于点.当四边形的面积为6时,请判断线段与的大小关系,并说明理由.

【思路分析】第一问由于给出了一个定点,所以直接代点即可求出表达式。第二问则是利用图像去分析两个函数的大小关系,考生需要对坐标系有直观的认识。第三问略有难度,一方面需要分析给出四边形OADM的面积是何用意,另一方面也要去看BM,DM和图中图形面积有何关系.视野放开就发现四边形其实就是整个矩形减去两个三角形的剩余部分,直接求出矩形面积即可.部分同学会太在意四边形的面积如何求解而没能拉出来看,从而没有想到思路,失分可惜.

【解析】

解:(1)将分别代入中,

得,,

∴,.

∴反比例函数的表达式为:;

正比例函数的表达式为.

(2)观察图象得,在第一象限内,当时,

反比例函数的值大于正比例函数的值.

(3).

理由:∵,

∴,即.

∵,

∴.

∴.(很巧妙的利用了和的关系求出矩形面积)

【例4】已知:与两个函数图象交点为,且,是关于的一元二次方程的两个不等实根,其中为非负整数.

(1)求的值;

(2)求的值;

(3)如果与函数和交于两点(点在点的左侧),线段,求的值.

【思路分析】本题看似有一个一元二次方程,但是本质上依然是正反比例函数交点的问题。第一问直接用判别式求出k的范围,加上非负整数这一条件得出k的具体取值。代入方程即可求出m,n,继而求得解析式。注意题中已经给定mn,否则仍然注意要分类讨论。第三问联立方程代入以后将A,B表示出来,然后利用构建方程即可。

【解析】(1)

∵为非负整数,∴

∵为一元二次方程

(2)把代入方程得,解得

把代入与

可得

(3)把代入与

可得,,由,可得

解得,经检验为方程的根。

【例5】已知:如图,一次函数与反比例函数的图象在第一象限的交点为.

(1)求与的值;

(2)设一次函数的图像与轴交于点,连接,求的度数.

【思路分析】如果一道题单纯考正反比例函数是不会太难的,所以在中考中经常会综合一些其他方面的知识点。比如本题求角度就牵扯到了勾股定理和特定角的三角函数方面,需要考生思维转换要迅速。第一问比较简单,不说了。第二问先求出A,B具体点以后本题就变化成了一道三角形内线段角的计算问题,利用勾股定理发现OB=OA,从而∠BAO=∠ABO,然后求出∠BAO即可。

解:(1)∵点在双曲线上,

又∵在直线上,

∴.

(2)过点A作AM⊥x轴于点M.

∵直线与轴交于点,

∴.

解得.

∴点的坐标为.

∴.

∵点的坐标为,

∴.

在Rt△中,,

∴.

∴.-

由勾股定理,得.

∴.

∴.-

【总结】中考中有关一次函数与反比例函数的问题一般都是成对出现的。无非也就一下这么几个考点:1、给交点求解析式;2,y的比较,3,夹杂进其他几何问题。除了注意计算方面的问题以外,还需要考生对数形结合,分类讨论的思想掌握熟练。例如y的比较这种问题,纯用代数方式通常需要去解一个一元二次不等式,但是如果用图像去做就会比较简单了。总体来说这类问题不难,做好细节就可以取得全分。

第二部分发散思考

【思考1】如图,A、B两点在函数的图象上.

(1)求的值及直线AB的解析式;

(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数。

【思路分析】由于已经给出了点,第一问没有难度。第二问在于要分析有哪些格点在双曲线的边界上,哪些格点在其中。保险起见直接用1-6的整数挨个去试,由于数量较少,所以可以很明显看出。

【思考2】如图,一次函数的图象与反比例函数的图象交于两点,直线分别交轴、轴于两点.

(1)求上述反比例函数和一次函数的解析式;

(2)求的值.

【思路分析】第一问一样是用代点以及列二元一次方程组去求解析式。第二问看到比例关系,考生需要第一时间想到是否可以用相似三角形去分析。但是图中并未直接给出可能的三角形,所以需要从A引一条垂线来构成一对相似三角形,从而求解。

【思考3】已知:关于x的一元二次方程kx2+(2k-3)x+k-3=0有两个不相等实数根(k0).

(I)用含k的式子表示方程的两实数根;

(II)设方程的两实数根分别是,(其中),若一次函数y=(3k-1)x+b与反比例函数y=的图像都经过点(x1,kx2),求一次函数与反比例函数的解析式.

【思路分析】本题是一道多种函数交叉的典型例题,一方面要解方程,另一方面还要求函数解析式。第一问求根,直接求根公式去做。第二问通过代点可以建立一个比较繁琐的二元一次方程组,认真计算就可以。

【思考4】如图,反比例函数的图象过矩形OABC的顶点B,OA、0C分别在x轴、y轴的正半轴上,OA:0C=2:1.

(1)设矩形OABC的对角线交于点E,求出E点的坐标;

(2)若直线平分矩形OABC面积,求的值

【思路分析】本题看似麻烦,夹杂了一次函数与反比例函数以及图形问题。但是实际上画出图,通过比例可以很轻易发现B点的横纵坐标关系,巧妙设点就可以轻松求解。第二问更不是难题,平分面积意味着一定过B点,代入即可。

第三部分思考题解析

【思考1解析】

(1)由图象可知,函数()的图象经过点,

可得.

设直线的解析式为.

∵,两点在函数的图象上,

∴解得

∴直线的解析式为.

(2)图中阴影部分(不包括边界)所含格点的个数是3.

【思考2解析】

(1)把,代入,得:.

反比例函数的解析式为.

把,代入得.

把,;,分别代入

得,(第16题答图)

解得,一次函数的解析式为.

(2)过点作轴于点.

点的纵坐标为1,.

由一次函数的解析式为得点的坐标为,

在和中,,,

【思考3解析】

解:(I)kx2+(2k-3)x+k-3=0是关于x的一元二次方程.

由求根公式,得

.∴或

(II),∴.

而,∴,.

由题意,有

解之,得.

∴一次函数的解析式为,反比例函数的解析式为.

【思考4解析】

(1)由题意,设B,则

∵B在第一象限,

B(4,2)

∴矩形OABC对角线的交点E为

(2)∵直线平分矩形OABC必过点

∴1=2x2+m

m=-3