88教案网

你的位置: 教案 > 高中教案 > 导航 > 高中物理3-5教学案

高中物理教案

发表时间:2021-03-01

高中物理3-5教学案。

一名爱岗敬业的教师要充分考虑学生的理解性,作为高中教师就要早早地准备好适合的教案课件。教案可以让学生们有一个良好的课堂环境,帮助授课经验少的高中教师教学。高中教案的内容要写些什么更好呢?下面是小编精心为您整理的“高中物理3-5教学案”,欢迎大家阅读,希望对大家有所帮助。

教案部分
16.6用动量概念表示牛顿第二定律
【教学目标】
(一)知识与技能
1.理解动量定理的确切含义和表达式,知道动量定理适用于变力。
2.会用动量定理解释有关物理现象,并能掌握一维情况下的计算问题。
(二)过程与方法
运用牛顿运动定律和运动学公式推导出动量定理表达式。
(三)情感、态度与价值观
通过运用所学知识推导新的规律,培养学生学习的兴趣。激发学生探索新知识的欲望。
【教学重点】
理解动量定理的确切含义和表达式
【教学难点】
会用动量定理解释有关物理现象,并能掌握一维情况下的计算问题
【教学方法】
教师启发、引导,学生讨论、交流。
【教学用具】
生鸡蛋、铺有较厚的海绵垫的白铁桶、细线、金属小球、橡皮筋、铁架台等,投影片,多媒体辅助教学设备
【课时安排】
1课时
【教学过程】
(一)引入新课
小实验引入新课:
演示实验1:鸡蛋落地
【演示】事先在一个白铁桶的底部垫上一层海绵(不让学生知道),让一个鸡蛋从一米多高的地方下落到白铁桶里,事先让学生推测一下鸡蛋的“命运”,然后做这个实验。结果发现并没有象学生想象的那样严重:发现鸡蛋不会被打破!
演示实验2:缓冲装置的模拟
【演示】用细线悬挂一个重物,把重物拿到一定高度,释放后重物下落可以把细线拉断,如果在细线上端拴一段皮筋,再从同样的高度释放,就不会断了。
【让学生在惊叹中开始新课内容】
在日常生活中,有不少这样的事例:跳远时要跳在沙坑里;跳高时在下落处要放海绵垫子;从高处往下跳,落地后双腿往往要弯曲;轮船边缘及轮渡的码头上都装有橡皮轮胎等,这样做的目的是为了什么呢?而在某些情况下,我们又不希望这样,比如用铁锤钉钉子。这些现象中的原因是什么呢?通过我们今天的学习来探究其中的奥秘。
(二)进行新课
1.用动量概念表示牛顿第二定律
师:给出问题
假设一个物体在恒定的合外力作用下,做匀变速直线运动,在t时刻初速度为v,在t′时刻的末速度为v′,试推导合外力的表达式。
学生:用牛顿第二定律F=ma以及匀变速直线运动的公式自己推导。
(教师巡回指导,及时点拨、提示)
推导过程:如图所示,由牛顿第二定律得,物体的加速度
合力F=ma
由于,
所以,(1)
结论:上式表示,物体所受合外力等于物体动量的变化率。这就是牛顿第二定律的另一种表达式。
2.动量定理
教师:将(1)式写成(2)
(师生讨论上式的物理意义)
总结:表达式左边是物体从t时刻到t′时刻动量的变化量,右边是物体所受合外力与这段时间的乘积。(2)式表明,物体动量的变化量,不仅与力的大小和方向有关,还与时间的长短有关,力越大、作用时间越长,物体动量的变化量就越大。这个量反映了力对时间的积累效应。
教师(讲解):物理学中把力F与作用时间的乘积,称为力的冲量,记为I,即
,单位:Ns,读作“牛顿秒”。
将(2)式写成(3)
(3)式表明,物体动量的变化量等于物体所受合外力的冲量,这个结论叫做动量定理。
讨论:如果物体所受的力不是恒力,对动量定理的表达式应该怎样理解呢?
教师:引导学生阅读选修3-5教材24页第一段,理解动量定理的过程性。
总结:尽管动量定理是根据牛顿第二定律和运动学的有关公式在恒定合外力的情况下推导
出来的。可以证明:动量定理不但适用于恒力,也适用于随时间变化的变力。对于变力情况,动量定理中的F应理解为变力在作用时间内的平均值。
在实际中我们常遇到变力作用的情况,比如用铁锤钉钉子,球拍击乒乓球等,钉子和乒乓球所受的作用力都不是恒力,这时变力的作用效果可以等效为某一个恒力的作用,则该恒力就叫变力的平均值,如图所示,是变力与平均力的F-t图象,其图线与横轴所围的面积即为冲量的大小,当两图线面积相等时,即变力与平均力在t0时间内等效。
利用动量定理不仅可以解决匀变速直线运动的问题,还可以解决曲线运动中的有关问题,将较难计算的问题转化为较易计算的问题。
3.动量定理的方向性
例如:匀加速运动合外力冲量的方向与初动量方向相同,匀减速运动合外力冲量方向与初动量方向相反,甚至可以跟初动量方向成任何角度。在中学阶段,我们仅限于初、末动量的方向、合外力的方向在同一直线上的情况(即一维情况),此时公式中各矢量的方向可以用正、负号表示,首先要选定一个正方向,与正方向相同的矢量取正值,与正方向相反的矢量取负值。
如图所示,质量为m的球以速度v向右运动,与墙壁碰撞后反弹的速度为v’,碰撞过程中,小球所受墙壁的作用力F的方向向左。若取向左为正方向,则小球所受墙壁的作用力为正值,初动量取负值,末动量取正值,因而根据动量定理可表示为Ft=p′一p=mv′一(一mv)=mv′十mv。此公式中F、v、v′均指该物理量的大小(此处可紧接着讲课本上的例题)。
小结:公式Ft=p′一P=△p是矢量式,合外力的冲量的方向与物体动量变化的方向相同。合外力冲量的方向可以跟初动量方向相同,也可以相反。
演示实验3:小钢球碰到坚硬大理石后返回
4.应用举例
下面,我们应用动量定理来解释鸡蛋下落是否会被打破等有关问题。
鸡蛋从某一高度下落,分别与石头和海绵垫接触前的速度是相同的,也即初动量相同,碰撞后速度均变为零,即末动量均为零,因而在相互作用过程中鸡蛋的动量变化量相同。而两种情况下的相互作用时间不同,与石头碰时作用时间短,与海绵垫相碰时作用时间较长,由Ft=△p知,鸡蛋与石头相碰时作用大,会被打破,与海绵垫相碰时作用力较小,因而不会被打破。
接着再解释用铁锤钉钉子、跳远时要落入沙坑中等现象。在实际应用中,有的需要作用时
间短,得到很大的作用力而被人们所利用,有的需要延长作用时间(即缓冲)减少力的作用。请同学们再举些有关实际应用的例子。加强对周围事物的观察能力,勤于思考,一定会有收获。
接着再解释缓冲装置。
在实际应用中,有的需要作用时间短,得到很大的作用力,而被人们所利用;有的要延长作用时间而减少力的作用,请同学们再举出一些有关实际应用的例子,加强对周围事物的观察,勤于思考,一定会有收获。
(三)例题讲解
例1、甲、乙两个物体动量随时间变化的图象如图所示,图象对应的物体的运动过程可能是()
A.甲物体可能做匀加速运动
B.甲物体可能做竖直上抛运动
C.乙物体可能做匀变速运动
D.乙物体可能与墙壁发生弹性碰撞
[解析]a甲物体的动量随时间的变化图象是一条直线,其斜率Δp/Δt恒定不变,说明物体受到恒定的合外力作用;
b由图线可以看出甲物体的动量先减小然后反向增大。综合a、b知甲物体做匀减速直线运动,与竖直上抛运动类似,所以B选项正确。
c.乙物体的动量随时间变化规律是一条曲线,曲线的斜率先增大后减小。根据动量的变化率就是物体受到的合外力(F合=Δp/Δt)知,乙物体在运动过程中受到的合外力先增大后
减小。
d.由图线还可以看出,乙物体的动量先正方向减小到零,然后反方向增大。
综合c、d可知乙物体的运动是一个变加速运动,与水平面上的小球和竖直墙壁发生弹性碰撞相类似(弹性小球与竖直墙壁弹性碰撞的过程,小球受到的弹力随着形变量的增大而增大,随形变量的减小而减小,是一个变力,且小球与墙壁达到最大压缩量时,其速度等于零),所以D选项正确。
[答案]BD
[变式训练]水平推力F1和F2分别作用在水平面上等质量的a、b两物体上,作用一段时间后撒去推力,物体将继续运动一段时间后停下,两物体的v—t图象如图所示,图中AB//CD,
则()
A.F1的冲量大于F2的冲量
B.Fl的冲量等于F2的冲量
C.两物体受到的摩擦力大小相等
D.两物体受到的摩擦力大小不等
[解析]题目中给出了速度一时间图象,由图象告诉我们很多隐含条件,如图象的斜率表示加速度的大小,我们可以根据斜率的大小关系确定加速度的大小关系,从而确定力的大小
关系,同时也可以从图上直接找出力作用时间的长短。
设F1、F2的作用时间分别为t1、t2,则由图知t1t2,当只有摩擦力Ff作用时,由AB//CD知图线斜率相同,则加速度相同,由牛顿第二定律知,摩擦力Ff相同,故C选项正确,D
选项错误;对a,由动量定理得:Flt1—F2t2=mvA;对b同理:F2t2—Fft2=mvc。
由图象知,vA=vc,tlt2,所以有mvA=mvc知,即F1t1—Fftl=F2t2—Fft2,因此F2t2F1t1,即A、B选项均错。[答案]C.
例2、蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一名质量为60kg的运动员,从离水平网面3.2m高处自由下落,触网后沿竖直方向蹦回到离水平面5.0m高处,已知运动员与网接触的时间为1.2s,求这段时间内网对运动员的平均作用力大小。(g取10m/s2)
[解析]运动员从高处落下做自由落体运动,与弹性网接触受到向上的弹力后,再做竖直上抛运动。可以分过程应用动量定理求解,也可整个过程应用动量定理求解,须注意的是各矢量的方向要明确。
[答案]方法一:运动员刚接触网时速度的大小v1=8m/s,方向向下。
刚离网时速度的大小v2=10m/s,方向向上。
在运动员与网接触的过程中,设网对运动员的作用力为F,以运动员为研究着对象,由动量定理,以向上为正方向,有
(F—mg)Δt=mv2—mv1。
解得F=1.5X103N,方向向上。
方法二:对运动员下降、与网接触、上升的全过程应用动量定理。
从3.2m高处自由下落的时间为t1=0.8s,
运动员弹回到5.0m高处所用的时间为t2=1s
整个过程中运动员始终受重力作用,仅在与网接触的t2=1.2s的时间内受到网对他向上的弹力FN的作用,对全过程应用动量定理,有
FNt3—mg(t1十t2+t3)=0,
则F=1500N,方向向上。
[点评]解答本题时,容易出现以下错误:(1)未能正确地进行受力分析、漏算重力,误认为所求的平均力就是合外力;
(2)没有正确理解动量定理的矢量性,误将动量的变化写为mv2—mvlo
例3、将质量m=1kg的小球,从距水平地面高h=5m处,以v。=10m/s的水平速度抛出,不计空气阻力,g取10m/s2,求:
(1)平抛运动过程中小球动量的增量ΔP;
(2)小球落地时的动量P,;
(3)飞行过程中小球所受的合外力的冲量I
[解析]这是一道动量、动量的增量及冲量的综合题目,在曲线运动中求动量增量Δp可直接用公式Δp=p2—p1,的方法,也可以用动量定理求解,应视情况而定。
[答案]画出小球运动轨迹的示意图,如图所示。由于小球做平抛运动,故有h=gt2/2,小球落地时间t=1s
(1)因为水平方向是匀速运动,v。保持不变,所以小球的速度增量Δv=Δvy=gt=10m/s。
所以Δp=Δpy=mΔv=10kgm/s。
(2)由速度合成知,落地速度v=10m/s。
所以小球落地时的动量大小为p,=mv=10kgm/s。
由图知tanθ=1,则小球落地的动量的方向与水平方向的夹角为450,斜向下。
(3)小球飞行过程中只受重力作用,所以合外力的冲量为
I=mgt=10Ns,方向竖直向下。
[点评]此题考查动量、动量的增量和冲量等基本概念,要注意各概念在曲线运动的求解方法及矢量的使用。
(四)课堂小结
教师活动:让学生概括总结本节的内容。请一个同学到黑板上总结,其他同学在笔记本上总结,然后请同学评价黑板上的小结内容。
学生活动:认真总结概括本节内容,并把自己这节课的体会写下来、比较黑板上的小结和自己的小结,看谁的更好,好在什么地方。
点评:总结课堂内容,培养学生概括总结能力。
教师要放开,让学生自己总结所学内容,允许内容的顺序不同,从而构建他们自己的知识框架。
(五)作业:“问题与练习”1~4题
★教学体会
思维方法是解决问题的灵魂,是物理教学的根本;亲自实践参与知识的发现过程是培养学生能力的关键,离开了思维方法和实践活动,物理教学就成了无源之水、无本之木。学生素质的培养就成了镜中花,水中月。

16.6用动量概念表示牛顿第二定律
山东泰安英雄山中学谢龙
【目标引领】
(一)知识与技能
1.理解动量定理的确切含义和表达式,知道动量定理适用于变力。
2.会用动量定理解释有关物理现象,并能掌握一维情况下的计算问题。
(二)过程与方法
运用牛顿运动定律和运动学公式推导出动量定理表达式。
(三)情感、态度与价值观
通过运用所学知识推导新的规律,培养学生学习的兴趣。激发学生探索新知识的欲望。
【自学探究】
1、假设一个物体在恒定的合外力作用下,做匀变速直线运动,在t时刻初速度为v,在t′时刻的末速度为v′,试推导合外力的表达式。
2、冲量:
表达式:
3、动量定理:
【合作解疑】
1、光滑水平桌面上,一球在绳拉力作用下,做匀速圆周运动,已知球的质量为m,线速度为v,且绳长为L,试求球运动半圆周过程中绳拉力的冲量大小。

2、质量为50kg的体操运动员从高空落下,落到垫子前的速度为1.0m/s,方向竖直向下,该运动员经垫子缓冲0.5s停下来,求垫子对运动员的作用力?(g取10m/s2)

3、质量为m的钢球自高处落下,以速度v1碰地,竖直向上弹回,碰撞时间极短,离地的速度为v2。在碰撞过程中,地面对钢球冲量的方向和大小为()
A.向下,m(v1—v2)B.向下,m(v1十v2)
C.向上,m(v1—v2)D.向上,m(v1+v2)

4、通过以上的三个题目讨论:在运用动量定理解题时应注意哪些问题?

【精讲点拨】
例1、甲、乙两个物体动量随时间变化的图象如图所示,图象对应的物体的运动过程可能是()
A.甲物体可能做匀加速运动
B.甲物体可能做竖直上抛运动
C.乙物体可能做匀变速运动
D.乙物体可能与墙壁发生弹性碰撞
[变式训练]水平推力F1和F2分别作用在水平面上等质量的a、b两物体上,作用一段时间后撒去推力,物体将继续运动一段时间后停下,两物体的v—t图象如图所示,图中AB//CD,
则()
A.F1的冲量大于F2的冲量
B.Fl的冲量等于F2的冲量
C.两物体受到的摩擦力大小相等
D.两物体受到的摩擦力大小不等
解题反思:
例2、蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一名质量为60kg的运动员,从离水平网面3.2m高处自由下落,触网后沿竖直方向蹦回到离水平面5.0m高处,已知运动员与网接触的时间为1.2s,求这段时间内网对运动员的平均作用力大小。(g取10m/s2)

解题反思:运用动量定理解题的一般步骤?

例3、将质量m=1kg的小球,从距水平地面高h=5m处,以v。=10m/s的水平速度抛出,不计空气阻力,g取10m/s2,求:
(1)平抛运动过程中小球动量的增量ΔP;
(2)小球落地时的动量P,;
(3)飞行过程中小球所受的合外力的冲量I

【训练巩固】
1.质量为m的木箱在光滑的水平地面上,在与水平方向成θ角的恒定拉力F作用下由静止开始运动,经过时间t速度变为v,则在这段时间内拉力F与重力的冲量大小分别为()
A.Ft,0B.Ftcosθ,0C.mv,mgtD.Ft,mgt
2.人从高处跳到低处时,为了安全,一般都是让脚尖先着地,且双腿要弯曲,这是为了
()
A.减小冲量
B.使动量的变化减小
C.延长与地面的冲击时间,从而减小冲力
D.增大人对地的压强,起到安全作用
3.—质量为m的铁锤,以速度,竖直打在木桩上,经过Δt时间后停止,则在打击时间内,铁锤对木桩的平均冲力的大小是()
A.mgΔt
B.mv/Δt
C.mv/Δt+mg
D.mv/Δt—mg
4.质量为60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护,使他悬挂起来,已知弹性安全带的缓冲时间是1.2s,安全带长5m,g取10m/s2,则安全带所受的平均冲力的大小为()
A.500NB.1100NC.600ND.100N
【综合运用】
5.一辆轿车强行超车时,与另一辆迎面驶来的轿车相撞,两车相撞后连为一体,两车车身因相互挤压,皆缩短了0.5m,据测算两车相撞前的速度约为30m/s,求:
(1)若人与车作用时间为1.0s,车祸中车内质量约60kg的人受到的平均冲力是多大?
(2)若此人系有安全带,安全带在车祸过程中与人体作用时间是1s,求这时人体受到的平均冲力为多大?

6.如图所示,长为L的轻绳一端系于固定点O,另一端系质
量为m的小球,将小球从O点正下方L/4处以一定初速度
水平向右抛出,经—定时间绳被拉直,以后小球将以O为
圆心在竖直平面内摆动。已知绳刚被拉直时,绳与竖直
方向成600角,求:
(1)小球水平抛出时的初速度。
(2)在绳被拉直的瞬间,圆心O受到的冲量。

相关阅读

高中物理第一轮专题复习全套学案:选修3-5


考点内容要求考纲解读
动量、动量守恒定律及其应用Ⅱ1.动量守恒定律的应用是本部分的重点和难点,也是高考的热点,动量和动量的变化量这两个概念常穿插在动量守恒定律的应用中考查.
2.动量守恒定律结合能量守恒定律来解决碰撞、打击、反冲等问题,以及动量守恒定律与圆周运动、核反应的结合已成为近几年高考命题的热点.
3.波粒二象性部分的重点内容是光电效应现象、实验规律和光电效应方程,光的波粒二象性和德布罗意波是理解的难点.
4.核式结构、玻尔理论、能级公式、原子跃迁条件在选做题部分出现的几率将会增加,可能单独命题,也可能与其它知识联合出题.
5.半衰期、质能方程的应用、计算和核反应方程的书写是高考的热点问题,试题一般以基础知识为主,较简单.
弹性碰撞和非弹性碰撞Ⅰ
光电效应Ⅰ
爱因斯坦光电效应方程Ⅰ
氢原子光谱Ⅰ
氢原子的能级结构、能级公式Ⅰ
原子核的组成、放射性、原子核衰变、半衰期Ⅰ
放射性同位素Ⅰ
核力、核反应方程Ⅰ
结合能、质量亏损Ⅰ
裂变反应和聚变反应、裂变反应堆Ⅰ
射线的危害和防护Ⅰ
实验:验证动量守恒定律
第1课时动量动量守恒定律及其应用
导学目标1.理解动量、动量变化量的概念,并能与动能区别.2.理解动量守恒的条件,能用动量守恒定律分析碰撞、打击、反冲等问题.
一、动量、动能、动量的变化量
[基础导引]
判断下列说法的正误:
(1)速度大的物体,它的动量一定也大()
(2)动量大的物体,它的速度一定也大()
(3)只要物体的运动速度大小不变,物体的动量也保持不变()
(4)物体的动量变化越大则该物体的速度变化一定越大()
[知识梳理]
名称

项目动量动能动量的变化量
定义物体的质量和速度的乘积物体由于运动而具有的能量物体末动量与初动量的矢量差
定义式p=mvEk=12mv2
Δp=p′-p
矢标性矢量标量矢量
特点状态量状态量过程量
关联方程Ek=p22m,Ek=12pv,p=2mEk,p=2Ekv

特别提醒1.因为速度与参考系的选择有关,所以动量也跟参考系的选择有关,通常情况下,物体的动量是相对地面而言的.2.物体动量的变化率ΔpΔt等于它所受的力,这是牛顿第二定律的另一种表达方式.
二、动量守恒定律
[基础导引]
关于系统动量守恒的条件,下列说法正确的是()
A.只要系统内存在摩擦力,系统动量就不可能守恒
B.只要系统中有一个物体具有加速度,系统动量就不守恒
C.只要系统所受的合外力为零,系统动量就守恒
D.系统中所有物体的加速度都为零时,系统的总动量不一定守恒
[知识梳理]
1.内容:如果一个系统____________,或者________________________,这个系统的总动量保持不变,这就是动量守恒定律.
2.表达式
(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′.
(2)m1v1+m2v2=________________,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.
(3)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.
(4)Δp=0,系统总动量的增量为零.
3.动量守恒定律的适用条件
(1)不受外力或所受外力的合力为______,而不是系统内每个物体所受的合外力都为零.
(2)近似适用条件:系统内各物体间相互作用的内力远大于系统所受到的外力.
(3)如果系统在某一方向上所受外力的合力为零,则在这一方向上动量守恒.
三、碰撞
[基础导引]
质量为m、速度为v的A球跟质量为3m且静止的B球发生正碰.碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B球的速度可能有不同的值.请你论证:碰撞后B球的速度可能是以下值吗?
(1)0.6v(2)0.4v(3)0.2v.
[知识梳理]
碰撞现象
(1)碰撞:两个或两个以上的物体在相遇的极短时间内产生非常大的相互作用力,而其他的相互作用力相对来说显得微不足道的过程.
(2)弹性碰撞:如果碰撞过程中机械能________,这样的碰撞叫做弹性碰撞.
(3)非弹性碰撞:如果碰撞过程中机械能__________,这样的碰撞叫做非弹性碰撞.
(4)完全非弹性碰撞:碰撞过程中物体的形变完全不能恢复,以致两物体合为一体一起运动,即两物体在非弹性碰撞后以同一速度运动,系统机械能有损失.
考点一动量守恒定律
考点解读
1.守恒条件
(1)系统不受外力或所受外力的合力为零,则系统动量守恒.
(2)系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.
(3)当系统在某个方向上所受合力为零时,系统在该方向上动量守恒.
2.几种常见表述及表达式
(1)p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′).
(2)Δp=0(系统总动量不变).
(3)Δp1=-Δp2(相互作用的两物体组成的系统,两物体动量的增量大小相等、方向相反).
其中(1)的形式最常用,具体到实际应用时又有以下三种常见形式:
①m1v1+m2v2=m1v1′+m2v2′(适用于作用前后都运动的两个物体组成的系统).
②0=m1v1+m2v2(适用于原来静止的两个物体组成的系统,比如爆炸、反冲等,两者速率与各自质量成反比).
③m1v1+m2v2=(m1+m2)v(适用于两物体作用后结合为一体或具有相同速度的情况,如完全非弹性碰撞).
典例剖析
例1(20xx•山东理综•38(2))如图1所示,甲、乙两船的总质量(包
括船、人和货物)分别为10m、12m,两船沿同一直线上的同
一方向运动,速度分别为2v0、v0.为避免两船相撞,乙船上的
人将一质量为m的货物沿水平方向抛向甲船,甲船上的人将
货物接住,求抛出货物的最小速度.(不计水的阻力)
思维突破应用动量守恒定律解题的步骤:
(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);
(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);
(3)规定正方向,确定初、末状态动量;
(4)由动量守恒定律列出方程;
(5)代入数据,求出结果,必要时讨论说明.
跟踪训练1A球的质量是m,B球的质量是2m,它们在光滑的水平面上以相同的动量运动.B在前,A在后,发生正碰后,A球仍朝原方向运动,但其速率是原来的一半,碰后两球的速率比vA′∶vB′为()
A.12B.13C.2D.23
考点二碰撞现象
考点解读
1.碰撞的种类及特点
分类标准种类特点
机械能是
否守恒弹性碰撞动量守恒,机械能守恒
非弹性碰撞动量守恒,机械能有损失
完全非弹性碰撞动量守恒,机械能损失最大
碰撞前后
动量是否
共线对心碰撞(正碰)碰撞前后速度共线
非对心碰撞(斜碰)碰撞前后速度不共线
2.弹性碰撞的规律
两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律.
以质量为m1,速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v1′+m2v2′
12m1v21=12m1v1′2+12m2v2′2
解得v1′=(m1-m2)v1m1+m2v2′=2m1v1m1+m2
结论1.当两球质量相等时,v1′=0,v2′=v1,两球碰撞后交换了速度.
2.当质量大的球碰质量小的球时,v1′>0,v2′>0,碰撞后两球都向前运动.
3.当质量小的球碰质量大的球时,v1′<0>0,碰撞后质量小的球被反弹回来.
3.碰撞现象满足的规律
(1)动量守恒定律.
(2)机械能不增加.
(3)速度要合理:
①若碰前两物体同向运动,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′.
②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变.
典例剖析
例2光滑水平面上,用弹簧相连接的质量均为2kg的A、B两
物体都以v0=6m/s的速度向右运动,弹簧处于原长.质量为
4kg的物体C静止在前方,如图2所示,B与C发生碰撞后
粘合在一起运动,在以后的运动中
(1)弹性势能最大值为多少?
(2)当A的速度为零时,弹簧的弹性势能为多少?
思维突破含有弹簧的碰撞问题,碰撞过程中机械能守恒,因此碰撞过程为弹性碰撞.本题也是一个多次碰撞问题,解决这类问题,一定要注意系统的选取和过程的选取,同时要注意利用动量守恒定律和能量守恒定律结合解题.
跟踪训练2如图3所示,光滑水平直轨道上有三个滑块
A、B、C,质量分别为mA=mC=2m,mB=m,A、B
用细绳连接,中间有一压缩的轻弹簧(弹簧与滑块不拴
接).开始时A、B以共同速度v0运动,C静止.某时刻细绳突然断开,A、B被弹开,然
后B又与C发生碰撞并粘在一起,最终三滑块速度恰好相同.求B与C碰撞前B的速度.

A组动量守恒的判定
1.如图4所示,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽的
左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口A点的正上
方从静止开始下落,与半圆槽相切并从A点进入槽内.则下列说法正
确的是()
A.小球离开右侧槽口以后,将做竖直上抛运动
B.小球在槽内运动的全过程中,只有重力对小球做功
C.小球在槽内运动的全过程中,小球与槽组成的系统机械能守恒
D.小球在槽内运动的全过程中,小球与槽组成的系统水平方向上的动量不守恒

B组动量守恒的应用
2.如图5所示,质量为M的小车静止在光滑的水平地面上,小车上有n
个质量为m的小球,现用两种方式将小球相对于地面以恒定速度v
向右水平抛出,第一种方式是将n个小球一起抛出;第二种方式是
将小球一个接一个地抛出,比较用这两种方式抛完小球后小车的最终速度()
A.第一种较大B.第二种较大
C.两种一样大D.不能确定
3.如图6所示,光滑水平面上两小车中间夹一压缩了的轻弹
簧,两手分别按住小车,使它们静止,对两车及弹簧组成的
系统,下列说法中正确的是()
A.两手同时放开后,系统总动量始终为零
B.先放开左手,后放开右手,动量不守恒
C.先放开左手,后放开右手,总动量向左
D.无论何时放手,两手放开后在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零

C组碰撞问题
4.(20xx•福建理综•29(2))在光滑水平面上,一质量为m、速度大小为v的A球与质量为2m、静止的B球碰撞后,A球的速度方向与碰撞前相反.则碰撞后B球的速度大小可能是________.(填选项前的字母)
A.0.6vB.0.4vC.0.3vD.0.2v
5.质量为M的物块以速度v运动,与质量为m的静止物块发生正碰,碰撞后两者的动量正好相等.两者质量之比M/m可能为()
A.2B.3C.4D.5
课时规范训练
(限时:60分钟)
一、选择题
1.木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠
在墙壁上,在b上施加向左的水平力使弹簧压缩,如图1所示,
当撤去外力后,下列说法中正确的是()
A.a尚未离开墙壁前,a和b组成的系统动量守恒
B.a尚未离开墙壁前,a和b组成的系统动量不守恒
C.a离开墙壁后,a和b组成的系统动量守恒
D.a离开墙壁后,a和b组成的系统动量不守恒
2.如图2所示,在光滑的水平地面上有一辆平板车,车的两端分
别站着人A和B,A的质量为mA,B的质量为mB,mA>mB.最初人
和车都处于静止状态.现在,两人同时由静止开始相向而行,A和
B对地面的速度大小相等,则车()
A.静止不动B.左右往返运动
C.向右运动D.向左运动
3.斜向上抛出一个爆竹,到达最高点时(速度水平向东)立即爆炸成质量相等的三块,前面一块速度水平向东,后面一块速度水平向西,前、后两块的水平速度(相对地面)大小相等、方向相反.则以下说法中正确的是()
A.爆炸后的瞬间,中间那块的速度大于爆炸前瞬间爆竹的速度
B.爆炸后的瞬间,中间那块的速度可能水平向西
C.爆炸后三块将同时落到水平地面上,并且落地时的动量相同
D.爆炸后的瞬间,中间那块的动能可能小于爆炸前的瞬间爆竹的总动能
4.(20xx•大纲全国•20)质量为M、内壁间距为L的箱子静止于光滑的水平
面上,箱子中间有一质量为m的小物块,小物块与箱子底板间的动摩
擦因数为μ.初始时小物块停在箱子正中间,如图3所示.现给小物块一水平向右的初速
度v,小物块与箱壁碰撞N次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为()
A.12mv2B.12mMm+Mv2
C.12NμmgLD.NμmgL
5.A、B两球之间压缩一根轻弹簧,静置于光滑水平桌面上.已
知A、B两球质量分别为2m和m.当用板挡住A球而只释放B
球时,B球被弹出落于距桌边距离为x的水平地面上,如图4
所示.当用同样的程度压缩弹簧,取走A左边的挡板,将A、
B同时释放,B球的落地点距桌边的距离为()
A.x3B.3xC.xD.63x
6.质量都为m的小球a、b、c以相同的速度分别与另外三个质量都为M的静止小球相碰后,a球被反向弹回,b球与被碰球粘合在一起仍沿原方向运动,c球碰后静止,则下列说法正确的是()
A.m一定小于M
B.m可能等于M
C.b球与质量为M的球组成的系统损失的动能最大
D.c球与质量为M的球组成的系统损失的动能最大
7.如图5所示,物体A静止在光滑的水平面上,A的左边固定
有轻质弹簧,与A质量相等的物体B以速度v向A运动并与
弹簧发生碰撞,A、B始终沿同一直线运动,则A、B组成的系统动
能损失最大的时刻是()
A.开始运动时B.A的速度等于v时
C.B的速度等于零时D.A和B的速度相等时
8.A、B两球在光滑水平面上沿同一直线、同一方向运动,A球的动量是5kg•m/s,B球的动量是7kg•m/s.当A球追上B球时发生碰撞,则碰撞后A、B两球的动量可能值分别是
()
A.6kg•m/s,6kg•m/s
B.3kg•m/s,9kg•m/s
C.-2kg•m/s,14kg•m/s
D.-5kg•m/s,15kg•m/s
9.在光滑水平面上有三个完全相同的小球,它们成一条直
线,2、3小球静止并靠在一起,1球以速度v0射向它们,
如图6所示.设碰撞中不损失机械能,则碰后三个小球的速度
可能是()
A.v1=v2=v3=13v0B.v1=0,v2=v3=12v0
C.v1=0,v2=v3=12v0D.v1=v2=0,v3=v0
二、非选择题
10.(20xx•课标•35(2))如图7,A、B、C三个木块的质量均为m,置
于光滑的水平桌面上,B、C之间有一轻质弹簧,弹簧的两端
与木块接触而不固连.将弹簧压紧到不能再压缩时用细线把B和C紧连,
使弹簧不能伸展,以至于B、C可视为一个整体.现A以初速度v0沿B、C的连线方向
朝B运动,与B相碰并粘合在一起.以后细线突然断开,弹簧伸展,从而使C与A、B
分离.已知C离开弹簧后的速度恰为v0.求弹簧释放的势能.
11.如图8所示,光滑水平桌面上有长L=2m的挡板C,质量mC
=5
kg,在其正中央并排放着两个小滑块A和B,mA=1kg,mB=3
kg,开始时三个物体都静止.在A、B间放有少量塑胶炸药,
爆炸后A以6m/s的速度水平向左运动,A、B中任意一块与挡板C碰撞后,都粘在一
起,不计摩擦和碰撞时间,求:
(1)当两滑块A、B都与挡板C碰撞后,C的速度是多大;
(2)A、C碰撞过程中损失的机械能.
复习讲义
基础再现
一、
基础导引(1)×(2)×(3)×(4)√
二、
基础导引C
知识梳理1.不受外力所受外力的矢量和为零2.(2)m1v1′+m2v2′3.(1)零
三、
基础导引见解析
解析若A和B的碰撞是弹性碰撞,则根据动量守恒和机械能守恒可以解得B获得的最大速度为
vmax=2m1m1+m2v=2mm+3mv=0.5v
若A和B的碰撞是完全非弹性碰撞,则碰撞之后二者连在一起运动,B获得最小的速度,根据动量守恒定律,知m1v=(m1+m2)vmin
vmin=mvm+3m=0.25v
B获得的速度vB应满足:vmin≤vB≤vmax,即0.25v≤vB≤0.5v.
可见,B球的速度可以是0.4v,不可能是
0.2v和0.6v.
知识梳理(2)守恒(3)不守恒
课堂探究
例14v0
跟踪训练1D
例2(1)12J(2)0
跟踪训练295v0
分组训练
1.CD2.C3.ACD
4.A
5.AB
课时规范训练
1.BC
2.D
3.A
4.BD
5.D
6.AC
7.D
8.BC
9.D
10.13mv20
11.(1)0(2)15J

高中物理《弹力》学案分析


高中物理《弹力》学案分析

一、教学目标

【知识与技能】

1.知道常见的形变,了解物体的弹性;

2.知道弹力产生的条件;

3.知道压力、支持力、绳的拉力都是弹力,能在力的示意图中画出它们的方向。

【过程与方法】

通过探究弹力的存在,能提高在实际问题中确定弹力方向的能力,体会假设推理法解决问题的巧妙。

【情感态度与价值观】

观察和了解形变的有趣现象,感受自然界的奥秘,感受学习物理的乐趣,建立把物理学习与生活实践结合起来的习惯。

二、教学重难点

【重点】

弹力产生的条件及弹力方向的判定

【难点】

接触的物体是否发生形变及弹力方向的确定

三、教学过程

环节一:导入新课

教学一开始前,给每个学生小组分发弹簧和尺子,让每个小组试着把玩这些物件,如用力拉或压弹簧,用力弯动尺子等。在操作过程中思考被拉或压的弹簧,弯动的尺子的有什么共同点是什么?大家可否试着举出生活中其他的一些诸如这个弹簧和尺子的例子?

物体的形状都发生了改变。由此引入物体的形态发生了变化是源于物体都受到了力的作用,这种力就是今天要学习的弹力。

环节二:新课讲授

(一)弹性形变和弹力

概念:物体在力的作用下形状或体积的改变叫做形变。

提问:刚才举的那些例子都很容易观察到,如果一本书放在桌面上,书和桌面发生形变了没有?

学生会产生疑惑分歧,但教师此时可以不用详解,而是做现场演示实验1,让学生观察用手挤压时烧瓶的形变(双手握住注满红墨水的烧瓶,用力挤压底部。上插玻璃管中的红墨水液面上升。)

为了让学生有更直观深刻的印象,也会用视频播放演示实验2:桌面微小形变的激光演示(在一个大桌上放两个平面镜M和N,让一束光依次被这两面镜子反射,最后射在刻度尺上形成一个光点。用力压桌面,观察刻度尺上光点位置的变化。)

学生观察后思考:通过上面的实验,我们观察到什么样的实验现象?我们用了什么样的方法?那书放在桌面上,书和桌面发生形变了没有?

分析得出:通过微观放大的方法观察,我们发现原来不容易观察的瓶子和桌面也发生了形变。

归纳:由此我们可以想到一切物体都可以发生形变,形变分为很多种类,有些物体在形变后能够恢复原状,这种形变叫做弹性形变。

提问:发生弹性形变的物体是不是在所有的情况下都可以恢复原状呢?请举例说明?

学生能举出有时弹簧拉得过长就恢复不了原状。指出:如果形变过大,超过一定的限度,撤去作用力后物体不能完全恢复原来的形状,这个限度叫做弹性限度。

根据前面的铺垫,总结弹力的概念:发生形变的物体,由于要恢复原状,对与它接触的物体会产生力的作用,这种力叫做弹力。例举蹦床的例子说明。

(二)几种弹力的方向

教师在黑板上画出书与桌面之间的相互作用力,与学生一起分析之间的相互作用关系,指出书对桌面的压力和桌面对书的支持力都是弹力。

举出实例:给出吊灯图片,做出分析。以灯为研究受力对象,链子指向链子收缩的方向吊住吊灯,链子发生形变。链子被拉长,就要企图恢复形变。这里施力物体——链子,受力物体——灯。这时候链子对灯的拉力的方向是——竖直向上,指向链子收缩的方向。

做出总结:弹力方向——施力物体形变恢复的方向;与施力物体形变方向相反。压力和支持力的方向总是垂直于接触面指向受力物体,绳的拉力总是沿着绳子指向绳收缩的方向。

环节三:巩固提高

给出如下三个图片,要求学生画出弹力的示意图。

归纳总结:

三种接触情况下弹力的方向:

(1)面面接触,垂直于接触面指向被支持的物体

(2)点面接触,垂直于接触面指向被支持的物体

(3)点点接触,垂直于接触点的切面指向被支持物体。

环节四:小结作业

小结:师生归纳弹力的相关知识点。

作业:预习后面胡克定律,了解弹力大小的特点。

四、板书设计

高二物理高中物理选修3-4教案


 11.1简谐运动

教学目的

(1)了解什么是机械振动、简谐运动

(2)正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。

2.能力培养通过观察演示实验,概括出机械振动的特征,培养学生的观察、概括能力

教学重点:使学生掌握简谐运动的回复力特征及相关物理量的变化规律

教学难点:偏离平衡位置的位移与位移的概念容易混淆;在一次全振动中速度的变化

课型:启发式的讲授课

教具:钢板尺、铁架台、单摆、竖直弹簧振子、皮筋球、气垫弹簧振子、微型气源

教学过程(教学方法)

教学内容

[引入]我们学习机械运动的规律,是从简单到复杂:匀速运动、匀变速直线运动、平抛运动、匀速圆

周 运动,今天 学习一种更复杂的运动--简谐运动。

点击下载: http://files.eduu.com/down.php?id=136808

高中物理课堂教学案例分析


高中物理课堂教学案例分析

教学建议:

1.初中阶段学生已经初步认识了滑动摩擦力的定义及其产生条件,可以借助生活中的现象导出这节课的内容;

2.静摩擦力是这节课的重点以及难点,尤其相对运动趋势的判断较为难突破,需要教师加以启发和引导,在讲解的过程中可以借助物理情景通过受力分析,利用假设法帮助学生突破这一难点;

3.鉴于静摩擦力的学习较难,在学以致用环节,教师可以举出多个相关物理情景,请学生自行进行判断,以达到反复练习、加深理解和应用的教学目的。

有关资料:

1.静摩擦力在生活中应用广泛,比如说:人走路、推动桌子的过程中桌子上的杯子不会掉落、用手握住杯子使它不掉下来等等;

2.相对运动趋势的讲解可以利用假设法,假设没有静摩擦力,物体会有怎样的运动,这个运动即为相对运动趋势。

典例展示——教学片断

教师:书中图3.3-1中,小孩推动箱子,箱子没动,仍与地面保持相对静止,根据初中所学的二力平衡,说明此时一定有一个力与人的推力平衡,这个力是什么力?

学生:这个力是地面给箱子的摩擦力。

教师:很好,说明同学们对于初中的知识还很清晰。那如果没有这个力,箱子会发生怎样的运动?

学生:没有这个力,箱子会向右运动。

教师:很好,我们就说箱子有向右运动的趋势,而非相对运动。那同学们再来思考一下,地面给箱子的摩擦力和相对运动趋势之间有什么联系?

学生:地面给箱子的摩擦力是向左的,和向右的运动趋势是相反的。

教师:同学们观察得很仔细,确实如此。我们说,当两个物体只有相对运动的趋势,而没有相对运动,这时的摩擦力叫做静摩擦力,静摩擦力的方向总是沿着接触面,并且跟物体的相对运动趋势相反。同学们清楚了么?

学生:清楚了。

教师:很好。那我们再来思考这样一个问题:在以上分析的过程中,我们是如何判断相对运动趋势的?用到了怎样的物理思想?同学一起来思考总结一下。

学生:判断物体相对运动趋势的过程中,我们先假设了没有静摩擦力,进而分析物体会向哪儿运动,就得出了物体的相对运动趋势,所以用到的是假设法。

教师:同学们都非常善于思考、发现和总结,假设法是一种非常重要的物理思维和方法,希望大家课下进一步地熟练应用。