88教案网

你的位置: 教案 > 高中教案 > 导航 > 20xx高考物理大一轮复习:第13章热学(选修3-3)(8份打包有课件)

高中生物一轮复习教案

发表时间:2021-02-18

20xx高考物理大一轮复习:第13章热学(选修3-3)(8份打包有课件)。

古人云,工欲善其事,必先利其器。作为教师就要好好准备好一份教案课件。教案可以保证学生们在上课时能够更好的听课,帮助教师缓解教学的压力,提高教学质量。所以你在写教案时要注意些什么呢?以下是小编为大家精心整理的“20xx高考物理大一轮复习:第13章热学(选修3-3)(8份打包有课件)”,仅供参考,欢迎大家阅读。

第1节分子动理论内能
一、分子动理论
1.物体是由大量分子组成的
(1)分子模型:主要有两种模型,固体与液体分子通常用球体模型,气体分子通常用立方体模型.
(2)分子的大小
①分子直径:数量级是10-10m;
②分子质量:数量级是10-26kg;
③测量方法:油膜法.
(3)阿伏加德罗常数
1mol任何物质所含有的粒子数,NA=6.02×1023mol-1.
2.分子热运动
分子永不停息的无规则运动.
(1)扩散现象
相互接触的不同物质彼此进入对方的现象.温度越高,扩散越快,可在固体、液体、气体中进行.
(2)布朗运动
悬浮在液体(或气体)中的微粒的无规则运动,微粒越小,温度越高,布朗运动越显著.
3.分子力
分子间同时存在引力和斥力,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但总是斥力变化得较快.
二、内能
1.分子平均动能
(1)所有分子动能的平均值.
(2)温度是分子平均动能的标志.
2.分子势能
由分子间相对位置决定的能,在宏观上分子势能与物体体积有关,在微观上与分子间的距离有关.
3.物体的内能
(1)内能:物体中所有分子的热运动动能与分子势能的总和.
(2)决定因素:温度、体积和物质的量.
三、温度
1.意义:宏观上表示物体的冷热程度(微观上标志物体中分子平均动能的大小).
2.两种温标
(1)摄氏温标t:单位℃,在1个标准大气压下,水的冰点作为0℃,沸点作为100℃,在0℃~100℃之间等分100份,每一份表示1℃.
(2)热力学温标T:单位K,把-273.15℃作为0K.
(3)就每一度表示的冷热差别来说,两种温度是相同的,即ΔT=Δt.只是零值的起点不同,所以二者关系式为T=t+273.15.
(4)绝对零度(0K),是低温极限,只能接近不能达到,所以热力学温度无负值.
[自我诊断]
1.判断正误
(1)质量相等的物体含有的分子个数不一定相等.(√)
(2)组成物体的每一个分子运动是有规律的.(×)
(3)布朗运动是液体分子的运动.(×)
(4)分子间斥力随分子间距离的减小而增大,但分子间引力却随分子间距离的减小而减小.(×)
(5)内能相同的物体,温度不一定相同.(√)
(6)分子间无空隙,分子紧密排列.(×)
2.(多选)墨滴入水,扩而散之,徐徐混匀.关于该现象的分析正确的是()
A.混合均匀主要是由于碳粒受重力作用
B.混合均匀的过程中,水分子和碳粒都做无规则运动
C.使用碳粒更小的墨汁,混合均匀的过程进行得更迅速
D.墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的
解析:选BC.根据分子动理论的知识可知,最后混合均匀是扩散现象,水分子做无规则运动,碳粒做布朗运动,由于布朗运动的剧烈程度与颗粒大小和温度有关,所以使用碳粒更小的墨汁,布朗运动会更明显,则混合均匀的过程进行得更迅速,故选B、C.
3.关于物体的内能,以下说法正确的是()
A.不同物体,温度相等,内能也相等
B.所有分子的势能增大,物体内能也增大
C.温度升高,分子平均动能增大,但内能不一定增大
D.只要两物体的质量、温度、体积相等,两物体的内能一定相等
解析:选C.不同物体,温度相等,分子平均动能相等,分子动能不一定相等,不能说明内能也相等,A错误;所有分子的势能增大,不能反映分子动能如何变化,不能确定内能也增大,B错误;两物体的质量、温度、体积相等,但其物质的量不一定相等,不能得出内能相等,D错误,C正确.
考点一宏观量与微观量的计算
1.微观量:分子体积V0、分子直径d、分子质量m0.
2.宏观量:物体的体积V、摩尔体积Vm、物体的质量m、摩尔质量M、物体的密度ρ.
3.关系
(1)分子的质量:m0=MNA=ρVmNA.
(2)分子的体积:V0=VmNA=MρNA.
(3)物体所含的分子数:N=VVmNA=mρVmNA
或N=mMNA=ρVMNA.
4.分子的两种模型
(1)球体模型直径d=36V0π.(常用于固体和液体)
(2)立方体模型边长d=3V0.(常用于气体)
对于气体分子,d=3V0的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离.
1.(多选)若以μ表示水的摩尔质量,V表示在标准状态下水蒸气的摩尔体积,ρ表示在标准状态下水蒸气的密度,NA表示阿伏加德罗常数,m、v分别表示每个水分子的质量和体积,下面关系正确的是()
A.NA=ρVmB.ρ=μNAv
C.ρ<μNAvD.m=μNA
解析:选ACD.由于μ=ρV,则NA=μm=ρVm,变形得m=μNA,故A、D正确;由于分子之间有空隙,所以NAv<V,水的密度为ρ=μV<μNAv,故C正确,B错误.
2.(多选)已知铜的摩尔质量为M(kg/mol),铜的密度为ρ(kg/m3),阿伏加德罗常数为NA(mol-1).下列判断正确的是()
A.1kg铜所含的原子数为NAM
B.1m3铜所含的原子数为MNAρ
C.1个铜原子的质量为MNA(kg)
D.1个铜原子的体积为MρNA(m3)
解析:选ACD.1kg铜所含的原子数N=1MNA=NAM,A正确;同理,1m3铜所含的原子数N=ρMNA=ρNAM,B错误;1个铜原子的质量m0=MNA(kg),C正确;1个铜原子的体积V0=m0ρ=MρNA(m3),D正确.
3.(20xx陕西西安二模)目前专家们正在研究二氧化碳的深海处理技术.实验发现,在水深300m处,二氧化碳将变成凝胶状态,当水深超过2500m时,二氧化碳会浓缩成近似固体的硬胶体.设在某状态下二氧化碳气体的密度为ρ,摩尔质量为M,阿伏加德罗常数为NA,将二氧化碳分子看成直径为D的球球的体积公式V球=16πD3,则在该状态下体积为V的二氧化碳气体变成硬胶体后体积为________.
解析:二氧化碳气体变成硬胶体后,可以看成是分子一个个紧密排列在一起的,故体积为V的二氧化碳气体质量为m=ρV;所含分子数为n=mMNA=ρVMNA;变成硬胶体后体积为V′=n16πD3=πρVNAD36M.
答案:πρVNAD36M
在进行微观量与宏观量之间的换算的两点技巧
(1)正确建立分子模型:固体和液体一般建立球体模型,气体一般建立立方体模型.
(2)计算出宏观量所含物质的量,通过阿伏加德罗常数进行宏观量与微观量的转换与计算.
考点二布朗运动与分子热运动

布朗运动热运动
活动主体固体小颗粒分子
区别是固体小颗粒的运动,是比分子大得多的分子团的运动,较大的颗粒不做布朗运动,但它本身的以及周围的分子仍在做热运动是指分子的运动,分子无论大小都做热运动,热运动不能通过光学显微镜直接观察到
共同点都是永不停息的无规则运动,都随温度的升高而变得更加激烈,都是肉眼所不能看见的
联系布朗运动是由于小颗粒受到周围分子做热运动的撞击力不均衡而引起的,它是分子做无规则运动的反映
1.(多选)关于扩散现象,下列说法正确的是()
A.温度越高,扩散进行得越快
B.扩散现象是不同物质间的一种化学反应
C.扩散现象是由物质分子无规则运动产生的
D.扩散现象在气体、液体和固体中都能发生
E.液体中的扩散现象是由于液体的对流形成的
解析:选ACD.扩散现象与温度有关,温度越高,扩散进行得越快,选项A正确.扩散现象是由于分子的无规则运动引起的,不是一种化学反应,选项B错误、选项C正确、选项E错误.扩散现象在气体、液体和固体中都能发生,选项D正确.
2.关于布朗运动,下列说法正确的是()
A.布朗运动就是液体分子的无规则运动
B.布朗运动就是悬浮微粒的固体分子的无规则运动
C.气体分子的运动是布朗运动
D.液体中的悬浮微粒越大,布朗运动就越不明显
解析:选D.布朗运动是悬浮在液体中的固体颗粒的无规则运动,是液体分子无规则运动的表现,A、B错误.气体分子的运动不是布朗运动,C错误.布朗运动的剧烈程度与液体的温度以及颗粒的大小有关,液体中的悬浮微粒越大,布朗运动就越不明显,D正确.
3.(多选)下列哪些现象属于热运动()
A.把一块平滑的铅板叠放在平滑的铝板上,经相当长的一段时间再把它们分开,会看到与它们相接触的面都变得灰蒙蒙的
B.把胡椒粉末放入菜汤中,最后胡椒粉末会沉在汤碗底,但我们喝汤时尝到了胡椒的味道
C.含有泥沙的水经一定时间会变澄清
D.用砂轮打磨而使零件温度升高
解析:选ABD.热运动在微观上是指分子的运动,如扩散现象,在宏观上表现为温度的变化,如“摩擦生热”、物体的热传递等,而水变澄清的过程是泥沙在重力作用下的沉淀,不是热运动,C错误.
区别布朗运动与热运动应注意以下两点
(1)布朗运动并不是分子的热运动.
(2)布朗运动可通过显微镜观察,分子热运动不能用显微镜直接观察.
考点三分子力、分子力做功和分子势能
分子力和分子势能随分子间距变化的规律如下:
分子力F分子势能Ep
随分子间距的变化图象

随分子间距的变化情况r<r0F引和F斥都随距离的增大而减小,随距离的减小而增大,F引<F斥,F表现为斥力r增大,分子力做正功,分子势能减小;r减小,分子力做负功,分子势能增加
r>r0F引和F斥都随距离的增大而减小,随距离的减小而增大,F引>F斥,F表现为引力r增大,分子力做负功,分子势能增加;r减小,分子力做正功,分子势能减小
r=r0F引=F斥,F=0分子势能最小,但不为零
r>10r0(10-9m)F引和F斥都已十分微弱,可以认为F=0分子势能为零

[典例](20xx东北三省三市联考)(多选)分子力比重力、引力等要复杂得多,分子势能跟分子间的距离的关系也比较复杂.图示为分子势能与分子间距离的关系图象,用r0表示分子引力与分子斥力平衡时的分子间距,设r→∞时,Ep=0,则下列说法正确的是()
A.当r=r0时,分子力为零,Ep=0
B.当r=r0时,分子力为零,Ep为最小
C.当r0<r<10r0时,Ep随着r的增大而增大
D.当r0<r<10r0时,Ep随着r的增大而减小
E.当r<r0时,Ep随着r的减小而增大
解析由Ep-r图象可知,r=r0时,Ep最小,再结合F-r图象知此时分子力为0,则A项错误,B项正确;结合F-r图象可知,在r0<r<10r0内分子力表现为引力,在间距增大过程中,分子引力做负功分子势能增大,则C项正确,D项错误;结合F-r图象可知,在r<r0时分子力表现为斥力,在间距减小过程中,分子斥力做负功,分子势能增大,则E项正确.
答案BCE
判断分子势能变化的两种方法
(1)利用分子力做功判断
分子力做正功,分子势能减小;分子力做负功,分子势能增加.
(2)利用分子势能Ep与分子间距离r的关系图线判断
如图所示,仅受分子力作用,分子动能和势能之和不变,根据Ep变化可判知Ek变化.而Ep变化根据图线判断.但要注意此图线和分子力与分子间距离的关系图线形状虽然相似,但意义不同,不要混淆.
1.(20xx海口模拟)(多选)两分子间的斥力和引力的合力F与分子间距离r的关系如图中曲线所示,曲线与r轴交点的横坐标为r0.相距很远的两分子在分子力作用下,由静止开始相互接近.若两分子相距无穷远时分子势能为零,下列说法正确的是()
A.在r>r0阶段,F做正功,分子动能增加,势能减小
B.在r<r0阶段,F做负功,分子动能减小,势能也减小
C.在r=r0时,分子势能最小,动能最大
D.在r=r0时,分子势能为零
E.分子动能和势能之和在整个过程中不变
解析:选ACE.由Ep-r图可知:在r>r0阶段,当r减小时F做正功,分子势能减小,分子动能增加,故A正确;在r<r0阶段,当r减小时F做负功,分子势能增加,分子动能减小,故B错误;在r=r0时,分子势能最小,但不为零,动能最大,故C正确,D错误;在整个相互接近的过程中,分子动能和势能之和保持不变,故E正确.
2.(20xx山东烟台二模)(多选)两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近.在此过程中,下列说法正确的是()
A.分子力先增大,后一直减小
B.分子力先做正功,后做负功
C.分子动能先增大,后减小
D.分子势能先增大,后减小
E.分子势能和动能之和不变
解析:选BCE.两分子从较远靠近的过程分子力先表现为引力且先增大后减小,到平衡位置时,分子力为零,之后再靠近分子力表现为斥力且越来越大,A选项错误;分子力先做正功后做负功,B选项正确;分子势能先减小后增大,动能先增大后减小,C选项正确、D选项错误;只有分子力做功,分子势能和分子动能相互转化,总和不变,E选项正确.
考点四实验:用油膜法估测分子大小
1.实验原理:利用油酸酒精溶液在平静的水面上形成单分子油膜,将油酸分子看作球形,测出一定体积油酸溶液在水面上形成的油膜面积,用d=VS计算出油膜的厚度,其中V为一滴油酸酒精溶液中纯油酸的体积,S为油膜面积,这个厚度就近似等于油酸分子的直径.
2.实验器材:盛水浅盘、滴管(或注射器)、试剂瓶、坐标纸、玻璃板、痱子粉(或细石膏粉)、油酸酒精溶液、量筒、彩笔.
3.实验步骤:
(1)取1mL(1cm3)的油酸溶于酒精中,制成200mL的油酸酒精溶液.
(2)往边长为30~40cm的浅盘中倒入约2cm深的水,然后将痱子粉(或细石膏粉)均匀地撒在水面上.
(3)用滴管(或注射器)向量筒中滴入n滴配制好的油酸酒精溶液,使这些溶液的体积恰好为1mL,算出每滴油酸酒精溶液的体积V0=1nmL.
(4)用滴管(或注射器)向水面上滴入一滴配制好的油酸酒精溶液,油酸就在水面上慢慢散开,形成单分子油膜.
(5)待油酸薄膜形状稳定后,将一块较大的玻璃板盖在浅盘上,用彩笔将油酸薄膜的形状画在玻璃板上.
(6)将画有油酸薄膜轮廓的玻璃板放在坐标纸上,算出油酸薄膜的面积.
(7)据油酸酒精溶液的浓度,算出一滴溶液中纯油酸的体积V,据一滴油酸的体积V和薄膜的面积S,算出油酸薄膜的厚度d=VS,即为油酸分子的直径.比较算出的分子直径,看其数量级(单位为m)是否为10-10m,若不是10-10m需重做实验.
4.实验时应注意的事项:
(1)油酸酒精溶液的浓度应小于11000.
(2)痱子粉的用量不要太大,并从盘中央加入,使粉自动扩散至均匀.
(3)测1滴油酸酒精溶液的体积时,滴入量筒中的油酸酒精溶液的体积应为整毫升数,应多滴几毫升,数出对应的滴数,这样求平均值误差较小.
(4)浅盘里水离盘口面的距离应较小,并要水平放置,以便准确地画出薄膜的形状,画线时视线应与板面垂直.
(5)要待油膜形状稳定后,再画轮廓.
(6)利用坐标纸求油膜面积时,以边长为1cm的正方形为单位,计算轮廓内正方形的个数,不足半个的舍去.大于半个的算一个.
5.可能引起误差的几种原因:
(1)纯油酸体积的计算引起误差.
(2)油膜面积的测量引起的误差主要有两个方面:
①油膜形状的画线误差;
②数格子法本身是一种估算的方法,自然会带来误差.
1.(20xx湖北三校联考)在“油膜法估测油酸分子的大小”实验中,有下列实验步骤:
①往边长约为40cm的浅盘里倒入约2cm深的水,待水面稳定后将适量的痱子粉均匀地撒在水面上.
②用注射器将事先配好的油酸酒精溶液滴一滴在水面上,待薄膜形状稳定.
③将画有油膜形状的玻璃板平放在坐标纸上,计算出油膜的面积,根据油酸的体积和面积计算出油酸分子直径的大小.
④用注射器将事先配好的油酸酒精溶液一滴一滴地滴入量筒中,记下量筒内每增加一定体积时的滴数,由此计算出一滴油酸酒精溶液的体积.
⑤将玻璃板放在浅盘上,然后将油膜的形状用彩笔描绘在玻璃板上.
完成下列填空:
(1)上述步骤中,正确的顺序是_____.(填写步骤前面的数字)
(2)将1cm3的油酸溶于酒精,制成300cm3的油酸酒精溶液,测得1cm3的油酸酒精溶液有50滴.现取一滴该油酸酒精溶液滴在水面上,测得所形成的油膜的面积是0.13m2.由此估算出油酸分子的直径为________m.(结果保留1位有效数字)
解析:(1)依据实验顺序,首先配置混合溶液,然后在浅盘中放水和痱子粉,将一滴溶液滴入浅盘中,将玻璃板放在浅盘上获取油膜形状,最后用已知边长的坐标纸上的油膜形状来计算油膜的总面积,故正确的操作顺序为④①②⑤③;
(2)一滴油酸酒精溶液的体积为V=1cm3300×50=SD,其中S=0.13m2,故油酸分子直径
D=VS=1×10-6m3300×50×0.13m2=5×10-10m.
答案:(1)④①②⑤③(2)5×10-10
2.(1)现有按酒精与油酸的体积比为m∶n配制好的油酸酒精溶液,用滴管从量筒中取体积为V的该种溶液,让其自由滴出,全部滴完共N滴.把一滴这样的溶液滴入盛水的浅盘中,由于酒精溶于水,油酸在水面上展开,稳定后形成单分子油膜的形状如图所示,已知坐标纸上每个小方格面积为S.根据以上数据可估算出油酸分子直径为d=________;
(2)若已知油酸的密度为ρ,阿伏加德罗常数为NA,油酸的分子直径为d,则油酸的摩尔质量为________.
解析:(1)一滴油酸酒精溶液里含油酸的体积为:
V1=nVm+nN,油膜的总面积为8S;
则油膜的厚度即为油酸分子直径,即
d=V18S=nV8Sm+nN
(2)一个油酸分子的体积:V′=16πd3,则油酸的摩尔质量为M=ρNAV′=16πρNAd3.
答案:(1)nV8Sm+nN(2)πρNAd36
3.在“用油膜法估测分子的大小”的实验中,所用油酸酒精溶液的浓度为每104mL溶液中有纯油酸6mL,用注射器测得1mL上述溶液为75滴.把1滴该溶液滴入盛水的浅盘里,待水面稳定后,将玻璃板放在浅盘上,用彩笔在玻璃板上描出油膜的轮廓,再把玻璃板放在坐标纸上,其形状和尺寸如图所示,坐标中正方形方格的边长为1cm.则
(1)油酸薄膜的面积是________cm2.
(2)每滴油酸酒精溶液中含有纯油酸的体积是________mL.(取一位有效数字)
(3)按以上实验数据估测出油酸分子直径约为________m.(取一位有效数字)
解析:(1)根据数方格数的原则“多于半个的算一个,不足半个的舍去”可查出共有115个方格,
故油膜的面积:
S=115×1cm2=115cm2.
(2)一滴油酸酒精溶液的体积:
V′=175mL,
一滴油酸酒精溶液中含纯油酸的体积:
V=6104V′=8×10-6mL.
(3)油酸分子的直径:
d=VS=8×10-12115×10-4m=7×10-10m.
答案:(1)115±3(2)8×10-6(3)7×10-10
课时规范训练
[基础巩固题组]
1.(多选)以下关于分子动理论的说法中正确的是()
A.物质是由大量分子组成的
B.-2℃时水已经结为冰,部分水分子已经停止了热运动
C.随分子间距离的增大,分子势能可能先减小后增大
D.分子间的引力与斥力都随分子间距离的增大而减小
解析:选ACD.物质是由大量分子组成的,A正确;分子是永不停息地做无规则运动的,B错误;在分子间距离增大时,如果先是分子力做正功,后是分子力做负功,则分子势能是先减小后增大的,C正确;分子间的引力与斥力都随分子间距离的增大而减小,但斥力变化得快,D正确.
2.下列叙述正确的是()
A.只要知道水的摩尔质量和水分子的质量,就可以计算出阿伏加德罗常数
B.只要知道气体的摩尔体积和阿伏加德罗常数,就可以算出气体分子的体积
C.悬浮在液体中的固体颗粒越大,布朗运动就越明显
D.当分子间的距离增大时,分子间的引力变大而斥力减小
解析:选A.水的摩尔质量除以水分子的质量就等于阿伏加德罗常数,选项A正确;气体分子间的距离很大,气体的摩尔体积除以阿伏加德罗常数得到的不是气体分子的体积,选项B错误;布朗运动与固体颗粒大小有关,颗粒越大,布朗运动越不明显,选项C错误;当分子间距离增大时,分子间的引力和斥力都减小,选项D错误.
3.(多选)1g100℃的水和1g100℃的水蒸气相比较,下列说法正确的是()
A.分子的平均动能和分子的总动能都相同
B.分子的平均动能相同,分子的总动能不同
C.内能相同
D.1g100℃的水的内能小于1g100℃的水蒸气的内能
解析:选AD.温度相同则它们的分子平均动能相同;又因为1g水和1g水蒸气的分子数相同,因而它们的分子总动能相同,A正确、B错误;当100℃的水变成100℃的水蒸气时,分子间距离变大,分子力做负功、分子势能增加,该过程吸收热量,所以1g100℃的水的内能小于1g100℃的水蒸气的内能,C错误、D正确.
4.(多选)下列关于布朗运动的说法,正确的是()
A.布朗运动是液体分子的无规则运动
B.液体温度越高,悬浮粒子越小,布朗运动越剧烈
C.布朗运动是由于液体各个部分的温度不同而引起的
D.布朗运动是由液体分子从各个方向对悬浮粒子撞击作用的不平衡引起的
解析:选BD.布朗运动是悬浮颗粒的无规则运动,A错误.温度越高、颗粒越小,布朗运动越剧烈,B正确.布朗运动是由液体分子撞击的不平衡引起的,间接反映了液体分子的无规则运动,C错误、D正确.
5.(多选)下列说法正确的是()
A.显微镜下观察到墨水中的小炭粒在不停地做无规则运动,这反映了液体分子运动的无规则性
B.分子间的相互作用力随着分子间距离的增大,一定先减小后增大
C.分子势能随着分子间距离的增大,可能先减小后增大
D.在真空、高温条件下,可以利用分子扩散向半导体材料掺入其他元素
E.当温度升高时,物体内每一个分子热运动的速率一定都增大
解析:选ACD.根据布朗运动的定义,显微镜下观察到墨水中的小炭粒在不停地做无规则运动,不是分子运动,是小炭粒的无规则运动.但却反映了小炭粒周围的液体分子运动的无规则性,A正确.分子间的相互作用力随着分子间距离的增大,可能先增大后减小,也可能一直减小,B错误.由于分子间的距离不确定,故分子势能随着分子间距离的增大,可能先减小后增大,也可能一直增大,C正确.由扩散现象可知,在真空、高温条件下,可以利用分子扩散向半导体材料掺入其他元素,D正确.当温度升高时,分子的热运动加剧,但不是物体内每一个分子热运动的速率都增大,E错误.
6.如图所示是分子间作用力和分子间距离的关系图线,关于图线下面说法正确的是()
A.曲线a是分子间引力和分子间距离的关系曲线
B.曲线b是分子间作用力的合力和分子间距离的关系曲线
C.曲线c是分子间斥力和分子间距离的关系曲线
D.当分子间距离r>r0时,曲线b对应的力先减小,后增大
解析:选B.在F-r图象中,随着距离的增大,斥力比引力变化得快,所以a为斥力曲线,c为引力曲线,b为合力曲线,故A、C错误,B正确;当分子间距离r>r0时,曲线b对应的力先增大,后减小,故D错误.
7.(多选)当两分子间距为r0时,它们之间的引力和斥力大小相等.关于分子之间的相互作用,下列说法正确的是()
A.当两个分子间的距离等于r0时,分子势能最小
B.当两个分子间的距离小于r0时,分子间只存在斥力
C.在两个分子间的距离由很远逐渐减小到r=r0的过程中,分子间作用力的合力先增大后减小
D.在两个分子间的距离由很远逐渐减小到r=r0的过程中,分子间作用力的合力一直增大
E.在两个分子间的距离由r=r0逐渐减小的过程中,分子间作用力的合力一直增大
解析:选ACE.两个分子间的距离等于r0时,分子力为零,分子势能最小,选项A正确;两分子之间的距离小于r0时,它们之间既有引力又有斥力的作用,而且斥力大于引力,作用力表现为斥力,选项B错误;当分子间距离等于r0时,它们之间引力和斥力的大小相等、方向相反,合力为零,当两个分子间的距离由较远逐渐减小到r=r0的过程中,分子间作用力的合力先增大后减小,表现为引力,选项C正确,D错误;两个分子间的距离由r=r0开始减小的过程中,分子间作用力的合力一直增大,表现为斥力,选项E正确.
8.在做“用油膜法估测分子的大小”的实验中:
(1)关于油膜面积的测量方法,下列说法中正确的是()
A.油酸酒精溶液滴入水中后,要立刻用刻度尺去量油膜的面积
B.油酸酒精溶液滴入水中后,要让油膜尽可能地散开,再用刻度尺去量油膜的面积
C.油酸酒精溶液滴入水中后,要立即将油膜的轮廓画在玻璃板上,再利用坐标纸去计算油膜的面积
D.油酸酒精溶液滴入水中后,要让油膜尽可能散开,等到状态稳定后,再把油膜的轮廓画在玻璃板上,用坐标纸去计算油膜的面积
(2)实验中,将1cm3的油酸溶于酒精,制成200cm3的油酸酒精溶液,又测得1cm3的油酸酒精溶液有50滴,现将1滴溶液滴到水面上,水面上形成0.2m2的单分子薄层,由此可估算油酸分子的直径d=________m.
解析:(1)在做“用油膜法估测分子的大小”的实验中,油酸酒精溶液滴在水面上,油膜会散开,待稳定后,再在玻璃板上画下油膜的轮廓,用坐标纸计算油膜面积,故选D.
(2)一滴油酸酒精溶液里含纯油酸的体积V=1200×150cm3=10-10m3.油酸分子的直径d=VS=10-100.2m=5×10-10m.
答案:(1)D(2)5×10-10
[综合应用题组]
9.(多选)如图所示,纵坐标表示两个分子间引力、斥力的大小,横坐标表示两个分子间的距离,图中两条曲线分别表示两分子间引力、斥力的大小随分子间距离的变化关系,e为两曲线的交点,则下列说法中正确的是()
A.ab为斥力曲线,cd为引力曲线,e点横坐标的数量级为10-10m
B.ab为引力曲线,cd为斥力曲线,e点横坐标的数量级为10-10m
C.若两个分子间距离增大,则分子势能也增大
D.由分子动理论可知,温度相同的氢气和氧气,分子平均动能相同
E.质量和温度都相同的氢气和氧气(视为理想气体),氢气的内能大
解析:选BDE.分子引力和分子斥力都会随着分子间距离的增大而减小,只是斥力减小得更快,所以当分子间距离一直增大,最终分子力表现为引力,即ab为引力曲线,cd为斥力曲线,二者相等即平衡时分子距离数量级为10-10m,A错误,B正确.若两个分子间距离增大,如果分子力表现为引力,则分子力做负功,分子势能增大,若分子力表现为斥力,分子力做正功,分子势能减小,C错误.分子平均动能只与温度有关,即温度相等时,氢气和氧气分子平均动能相等,D正确,若此时质量相同,则氢气分子数较多,因此氢气内能大,E正确.
10.近期我国多个城市的PM2.5数值突破警戒线,受影响最严重的是京津冀地区,雾霾笼罩,大气污染严重.PM2.5是指空气中直径等于或小于2.5微米的悬浮颗粒物,其漂浮在空中做无规则运动,很难自然沉降到地面,吸入后对人体形成危害.矿物燃料燃烧的排放是形成PM2.5的主要原因.下列关于PM2.5的说法中正确的是()
A.PM2.5的尺寸与空气中氧分子的尺寸的数量级相当
B.PM2.5在空气中的运动属于布朗运动
C.温度越低PM2.5活动越剧烈
D.倡导低碳生活减少煤和石油等燃料的使用能有效减小PM2.5在空气中的浓度
E.PM2.5中颗粒小一些的,其颗粒的运动比其他颗粒更为剧烈
解析:选BDE.“PM2.5”是指直径小于或等于2.5微米的颗粒物,PM2.5的尺度远大于空气中氧分子的尺寸的数量级,A错误.PM2.5在空气中的运动是固体颗粒的运动,属于布朗运动,B正确.大量空气分子对PM2.5无规则碰撞,温度越高,空气分子对颗粒的撞击越剧烈,则PM2.5的运动越激烈,C错误.导致PM2.5增多的主要原因是环境污染,故应该提倡低碳生活,有效减小PM2.5在空气中的浓度,D正确.PM2.5中颗粒小一些的,空气分子对颗粒的撞击越不均衡,其颗粒的运动比其他颗粒更为剧烈,E正确.
11.如图所示,甲分子固定在坐标原点O,乙分子位于x轴上,甲分子对乙分子的作用力与两分子间距离的关系如图中曲线所示.F0为斥力,F0为引力.A、B、C、D为x轴上四个特定的位置.现把乙分子从A处由静止释放,下列A、B、C、D四个图分别表示乙分子的速度、加速度、势能、动能与两分子间距离的关系,其中大致正确的是()
解析:选B.速度方向始终不变,A项错误;加速度与力成正比,方向相同,故B项正确;分子势能不可能增大到正值,故C项错误;乙分子动能不可能为负值,故D项错误.
12.已知地球大气层的厚度h远小于地球半径R,空气平均摩尔质量为M,阿伏加德罗常数为NA,地面大气压强为p0,重力加速度大小为g.由此可估算得,地球大气层空气分子总数为________,空气分子之间的平均距离为________.
解析:地球大气层空气的质量m=Gg=4πR2p0g,总分子数N=mMNA=4πR2p0gMNA;气体总体积V=Sh=4πR2h,分子平均距离d=3V0=3VN=3Mghp0NA.
答案:4πNAp0R2MgMghNAp013
13.空调在制冷过程中,室内空气中的水蒸气接触蒸发器(铜管)液化成水,经排水管排走,空气中水分越来越少,人会感觉干燥.某空调工作一段时间后,排出液化水的体积V=1.0×103cm3.已知水的密度ρ=1.0×103kg/m3、摩尔质量M=1.8×10-2kg/mol,阿伏加德罗常数NA=6.0×1023mol-1.试求:(结果均保留一位有效数字)
(1)该液化水中含有水分子的总数N;
(2)一个水分子的直径d.
解析:(1)水的摩尔体积为
Vm=Mρ=1.8×10-21.0×103m3/mol=1.8×10-5m3/mol
水分子总数为
N=VNAVm=1.0×103×10-6×6.0×10231.8×10-5个≈3×1025个.
(2)建立水分子的球体模型,有VmNA=16πd3,可得水分子直径:d=36VmπNA=36×1.8×10-53.14×6.0×1023m=4×10-10m.
答案:(1)3×1025个(2)4×10-10m
第2节固体、液体和气体
一、固体
1.分类:固体分为晶体和非晶体两类.晶体又分为单晶体和多晶体.
2.晶体与非晶体的比较
单晶体多晶体非晶体
外形规则不规则不规则
熔点确定确定不确定
物理性质各向异性各向同性各向同性
典型物质石英、云母、食盐、硫酸铜玻璃、蜂蜡、松香
形成与转化有的物质在不同条件下能够形成不同的形态.同一物质可能以晶体和非晶体两种不同的形态出现,有些非晶体在一定条件下可以转化为晶体
二、液体
1.液体的表面张力
(1)作用:液体的表面张力使液面具有收缩的趋势.
(2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直.
(3)大小:液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大.
2.液晶的物理性质
(1)具有液体的流动性
(2)具有晶体的光学各向异性
(3)在某个方向上看,其分子排列比较整齐,但从另一方向看,分子的排列是杂乱无章的
三、饱和汽湿度
1.饱和汽与未饱和汽
(1)饱和汽:与液体处于动态平衡的蒸汽.
(2)未饱和汽:没有达到饱和状态的蒸汽.
2.饱和汽压
(1)定义:饱和汽所具有的压强.
(2)特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关.
3.湿度
(1)绝对湿度:空气中所含水蒸气的压强.
(2)相对湿度:空气的绝对湿度与同一温度下水的饱和汽压之比.
(3)相对湿度公式
相对湿度=水蒸气的实际压强同温度水的饱和汽压B=pps×100%.
四、气体分子运动速率的统计分布气体实验定律理想气体
1.气体分子运动的特点
(1)分子很小,间距很大,除碰撞外不受力.
(2)气体分子向各个方向运动的气体分子数目都相等.
(3)分子做无规则运动,大量分子的速率按“中间多,两头少”的规律分布.
(4)温度一定时,某种气体分子的速率分布是确定的,温度升高时,速率小的分子数减少,速率大的分子数增多,分子的平均速率增大,但不是每个分子的速率都增大.
2.气体的三个状态参量
(1)体积;(2)压强;(3)温度.
3.气体的压强
(1)产生原因:由于气体分子无规则的热运动,大量的分子频繁地碰撞器壁产生持续而稳定的压力.
(2)大小:气体的压强在数值上等于气体作用在单位面积上的压力.公式:p=FS.
(3)常用单位及换算关系:
①国际单位:帕斯卡,符号:Pa,1Pa=1N/m2.
②常用单位:标准大气压(atm);厘米汞柱(cmHg).
③换算关系:1atm=76cmHg=1.013×105Pa≈1.0×105Pa.
4.气体实验定律
(1)等温变化——玻意耳定律:
①内容:一定质量的某种气体,在温度不变的情况下,压强p与体积V成反比.
②公式:p1V1=p2V2或pV=C(常量).
(2)等容变化——查理定律:
①内容:一定质量的某种气体,在体积不变的情况下,压强p与热力学温度T成正比.
②公式:p1p2=T1T2或pT=C(常量).
③推论式:Δp=p1T1ΔT.
(3)等压变化——盖—吕萨克定律:
①内容:一定质量的某种气体,在压强不变的情况下,其体积V与热力学温度T成正比.
②公式:V1V2=T1T2或VT=C(常量).
③推论式:ΔV=V1T1ΔT.
5.理想气体状态方程
(1)理想气体:在任何温度、任何压强下都遵从气体实验定律的气体.
①理想气体是一种经科学的抽象而建立的理想化模型,实际上不存在.
②理想气体不考虑分子间相互作用的分子力,不存在分子势能,内能取决于温度,与体积无关.
③实际气体特别是那些不易液化的气体在压强不太大,温度不太低时都可看作理想气体.
(2)一定质量的理想气体状态方程:
p1V1T1=p2V2T2或pVT=C(常量).
[自我诊断]
1.判断正误
(1)晶体一定有规则的外形.(×)
(2)晶体不一定各向异性,单晶体一定各向异性.(√)
(3)液体的表面张力其实质是液体表面分子间的引力.(√)
(4)温度升高,物体内每一个分子运动的速率都增大.(×)
(5)理想气体的内能是所有气体分子的动能.(√)
(6)蒸汽处于饱和状态时没有了液体分子与蒸汽分子间的交换.(×)
(7)饱和汽压是指饱和汽的压强.(√)
2.(多选)下列说法正确的是()
A.液体表面张力的方向与液面垂直并指向液体内部
B.单晶体有固定的熔点,多晶体没有固定的熔点
C.单晶体中原子(或分子、离子)的排列具有空间周期性
D.通常金属在各个方向的物理性质都相同,所以金属是非晶体
E.液晶具有液体的流动性,同时具有晶体的各向异性特征
解析:选CE.液体的表面张力与液体表面相切,垂直于液面上的各条分界线,选项A错误;无论是单晶体还是多晶体,都有固定的熔点,选项B错误;根据固体特性的微观解释可知,选项C正确;金属是由大量细微的小晶粒杂乱无章地排列起来的,在各个方向上的物理性质都相同,但有固定的熔点,金属属于多晶体,选项D错误;液晶既具有液体的流动性,同时也具有单晶体的各向异性,选项E正确.
3.如右图所示,只有一端开口的U形玻璃管,竖直放置,用水银封住两段空气柱Ⅰ和Ⅱ,大气压为p0,水银柱高为压强单位,那么空气柱Ⅰ的压强p1为()
A.p1=p0+hB.p1=p0-h
C.p1=p0+2hD.p1=p0
解析:选D.由图可知,p1+h=p2=p0+h,故p1=p0,选项D正确.
4.如图所示,一个横截面积为S的圆筒形容器竖直放置,金属圆块A的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆块的质量为M,不计圆块与容器内壁之间的摩擦,若大气压强为p0,则被圆块封闭在容器中的气体的压强p为________.
解析:对圆块进行受力分析:重力Mg,大气压的作用力p0S,封闭气体对它的作用力pScosθ,容器侧壁的作用力F1和F2,如图所示.由于不需要求出侧壁的作用力,所以只考虑竖直方向合力为零,就可以求被封闭的气体压强.圆块在竖直方向上受力平衡,故p0S+Mg=pScosθcosθ,即p=p0+MgS.
答案:p0+MgS
5.一定质量的理想气体被活塞封闭在竖直放置的圆柱形汽缸内.汽缸壁导热良好,活塞可沿汽缸壁无摩擦地滑动.开始时气体压强为p,活塞下表面相对于汽缸底部的高度为h,外界的温度为T0.现取质量为m的沙子缓慢地倒在活塞的上表面,沙子倒完时,活塞下降了h4.若此后外界的温度变为T,求重新达到平衡后气体的体积.已知外界大气的压强始终保持不变,重力加速度大小为g.
解析:设汽缸的横截面积为S,沙子倒在活塞上后,对气体产生的压强为Δp,由玻意耳定律得
phS=(p+Δp)h-14hS①
解得Δp=13p②
外界的温度变为T后,设活塞距底面的高度为h′.根据盖-吕萨克定律,得h-14hST0=h′ST③
解得h′=3T4T0h④
据题意可得Δp=mgS⑤
气体最后的体积为V=Sh′⑥
联立②④⑤⑥式得V=9mghT4pT0⑦
答案:9mghT4pT0
考点一固体和液体的性质
1.晶体和非晶体
(1)单晶体具有各向异性,但不是在各种物理性质上都表现出各向异性.
(2)只要是具有各向异性的物体必定是晶体,且是单晶体.
(3)只要是具有确定熔点的物体必定是晶体,反之,必是非晶体.
(4)晶体和非晶体在一定条件下可以相互转化.
2.液体表面张力
(1)形成原因:
表面层中分子间的距离比液体内部分子间的距离大,分子间的相互作用力表现为引力.
(2)表面特性:
表面层分子间的引力使液面产生了表面张力,使液体表面好像一层绷紧的弹性薄膜.
(3)表面张力的方向:
和液面相切,垂直于液面上的各条分界线.
(4)表面张力的效果:
表面张力使液体表面具有收缩趋势,使液体表面积趋于最小,而在体积相同的条件下,球形的表面积最小.
(5)表面张力的大小:
跟边界线的长度、液体的种类、温度都有关系.
1.(多选)下列说法正确的是()
A.将一块晶体敲碎后,得到的小颗粒是非晶体
B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质
C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体
D.在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体
E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变
解析:选BCD.A.将一晶体敲碎后,得到的小颗粒仍是晶体,故选项A错误.
B.单晶体具有各向异性,有些单晶体沿不同方向上的光学性质不同,故选项B正确.
C.例如金刚石和石墨由同种元素构成,但由于原子的排列方式不同而成为不同的晶体,故选项C正确.
D.晶体与非晶体在一定条件下可以相互转化.如天然水晶是晶体,熔融过的水晶(即石英玻璃)是非晶体,也有些非晶体在一定条件下可转化为晶体,故选项D正确.
E.熔化过程中,晶体的温度不变,但内能增加,故选项E错误.
2.(多选)下列说法正确的是()
A.把一枚针轻放在水面上,它会浮在水面.这是由于水表面存在表面张力的缘故
B.水在涂有油脂的玻璃板上能形成水珠,而在干净的玻璃板上却不能.这是因为油脂使水的表面张力增大的缘故
C.在围绕地球飞行的宇宙飞船中,自由飘浮的水滴呈球形.这是表面张力作用的结果
D.在毛细现象中,毛细管中的液面有的升高,有的降低,这与液体的种类和毛细管的材质有关
E.当两薄玻璃板间夹有一层水膜时,在垂直于玻璃板的方向很难将玻璃板拉开.这是由于水膜具有表面张力的缘故
解析:选ACD.由于液体表面张力的存在,针、硬币等能浮在水面上,A正确.水在涂有油脂的玻璃板上能形成水珠,这是不浸润的结果,而干净的玻璃板上不能形成水珠,这是浸润的结果,B错误.在太空中水滴呈球形,是液体表面张力作用的结果,C正确.液体的种类和毛细管的材质决定了液体与管壁的浸润或不浸润,浸润液体液面在细管中向下弯,不浸润液体液面在细管中向上弯,D正确.E项中,玻璃板很难被拉开是由于分子引力的作用,E错误.

相关知识

20xx高考物理大一轮复习:第9章-磁场(10份打包有课件)


一名爱岗敬业的教师要充分考虑学生的理解性,教师要准备好教案,这是教师的任务之一。教案可以让学生更好地进入课堂环境中来,让教师能够快速的解决各种教学问题。关于好的教案要怎么样去写呢?下面是小编为大家整理的“20xx高考物理大一轮复习:第9章-磁场(10份打包有课件)”,相信能对大家有所帮助。

第1节磁场的描述、磁场对电流的作用
一、磁场、磁感应强度
1.磁场
(1)基本性质:磁场对处于其中的磁体、电流和运动电荷有磁力的作用.
(2)方向:小磁针的N极所受磁场力的方向.
2.磁感应强度
(1)物理意义:描述磁场强弱和方向.
(2)定义式:B=FIL(通电导线垂直于磁场).
(3)方向:小磁针静止时N极的指向.
(4)单位:特斯拉,符号T.
二、磁感线及几种常见的磁场分布
1.磁感线
在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致.
2.几种常见的磁场
(1)条形磁铁和蹄形磁铁的磁场(如图所示)
(2)几种电流周围的磁场分布
直线电流的磁场通电螺线管的磁场环形电流的磁场
特点无磁极、非匀强且距导线越远处磁场越弱与条形磁铁的磁场相似,管内为匀强磁场且磁场最强,管外为非匀强磁场环形电流的两侧是N极和S极且离圆环中心越远,磁场越弱
安培定则

立体图

横截面图

纵截面图

(3)磁感线的特点
①磁感线上某点的切线方向就是该点的磁场方向.
②磁感线的疏密程度表示磁场强弱.
③磁感线是闭合曲线,没有起点和终点.在磁体外部,从N极指向S极,在磁体内部,从S极指向N极.
④磁感线是假想的曲线,不相交、不中断、不相切.
三、安培力的大小和方向
1.大小
(1)F=BILsinθ(其中θ为B与I之间的夹角)
(2)磁场和电流垂直时F=BIL.
(3)磁场和电流平行时F=0.
2.方向
(1)用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.
(2)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面.(注意:B和I可以有任意夹角)
[自我诊断]
1.判断正误
(1)小磁针N极受磁场力的方向就是该处磁感应强度的方向.(√)
(2)磁场中的一小段通电导体在该处受力为零,此处B一定为零.(×)
(3)由定义式B=FIL可知,电流强度I越大,导线L越长,某点的磁感应强度就越小.(×)
(4)磁感线是真实存在的.(×)
(5)通电线圈可等效成条形磁铁,它周围的磁感线起始于线圈一端,终止于线圈的另一端.(×)
(6)安培力的方向既跟磁感应强度方向垂直,又跟电流方向垂直.(√)
2.(多选)指南针是我国古代四大发明之一.关于指南针,下列说法正确的是()
A.指南针可以仅具有一个磁极
B.指南针能够指向南北,说明地球具有磁场
C.指南针的指向会受到附近铁块的干扰
D.在指南针正上方附近沿指针方向放置一直导线,导线通电时指南针不偏转
解析:选BC.指南针有N、S两个磁极,受到地磁场的作用静止时S极指向南方,A错误,B正确.指南针有磁性,可以与铁块相互吸引,C正确.由奥斯特实验可知,小磁针在通电导线放置位置合适的情况下,会发生偏转,D错误.
3.磁场中某区域的磁感线如图所示,则()
A.a、b两处的磁感应强度的大小不等,Ba>Bb
B.a、b两处的磁感应强度的大小不等,Ba<Bb
C.同一通电导线放在a处受力一定比放在b处受力大
D.同一通电导线放在a处受力一定比放在b处受力小
解析:选B.在磁场中,磁感线的疏密表示磁场的强弱,故Ba<Bb,A错误,B正确.同一通电导线如果都垂直放入磁场中,则在a处受力一定比b处受力小,但如果导线与磁场平行放置,受力均为0,故C、D均错误.
4.关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()
A.安培力的方向可以不垂直于直导线
B.安培力的方向总是垂直于磁场的方向
C.安培力的大小与通电直导线和磁场方向的夹角无关
D.将直导线从中点折成直角,安培力的大小一定变为原来的一半
解析:选B.根据左手定则,安培力垂直于电流和磁感应强度所组成的平面,A错误,B正确.由安培力公式F=BILsinθ(θ为B与I的夹角)可知,C错误.若在垂直于磁感应强度的平面内将直导线折成直角,其有效长度变为原来的22,安培力大小也变为原来的22,D错误.
考点一磁场的理解及安培定则
1.磁感应强度的三点理解
(1)磁感应强度由磁场本身决定,因此不能根据定义式B=FIL认为B与F成正比,与IL成反比.
(2)测量磁感应强度时小段通电导线必须垂直磁场放入,如果平行磁场放入,则所受安培力为零,但不能说该点的磁感应强度为零.
(3)磁感应强度是矢量,其方向为放入其中的小磁针N极的受力方向,也是小磁针静止时N极的指向.
2.安培定则的应用
在运用安培定则判定直线电流和环形电流的磁场时应分清“因”和“果”.
原因(电流方向)结果(磁场绕向)
直线电流的磁场大拇指四指
环形电流的磁场四指大拇指

3.磁场的叠加
磁感应强度是矢量,计算时与力的计算方法相同,利用平行四边形定则或正交分解法进行合成与分解.
◆特别提醒:两个电流附近的磁场的磁感应强度是由两个电流分别独立存在时产生的磁场在该处的磁感应强度叠加而成的.
1.指南针是我国古代四大发明之一.当指南针上方有一条水平放置的通电导线时,其N极指向变为如图实线小磁针所示.则对该导线电流的以下判断正确的是()
A.可能东西放置,通有由东向西的电流
B.可能东西放置,通有由西向东的电流
C.可能南北放置,通有由北向南的电流
D.可能南北放置,通有由南向北的电流
解析:选C.若导线东西放置,通有由东向西的电流,根据安培定则可知,小磁针所在处合磁场方向将在南北方向上,其不会出现题图所示情况,故选项A错误.若导线东西放置,通有由西向东的电流,根据安培定则可知,小磁针N极不偏转,故选项B错误.若导线南北放置,通有由北向南的电流时,根据安培定则可知,小磁针N极将顺时针偏转,可转向图中实线所示位置,故选项C正确.若导线南北放置,通有由南向北的电流,根据安培定则可知,小磁针N极将逆时针偏转,指向西北方,故选项D错误.
2.(20xx河北廊坊模拟)(多选)无限长通电直导线在周围某一点产生的磁场的磁感应强度B的大小与电流大小成正比,与导线到这一点的距离成反比,即B=kIr(式中k为常数).如图所示,两根相距L的无限长直导线分别通有电流I和3I.在两根导线的连线上有a、b两点,a点为两根直导线连线的中点,b点距电流为I的导线的距离为L.下列说法正确的是()
A.a点和b点的磁感应强度方向相同
B.a点和b点的磁感应强度方向相反
C.a点和b点的磁感应强度大小比为8∶1
D.a点和b点的磁感应强度大小比为16∶1
解析:选AD.根据右手螺旋定则,导线周围的磁场的磁感线,是围绕导线形成的同心圆,两导线在a处的磁感应强度方向都向下,则合磁感应强度方向向下;根据B=kIr,电流为3I导线在b处的磁感应强度方向向下,而电流为I导线在b处的磁感应强度方向向上,因电流为3I导线在b处产生的磁场较大,则合磁感应强度方向向下,因此a点和b点的磁感应强度方向相同,故A正确,B错误.
两导线在a处的磁感应强度大小B1=3kIL2+kIL2=k8IL;两导线在b处的磁感应强度大小B2=3kI2L-kIL=kI2L,则a点和b点的磁感应强度大小之比为16∶1,故C错误,D正确.
3.(20xx江西南昌调研)如图所示,M、N和P是以MN为直径的半圆弧上的三点,O为半圆弧的圆心,∠MOP=60°,在M、N处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O点的磁感应强度大小为B1.若将M处长直导线移至P处,则O点的磁感应强度大小为B2,那么B2与B1之比为()
A.3∶1B.3∶2
C.1∶1D.1∶2
解析:选B.如图所示,当通有电流的长直导线在M、N两处时,根据安培定则,可知:二者在圆心O处产生的磁感应强度都为B1/2;当将M处长直导线移到P处时,两直导线在圆心O处产生的磁感应强度也为B1/2,做平行四边形,由图中的几何关系,可得B2B1=B22B12=cos30°=32,故选项B正确.
4.(20xx湖北三市六校联考)如图甲所示,无限长导线均通以恒定电流I.直线部分和坐标轴接近重合,弯曲部分是以坐标原点O为圆心的相同半径的一段圆弧,已知直线部分在原点O处不形成磁场,则图乙中O处磁感应强度和图甲中O处磁感应强度相同的是()
解析:选A.由题意可知,图甲中O处磁感应强度的大小是其中一段在O点产生的磁感应强度大小的2倍,方向垂直纸面向里;图A中,根据安培定则可知,左上段与右下段的通电导线产生的磁场叠加为零,则剩余的两段通电导线产生的磁感应强度大小是其中一段在O点的磁感应强度的2倍,且方向垂直纸面向里,故A正确;同理,图B中,四段通电导线在O点产生的磁感应强度是其中一段在O点产生的磁感应强度的4倍,方向垂直纸面向里,故B错误;图C中,右上段与左下段产生磁场叠加为零,则剩余两段产生磁感应强度大小是其中一段在O点产生磁感应强度的2倍,方向垂直纸面向外,故C错误;图D中,四段在O点产生的磁感应强度是其中一段在O点产生磁感应强度的2倍,方向垂直纸面向外,故D错误.
磁感应强度叠加三步骤
空间中的磁场通常会是多个磁场的叠加,磁感应强度是矢量,可以通过平行四边形定则进行计算或判断.其步骤如下:
(1)确定场源,如通电导线.
(2)定位空间中需求解磁场的点,利用安培定则判定各个场源在这一点上产生的磁场的大小和方向.如图中M、N在c点产生的磁场.
(3)应用平行四边形定则进行合成,如图中的合磁场B.
考点二安培力作用下的平衡与加速问题
1.分析导体在磁场中平衡和加速问题的思路
(1)确定要研究的导体.
(2)按照已知力→重力→安培力→弹力→摩擦力的顺序,对导体受力分析.
(3)分析导体的运动情况.
(4)根据平衡条件或牛顿第二定律列式求解.
2.受力分析的注意事项
(1)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面.
(2)安培力的大小:应用公式F=BILsinθ计算弯曲导线在匀强磁场中所受安培力的大小时,有效长度L等于曲线两端点的直线长度.
(3)视图转换:对于安培力作用下的力学问题,导体棒的受力往往分布在三维空间的不同方向上,这时应利用俯视图、剖面图或侧视图等,变立体图为二维平面图.
考向1:安培力作用下静态平衡问题
通电导体在磁场中受安培力和其它力作用而处于静止状态,可根据磁场方向、电流方向结合左手定则判断安培力方向.
[典例1](20xx广东广州三模)(多选)如图所示,质量为m、长度为L的直导线用两绝缘细线悬挂于O、O′,并处于匀强磁场中,当导线中通以沿x正方向的电流I,且导线保持静止时悬线与竖直方向夹角为θ.磁感应强度方向和大小可能为()
A.z正向,mgILtanθ
B.y正向,mgIL
C.z负向,mgILtanθ
D.沿悬线向上,mgILsinθ
解析本题要注意在受力分析时把立体图变成侧视平面图,然后通过平衡状态的受力分析来确定B的方向和大小.若B沿z正向,则从O向O′看,导线受到的安培力F=ILB,方向水平向左,如图甲所示,导线无法平衡,A错误.
若B沿y正向,导线受到的安培力竖直向上,如图乙所示.当FT=0,且满足ILB=mg,即B=mgIL时,导线可以平衡,B正确.
若B沿z负向,导线受到的安培力水平向右,如图丙所示.若满足FTsinθ=ILB,FTcosθ=mg,即B=mgtanθIL,导线可以平衡,C正确.若B沿悬线向上,导线受到的安培力左斜下方向,如图丁所示,导线无法平衡,D错误.
答案BC
考向2:安培力作用下动态平衡问题
此类题目是平衡问题,只是由于磁场大小或方向、电流大小或方向的变化造成安培力变化,与力学中某个力的变化类似的情景.
[典例2](20xx陕西西安模拟)如图所示,长为L的通电直导体棒放在光滑水平绝缘轨道上,劲度系数为k的水平轻弹簧一端固定,另一端拴在棒的中点,且与棒垂直,整个装置处于方向竖直向上、磁感应强度为B的匀强磁场中,弹簧伸长x时,棒处于静止状态.则()
A.导体棒中的电流方向从b流向a
B.导体棒中的电流大小为kxBL
C.若只将磁场方向缓慢顺时针转过一小角度,x变大
D.若只将磁场方向缓慢逆时针转过一小角度,x变大
解析由受力平衡可知安培力方向水平向右,由左手定则可知,导体棒中的电流方向从a流向b,故A错误;由于弹簧伸长为x,根据胡克定律有kx=BIL,可得I=kxBL,故B正确;若只将磁场方向缓慢顺时针或逆时针转过一小角度,则安培力在水平方向上的分力减小,根据力的平衡可得,弹簧弹力变小,导致x变小,故C、D错误.
答案B
考向3:安培力作用下加速问题
此类题目是导体棒在安培力和其它力作用下合力不再为零,而使导体棒产生加速度,根据受力特点结合牛顿第二定律解题是常用方法.
[典例3]如图所示,PQ和MN为水平平行放置的金属导轨,相距1m,导体棒ab跨放在导轨上,棒的质量为m=0.2kg,棒的中点用细绳经滑轮与物体相连,物体的质量M=0.3kg,棒与导轨的动摩擦因数为μ=0.5,匀强磁场的磁感应强度B=2T,方向竖直向下,为了使物体以加速度a=3m/s2加速上升,应在棒中通入多大的电流?方向如何?(g=10m/s2)
解析导体棒所受的最大静摩擦力大小为
fm=0.5mg=1N
M的重力为G=Mg=3N
要使物体加速上升,则安培力方向必须水平向左,则根据左手定则判断得知棒中电流的方向为由a到b.
根据受力分析,由牛顿第二定律有
F安-G-fm=(m+M)a
F安=BIL
联立得I=2.75A
答案2.75A方向由a→b
安培力作用下导体的分析技巧
(1)安培力作用下导体的平衡问题与力学中的平衡问题分析方法相同,只不过多了安培力,解题的关键是画出受力分析示意图.
(2)安培力作用下导体的加速问题与动力学问题分析方法相同,关键是做好受力分析,然后根据牛顿第二定律求出加速度.
考点三磁场中导体运动方向的判断
1.判定通电导体运动或运动趋势的思路
研究对象:通电导线或导体――→明确导体所在位置的磁场分布情况――→利用左手定则
导体的受力情况――→确定导体的运动方向或运动趋势的方向
2.几种判定方法
电流元法分割为电流元――→左手定则安培力方向―→整段导体所受合力方向―→运动方向
特殊位置法在特殊位置―→安培力方向―→运动方向
等效法环形电流??小磁针
条形磁铁??通电螺线管??多个环形电流
结论法同向电流互相吸引,异向电流互相排斥;两不平行的直线电流相互作用时,有转到平行且电流方向相同的趋势
转换研究对象法定性分析磁体在电流磁场作用下如何运动或运动趋势的问题,可先分析电流在磁体磁场中所受的安培力,然后由牛顿第三定律,确定磁体所受电流磁场的作用力,从而确定磁体所受合力及运动方向

1.一个可以自由运动的线圈L1和一个固定的线圈L2互相绝缘垂直放置,且两个线圈的圆心重合,如图所示.当两线圈中通以图示方向的电流时,从左向右看,线圈L1将()
A.不动
B.顺时针转动
C.逆时针转动
D.在纸面内平动
解析:选B.方法一(电流元法)把线圈L1沿水平转动轴分成上下两部分,每一部分又可以看成无数段直线电流元,电流元处在L2产生的磁场中,根据安培定则可知各电流元所在处的磁场方向向上,由左手定则可得,上半部分电流元所受安培力均指向纸外,下半部分电流元所受安培力均指向纸内,因此从左向右看线圈L1将顺时针转动.
方法二(等效法)把线圈L1等效为小磁针,该小磁针刚好处于环形电流I2的中心,小磁针的N极应指向该点环形电流I2的磁场方向,由安培定则知I2产生的磁场方向在其中心处竖直向上,而L1等效成小磁针后,转动前,N极指向纸内,因此小磁针的N极应由指向纸内转为向上,所以从左向右看,线圈L1将顺时针转动.
方法三(结论法)环形电流I1、I2之间不平行,则必有相对转动,直到两环形电流同向平行为止.据此可得,从左向右看,线圈L1将顺时针转动.
2.如图所示,蹄形磁铁用柔软的细绳悬吊在天花板上,在磁铁两极的正下方固定着一根水平直导线,当直导线中通以向右的电流时()
A.磁铁的N极向纸外、S极向纸内转动,绳子对磁铁的拉力减小
B.磁铁的S极向纸外、N极向纸内转动,绳子对磁铁的拉力减小
C.磁铁的N极向纸外、S极向纸内转动,绳子对磁铁的拉力增大
D.磁铁的S极向纸外、N极向纸内转动,绳子对磁铁的拉力增大
解析:选C.假设磁铁不动,导线运动,根据安培定则可知,通电导线左边的磁场斜向下,而右边的磁场斜向上,那么在导线两侧取两小段,根据左手定则可知,左边一小段所受安培力的方向垂直纸面向里,右侧一小段所受安培力的方向垂直纸面向外,从上往下看,导线顺时针转动.如今导线不动,磁铁运动,根据相对运动,则知磁铁逆时针转动(从上向下看),即N极向纸外转动,S极向纸内转动.当转动90°时,导线所受的安培力方向竖直向上,根据牛顿第三定律可得磁铁受到导线向下的作用力,故绳子对磁铁的拉力增大,C正确.
判断磁场中导体运动趋势的两点注意
(1)应用左手定则判定安培力方向时,磁感线穿入手心,大拇指一定要与磁感线方向垂直,四指与电流方向一致但不一定与磁感线方向垂直,这是因为:F一定与B垂直,I不一定与B垂直.
(2)导体与导体之间、磁体与磁体之间、磁体与导体之间的作用力和其他作用力一样具有相互性,满足牛顿第三定律.
课时规范训练
[基础巩固题组]
1.中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也.”进一步研究表明,地球周围地磁场的磁感线分布示意如图.结合上述材料,下列说法不正确的是()
A.地理南、北极与地磁场的南、北极不重合
B.地球内部也存在磁场,地磁南极在地理北极附近
C.地球表面任意位置的地磁场方向都与地面平行
D.地磁场对射向地球赤道的带电宇宙射线粒子有力的作用
解析:选C.由题意可知,地理南、北极与地磁场的南、北极不重合,存在磁偏角,A正确.磁感线是闭合的,再由图可推知地球内部存在磁场,地磁南极在地理北极附近,故B正确.只有赤道上方附近的磁感线与地面平行,故C错误.射向地球赤道的带电宇宙射线粒子的运动方向与地磁场方向不平行,故地磁场对其有力的作用,这是磁场的基本性质,故D正确.
2.三根平行的长直导体棒分别过正三角形ABC的三个顶点,并与该三角形所在平面垂直,各导体棒中均通有大小相等的电流,方向如图所示.则三角形的中心O处的合磁场方向为()
A.平行于AB,由A指向B
B.平行于BC,由B指向C
C.平行于CA,由C指向A
D.由O指向C
解析:选A.如图所示,由右手螺旋定则可知,导体A中电流在O点产生的磁场的磁感应强度方向平行BC,同理,可知导线B、C中电流在O点产生的磁场的磁感应强度的方向分别平行于AC、AB,又由于三根导线中电流大小相等,到O点的距离相等,则它们在O点处产生的磁场的磁感应强度大小相等,再由平行四边形定则,可得O处的合磁场方向为平行于AB,由A指向B,故选项A正确.
3.如图所示,AC是一个用长为L的导线弯成的、以O为圆心的四分之一圆弧,将其放置在与平面AOC垂直的磁感应强度为B的匀强磁场中.当在该导线中通以由C到A,大小为I的恒定电流时,该导线受到的安培力的大小和方向是()
A.BIL,平行于OC向左
B.22BILπ,垂直于AC的连线指向左下方
C.22BILπ,平行于OC向右
D.22BIL,垂直于AC的连线指向左下方
解析:选B.直导线折成半径为R的14圆弧形状,在磁场中的有效长度为2R,又因为L=14×2πR,则安培力F=BI2R=22BILπ.安培力的方向与有效长度的直线AC垂直,根据左手定则可知,安培力的方向垂直于AC的连线指向左下方,B正确.
4.如图所示,用粗细均匀的电阻丝折成平面梯形框架abcd.其中ab、cd边与ad边夹角均为60°,ab=bc=cd=L,长度为L的电阻丝电阻为R0,框架与一电动势为E、内阻r=R0的电源相连接,垂直于框架平面有磁感应强度为B的匀强磁场,则梯形框架abcd受到的安培力的大小为()
A.0B.5BEL11R0
C.10BEL11R0D.BELR0
解析:选C.并联部分的总电阻为R并=3R02R03R0+2R0=65R0,电路中的总电流I=ER并+r,所以线框受到的合外力F=BI2L=10BEL11R0,C正确.
5.如图所示,接通开关S的瞬间,用丝线悬挂于一点、可自由转动的通电直导线AB将()
A.A端向上,B端向下,悬线张力不变
B.A端向下,B端向上,悬线张力不变
C.A端向纸外,B端向纸内,悬线张力变小
D.A端向纸内,B端向纸外,悬线张力变大
解析:选D.当开关S接通时,由安培定则知导线附近磁感线分布如图,由左手定则判断出通电直导线此时左部受力指向纸内,右部受力指向纸外,导线将转动,转到与磁感线接近垂直时,导线转动的同时,相当于具有向里的电流,则导线受安培力将竖直向下,可知悬线张力变大,故选项D正确.
6.电磁炮是一种理想的兵器,它的主要原理如图所示,利用这种装置可以把质量为m=2.0g的弹体(包括金属杆EF的质量)加速到6km/s.若这种装置的轨道宽d=2m、长L=100m、电流I=10A、轨道摩擦不计且金属杆EF与轨道始终垂直并接触良好,则下列有关轨道间所加匀强磁场的磁感应强度和磁场力的最大功率结果正确的是()
A.B=18T,Pm=1.08×108W
B.B=0.6T,Pm=7.2×104W
C.B=0.6T,Pm=3.6×106W
D.B=18T,Pm=2.16×106W
解析:选D.通电金属杆在磁场中受安培力的作用而对弹体加速,由功能关系得BIdL=12mv2m,代入数值解得B=18T;当速度最大时磁场力的功率也最大,即Pm=BIdvm,代入数值得Pm=2.16×106W,故选项D正确.
[综合应用题组]
7.质量为m、长为L的直导体棒放置于四分之一光滑圆弧轨道上,整个装置处于竖直向上磁感应强度为B的匀强磁场中,直导体棒中通有恒定电流,平衡时导体棒与圆弧圆心的连线与竖直方向成60°角,其截面图如图所示.则下列关于导体棒中电流的分析正确的是()
A.导体棒中电流垂直纸面向外,大小为I=3mgBL
B.导体棒中电流垂直纸面向外,大小为I=3mg3BL
C.导体棒中电流垂直纸面向里,大小为I=3mgBL
D.导体棒中电流垂直纸面向里,大小为I=3mg3BL
解析:选C.根据左手定则可知,不管电流方向向里还是向外,安培力的方向只能沿水平方向,再结合导体棒的平衡条件可知,安培力只能水平向右,据此可判断出,导体棒中的电流垂直纸面向里,对导体棒受力分析如图所示,并根据平衡条件可知,F=mgtan60°,又安培力为F=BIL,联立可解得I=3mgBL,故选项C正确.
8.如图所示,两平行光滑金属导轨固定在绝缘斜面上,导轨间距为L,劲度系数为k的轻质弹簧上端固定,下端与水平直导体棒ab相连,弹簧与导轨平面平行并与ab垂直,直导体棒垂直跨接在两导轨上,空间存在垂直导轨平面斜向上的匀强磁场.闭合开关K后导体棒中的电流为I,导体棒平衡时,弹簧伸长量为x1;调转图中电源极性,使导体棒中电流反向,导体棒中电流仍为I,导体棒平衡时弹簧伸长量为x2.忽略回路中电流产生的磁场,则匀强磁场的磁感应强度B的大小为()
A.kIL(x1+x2)B.kIL(x2-x1)
C.k2IL(x2+x1)D.k2IL(x2-x1)
解析:选D.由平衡条件可得mgsinα=kx1+BIL;调转图中电源极性使导体棒中电流反向,由平衡条件可得mgsinα+BIL=kx2,联立解得B=k2IL(x2-x1).选项D正确.
9.(多选)如右图所示,在倾角为α的光滑斜面上,垂直斜面放置一根长为L、质量为m的直导体棒,当通以图示方向电流I时,欲使导体棒静止在斜面上,可加一平行于纸面的匀强磁场,当外加匀强磁场的磁感应强度B的方向由垂直斜面向上沿逆时针方向转至水平向左的过程中,下列说法中正确的是()
A.此过程中磁感应强度B逐渐增大
B.此过程中磁感应强度B先减小后增大
C.此过程中磁感应强度B的最小值为mgsinαIL
D.此过程中磁感应强度B的最大值为mgtanαIL
解析:选AC.导体棒受重力、支持力、安培力作用而处于平衡状态,当外加匀强磁场的磁感应强度B的方向由垂直斜面向上沿逆时针方向转至水平向左的过程中,安培力由沿斜面向上转至竖直向上,导体棒受力的动态变化如图所示,则由图知安培力逐渐增大,即此过程中磁感应强度B逐渐增大,A对、B错;刚开始安培力F最小,有sinα=Fmg,所以此过程中磁感应强度B的最小值为mgsinαIL,C对;最后安培力最大,有F=mg,即此过程中磁感应强度B的最大值为mgIL,D错.
10.如图所示,一长为10cm的金属棒ab用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1T,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘,金属棒通过开关与一电动势为12V的电池相连,电路总电阻为2Ω.已知开关断开时两弹簧的伸长量均为0.5cm;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3cm.重力加速度的大小取10m/s2.判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量.
解析:金属棒通电后,闭合回路电流I=ER=122A=6A
导体棒受到的安培力大小为F=BIL=0.06N.
开关闭合后,电流方向为从b到a,由左手定则可判断知金属棒受到的安培力方向竖直向下
由平衡条件知:开关闭合前:
2kx=mg
开关闭合后:2k(x+Δx)=mg+F
代入数值解得m=0.01kg.
答案:方向竖直向下0.01kg
11.某同学用图中所给器材进行与安培力有关的实验.两根金属导轨ab和a1b1固定在同一水平面内且相互平行,足够大的电磁铁(未画出)的N极位于两导轨的正上方,S极位于两导轨的正下方,一金属棒置于导轨上且与两导轨垂直.
(1)在图中画出连线,完成实验电路.要求滑动变阻器以限流方式接入电路,且在开关闭合后,金属棒沿箭头所示的方向移动.
(2)为使金属棒在离开导轨时具有更大的速度,有人提出以下建议:
A.适当增加两导轨间的距离
B.换一根更长的金属棒
C.适当增大金属棒中的电流
其中正确的是________(填入正确选项前的标号).
解析:(1)由于磁场方向竖直向下,要使金属棒的运动如图所示,则金属棒中电流由里向外,滑动变阻器用限流接法,实物图连接如图所示.
(2)为使金属棒离开时速度较大,由动能定理知BILx=12mv2,v=2BILxm,适当增大两导轨间的距离,可以增大v,适当增大金属棒的电流可以增大v,换一根更长的金属棒,增大了质量,v变小,因此A、C正确.
答案:(1)图见解析(2)AC
12.载流长直导线周围磁场的磁感应强度大小为B=kI/r,式中常量k0,I为电流强度,r为距导线的距离.在水平长直导线MN正下方,矩形线圈abcd通以逆时针方向的恒定电流,被两根等长的轻质绝缘细线静止地悬挂,如图所示.开始时MN内不通电流,此时两细线内的张力均为T0.当MN通以强度为I1的电流时,两细线内的张力均减小为T1;当MN内的电流强度变为I2时,两细线的张力均大于T0.
(1)分别指出强度为I1、I2的电流的方向;
(2)求MN分别通以强度为I1和I2电流时,线框受到的安培力F1与F2大小之比;
(3)当MN内的电流强度为I3时两细线恰好断裂,在此瞬间线圈的加速度大小为a,求I3.
解析:(1)由题意知,当MN通以电流I1时,线圈受到的安培力向上,根据左手定则、安培定则可以判断I1的方向向左,当MN通以电流I2时,线圈受到的安培力应向下,同理,可以判断I2的方向向右.
(2)当MN中的电流为I时,线圈受到的安培力大小为
F=kIiL1r1-1r2
式中r1、r2分别为ab、cd与MN的间距,i为线圈中的电流,L为ab、cd的长度.
所以F1F2=I1I2
(3)设MN中电流为I3时,线圈所受安培力为F3,由题设条件有2T0=mg,2T1+F1=mg,F3+mg=ma,I1I3=F1F3,由以上各式得I3=T0a-gT0-T1gI1
答案:(1)I1方向向左,I2方向向右(2)F1F2=I1I2
(3)T0a-gT0-T1gI1
第2节磁场对运动电荷的作用
一、洛伦兹力
1.定义:运动电荷在磁场中所受的力.
2.大小
(1)v∥B时,F=0.
(2)v⊥B时,F=qvB.
(3)v与B夹角为θ时,F=qvBsin_θ.
3.方向
(1)判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向.
(2)方向特点:F⊥B,F⊥v.即F垂直于B、v决定的平面.(注意B和v可以有任意夹角).
由于F始终垂直于v的方向,故洛伦兹力永不做功.
二、带电粒子在磁场中的运动
1.若v∥B,带电粒子以入射速度v做匀速直线运动.
2.若v⊥B,带电粒子在垂直于磁感线的平面内,以入射速度v做匀速圆周运动.
3.基本公式
(1)向心力公式:qvB=mv2r.
(2)轨道半径公式:r=mvBq.
(3)周期公式:T=2πrv=2πmqB.
f=1T=Bq2πm.
ω=2πT=2πf=Bqm.
三、洛伦兹力的应用实例
1.回旋加速器
(1)构造:如图所示,D1、D2是半圆形金属盒,D形盒的缝隙处接交流电源.D形盒处于匀强磁场中.
(2)原理:交变电流的周期和粒子
做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由qvB=mv2R,得Ekm=q2B2R22m,可见粒子获得的最大动能由磁感应强度B和D形盒半径R决定,与加速电压无关.
2.质谱仪
(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等组成.
(2)原理:粒子由静止在加速电场中被加速,根据动能定理qU=12mv2可知进入磁场的速度v=2qUm.粒子在磁场中受洛伦兹力偏转,做匀速圆周运动,根据牛顿第二定律,qvB=mv2r.由以上几式可得出需要研究的物理量如粒子轨道半径、粒子质量、比荷等.
[自我诊断]
1.判断正误
(1)洛伦兹力和安培力的方向都与磁场方向垂直.(√)
(2)粒子在只受到洛伦兹力作用时运动的动能不变.(√)
(3)运动电荷进入磁场后(无其他力作用)可能做匀速直线运动.(√)
(4)洛伦兹力可以做正功、做负功或不做功.(×)
(5)带电粒子在匀强磁场中做匀速圆周运动的周期与速度的大小无关.(√)
(6)带电粒子在匀强磁场中做匀速圆周运动的半径与粒子的比荷成正比.(×)
(7)经回旋加速器加速的带电粒子的最大初动能由D形盒的最大半径决定,与加速电压无关.(√)
(8)质谱仪只能区分电荷量不同的粒子.(×)
2.如图所示,电子枪射出的电子束进入示波管,在示波管正下方有竖直放置的通电环形导线,则示波管中的电子束将()
A.向上偏转
B.向下偏转
C.向纸外偏转
D.向纸里偏转
解析:选A.由安培定则知,环形导线在示波管处产生的磁场方向垂直于纸面向外,由左手定则可判断,电子受到的洛伦兹力方向向上,A正确.
3.如图,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出).一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O.已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计重力.铝板上方和下方的磁感应强度大小之比为()
A.2B.2
C.1D.22
解析:选D.根据洛伦兹力提供向心力得qvB=mv2R,粒子的动能Ek=12mv2,由此得磁感应强度B1=2mEkqR,结合题意知动能和半径都减小为原来的一半,则磁感应强度B2=2m12Ekq12R,故B1B2=22,故D正确.
4.(多选)图为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是()
A.电子与正电子的偏转方向一定不同
B.电子与正电子在磁场中运动轨迹的半径一定相同
C.仅依据粒子运动轨迹无法判断该粒子是质子还是正电子
D.粒子的动能越大,它在磁场中运动轨迹的半径越小
解析:选AC.电子、正电子和质子垂直进入磁场时,所受的重力均可忽略,受到的洛伦兹力方向与其电性有关,由左手定则可知A正确;由轨迹半径R=mvqB知,若电子与正电子进入磁场时的速度不同,则其运动的轨迹半径也不相同,故B错误;由R=mvqB=2mEkqB知D错误;因为质子和正电子的速度未知,半径关系不确定,故依据粒子运动轨迹无法判断该粒子是质子还是正电子,C正确.
考点一对洛伦兹力的理解
1.洛伦兹力的特点
(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面.
(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.
(3)洛伦兹力一定不做功.
2.洛伦兹力与安培力的联系及区别
(1)安培力是洛伦兹力的宏观表现,二者是相同性质的力,都是磁场力.
(2)安培力可以做功,而洛伦兹力对运动电荷不做功.
3.洛伦兹力与电场力的比较
1.下列关于洛伦兹力的说法中,正确的是()
A.只要速度大小相同,所受洛伦兹力就相同
B.如果把+q改为-q,且速度反向,大小不变,则洛伦兹力的大小、方向均不变
C.洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直
D.粒子在只受到洛伦兹力作用下运动的动能、速度均不变
解析:选B.因为洛伦兹力的大小不但与粒子速度大小有关,而且与粒子速度的方向有关,如当粒子速度与磁场垂直时F=qvB,当粒子速度与磁场平行时F=0.又由于洛伦兹力的方向永远与粒子的速度方向垂直,因而速度方向不同时,洛伦兹力的方向也不同,所以A选项错.因为+q改为-q且速度反向,由左手定则可知洛伦兹力方向不变,再由F=qvB知大小也不变,所以B选项正确.因为电荷进入磁场时的速度方向可以与磁场方向成任意夹角,所以C选项错.因为洛伦兹力总与速度方向垂直,因此,洛伦兹力不做功,粒子动能不变,但洛伦兹力可改变粒子的运动方向,使粒子速度的方向不断改变,所以D选项错.
2.(多选)如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的M、N两小孔中,O为M、N连线的中点,连线上a、b两点关于O点对称.导线均通有大小相等、方向向上的电流.已知长直导线周围产生的磁场的磁感应强度B=kIr,式中k是常数,I是导线中的电流,r为对应点到导线的距离.一带正电的小球以初速度v0从a点出发沿MN连线运动到b点.关于上述过程,下列说法正确的是()
A.小球先做加速运动后做减速运动
B.小球一直做匀速直线运动
C.小球对桌面的压力先减小后增大
D.小球对桌面的压力一直在增大
解析:选BD.由右手螺旋定则可知,M处的通电导线在MO区域产生的磁场垂直于MO向里,离导线越远磁场越弱,所以磁场由M到O逐渐减弱;N处的通电导线在ON区域产生的磁场垂直于ON向外,由O到N逐渐增强,带正电的小球由a点沿连线MN运动到b点,受到的洛伦兹力F=Bqv为变力,则从M到O洛伦兹力的方向向上,随磁场的减弱而减小,从O到N洛伦兹力的方向向下,随磁场的增强而增大,所以对桌面的压力一直在增大,D正确,C错误;由于桌面光滑,洛伦兹力始终沿竖直方向,所以小球在水平方向上不受力,做匀速直线运动,B正确、A错误.
3.(20xx河南开封四校二联)如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直纸面向里,一带电微粒由a点进入电磁场并刚好能沿ab直线向上运动.下列说法中正确的是()
A.微粒一定带负电
B.微粒的动能一定减小
C.微粒的电势能一定增加
D.微粒的机械能不变
解析:选A.对该微粒进行受力分析得:它受到竖直向下的重力、水平方向的电场力和垂直速度方向的洛伦兹力,其中重力和电场力是恒力,由于粒子沿直线运动,则可以判断出其受到的洛伦兹力也是恒定的,即该粒子是做匀速直线运动,动能不变,所以B项错误;如果该微粒带正电,则受到向右的电场力和向左下方的洛伦兹力,所以微粒受到的力不会平衡,故该微粒一定带负电,A项正确;该微粒带负电,向左上方运动,所以电场力做正功,电势能一定是减小的,C项错误;因为重力势能增加,动能不变,所以该微粒的机械能增加,D项错误.
理解洛伦兹力的四点注意
(1)正确分析带电粒子所在区域的合磁场方向.
(2)判断洛伦兹力方向时,特别区分电荷的正、负,并充分利用F⊥B、F⊥v的特点.
(3)计算洛伦兹力大小时,公式F=qvB中,v是电荷与磁场的相对速度.
(4)洛伦兹力对运动电荷(或带电体)不做功、不改变速度的大小,但它可改变运动电荷(或带电体)速度的方向,影响带电体所受其他力的大小,影响带电体的运动时间等.
考点二带电粒子在匀强磁场中的运动
1.带电粒子在匀强磁场中运动圆心、半径及时间的确定方法.
(1)圆心的确定
①已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,P为入射点,M为出射点).
②已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P为入射点,M为出射点).
(2)半径的确定
可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.
(3)运动时间的确定
粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为:t=θ2πT(或t=θRv).
2.重要推论
(1)当速度v一定时,弧长(或弦长)越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长.
(2)当速率v变化时,圆心角大的运动时间长.
考向1:圆形磁场区域
(1)圆形边界中,若带电粒子沿径向射入必沿径向射出,如图所示,轨迹圆与区域圆形成相交圆,巧用几何关系解决.
(2)带电粒子在圆形磁场中不沿径向,轨迹圆与区域圆相交,抓住两圆心,巧用对称性解决.
[典例1](20xx湖南师大附中月考)(多选)如图所示,以O为圆心、MN为直径的圆的左半部分内有垂直纸面向里的匀强磁场,三个不计重力、质量相同、带电荷量相同的带正电粒子a、b和c以相同的速率分别沿aO、bO和cO方向垂直于磁场射入磁场区域,已知bO垂直MN,aO、cO与bO的夹角都为30°,a、b、c三个粒子从射入磁场到射出磁场所用时间分别为ta、tb、tc,则下列给出的时间关系可能正确的是()
A.ta<tb<tcB.ta>tb>tc
C.ta=tb<tcD.ta=tb=tc
解析粒子带正电,偏转方向如图所示,粒子在磁场中的运动周期相同,在磁场中运动的时间t=θ2πT,故粒子在磁场中运动对应的圆心角越大,运动时间越长.设粒子的运动半径为r,圆形区域半径为R,当粒子a恰好从M点射出磁场时,r=13R,当粒子b恰好从M点射出磁场时,r=R,如图甲所示,ta<tb=tc.当rR时,粒子a对应的圆心角最小,c对应的圆心角最大,tctbta;当r≤13R,轨迹如图乙所示,ta=tb=tc.同理,13Rr≤R时,tatb=tc.A、D正确.
答案AD
[典例2](20xx高考全国甲卷)一圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M射入筒内,射入时的运动方向与MN成30°角.当筒转过90°时,该粒子恰好从小孔N飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为()
A.ω3BB.ω2B
C.ωBD.2ωB
解析如图所示,粒子在磁场中做匀速圆周运动,圆弧所对应的圆心角由几何知识知为30°,则π2ω=2πmqB30°360°,即qm=ω3B,选项A正确.
答案A
考向2:直线边界(进、出磁场具有对称性,如图所示)
[典例3](多选)如图,两个初速度大小相同的同种离子a和b,从O点沿垂直磁场方向进入匀强磁场,最后打到屏P上,不计重力,下列说法正确的有()
A.a、b均带正电
B.a在磁场中飞行的时间比b的短
C.a在磁场中飞行的路程比b的短
D.a在P上的落点与O点的距离比b的近
解析a、b粒子做圆周运动的半径都为R=mvqB,画出轨迹如图所示,圆O1、O2分别为b、a的轨迹,a在磁场中转过的圆心角大,由t=θ2πT=θmqB和轨迹图可知A、D选项正确.
答案AD
考向3:平行边界(存在临界条件,如图所示)
[典例4](20xx湖南长沙模拟)如图所示,一个理想边界为PQ、MN的匀强磁场区域,磁场宽度为d,方向垂直纸面向里.一电子从O点沿纸面垂直PQ以速度v0进入磁场.若电子在磁场中运动的轨道半径为2d.O′在MN上,且OO′与MN垂直.下列判断正确的是()
A.电子将向右偏转
B.电子打在MN上的点与O′点的距离为d
C.电子打在MN上的点与O′点的距离为3d
D.电子在磁场中运动的时间为πd3v0
解析电子带负电,进入磁场后,根据左手定则判断可知,所受的洛伦兹力方向向左,电子将向左偏转,如图所示,A错误;设电子打在MN上的点与O′点的距离为x,则由几何知识得:x=r-r2-d2=2d-2d2-d2=(2-3)d,故B、C错误;设轨迹对应的圆心角为θ,由几何知识得:sinθ=d2d=0.5,得θ=π6,则电子在磁场中运动的时间为t=θrv0=πd3v0,故D正确.
答案D
带电粒子在磁场中做匀速圆周运动的分析方法
考点三回旋加速器和质谱仪
1.质谱仪的主要特征
将质量数不等,电荷数相等的带电粒子经同一电场加速后进入偏转磁场.各粒子由于轨道半径不同而分离,其轨道半径r=mvqB=2mEkqB=2mqUqB=1B2mUq.在上式中,B、U、q对同一元素均为常量,故r∝m,根据不同的半径,就可计算出粒子的质量或比荷.
2.回旋加速器的主要特征
(1)带电粒子在两D形盒中回旋周期等于两盒狭缝之间高频电场的变化周期,与带电粒子的速度无关.
(2)将带电粒子在两盒狭缝之间的运动首尾连起来是一个初速度为零的匀加速直线运动.
(3)带电粒子每加速一次,回旋半径就增大一次,所以各半径之比为1∶2∶3∶…
(4)粒子的最后速度v=BqRm,可见带电粒子加速后的能量取决于D形盒的最大半径和磁场的强弱.
1.(20xx河南省实验中学月考)(多选)如图所示是医用回旋加速器的示意图,其核心部分是两个D形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连.现分别加速氘核(21H)和氦核(42He).下列说法中正确的是()
A.氘核(21H)的最大速度较大
B.它们在D形盒内运动的周期相等
C.氦核(42He)的最大动能较大
D.仅增大高频电源的频率可增大粒子的最大动能
解析:选BC.粒子在回旋加速器中能达到的最大速度,取决于在最外圈做圆周运动的速度.根据qvB=mv2R,得v=qBRm,两粒子的比荷qm相等,所以最大速度相等,A错误.带电粒子在磁场中运动的周期T=2πmqB,两粒子的比荷qm相等,所以周期相等,B正确.最大动能Ek=12mv2=q2B2R22m,两粒子的比荷qm相等,但质量不等,所以氦核最大动能大,C正确.回旋加速器加速粒子时,粒子在磁场中运动的周期与交流电的周期相同,否则无法加速,D错误.
2.(20xx高考全国乙卷)现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比约为()
A.11B.12
C.121D.144
解析:选D.带电粒子在加速电场中运动时,有qU=12mv2,在磁场中偏转时,其半径r=mvqB,由以上两式整理得:r=1B2mUq.由于质子与一价正离子的电荷量相同,B1∶B2=1∶12,当半径相等时,解得:m2m1=144,选项D正确.
3.(多选)如图所示为一种获得高能粒子的装置,环形区域内存在垂直于纸面、磁感应强度大小可调的匀强磁场(环形区域的宽度非常小).质量为m、电荷量为q的带正电粒子可在环中做半径为R的圆周运动.A、B为两块中心开有小孔的距离很近的平行极板,原来电势均为零,每当带电粒子经过A板刚进入AB之间时,A板电势升高到+U,B板电势仍保持为零,粒子在两板间的电场中得到加速.每当粒子离开B板时,A板电势又降为零.粒子在电场中一次次加速使得动能不断增大,而在环形区域内,通过调节磁感应强度大小可使绕行半径R不变.已知极板间距远小于R,则下列说法正确的是()
A.环形区域内匀强磁场的磁场方向垂直于纸面向里
B.粒子从A板小孔处由静止开始在电场力作用下加速,绕行N圈后回到A板时获得的总动能为NqU
C.粒子在绕行的整个过程中,A板电势变化周期不变
D.粒子绕行第N圈时,环形区域内匀强磁场的磁感应强度为1R2NmUq
解析:选BD.由题意知粒子在轨道内做顺时针圆周运动,根据左手定则可判断匀强磁场的磁场方向垂直于纸面向外,所以A错误;由于粒子在做圆周运动的过程中洛伦兹力不做功,在AB板间电场力做功W=qU,所以粒子绕行N圈后回到A板时获得的总动能为NqU,故B正确;由于粒子的轨道半径R不变,而粒子做圆周运动第N圈的速度为vN,根据NqU=12mv2N,可得粒子圆周运动的速度增大,根据R=mvBq,T=2πmBq=2πRv,所以周期减小,故A板电势变化周期变小,故C错误;粒子绕行第N圈时,NqU=12mv2N,所以vN=2NqUm,又R=mvNBq,联立得B=1R2NmUq,所以D正确.

课时规范训练
[基础巩固题组]
1.(多选)如图所示,一只阴极射线管,左侧不断有电子射出,若在管的正下方放一通电直导线AB时,发现射线的径迹向下偏,则()
A.导线中的电流从A流向B
B.导线中的电流从B流向A
C.若要使电子束的径迹向上偏,可以通过改变AB中的电流方向来实现
D.电子束的径迹与AB中的电流方向无关
解析:选BC.由于AB中通有电流,在阴极射线管中产生磁场,电子受到洛伦兹力的作用而发生偏转,由左手定则可知,阴极射线管中的磁场方向垂直纸面向里,所以根据安培定则,AB中的电流从B流向A.当AB中的电流方向变为从A流向B时,则AB上方的磁场方向变为垂直纸面向外,电子所受的洛伦兹力变为向上,电子束的径迹变为向上偏转.选项B、C正确.
2.两相邻匀强磁场区域的磁感应强度大小不同、方向平行.一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的()
A.轨道半径减小,角速度增大
B.轨道半径减小,角速度减小
C.轨道半径增大,角速度增大
D.轨道半径增大,角速度减小
解析:选D.因洛伦兹力不做功,故带电粒子从较强磁场区域进入到较弱的磁场区域后,其速度大小不变,由r=mvqB知,轨道半径增大;由角速度ω=vr知,角速度减小,选项D正确.
3.如图所示,半径为R的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外.一电荷量为q(q0)、质量为m的粒子沿平行于直径ab的方向射入磁场区域,射入点与ab的距离为R2,已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)()
A.qBR2mB.qBRm
C.3qBR2mD.2qBRm
解析:选B.如图所示,粒子做圆周运动的圆心O2必在过入射点垂直于入射速度方向的直线EF上,由于粒子射入、射出磁场时运动方向间的夹角为60°,故圆弧ENM对应圆心角为60°,所以△EMO2为等边三角形.由于O1D=R2,所以∠EO1D=60°,△O1ME为等边三角形,所以可得到粒子做圆周运动的半径EO2=O1E=R,由qvB=mv2R,得v=qBRm,B正确.

20xx高考物理大一轮复习:第12章-近代物理初步(6份打包有课件)


一名优秀的教师在教学时都会提前最好准备,作为教师就要精心准备好合适的教案。教案可以让学生更容易听懂所讲的内容,帮助教师提前熟悉所教学的内容。写好一份优质的教案要怎么做呢?下面的内容是小编为大家整理的20xx高考物理大一轮复习:第12章-近代物理初步(6份打包有课件),供您参考,希望能够帮助到大家。

第1节光电效应波粒二象性

一、光电效应及其规律

1.光电效应现象

在光的照射下,金属中的电子从表面逸出的现象,发射出来的电子叫光电子.

2.光电效应的产生条件

入射光的频率大于金属的极限频率.

3.光电效应规律

(1)每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效应.

(2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大.

(3)光电效应的发生几乎是瞬时的,一般不超过10-9s.

(4)当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比.

二、爱因斯坦光电效应方程

1.光子说

在空间传播的光不是连续的,而是一份一份的,每—份叫做一个光子,光子的能量ε=hν.

2.逸出功W0:电子从金属中逸出所需做功的最小值.

3.最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值.

4.光电效应方程

(1)表达式:hν=Ek+W0或Ek=hν-W0.

(2)物理意义:金属表面的电子吸收一个光子获得的能量是hν,这些能量的一部分用来克服金属的逸出功W0,剩下的表现为逸出后电子的最大初动能.

三、光的波粒二象性

1.光的干涉、衍射、偏振现象证明光具有波动性.

2.光电效应、康普顿效应说明光具有粒子性.

3.光既具有波动性,又具有粒子性,称为光的波粒二象性.

[自我诊断]

1.判断正误

(1)任何频率的光照射到金属表面都可以发生光电效应.(×)

(2)要使某金属发生光电效应,入射光子的能量必须大于金属的逸出功.(√)

(3)光电子的最大初动能与入射光子的频率成正比.(×)

(4)光的频率越高,光的粒子性越明显,但仍具有波动性.(√)

(5)德国物理学家普朗克提出了量子假说,成功地解释了光电效应规律.(×)

(6)美国物理学家康普顿发现了康普顿效应,证实了光的粒子性.(√)

(7)法国物理学家德布罗意大胆预言了实物粒子具有波动性.(√)

2.当用一束紫外线照射锌板时,产生了光电效应,这时()

A.锌板带负电B.有正离子从锌板逸出

C.有电子从锌板逸出D.锌板会吸附空气中的正离子

解析:选C.发生光电效应时,有光电子从锌板中逸出,逸出光电子后的锌板带正电,对空气中的正离子有排斥作用,C正确.

3.(多选)一单色光照到某金属表面时,有光电子从金属表面逸出,下列说法中正确的是()

A.无论增大入射光的频率还是增大入射光的强度,金属的逸出功都不变

B.只延长入射光照射时间,光电子的最大初动能将增大

C.只增大入射光的频率,光电子的最大初动能将增大

D.只增大入射光的频率,光电子逸出所经历的时间将缩短

解析:选AC.金属逸出功只与极限频率有关,A正确.根据光电效应方程Ek=hν-W0可知,光电子的最大初动能由入射光的频率和逸出功决定,只延长入射光照射时间,光电子的最大初动能将不变,B错误,C正确.发生光电效应的条件是入射光的频率大于截止频率,光电子逸出所经历的时间几乎同时,D错误.

4.关于光的本性,下列说法正确的是()

A.光既具有波动性,又具有粒子性,这是互相矛盾和对立的

B.光的波动性类似于机械波,光的粒子性类似于质点

C.大量光子才具有波动性,个别光子只具有粒子性

D.由于光既具有波动性,又具有粒子性,无法只用其中一种去说明光的—切行为,只能认为光具有波粒二象性

解析:选D.光既具有波动性,又具有粒子性,但不同于宏观的机械波和机械粒子,波动性和粒子性是光在不同的情况下的不同表现,是同一客体的两个不同的侧面、不同属性,只能认为光具有波粒二象性,A、B、C错误,D正确.

5.在某次光电效应实验中,得到的遏止电压Uc与入射光的频率ν的关系如图所示.若该直线的斜率和截距分别为k和b,电子电荷量的绝对值为e,则普朗克常量可表示为________,所用材料的逸出功可表示为________.

解析:根据光电效应方程Ekm=hν-W0及Ekm=eUc得Uc=hνe-W0e,故he=k,b=-W0e,得h=ek,W0=-eb.

答案:ek-eb

考点一光电效应的理解

1.光电效应中的几个概念比较

(1)光子与光电子

光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子.

(2)光电子的动能与光电子的最大初动能

光照射到金属表面时,电子吸收光子的全部能量,可能向各个方向运动,需克服原子核和其他原子的阻碍而损失一部分能量,剩余部分为光电子的初动能;只有金属表面的电子直接向外飞出时,只需克服原子核的引力做功的情况,才具有最大初动能.

(3)光电流和饱和光电流

金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关.

(4)光的强弱与饱和光电流

频率相同的光照射金属产生光电效应,入射光越强,饱和光电流越大.

2.对光电效应规律的解释

对应规律对规律的产生的解释

光电子的最大初动能随着入射光频率的增大而增大,与入射光强度无关电子吸收光子能量后,一部分克服原子核引力做功,剩余部分转化为光电子的初动能,只有直接从金属表面飞出的光电子才具有最大初动能,对于确定的金属,逸出功W0是一定的,故光电子的最大初动能只随入射光的频率增大而增大

光电效应具有瞬时性光照射金属时,电子吸收一个光子的能量后,动能立即增大,不需要能量积累的过程

光较强时饱和电流大光较强时,包含的光子数较多,照射金属时产生的光电子较多,因而饱和电流较大

1.(20xx高考全国乙卷)(多选)现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生.下列说法正确的是()

A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大

B.入射光的频率变高,饱和光电流变大

C.入射光的频率变高,光电子的最大初动能变大

D.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生

解析:选AC.产生光电效应时,光的强度越大,单位时间内逸出的光电子数越多,饱和光电流越大,说法A正确.饱和光电流大小与入射光的频率无关,说法B错误.光电子的最大初动能随入射光频率的增加而增加,与入射光的强度无关,说法C正确.减小入射光的频率,如低于极限频率,则不能发生光电效应,没有光电流产生,说法D错误.

2.(20xx广东深圳模拟)(多选)在光电效应实验中,用同一种单色光,先后照射锌和银的表面,都能发生光电效应.对于这两个过程,下列物理过程中一定不同的是()

A.遏止电压B.饱和光电流

C.光电子的最大初动能D.逸出功

解析:选ACD.同一束光照射不同的金属,一定相同的是入射光的光子能量,不同金属的逸出功不同,根据光电效应方程Ekm=hν-W0知,最大初动能不同,则遏止电压不同,选项A、C、D正确;同一束光照射,单位时间内射到金属表面的光子数目相等,所以饱和光电流是相同的,选项B错误.

3.(20xx广东省湛江一中高三模拟)(多选)用如图所示的光电管研究光电效应的实验中,用某种频率的单色光a照射光电管阴极K,电流计G的指针发生偏转.而用另一频率的单色光b照射光电管阴极K时,电流计G的指针不发生偏转,那么()

A.a光的频率一定大于b光的频率

B.只增加a光的强度可使通过电流计G的电流增大

C.增加b光的强度可能使电流计G的指针发生偏转

D.用a光照射光电管阴极K时通过电流计G的电流是由d到c

解析:选AB.由于用单色光a照射光电管阴极K,电流计G的指针发生偏转,说明发生了光电效应,而用另一频率的单色光b照射光电管阴极K时,电流计G的指针不发生偏转,说明b光不能发生光电效应,即a光的频率一定大于b光的频率;增加a光的强度可使单位时间内逸出光电子的数量增加,则通过电流计G的电流增大;因为b光不能发生光电效应,所以即使增加b光的强度也不可能使电流计G的指针发生偏转;用a光照射光电管阴极K时通过电流计G的电子的方向是由d到c,所以电流方向是由c到d.选项A、B正确.

光电效应实质及发生条件

(1)光电效应的实质是金属中的电子获得能量后逸出金属表面,从而使金属带上正电.

(2)能否发生光电效应,不取决于光的强度,而是取决于光的频率.只要照射光的频率大于该金属的极限频率,无论照射光强弱,均能发生光电效应.

考点二光电效应方程及图象的理解

1.爱因斯坦光电效应方程

Ek=hν-W0

hν:光子的能量

W0:逸出功,即从金属表面直接飞出的光电子克服原子核引力所做的功.

Ek:光电子的最大初动能.

2.四类图象

图象名称图线形状由图线直接(间接)得到的物理量

最大初动能Ek与入射光频率ν的关系图线

①极限频率:图线与ν轴交点的横坐标νc

②逸出功:图线与Ek轴交点的纵坐标的值W0=|-E|=E

③普朗克常量:图线的斜率k=h

颜色相同、强度不同的光,光电流与电压的关系

①遏止电压Uc:图线与横轴的交点

②饱和光电流Im:电流的最大值

③最大初动能:Ekm=eUc

颜色不同时,光电流与电压的关系

①遏止电压Uc1、Uc2

②饱和光电流

③最大初动能Ek1=eUc1,Ek2=eUc2

=遏止电压Uc与入射光频率ν的关系图线

①截止频率νc:图线与横轴的交点

②遏止电压Uc:随入射光频率的增大而增大

③普朗克常量h:等于图线的斜率与电子电量的乘积,即h=ke.(注:此时两极之间接反向电压)

[典例](20xx重庆万州二中模拟)(多选)某金属在光的照射下产生光电效应,其遏止电压Uc与入射光频率ν的关系图象如图所示.则由图象可知()

A.该金属的逸出功等于hν0

B.若已知电子电荷量e,就可以求出普朗克常量h

C.遏止电压是确定的,与照射光的频率无关

D.入射光的频率为2ν0时,产生的光电子的最大初动能为hν0

解析当遏止电压为零时,最大初动能为零,则入射光的能量等于逸出功,所以W0=hν0,A正确;根据光电效应方程Ek=hν-W0和-eUc=0-Ek得,Uc=heν-W0e,可知当入射光的频率大于极限频率时,遏止电压与入射光的频率呈线性关系,C错误;因为Uc=heν-W0e,知图线的斜率等于he,从图象上可以得出斜率的大小,已知电子电荷量e,可以求出普朗克常量h,B正确;从图象上可知逸出功W0=hν0,根据光电效应方程Ek=h2ν0-W0=hν0,D正确.

答案ABD

应用光电效应方程时的注意事项

(1)每种金属都有一个截止频率,光频率大于这个截止频率才能发生光电效应.

(2)截止频率是发生光电效应的最小频率,对应着光的极限波长和金属的逸出功,即hν0=hcλ0=W0.

(3)应用光电效应方程Ek=hν-W0时,注意能量单位电子伏和焦耳的换算(1eV=1.6×10-19J).

20xx高考物理大一轮复习:第3章牛顿运动定律(10份打包含课件)


第1节牛顿第一定律牛顿第三定律
一、牛顿第一定律
1.内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.
2.意义
(1)揭示了物体的固有属性:一切物体都有惯性,因此牛顿第一定律又叫惯性定律.
(2)揭示了力与运动的关系:力不是维持物体运动状态的原因,而是改变物体运动状态的原因,即产生加速度的原因.
二、惯性
1.定义:物体具有保持原来匀速直线运动状态或静止状态的性质.
2.表现:物体不受外力作用时,其惯性表现在保持静止或匀速直线运动状态;物体受外力作用时其惯性表现在反抗运动状态的改变.
3.量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.
三、牛顿第三定律
1.内容:两物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一条直线上.
2.表达式:F=-F′.
[自我诊断]
1.判断正误
(1)物体不受外力时一定处于静止状态.(×)
(2)惯性即惯性定律.(×)
(3)运动的物体惯性大,静止的物体惯性小.(×)
(4)两个大小相等、方向相反、作用在同一直线上的力一定是相互作用力.(×)
(5)作用力与反作用力的关系不随运动状态的变化而变化.(√)
(6)人走在松软土地上下陷时,人对地面的压力大于地面对人的支持力.(×)
2.(多选)关于牛顿第三定律,下列说法正确的是()
A.对重力、弹力、摩擦力等都适用
B.当相互作用的两个物体相距很远时不适用
C.当相互作用的两个物体做加速运动时不适用
D.相互作用的两个物体没有直接接触时也适用
解析:选AD.对于牛顿第三定律,适用于重力、弹力、摩擦力等所有的力,而且不管相互作用的两物体的质量如何、运动状态怎样、是否相互接触都适用,例如,地球吸引地球表面上的石块,石块同样以相同大小的力吸引地球,且不管接触不接触,都互相吸引,所以B、C错误,A、D正确.
3.关于惯性,下列说法中正确的是()
A.磁悬浮列车能高速行驶是因为列车浮起后惯性小了
B.卫星内的仪器由于完全失重惯性消失了
C.铁饼运动员在掷出铁饼前快速旋转可增大铁饼的惯性,使铁饼飞得更远
D.月球上物体的重力只有在地球上的1/6,但是惯性没有变化
解析:选D.惯性只与质量有关,与速度无关,A、C错误;失重或重力加速度发生变化时,物体质量不变,惯性不变,所以B错误、D正确.
4.一个榔头敲在一块玻璃上把玻璃打碎了.对于这一现象,下列说法正确的是()
A.榔头敲玻璃的力大于玻璃对榔头的作用力,所以玻璃才碎裂
B.榔头受到的力大于玻璃受到的力,只是由于榔头能够承受比玻璃更大的力才没有碎裂
C.榔头和玻璃之间的作用力应该是等大的,只是由于榔头能够承受比玻璃更大的力才没有碎裂
D.因为不清楚榔头和玻璃的其他受力情况,所以无法判断它们之间的相互作用力的大小
解析:选C.榔头对玻璃的作用力和玻璃对榔头的作用力为作用力与反作用力关系,大小一定相等,但相同大小的力作用在不同物体上的效果往往是不同的,所以不能从效果上去比较作用力与反作用力的大小关系,C正确.
考点一对牛顿第一定律的理解
1.指出了物体的一种固有属性
牛顿第一定律揭示了物体所具有的一个固有属性——惯性,即物体总保持原有运动状态不变的一种性质.
2.揭示了力的本质
牛顿第一定律明确了力是改变物体运动状态的原因,而不是维持物体运动的原因,物体的运动不需要力来维持.
3.揭示了不受力作用时物体的运动状态
牛顿第一定律描述的只是一种理想状态,而实际中不受力作用的物体是不存在的,当物体受外力作用但所受合力为零时,其运动效果跟不受外力作用时相同,物体将保持静止或匀速直线运动状态.
1.(多选)伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础.早期物理学家关于惯性有下列说法,其中正确的是()
A.物体抵抗运动状态变化的性质是惯性
B.没有力的作用,物体只能处于静止状态
C.行星在圆周轨道上保持匀速率运动的性质是惯性
D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动
解析:选AD.物体保持原来匀速直线运动状态或静止状态的性质叫惯性,即物体抵抗运动状态变化的性质,A正确.没有力的作用,物体也可能保持匀速直线运动状态,B错误,D正确.行星在圆周轨道上保持匀速率运动而不是匀速直线运动,所以不能称为惯性,C错误.
2.在一次交通事故中,一辆载有30吨“工”字形钢材的载重汽车由于避让横穿马路的摩托车而紧急制动,结果车厢上的钢材向前冲出,压扁驾驶室.关于这起事故原因的物理分析正确的是()
A.由于车厢上的钢材有惯性,在汽车制动时,钢材继续向前运动,压扁驾驶室
B.由于汽车紧急制动,使其惯性减小,而钢材惯性较大,所以继续向前运动
C.由于车厢上的钢材所受阻力太小,不足以克服其惯性,所以继续向前运动
D.由于汽车制动前的速度太大,汽车的惯性比钢材的惯性大,在汽车制动后,钢材继续向前运动
解析:选A.由于车厢上的钢材有惯性,在汽车制动时,钢材继续向前运动,压扁了驾驶室,惯性只与质量有关,与运动状态、受力情况无关,A正确.
牛顿第一定律的“三点注意”
(1)牛顿第一定律不能用实验直接验证,而是通过伽利略斜面实验等大量事实推理得出的.
(2)牛顿第一定律并非牛顿第二定律的特例,而是不受任何外力的理想化情况.
(3)物体的惯性总是以保持“原状”或反抗“改变”两种形式表现出来.
考点二对牛顿第三定律的理解
1.作用力与反作用力的“三同、三异、三无关”
2.应用牛顿第三定律时应注意的问题
(1)定律中的“总是”二字说明对于任何物体,在任何条件下牛顿第三定律都是成立的.
(2)牛顿第三定律说明了作用力和反作用力中,若一个产生或消失,则另一个必然同时产生或消失.
(3)作用力、反作用力不同于平衡力
1.(20xx吉林实验中学二模)两人的拔河比赛正在进行中,两人均保持恒定拉力且不松手,而脚下开始移动.下列说法正确的是()
A.两人对绳的拉力大小相等、方向相反,是一对作用力和反作用力
B.两人对绳的拉力是一对平衡力
C.拔河的胜利与否取决于谁的力量大
D.拔河的胜利与否取决于地面对人的摩擦力大小
解析:选D.人拉绳的力与绳拉人的力是一对作用力与反作用力,大小相等,选项A错误;两人对绳的拉力不一定是一对平衡力,要根据绳子所处的运动状态进行判断,选项B错误;拔河的胜利与否取决于地面对人的摩擦力大小,选项D正确,C错误.
2.物体静止于一斜面上,如图所示,则下列说法正确的是()
A.物体对斜面的压力和斜面对物体的支持力是一对平衡力
B.物体对斜面的摩擦力和斜面对物体的摩擦力是一对作用力和反作用力
C.物体所受的重力和斜面对物体的作用力是一对作用力和反作用力
D.物体所受的重力可以分解为沿斜面向下的力和对斜面的压力
解析:选B.根据作用力和反作用力及平衡力的特点可知:物体对斜面的压力和斜面对物体的支持力及物体对斜面的摩擦力和斜面对物体的摩擦力,分别作用在斜面和物体上,因此它们是两对作用力和反作用力,故A错,B对.物体的重力是地球施加的,它的反作用力应作用在地球上,由此可知C错.对重力分解,其分力也是作用在物体上的,不可能分解为斜面上的压力,D错.
3.如图所示,两块小磁铁质量均为0.5kg,A磁铁用轻质弹簧吊在天花板上,B磁铁在A正下方的地板上,弹簧的原长L0=10cm,劲度系数k=100N/m.当A、B均处于静止状态时,弹簧的长度为L=11cm.不计地磁场对磁铁的作用和磁铁与弹簧间相互作用的磁力,求B对地面的压力大小.(g取10m/s2)
解析:A受力如图甲所示,由平衡条件得:
k(L-L0)-mg-F=0
解得:F=-4N
故B对A的作用力大小为4N,方向竖直向上.
由牛顿第三定律得A对B的作用力
F′=-F=4N,方向竖直向下
B受力如图乙所示,由平衡条件得:
FN-mg-F′=0
解得:FN=9N
由牛顿第三定律得B对地面的压力大小为9N.
答案:9N
正确认识作用力和反作用力的“两点技巧”
(1)抓住特点:无论物体的运动状态、力的作用效果如何,作用力和反作用力总是等大、反向、共线的.
(2)明确力的作用点:要区别作用力和反作用力与平衡力,最直观的方法是看作用点的位置,一对平衡力的作用点在同一物体上,作用力和反作用力的作用点在两个物体上.
课时规范训练
[基础巩固题组]
1.伽利略创造的把实验、假设和逻辑推理相结合的科学方法,有力地促进了人类科学认识的发展,利用如图所示的装置做如下实验:小球从左侧斜面上的O点由静止释放后沿斜面向下运动,并沿右侧斜面上升.斜面上先后铺垫三种粗糙程度逐渐降低的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3.根据三次实验结果的对比,可以得到的最直接的结论是()
A.如果斜面光滑,小球将上升到与O点等高的位置
B.如果小球不受力,它将一直保持匀速运动或静止状态
C.如果小球受到力的作用,它的运动状态将发生改变
D.小球受到的力一定时,质量越大,它的加速度越小
解析:选A.根据实验结果,得到的最直接的结论是如果斜面光滑,小球将上升到与O点等高的位置,A项正确.而小球不受力时状态不变,小球受力时状态发生变化,是在假设和逻辑推理下得出的结论,不是实验直接结论,所以B和C选项错误;而D项不是本实验所说明的问题,故错误.
2.(多选)伽利略开创了实验研究和逻辑推理相结合探索自然规律的科学方法,利用这种方法伽利略发现的规律有()
A.力不是维持物体运动的原因
B.物体之间普遍存在相互吸引力
C.忽略空气阻力,重物与轻物下落得同样快
D.物体间的相互作用力总是大小相等、方向相反
解析:选AC.伽利略的斜面实验表明物体的运动不需要外力来维持,A正确;伽利略假想将轻重不同的物体绑在一起时,重的物体会因轻的物体阻碍而下落变慢,轻的物体会因重的物体拖动而下落变快,即二者一起下落快慢应介于单独下落时之间.而从绑在一起后更重的角度考虑二者一起下落时应该更快,从而由逻辑上否定了重的物体比轻的物体下落得快的结论,并用实验证明了轻重物体下落快慢相同的规律,C正确;物体间普遍存在相互吸引力,物体间相互作用力的规律是牛顿总结的,对应于万有引力定律与牛顿第三定律,故B、D皆错误.
3.(多选)科学家关于物体运动的研究对树立正确的自然观具有重要作用.下列说法符合历史事实的是()
A.亚里士多德认为,必须有力作用在物体上,物体的运动状态才会改变
B.伽利略通过“理想实验”得出结论:一旦物体具有某一速度,如果它不受力,它将以这一速度永远运动下去
C.笛卡儿指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向
D.牛顿认为,物体具有保持原来匀速直线运动状态或静止状态的性质
解析:选BCD.亚里士多德认为物体的运动需要力来维持;伽利略通过实验推翻了亚里士多德的错误结论,笛卡儿对伽利略的实验结果进行了完善,牛顿总结了伽利略和笛卡儿的理论,得出了牛顿第一定律.
4.(多选)用手托着一块砖,开始静止不动,当手突然向上加速运动时,砖对手的压力()
A.一定小于手对砖的支持力
B.一定等于手对砖的支持力
C.一定大于手对砖的支持力
D.一定大于砖的重力
解析:选BD.由牛顿第三定律知砖对手的压力与手对砖的支持力是作用力和反作用力,二者等大反向,B项对;对砖受力分析,则FN-mg=ma,FN>mg,D项对.
5.如图所示,甲、乙两人在冰面上“拔河”,两人中间位置处有一分界线,约定先使对方过分界线者为赢.若绳子质量不计,冰面可看成光滑,则下列说法正确的是()
A.甲对绳的拉力与绳对甲的拉力是一对平衡力
B.甲对绳的拉力与乙对绳的拉力是作用力与反作用力
C.若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利
D.若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利
解析:选C.甲对绳的拉力与绳对甲的拉力是一对作用力与反作用力,故选项A错误;甲对绳的拉力与乙对绳的拉力作用在同一物体上,不是作用力与反作用力,故选项B错误;设绳子的张力为F,则甲、乙两人受到绳子的拉力大小相等,均为F,若m甲m乙,则由a=Fm得,a甲a乙,由x=12at2得,在相等时间内甲的位移小,因开始时甲、乙距分界线的距离相等,则乙会过分界线,所以甲能赢得“拔河”比赛的胜利,故选项C正确;收绳速度与“拔河”比赛胜负无关,故选项D错误.
6.(多选)在水平路面上有一辆匀速行驶的小车,车上固定一盛满水的碗.现突然发现碗中的水洒出,水洒出的情况如图所示,则关于小车的运动情况,下列叙述正确的是()
A.小车匀速向左运动
B.小车可能突然向左加速
C.小车可能突然向左减速
D.小车可能突然向右减速
解析:选BD.原来水和小车相对静止以共同速度运动,水突然向右洒出有两种可能:①原来小车向左运动,突然加速,碗中水由于惯性保持原速度不变,故相对碗向右洒出.②原来小车向右运动,突然减速,碗中水由于惯性保持原速度不变,相对碗向右洒出,故B、D正确.
7.图为杂技“顶竿”表演的示意图,一人站在地上,肩上扛一质量为M的竖直竹竿,当竿上一质量为m的人以加速度a加速下滑时,竿对“底人”的压力大小为()
A.(M+m)g
B.(M+m)g-ma
C.(M+m)g+ma
D.(M-m)g
解析:选B.对竿上的人进行受力分析:其受重力mg、摩擦力Ff,有mg-Ff=ma,则Ff=m(g-a).竿对人有摩擦力,人对竿也有反作用力——摩擦力,且大小相等,方向相反.对竿进行受力分析:其受重力Mg、竿上的人对竿向下的摩擦力Ff′、顶竿的人对竿的支持力FN,有Mg+Ff′=FN,又因为竿对“底人”的压力和“底人”对竿的支持力是一对作用力和反作用力,由牛顿第三定律,得到FN′=Mg+Ff′=(M+m)g-ma,故选项B正确.
[综合应用题组]
8.某人乘坐列车时发现,车厢的双层玻璃窗内积水了.列车进站过程中,他发现水面的形状如图中的()
解析:选C.列车进站时刹车,速度减小,而水由于惯性仍要保持原来较大的速度,所以水向前涌,液面形状和选项C一致.
9.火车在长直的水平轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到车上原处,这是因为()
A.人跳起后,车厢内空气给他一向前的力,带着他随同火车一起向前运动
B.人跳起的瞬间,车厢的底板给他一向前的力,推动他随同火车一起向前运动
C.人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后距离很小,不明显而已
D.人跳起后直到落地,在水平方向上始终具有和车相同的速度
解析:选D.力是改变物体运动状态的原因,人竖直跳起时,在水平方向上没有受到力的作用,因此,人将保持和火车相同的水平速度,向前做匀速直线运动,落地时仍在车上原处,故正确选项为D.
10.(多选)如图所示,在匀速前进的磁悬浮列车里,小明将一小球放在水平桌面上,且小球相对桌面静止.关于小球与列车的运动,下列说法正确的是()
A.若小球向前滚动,则磁悬浮列车在加速前进
B.若小球向后滚动,则磁悬浮列车在加速前进
C.磁悬浮列车急刹车时,小球向前滚动
D.磁悬浮列车急刹车时,小球向后滚动
解析:选BC.列车加(减)速时,小球由于惯性保持原来的运动状态不变,相对于车向后(前)滚动,选项B、C正确.
11.(多选)抖空竹是人们喜爱的一项体育活动.最早的空竹是两个如同车轮的竹筒,中间加一个转轴,由于外形对称,其重心在中间位置,初玩者能很好地找到支撑点而使之平衡.随着制作技术的发展,如图所示的不对称的空竹也受到人们的欢迎,现在的空竹大多是塑料制成的,也有天然竹木制成的.关于抖空竹,在空气阻力不可忽略的情况下,下列说法中正确的是()
A.空竹启动前用绳子拉住提起,要保证支持力和重力在同一条直线上
B.空竹的转动是依靠绳子的拉动,绳子与转轴之间的摩擦力越小越好
C.空竹抛起后由于惯性而继续向上运动,在空中受重力和惯性作用
D.空竹从抛起到接住,转速会减小,表演时还要继续牵拉绳子使其加速转动
解析:选AD.空竹启动前用绳子拉住提起,此时要选择恰当的位置,保证支持力和重力在同一条直线上,满足二力平衡的条件,否则空竹就要翻倒从绳子上落下,选项A正确;空竹是利用绳子与转轴之间的摩擦力使其转动的,因此绳子选用比较粗糙、摩擦力比较大的比较好,选项B错误;空竹抛起后由于惯性而继续向上运动,在空中受重力和空气阻力的作用,空竹的运动状态发生改变,速度越来越小,然后下落,选项C错误;空竹从抛起到接住,由于空气阻力的作用,转速比抛出前减小,因此表演时还要继续牵拉绳子使其加速转动,选项D正确.
12.如图所示为英国人阿特伍德设计的装置,不考虑绳与滑轮的质量,不计轴承、绳与滑轮间的摩擦.初始时两人均站在水平地面上,当位于左侧的甲用力向上攀爬时,位于右侧的乙始终用力抓住绳子,最终至少一人能到达滑轮.下列说法中正确的是()
A.若甲的质量较大,则乙先到达滑轮
B.若甲的质量较大,则甲、乙同时到达滑轮
C.若甲、乙质量相同,则乙先到达滑轮
D.若甲、乙质量相同,则甲先到达滑轮
解析:选A.由于滑轮光滑,甲拉绳子的力等于绳子拉乙的力,若甲的质量大,则由甲拉绳子的力等于乙受到的绳子拉力.得甲攀爬时乙的加速度大于甲的加速度,所以乙会先到达滑轮,选项A正确,选项B错误;若甲、乙的质量相同,甲用力向上攀爬时,甲拉绳子的力等于绳子拉乙的力,甲、乙具有相同的加速度和速度,所以甲、乙应同时到达滑轮,选项C、D错误.
13.如图所示,用细线将A物体悬挂在顶板上,B物体放在水平地面上.A、B间有一劲度系数为100N/m的轻弹簧,此时弹簧伸长了2cm.已知A、B两物体的重力分别是3N和5N.则细线的拉力及B对地面的压力分别是()
A.8N和0B.5N和7N
C.5N和3ND.7N和7N
解析:选C.对A由平衡条件得FT-GA-kx=0,解得FT=GA+kx=3N+100×0.02N=5N,对B由平衡条件得kx+FN-GB=0,解得FN=GB-kx=5N-100×0.02N=3N,由牛顿第三定律得B对地面的压力是3N,C正确.
14.一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱与杆的质量为M,环的质量为m,如图所示.已知环沿杆匀加速下滑时,环与杆间的摩擦力大小为Ff,则此时箱对地面的压力大小为()
A.Mg+FfB.Mg-Ff
C.Mg+mgD.Mg-mg
解析:选A.环在竖直方向上受力情况如图甲所示,其受重力mg和杆对它竖直向上的摩擦力Ff,根据牛顿第三定律,环应对杆有一个竖直向下的摩擦力Ff′.故箱子在竖直方向上受力情况如图乙所示,其受重力Mg、地面对它的支持力FN及环对它的摩擦力Ff′.
由于箱子处于平衡状态,可得:
FN=Ff′+Mg=Ff+Mg.
根据牛顿第三定律可知,箱子对地面的压力大小等于地面对箱子的弹力大小,则
FN′=FN=Ff+Mg,故应选A.
第2节牛顿第二定律两类动力学问题
一、牛顿第二定律
1.内容:物体加速度的大小跟它受到作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同.
2.表达式:F=ma
3.适用范围
(1)牛顿第二定律只适用于惯性参考系,即相对于地面静止或匀速直线运动的参考系.
(2)牛顿第二定律只适用于宏观物体(相对于分子、原子等)、低速运动(远小于光速)的情况.
二、两类动力学问题
1.动力学的两类基本问题
(1)由受力情况确定物体的运动情况.
(2)由运动情况确定物体的受力情况.
2.解决两类基本问题的思路:以加速度为桥梁,由运动学公式和牛顿第二定律列方程求解.
三、力学单位制
1.单位制由基本单位和导出单位共同组成.
2.力学单位制中的基本单位有米、千克、秒(s).
3.导出单位有牛顿、米/秒、米/秒2等.
[自我诊断]
1.判断正误
(1)牛顿第二定律表达式F=ma在任何情况下都适用.(×)
(2)物体所受合外力大,其加速度一定大.(×)
(3)对静止在光滑水平面上的物体施加一个水平力,当力刚作用瞬间,物体立即获得加速度.(√)
(4)物体由于做加速运动,所以才受合外力作用.(×)
(5)F=ma是矢量式,a的方向与F的方向相同,与速度方向无关.(√)
(6)物体所受合外力减小,加速度一定减小,而速度不一定减小.(√)
(7)物理公式不仅确定了物理量之间的数量关系,同时也确定了物理量间的单位关系.(√)
2.在国际单位制(简称SI)中,力学和电学的基本单位有:m(米)、kg(千克)、s(秒)、A(安培).导出单位V(伏特)用上述基本单位可表示为()
A.m2kgs-4A-1B.m2kgs-3A-1
C.m2kgs-2A-1D.m2kgs-1A-1
解析:选B.本题考查基本单位与导出单位间的关系,意在考查考生对单位制的认识.由1J=1VAs=1kgms-2m可得,1V=1m2kgs-3A-1,因此选B.
3.如图甲、乙所示,两车都在光滑的水平面上,小车的质量都是M,人的质量都是m,甲图人推车、乙图人拉绳(绳与轮的质量和摩擦均不计)的力都是F,对于甲、乙两图中车的加速度大小说法正确的是()
A.甲图中车的加速度大小为FM
B.甲图中车的加速度大小为FM+m
C.乙图中车的加速度大小为2FM+m
D.乙图中车的加速度大小为FM
解析:选C.对甲图以车和人为研究对象,系统不受外力作用,故甲图中车的加速度为零,A、B错误;乙图中人和车受绳子的拉力作用,以人和车为研究对象,受力大小为2F,所以乙图中车的加速度a=2FM+m,C正确,D错误.
4.如图所示,在光滑水平面上,A、B两物体用轻弹簧连接在一起,A、B的质量分别为m1、m2,在拉力F作用下,A、B共同做匀加速直线运动,加速度大小为a,某时刻突然撤去拉力F,此瞬间A和B的加速度大小分别为a1、a2,则()
A.a1=0,a2=0
B.a1=a,a2=m2m1+m2a
C.a1=m1m1+m2a,a2=m2m1+m2a
D.a1=a,a2=m1m2a
解析:选D.撤去拉力F前,设弹簧的劲度系数为k、形变量为x,对A由牛顿第二定律得kx=m1a;撤去拉力F瞬间,弹簧的形变量保持不变,对A由牛顿第二定律得kx=m1a1,对B由牛顿第二定律kx=m2a2,解得a1=a,a2=m1m2a,D正确.
考点一对牛顿第二定律的理解
1.牛顿第二定律的“五性”
2.力、加速度、速度间的关系
(1)加速度与力有瞬时对应关系,加速度随力的变化而变化.
(2)速度的改变需经历一定的时间,不能突变;加速度可以突变.
1.(20xx高考全国乙卷)(多选)一质点做匀速直线运动.现对其施加一恒力,且原来作用在质点上的力不发生改变,则()
A.质点速度的方向总是与该恒力的方向相同
B.质点速度的方向不可能总是与该恒力的方向垂直
C.质点加速度的方向总是与该恒力的方向相同
D.质点单位时间内速率的变化量总是不变
解析:选BC.质点原来做匀速直线运动,说明所受合外力为0.当对其施加一恒力后,恒力的方向与原来运动的速度方向关系不确定,则质点可能做直线运动,也可能做曲线运动,但加速度的方向一定与该恒力的方向相同,选项B、C正确.
2.(多选)一物体重为50N,与水平桌面间的动摩擦因数为0.2,现加上如图所示的水平力F1和F2,若F2=15N时物体做匀加速直线运动,则F1的值可能是(g=10m/s2)()
A.3NB.25N
C.30ND.50N
解析:选ACD.若物体向左做匀加速直线运动,根据牛顿第二定律可知F2-F1-μG=ma0,解得F15N,A正确;若物体向右做匀加速直线运动,根据牛顿第二定律可知F1-F2-μG=ma0,解得F125N,C、D正确.
3.(20xx湖南师范大学附中月考)(多选)如图所示,固定在水平面上的光滑斜面的倾角为θ,其顶端装有光滑小滑轮,绕过滑轮的轻绳一端连接一物块B,另一端被人拉着,且人、滑轮间的轻绳平行于斜面.人的质量为M,B物块的质量为m,重力加速度为g,当人拉着绳子以大小为a1的加速度沿斜面向上运动时,B物块运动的加速度大小为a2,则下列说法正确的是()
A.物块一定向上加速运动
B.人能够沿斜面向上加速运动,必须满足m>Msinθ
C.若a2=0,则a1一定等于mg-MgsinθM
D.若a1=a2,则a1可能等于mg-MgsinθM+m
解析:选CD.对人受力分析,由牛顿第二定律可知F-Mgsinθ=Ma1,得F=Mgsinθ+Ma1,若F>mg,则物体B加速上升,若F<mg,则物体B加速下降,若F=mg,物体B静止,故A错误;人能够沿斜面向上加速运动,只需满足F>Mgsinθ即可,故B错误;若a2=0,则F=mg,故mg-Mgsinθ=Ma1,a1=mg-MgsinθM,故C正确;F=Mgsinθ+Ma1,当Fmg时,有mg-F=ma2,又a1=a2,则a1=mg-MgsinθM+m,故D正确.
考点二牛顿第二定律瞬时性的理解
1.两种模型:
牛顿第二定律F=ma,其核心是加速度与合外力的瞬时对应关系,两者总是同时产生,同时消失、同时变化,具体可简化为以下两种模型:
2.求解瞬时加速度的一般思路
分析瞬时变化前、后物体的受力情况列牛顿第二定律方程
求瞬时加速度
1.(20xx山东大学附中检测)如图所示,A、B两小球分别连在轻线两端,B球另一端与弹簧相连,弹簧固定在倾角为30°的光滑斜面顶端.A、B两小球的质量分别为mA、mB,重力加速度为g,若不计弹簧质量,在线被剪断瞬间,A、B两球的加速度大小分别为()
A.都等于g2B.g2和0
C.g2和mAmBg2D.mAmBg2和g2
解析:选C.由整体法知,F弹=(mA+mB)gsin30°
剪断线瞬间,弹力瞬间不发生变化,由牛顿第二定律可得:
对B:F弹-mBgsin30°=mBaB,得aB=mAmBg2
对A:mAgsin30°=mAaA,得aA=12g
所以C正确.
2.如图所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为()
A.0B.233g
C.gD.33g
解析:选B.开始小球处于平衡态,受重力mg、支持力FN、弹簧拉力F三个力作用,受力分析如图所示,由平衡条件可得FN=mgcos30°+Fsin30°,Fcos30°=mgsin30°,解得FN=233mg,重力mg、弹簧拉力F的合力的大小等于支持力FN,当木板AB突然向下撤离的瞬间,小球受力不再平衡,此时的合力与FN等大反向,由牛顿第二定律得此时小球的加速度大小为233g,B正确.
3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,物块2、4质量为M,两个系统均置于水平放置的光滑木板上.并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有()
A.a1=a2=a3=a4=0
B.a1=a2=a3=a4=g
C.a1=a2=g,a3=0,a4=m+MMg
D.a1=g,a2=m+MMg,a3=0,a4=m+MMg
解析:选C.在抽出木板的瞬时,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a1=a2=g:而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上的弹力大小和对物块4向下的弹力大小仍为mg,因此物块3满足mg=F,a3=0;由牛顿第二定律得物块4满足a4=F+MgM=M+mMg,所以C对.
在求解瞬时性加速度问题时的“两点注意”
(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.
(2)加速度可以随着力的突变而突变,而速度和位移的变化需要一个积累的过程,不会发生突变.
考点三动力学的两类基本问题
1.求解两类问题的思路,可用下面的框图来表示:
2.分析解决这两类问题的关键:应抓住受力情况和运动情况之间联系的桥梁——加速度.
考向1:由受力情况求运动情况
[典例1]如图所示,工人用绳索拉铸件,铸件的质量是20kg,铸件与地面间的动摩擦因数是0.25.工人用80N的力拉动铸件,从静止开始在水平面上前进,绳与水平方向的夹角为α=37°并保持不变,经4s后松手.(g=10m/s2)求:
(1)松手前铸件的加速度;
(2)松手后铸件还能前进的距离.
解析(1)松手前,对铸件由牛顿第二定律得
a=Fcos37°-μmg-Fsin37°m=1.3m/s2
(2)松手时铸件的速度v=at=5.2m/s
松手后的加速度大小a′=μmgm=μg=2.5m/s2
则松手后铸件还能滑行的距离x=v22a′=5.4m
答案(1)1.3m/s2(2)5.4m
1.(20xx黑龙江齐齐哈尔质检)一个原来静止在光滑平面上的物体,质量是7kg,在14N的恒力作用下运动,则5s末的速度及5s内通过的路程为()
A.8m/s25mB.2m/s25m
C.10m/s25mD.10m/s12.5m
解析:选C.物体由静止开始在恒力的作用下做初速度为零的匀加速直线运动,由牛顿第二定律和运动学公式得a=Fm=147m/s2=2m/s2,v=at=2×5m/s=10m/s,x=12at2=12×2×25m=25m,选项C正确.
2.(20xx高考江苏卷)(多选)如图所示,一只猫在桌边猛地将桌布从鱼缸下拉出,鱼缸最终没有滑出桌面.若鱼缸、桌布、桌面两两之间的动摩擦因数均相等,则在上述过程中()
A.桌布对鱼缸摩擦力的方向向左
B.鱼缸在桌布上的滑动时间和在桌面上的相等
C.若猫增大拉力,鱼缸受到的摩擦力将增大
D.若猫减小拉力,鱼缸有可能滑出桌面
解析:选BD.由题图可见,鱼缸相对桌布向左滑动,故桌布对鱼缸的滑动摩擦力方向向右,A错.因为鱼缸与桌布、鱼缸与桌面间的动摩擦因数相等,所以鱼缸加速过程与减速过程的加速度大小相等,均为μg;由v=at可知,鱼缸在桌布上加速运动的时间与在桌面上减速运动的时间相等,故B正确.若猫增大拉力,鱼缸受到的摩擦力仍为滑动摩擦力,由Ff=μmg可知,Ff不变,故C错.若猫的拉力减小到使鱼缸不会相对桌布滑动,则鱼缸就会滑出桌面,故D正确.
3.(20xx江西抚州五校第二次联考)一质量m=5kg的滑块在F=15N的水平拉力作用下,由静止开始做匀加速直线运动,若滑块与水平面间的动摩擦因数μ=0.2,g取10m/s2,问:
(1)滑块在力F作用下经5s,通过的位移是多大?
(2)5s末撤去拉力F,滑块还能滑行多远?
解析:(1)滑块的加速度
a1=F-μmgm=15-0.2×505m/s2=1m/s2
滑块的位移x1=12a1t2=12×1×25m=12.5m
(2)5s末滑块的速度v=a1t=5m/s
撤去拉力后滑块的加速度大小
a2=μmgm=μg=0.2×10m/s2=2m/s2
撤去拉力后滑行距离x2=v22a2=254m=6.25m
答案:(1)12.5m(2)6.25m
考向2:由运动情况求受力情况
[典例2](20xx山东威海模拟)有一种大型游戏机叫“跳楼机”,参加游戏的游客被安全带固定在座椅上,由电动机将座椅沿光滑的竖直轨道提升到离地面40m高处,然后由静止释放.可以认为座椅沿轨道做自由落体运动2s后,开始受到恒定阻力而立即做匀减速运动,且下落到离地面4m高处时速度刚好减小到零.然后再让座椅以相当缓慢的速度稳稳下落,将游客送回地面.(取g=10m/s2)求:
(1)座椅在自由下落结束时刻的速度是多大?
(2)座椅在匀减速阶段的时间是多少?
(3)在匀减速阶段,座椅对游客的作用力大小是游客体重的多少倍?
解析(1)设座椅在自由下落结束时刻的速度为v,由v=gt1得v=20m/s
(2)自由下落的位移
h′=12gt21=20m
设座椅匀减速运动的总高度为h,则
h=(40-4-20)m=16m
由h=v2t得t=1.6s
(3)设座椅匀减速阶段的加速度大小为a,座椅对游客的作用力大小为F,
由v=at得a=12.5m/s2
由牛顿第二定律得F-mg=ma
则Fmg=mg+mamg=g+ag=2.25
答案(1)20m/s(2)1.6s(3)2.25
4.(20xx湖北襄阳模拟)在欢庆节日的时候,人们会在夜晚燃放美丽的焰火.按照设计,某种型号的装有焰火的礼花弹从专用炮筒中射出后,在4s末到达离地面100m的最高点时炸开,构成各种美丽的图案.假设礼花弹从炮筒中竖直射出时的初速度是v0,上升过程中所受的平均阻力大小始终是自身重力的k倍,那么v0和k分别等于(重力加速度g取10m/s2)()
A.25m/s,1.25B.40m/s,0.25
C.50m/s,0.25D.80m/s,1.25
解析:选C.根据h=12at2,解得a=12.5m/s2,所以v0=at=50m/s;上升过程礼花弹所受的平均阻力Ff=kmg,根据牛顿第二定律得a=mg+Ffm=(k+1)g=12.5m/s2,解得k=0.25,故选项C正确.
5.行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带,假定乘客质量为70kg,汽车车速为90km/h,从踩下刹车到完全停止需要的时间为5s,安全带对乘客的作用力大小约为(不计人与座椅间的摩擦)()
A.450NB.400N
C.350ND.300N
解析:选C.汽车的速度v0=90km/h=25m/s,设汽车匀减速的加速度大小为a,则a=v0t=5m/s2,对乘客由牛顿第二定律得F=ma=70×5N=350N,所以C正确.
(1)解决动力学基本问题时对力的处理方法
①合成法:在物体受力个数较少(2个或3个)时一般采用“合成法”.
②正交分解法:若物体的受力个数较多(3个或3个以上),则采用“正交分解法”.
(2)解答动力学两类问题的基本程序
①明确题目中给出的物理现象和物理过程的特点.
②根据问题的要求和计算方法,确定研究对象,进行分析,并画出示意图.
③应用牛顿运动定律和运动学公式求解.
课时规范训练
[基础巩固题组]
1.物块A放置在与水平地面成30°角倾斜的木板上时,刚好可以沿斜面匀速下滑;若该木板与水平面成60°角倾斜,取g=10m/s2,则物块A沿此斜面下滑的加速度大小为()
A.53m/s2B.33m/s2
C.(5-3)m/s2D.1033m/s2
解析:选D.由物块在倾角为30°的木板上匀速下滑,得Ff=mgsinθ,又FN1=mgcos30°,Ff=μFN1,求得动摩擦因数μ=33;在倾角为60°的木板上物块加速下滑,有FN2=mgcos60°,mgsin60°-μFN2=ma,求得a=1033m/s2,D对.
2.(多选)如图所示,质量为m=1kg的物体与水平地面之间的动摩擦因数为0.3,当物体运动的速度为10m/s时,给物体施加一个与速度方向相反的大小为F=2N的恒力,在此恒力作用下(取g=10m/s2)()
A.物体经10s速度减为零
B.物体经2s速度减为零
C.物体速度减为零后将保持静止
D.物体速度减为零后将向右运动
解析:选BC.物体受到向右的滑动摩擦力,Ff=μFN=μG=3N,根据牛顿第二定律得,a=F+Ffm=2+31m/s2=5m/s2,方向向右,物体减速到0所需的时间t=v0a=105s=2s,B正确,A错误.减速到零后,F<Ff,物体处于静止状态,不再运动,C正确,D错误.
3.如图所示,a、b两物体的质量分别为m1和m2,由轻质弹簧相连.当用恒力F竖直向上拉着a,使a、b一起向上做匀加速直线运动时,弹簧伸长量为x1,加速度大小为a1;当用大小仍为F的恒力沿水平方向拉着a,使a、b一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x2,加速度大小为a2.则有()
A.a1=a2,x1=x2B.a1<a2,x1=x2
C.a1=a2,x1>x2D.a1<a2,x1>x2
解析:选B.对a、b物体及弹簧整体分析,有:
a1=F-m1+m2gm1+m2=Fm1+m2-g,a2=Fm1+m2,
可知a1<a2,
再隔离b分析,有:F1-m2g=m2a1,解得:F1=m2Fm1+m2,
F2=m2a2=m2Fm1+m2,可知F1=F2,再由胡克定律知,x1=x2.所以B选项正确.
4.如图所示,质量分别为m、2m的小球A、B,由轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中的拉力为F,此时突然剪断细线.在线断的瞬间,弹簧的弹力大小和小球A的加速度大小分别为()
A.2F3,2F3m+gB.F3,2F3m+g
C.2F3,F3m+gD.F3,F3m+g
解析:选A.在细线剪断前,对A、B及弹簧整体由牛顿第二定律有F-3mg=3ma,对B由牛顿第二定律得F弹-2mg=2ma,由此可得F弹=2F3;细线被剪断后的瞬间,弹簧弹力不变,此时对A球来说,受到向下的重力和弹力,则有F弹+mg=maA,解得aA=2F3m+g,故A正确.
5.(多选)如图所示,A、B球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是()
A.两个小球的瞬时加速度均沿斜面向下,大小均为gsinθ
B.B球的受力情况未变,瞬时加速度为零
C.A球的瞬时加速度沿斜面向下,大小为2gsinθ
D.弹簧有收缩的趋势,B球的瞬时加速度向上,A球的瞬时加速度向下,瞬时加速度都不为零
解析:选BC.对A、B整体受力分析,细线烧断前细线对A球的拉力FT=2mgsinθ,细线烧断瞬间,弹簧弹力与原来相等,B球受力平衡,aB=0,A球所受合力与FT等大反向,则FT=2mgsinθ=maA,解得aA=2gsinθ,A、D错误,B、C正确.
6.一质量为m=2kg的滑块能在倾角为θ=30°的足够长的斜面上以a=2.5m/s2匀加速下滑.如右图所示,若用一水平向右的恒力F作用于滑块,使之由静止开始在t=2s内能沿斜面运动位移x=4m.求:(g取10m/s2)
(1)滑块和斜面之间的动摩擦因数μ;
(2)恒力F的大小.
解析:(1)以物块为研究对象受力分析如图甲所示,根据牛顿第二定律可得:
mgsin30°-μmgcos30°=ma
解得:μ=36.
(2)使滑块沿斜面做匀加速直线运动,有加速度向上和向下两种可能.当加速度沿斜面向上时,受力分析如图乙所示,Fcos30°-mgsin30°-μ(Fsin30°+mgcos30°)=ma1,根据题意可得a1=2m/s2,
代入数据得:F=7635N
当加速度沿斜面向下时(如图丙):
mgsin30°-Fcos30°-μ(Fsin30°+mgcos30°)=ma1
代入数据得:F=437N.
答案:(1)36(2)7635N或437N
[综合应用题组]
7.(多选)如图所示,总质量为460kg的热气球,从地面刚开始竖直上升时的加速度为0.5m/s2,当热气球上升到180m时,以5m/s的速度向上匀速运动,若离开地面后热气球所受浮力保持不变,上升过程中热气球总质量不变,重力加速度g取10m/s2.关于热气球,下列说法正确的是()
A.所受浮力大小为4830N
B.加速上升过程中所受空气阻力保持不变
C.从地面开始上升10s后的速度大小为5m/s
D.以5m/s的速度匀速上升时所受空气阻力大小为230N
解析:选AD.热气球从地面刚开始上升时,速度为零,不受空气阻力,只受重力、浮力,由牛顿第二定律知F-mg=ma,得F=4830N,选项A正确;随着热气球速度逐渐变大,其所受空气阻力发生变化(变大),故热气球并非匀加速上升,其加速度逐渐减小,故上升10s后速度要小于5m/s,选项B、C错误;最终热气球匀速运动,此时热气球所受重力、浮力、空气阻力平衡,由F=mg+f得f=230N,选项D正确.
8.乘坐“空中缆车”饱览大自然的美景是旅游者绝妙的选择.若某一缆车沿着坡度为30°的山坡以加速度a上行,如图所示.在缆车中放一个与山坡表面平行的斜面,斜面上放一个质量为m的小物块,小物块相对斜面静止(设缆车保持竖直状态运行).则()
A.小物块受到的摩擦力方向平行斜面向上
B.小物块受到的摩擦力方向平行斜面向下
C.小物块受到的滑动摩擦力为12mg+ma
D.小物块受到的静摩擦力为ma
解析:选A.小物块相对斜面静止,因此小物块与斜面间的摩擦力是静摩擦力.缆车以加速度a上行,小物块的加速度也为a,以物块为研究对象,则有Ff-mgsin30°=ma,Ff=12mg+ma,方向平行斜面向上,故A正确,B、C、D均错误.
9.质量1kg的小物块,在t=0时刻以5m/s的初速度从斜面底端A点滑上倾角为53°的斜面,0.7s时第二次经过斜面上的B点,若小物块与斜面间的动摩擦因数为13,则AB间的距离为(已知g=10m/s2,sin53°=0.8,cos53°=0.6)()
A.1.05mB.1.13m
C.2.03mD.1.25m
解析:选B.物块沿斜面上滑和下滑时,加速度分别为:a1=g(sinθ+μcosθ)=10m/s2,a2=g(sinθ-μcosθ)=6m/s2,物块滑到最高点所用时间为:t1=v0a1=0.5s,位移为:x1=12a1t21=1.25m,物块从最高点滑到B点所用时间为:t2=t-t1=0.2s,位移为:x2=12a2t22=0.12m,所以AB间的距离为x1-x2=1.13m,选项B对.
10.(多选)质量m=2kg、初速度v0=8m/s的物体沿着粗糙的水平面向右运动,物体与水平面之间的动摩擦因数μ=0.1,同时物体还要受一个如图所示的随时间变化的水平拉力F的作用,水平向右为拉力的正方向.则以下结论正确的是(取g=10m/s2)()
A.0~1s内,物体的加速度大小为2m/s2
B.1~2s内,物体的加速度大小为2m/s2
C.0~1s内,物体的位移为7m
D.0~2s内,物体的总位移为11m
解析:选BD.由题图可知,在0~1s内力F为6N,方向向左,由牛顿运动定律可得F+μmg=ma,解得加速度大小a=4m/s2,在1~2s内力F为6N,方向向右,由牛顿运动定律可得F-μmg=ma1,解得加速度大小a1=2m/s2,所以选项A错误,B正确;由运动关系可知0~1s内位移为6m,选项C错误;同理可计算0~2s内的位移为11m,选项D正确.
11.声音在空气中的传播速度v与空气的密度ρ、压强p有关,下列速度的表达式(k为比例系数,无单位)中正确的是()
A.v=kpρB.v=kpρ
C.v=kρpD.v=kpρ
解析:选B.可把p、ρ的单位用基本单位表示,代入进行单位运算,看得出的单位是否是v的单位.压强p的单位用基本单位表示为Pa=Nm2=kgm/s2m2,密度ρ的单位用基本单位表示为kgm3,所以pρ的单位为m2s2,易知B正确.
12.如图所示,倾角为30°的光滑斜面与粗糙的水平面平滑连接.现将一滑块(可视为质点)从斜面上A点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8m,B点距C点的距离L=2.0m(滑块经过B点时没有能量损失,g取10m/s2),求:
(1)滑块在运动过程中的最大速度;
(2)滑块与水平面间的动摩擦因数μ;
(3)滑块从A点释放后,经过时间t=1.0s时速度的大小.
解析:(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B点时速度最大为vm,设滑块在斜面上运动的加速度大小为a1,由牛顿第二定律得:mgsin30°=ma1
v2m=2a1hsin30°,解得vm=4m/s.
(2)滑块在水平面上运动的加速度大小为a2,由牛顿第二定律得:μmg=ma2
v2m=2a2L,解得μ=0.4.
(3)滑块在斜面上运动的时间为t1,有vm=a1t1,解得
t1=vma1=0.8s
由于t>t1,故滑块已经经过B点,做匀减速运动的时间为t-t1=0.2s
设t=1.0s时速度大小为v,有
v=vm-a2(t-t1),解得v=3.2m/s.
答案:(1)4m/s(2)0.4(3)3.2m/s
第3节牛顿运动定律的综合应用
1.超重和失重
(1)视重
当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的示数称为视重.
(2)超重、失重和完全失重的比较
超重失重完全失重
概念物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象物体对支持物的压力(或对悬挂物的拉力)等于零的现象
产生条件物体的加速度方向竖直向上物体的加速度方向竖直向下物体的加速度方向竖直向下,大小a=g
运动状态加速上升或减速下降加速下降或减速上升以a=g加速下降或减速上升
原理方程F-mg=ma
F=m(g+a)mg-F=ma
F=m(g-a)mg-F=ma
F=0
2.整体法和隔离法
(1)整体法
当连接体内(即系统内)各物体的加速度相同时,可以把系统内的所有物体看成一个整体,分析其受力和运动情况,运用牛顿第二定律对整体列方程求解的方法.
(2)隔离法
当求系统内物体间相互作用的内力时,常把某个物体从系统中隔离出来,分析其受力和运动情况,再用牛顿第二定律对隔离出来的物体列方程求解的方法.
(3)外力和内力
如果以物体系统为研究对象,受到系统之外的物体的作用力,这些力是该系统受到的外力,而系统内各物体间的相互作用力为内力.应用牛顿第二定律列方程时不考虑内力;如果把某物体隔离出来作为研究对象,则内力将转换为隔离体的外力.
[自我诊断]
1.判断正误
(1)超重就是物体的重力变大的现象.(×)
(2)减速上升的升降机内的物体,物体对地板的压力大于重力.(×)
(3)加速上升的物体处于超重状态.(√)
(4)加速度大小等于g的物体处于完全失重状态.(×)
(5)物体处于超重或失重状态,完全由物体加速度的方向决定,与速度方向无关.(√)
(6)整体法和隔离法是指选取研究对象的方法.(×)
(7)求解物体间的相互作用力应采用隔离法.(√)
2.如图所示,将物体A放在容器B中,以某一速度把容器B竖直上抛,不计空气阻力,运动过程中容器B的底面始终保持水平,下列说法正确的是()
A.在上升和下降过程中A对B的压力都一定为零
B.上升过程中A对B的压力大于物体A受到的重力
C.下降过程中A对B的压力大于物体A受到的重力
D.在上升和下降过程中A对B的压力都等于物体A受到的重力
解析:选A.把容器B竖直上抛,物体处于完全失重状态,在上升和下降过程中A对B的压力都一定为零,选项A正确.
3.(20xx安徽蚌埠模拟)如图所示,A、B两物体之间用轻质弹簧连接,用水平恒力F拉A,使A、B一起沿光滑水平面做匀加速直线运动,这时弹簧长度为L1;若将A、B置于粗糙水平面上,用相同的水平恒力F拉A,使A、B一起做匀加速直线运动,此时弹簧长度为L2.若A、B与粗糙水平面之间的动摩擦因数相同,则下列关系式正确的是()
A.L2=L1
B.L2<L1
C.L2>L1
D.由于A、B质量关系未知,故无法确定L1、L2的大小关系
解析:选A.水平面光滑时,用水平恒力F拉A时,由牛顿第二定律得,对整体有F=(mA+mB)a,对B有F1=mBa=mBFmA+mB;水平面粗糙时,对整体有F-μ(mA+mB)g=(mA+mB)a,对B有F2-μmBg=mBa,解以上两式得F2=mBFmA+mB,可知F1=F2,故L1=L2,故A正确.
4.从地面以一定的速度竖直向上抛出一小球,小球到达最高点的时刻为t1,下落到抛出点的时刻为t2.若空气阻力的大小恒定,则在下图中能正确表示被抛出物体的速率v随时间t的变化关系的图线是()
解析:选C.小球在上升过程中做匀减速直线运动,其加速度为a1=mg+Ffm,下降过程中做匀加速直线运动,其加速度为a2=mg-Ffm,即a1a2,且所分析的是速率与时间的关系,故C正确.
考点一超重和失重问题
1.不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变.
2.在完全失重的状态下,一切由重力产生的物理现象都会完全消失.
3.尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.
4.尽管整体没有竖直方向的加速度,但只要物体的一部分具有竖直方向的分加速度,整体也会出现超重或失重状态.
1.(20xx福建莆田模拟)关于超重和失重现象,下列描述中正确的是()
A.电梯正在减速上升,在电梯中的乘客处于超重状态
B.磁悬浮列车在水平轨道上加速行驶时,列车上的乘客处于超重状态
C.荡秋千时秋千摆到最低位置时,人处于失重状态
D.“神舟”飞船在绕地球做圆轨道运行时,飞船内的宇航员处于完全失重状态
解析:选D.物体是否超重或失重取决于加速度方向,当加速度向上时物体处于超重状态,当加速度向下时物体处于失重状态,当加速度向下且大小等于重力加速度时物体处于完全失重状态.电梯正在减速上升,加速度向下,乘客失重,选项A错误;列车加速时加速度水平向前,乘客既不超重也不失重,选项B错误;荡秋千到最低位置时加速度向上,人处于超重状态,选项C错误;飞船绕地球做匀速圆周运动时,其加速度等于飞船所在位置的重力加速度,宇航员处于完全失重状态,选项D正确.
2.(多选)一人乘电梯上楼,在竖直上升过程中加速度a随时间t变化的图线如图所示,以竖直向上为a的正方向,则人对地板的压力()
A.t=2s时最大B.t=2s时最小
C.t=8.5s时最大D.t=8.5s时最小
解析:选AD.人受重力mg和支持力FN的作用,由牛顿第二定律得FN-mg=ma.由牛顿第三定律得人对地板的压力FN′=FN=mg+ma.当t=2s时a有最大值,FN′最大;当t=8.5s时,a有最小值,FN′最小,选项A、D正确.
3.(20xx浙江嘉兴模拟)如图所示是我国首次立式风洞跳伞实验,风洞喷出竖直向上的气流将实验者加速向上“托起”.此过程中()
A.地球对人的吸引力和人对地球的吸引力大小相等
B.人受到的重力和人受到气流的力是一对作用力与反作用力
C.人受到的重力大小等于气流对人的作用力大小
D.人被向上“托起”时处于失重状态
解析:选A.地球对人的吸引力和人对地球的吸引力为作用力和反作用力,故大小相等,A项正确;人受到气流的力和人对气流的力是作用力和反作用力,B项错误;人被加速向上托起,则人受到气流的力大于人受到的重力,C项错误;人有向上的加速度,故人被向上“托起”时处于超重状态,D项错误.
考点二连接体问题
1.处理连接体问题常用的方法为整体法和隔离法.
2.涉及隔离法与整体法的具体问题类型
(1)涉及滑轮的问题
若要求绳的拉力,一般都必须采用隔离法.例如,如图所示,绳跨过定滑轮连接的两物体虽然加速度大小相同,但方向不同,故采用隔离法.
(2)水平面上的连接体问题
①这类问题一般多是连接体(系统)各物体保持相对静止,即具有相同的加速度.解题时,一般采用先整体、后隔离的方法.
②建立坐标系时也要考虑矢量正交分解越少越好的原则,或者正交分解力,或者正交分解加速度.
(3)斜面体与上面物体组成的连接体的问题
当物体具有沿斜面方向的加速度,而斜面体相对于地面静止时,解题时一般采用隔离法分析.
3.解题思路
(1)分析所研究的问题适合应用整体法还是隔离法.
①处理连接体问题时,整体法与隔离法往往交叉使用,一般的思路是先用整体法求加速度,再用隔离法求物体间的作用力;
②对于加速度大小相同,方向不同的连接体,应采用隔离法进行分析.
(2)对整体或隔离体进行受力分析,应用牛顿第二定律确定整体或隔离体的加速度.
(3)结合运动学方程解答所求解的未知物理量.
[典例1]如图所示,物块A和B的质量分别为4m和m,开始A、B均静止,细绳拉直,在竖直向上拉力F=6mg作用下,动滑轮竖直向上加速运动.已知动滑轮质量忽略不计,动滑轮半径很小,不考虑绳与滑轮之间的摩擦,细绳足够长,在滑轮向上运动过程中,物块A和B的加速度分别为()
A.aA=12g,aB=5gB.aA=aB=15g
C.aA=14g,aB=3gD.aA=0,aB=2g
解析对滑轮由牛顿第二定律得F-2FT=m′a,又滑轮质量m′忽略不计,故m′=0,所以FT=F2=6mg2=3mg,对A由于FT<4mg,故A静止,aA=0,对B有aB=FT-mgm=3mg-mgm=2g,故D正确.
答案D
1.(多选)如图所示,质量分别为mA、mB的A、B两物块用轻线连接放在倾角为θ的光滑斜面上,用始终平行于斜面向上的恒力F拉A,使它们沿斜面匀加速上升,为了增加轻线上的张力,可行的办法是()
A.增大A物的质量B.增大B物的质量
C.增大倾角θD.增大拉力F
解析:选BD.对于A、B整体由牛顿第二定律得F-(mA+mB)gsinθ=(mA+mB)a,对于B由牛顿第二定律得FT-mBgsinθ=mBa,解以上两式得FT=mBmA+mBF,选项B、D正确.
2.如图所示,质量为M、中空为半球形的光滑凹槽放置于光滑水平地面上,光滑槽内有一质量为m的小铁球,现用一水平向右的推力F推动凹槽,小铁球与光滑凹槽相对静止时,凹槽圆心和小铁球的连线与竖直方向成α角,则下列说法正确的是()
A.小铁球受到的合外力方向水平向左
B.凹槽对小铁球的支持力为mgsinα
C.系统的加速度为a=gtanα
D.推力F=Mgtanα
解析:选C.根据小铁球与光滑凹槽相对静止的状态可知,系统有向右的加速度,小铁球受到的合外力方向水平向右,凹槽对小铁球的支持力为mgcosα,A、B错误.小球所受合外力为mgtanα,加速度a=gtanα,推力F=(m+M)gtanα,C正确,D错误.
考点三动力学中的图象问题
1.常见的图象有
v-t图象,a-t图象,F-t图象,F-a图象等.
2.图象间的联系
加速度是联系v-t图象与F-t图象的桥梁.
3.图象的应用
(1)已知物体在一过程中所受的某个力随时间变化的图线,要求分析物体的运动情况.
(2)已知物体在一运动过程中速度、加速度随时间变化的图线,要求分析物体的受力情况.
(3)通过图象对物体的受力与运动情况进行分析.
4.解答图象问题的策略
(1)弄清图象坐标轴、斜率、截距、交点、拐点、面积的物理意义.
(2)应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”、“图象与物体”间的关系,以便对有关物理问题作出准确判断.
1.(多选)如图(a),一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图(b)所示.若重力加速度及图中的v0、v1、t1均为已知量,则可求出()
A.斜面的倾角
B.物块的质量
C.物块与斜面间的动摩擦因数
D.物块沿斜面向上滑行的最大高度
解析:选ACD.由题图(b)可以求出物块上升过程中的加速度为a1=v0t1,下降过程中的加速度为a2=v1t1.物块在上升和下降过程中,由牛顿第二定律得mgsinθ+f=ma1,mgsinθ-f=ma2,由以上各式可求得sinθ=v0+v12t1g,滑动摩擦力f=mv0-v12t1,而f=μFN=μmgcosθ,由以上分析可知,选项A、C正确.由v-t图象中横轴上方的面积可求出物块沿斜面上滑的最大距离,可以求出物块沿斜面向上滑行的最大高度,选项D正确.
2.(20xx河南郑州第一次质量预测)甲、乙两球质量分别为m1、m2,从同一地点(足够高)同时由静止释放.两球下落过程中所受空气阻力大小f仅与球的速率v成正比,与球的质量无关,即f=kv(k为正的常量).两球的v-t图象如图所示.落地前,经时间t0两球的速度都已达到各自的稳定值v1、v2.则下列判断正确的是()
A.释放瞬间甲球加速度较大
B.m1m2=v2v1
C.甲球质量大于乙球质量
D.t0时间内两球下落的高度相等
解析:选C.释放瞬间v=0,因此空气阻力f=0,两球均只受重力,加速度均为重力加速度g,故A错误;两球先做加速度减小的加速运动,最后都做匀速运动,稳定时kv=mg,因此最大速度与其质量成正比,即vm∝m,m1m2=v1v2,B错误;由图象知v1>v2,因此m1>m2,C正确;图象与时间轴围成的面积表示物体通过的位移,由图可知,t0时间内两球下落的高度不相等,故D错误.
3.(20xx广东佛山二模)广州塔,昵称小蛮腰,总高度达600m,游客乘坐观光电梯大约一分钟就可以到达观光平台.若电梯简化成只受重力与绳索拉力,已知电梯在t=0时由静止开始上升,a-t图象如图所示.则下列相关说法正确的是()
A.t=4.5s时,电梯处于失重状态
B.5~55s时间内,绳索拉力最小
C.t=59.5s时,电梯处于超重状态
D.t=60s时,电梯速度恰好为零
解析:选D.利用at图象可判断:t=4.5s时,电梯有向上的加速度,电梯处于超重状态,则A错误;0~5s时间内,电梯处于超重状态,拉力>重力,5s~55s时间内,电梯处于匀速上升过程,拉力=重力,55s~60s时间内,电梯处于失重状态,拉力<重力,综上所述,B、C错误;因at图线与t轴所围的“面积”代表速度改变量,而图中横轴上方的“面积”与横轴下方的“面积”相等,则电梯的速度在t=60s时为零,D正确.
考点四动力学中的临界、极值问题
1.临界或极值条件的标志
(1)有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点.
(2)若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态.
(3)若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点.
(4)若题目要求“最终加速度”、“稳定加速度”等,即是求收尾加速度或收尾速度.
2.解决动力学临界、极值问题的常用方法
极限分析法、假设分析法和数学极值法.
考向1:极限分析法
把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的.
[典例2]如图所示,一不可伸长的轻质细绳跨过定滑轮后,两端分别悬挂质量为m1和m2的物体A和B.若滑轮有一定大小,质量为m且分布均匀,滑轮转动时与绳之间无相对滑动,不计滑轮与轴之间的摩擦.设细绳对A和B的拉力大小分别为FT1和FT2,已知下列四个关于FT1的表达式中有一个是正确的.请你根据所学的物理知识,通过一定的分析,判断正确的表达式是()
A.FT1=m+2m2m1gm+2m1+m2
B.FT1=m+2m1m2gm+4m1+m2
C.FT1=m+4m2m1gm+2m1+m2
D.FT1=m+4m1m2gm+4m1+m2
解析由于滑轮转动时与绳之间无相对滑动,所以滑轮转动时,可假设两物体的加速度大小均为a,对A,若FT1-m1g=m1a,则对B应有m2g-FT2=m2a;上面两式分别解出加速度的表达式为a=FT1m1-g和a=g-FT2m2,所以有FT1m1+FT2m2=2g,即有m2FT1+m1FT2=2m1m2g,根据题目所给选项可设FT1=m+xm2m1gm+ym1+m2,则根据A、B地位对等关系应有FT2=m+xm1m2gm+ym2+m1,将FT1、FT2的值代入m2FT1+m1FT2=2m1m2g,可解得x=2y.由此可判断A错误、C正确.若将FT1设为m+xm1m2gm+ym1+m2,则结合m2FT1+m1FT2=2m1m2g可看出A、B的地位关系不再具有对等性,等式不可能成立,B、D错误.
答案C
考向2:假设分析法
临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题.
[典例3]如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为mA=6kg、mB=2kg,A、B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增加,在增大到45N的过程中,则()
A.当拉力F<12N时,物体均保持静止状态
B.两物体开始没有相对运动,当拉力超过12N时,开始相对滑动
C.两物体从受力开始就有相对运动
D.两物体始终没有相对运动
解析首先了解各物体的运动情况,B运动是因为A对它有静摩擦力,但由于静摩擦力存在最大值,所以B的加速度存在最大值,可以求出此加速度下拉力的大小;如果拉力再增大,则物体间就会发生相对滑动,所以这里存在一个临界点,就是A、B间静摩擦力达到最大值时拉力F的大小,以A为研究对象进行受力分析,A受水平向右的拉力,水平向左的静摩擦力,则有F-Ff=mAa,再以B为研究对象,B受水平向右的静摩擦力Ff=mBa,当Ff为最大静摩擦力时,解得a=FfmB=μmAgmB=122m/s2=6m/s2,F=48N,由此可以看出当F<48N时,A、B间的摩擦力达不到最大静摩擦力,也就是说,A、B间不会发生相对运动,故选项D正确.
答案D
考向3:数学极值法
将物理过程通过数学公式表达出来,根据数学表达式解出临界条件.
[典例4]如图所示,一儿童玩具静止在水平地面上,一个幼儿用沿与水平面成30°角的恒力拉着它沿水平面运动,已知拉力F=6.5N,玩具的质量m=1kg,经过时间t=2.0s.玩具移动了距离x=23m,这时幼儿松开手,玩具又滑行了一段距离后停下.(取g=10m/s2),求:
(1)玩具与地面间的动摩擦因数;
(2)松开手后玩具还能运动多远?
(3)幼儿要拉动玩具,拉力F与水平面夹角多大时,最省力?
解析(1)玩具做初速度为零的匀加速直线运动,由位移公式可得x=12at2
解得a=3m/s2
对玩具,由牛顿第二定律得
Fcos30°-μ(mg-Fsin30°)=ma
解得μ=33.
(2)松手时,玩具的速度v=at=23m/s
松手后,由牛顿第二定律得μmg=ma′
解得a′=1033m/s2
由匀变速运动的速度位移公式得
玩具的位移x′=0-v2-2a′=0.63m≈1.04m.
(3)设拉力与水平方向的夹角为θ,玩具要在水平面上运动,则Fcosθ-Ff>0
Ff=μFN
在竖直方向上,由平衡条件得
FN+Fsinθ=mg
解得F>μmgcosθ+μsinθ
cosθ+μsinθ=1+μ2sin(60°+θ)
当θ=30°时,拉力最小,最省力.
答案(1)33(2)1.04m(3)30°
课时规范训练
[基础巩固题组]
1.下列哪个说法是正确的()
A.游泳运动员仰卧在水面静止不动时处于失重状态
B.蹦床运动员在空中上升和下落过程中都处于失重状态
C.举重运动员在举起杠铃后不动的那段时间内处于超重状态
D.体操运动员双手握住单杠吊在空中不动时处于失重状态
解析:选B.选项A、C、D中运动员所受合外力为零,加速度为零.既不超重,也不失重,选项A、C、D错误;选项B中的运动员的加速度为重力加速度,方向竖直向下,处于失重状态,选项B正确.
2.人站在电梯中随电梯一起运动.下列过程中人处于超重状态的是()
A.电梯加速上升B.电梯加速下降
C.电梯匀速上升D.电梯匀速下降
解析:选A.人在竖直方向受到重力和电梯提供的弹力作用,由牛顿第二定律有F-G=ma,若人处于超重状态,此时人对电梯的压力大于人本身的重力,则应有力F大于G,加速度方向向上.选项A正确,B、C、D错误.
3.图甲为伽利略研究自由落体运动实验的示意图,让小球由倾角为θ的光滑斜面滑下,然后在不同的θ角条件下进行多次实验,最后推理出自由落体运动是一种匀加速直线运动.分析该实验可知,小球对斜面的压力、小球运动的加速度和重力加速度与各自最大值的比值y随θ变化的图象分别对应图乙中的()
A.①、②和③B.③、②和①
C.②、③和①D.③、①和②
解析:选B.小球受重力mg、支持力FN,由牛顿第二定律得mgsinθ=ma,a=gsinθ,而am=g,故aam=sinθ;由牛顿第三定律得FN′=FN,FNm′=FNm,而FN=mgcosθ,FNm=mg,即FNFNm=cosθ,则FN′FNm′=cosθ;重力加速度的最大值gm=g,即ggm=1,B正确.
4.(多选)在下列运动过程中,人处于失重状态的是()
A.小朋友沿滑梯加速滑下
B.乘客坐在沿平直路面减速行驶的汽车内
C.宇航员随飞船绕地球做圆周运动
D.跳水运动员离开跳板后向上运动
解析:选ACD.当小朋友沿滑梯加速下滑时,具有向下的加速度,人处于失重状态,A正确;乘客坐在沿平直路面减速行驶的汽车内,对乘客受力分析可得在竖直方向汽车对乘客的作用力平衡了乘客的重力,乘客不处于失重状态,B错误;宇航员随飞船绕地球做圆周运动,宇航员处于完全失重状态,运动员离开跳板后仅受重力作用处于完全失重状态,C、D正确.
5.如图所示,质量分别为m和2m的两个小球置于光滑水平面上,且固定在一轻质弹簧的两端,已知弹簧的原长为L,劲度系数为k.现沿弹簧轴线方向在质量为2m的小球上施加一水平拉力F,使两球一起做匀加速运动,则此时两球间的距离为()
A.F3kB.F2k
C.L+F3kD.L+F2k
解析:选C.两个小球一起做匀加速直线运动,加速度相等,对系统受力分析,由牛顿第二定律可得F=(m+2m)a,对质量为m的小球作水平方向受力分析,由牛顿第二定律和胡克定律可得kx=ma,则此时两球间的距离为L′=L+x=L+F3k,C正确.
6.如图甲所示,为一倾角θ=37°足够长的斜面,将一质量为m=1kg的物体无初速度在斜面上释放,同时施加一沿斜面向上的拉力,拉力随时间变化关系图象如图乙所示,与斜面间动摩擦因数μ=0.25.取g=10m/s2,sin37°=0.6,cos37°=0.8.求:
(1)2s末物体的速度;
(2)前16s内物体发生的位移.
解析:(1)分析可知物体在前2s内沿斜面向下做初速度为零的匀加速直线运动,由牛顿第二定律可得
mgsinθ-F1-μmgcosθ=ma1,
v1=a1t1,
代入数据可得
v1=5m/s.
(2)设物体在前2s内发生的位移为x1,则
x1=12a1t21=5m.
当拉力为F2=4.5N时,由牛顿第二定律可得
F2+μmgcosθ-mgsinθ=ma2,
代入数据可得a2=0.5m/s2,
物体经过t2时间速度减为0,则
v1=a2t2,t2=10s,
设t2时间发生的位移为x2,则
x2=12a2t22=25m,
由于mgsinθ-μmgcosθ<F2<μmgcosθ+mgsinθ,则物体在剩下4s时间内处于静止状态.
故物体在前16s内发生的位移x=x1+x2=30m,方向沿斜面向下.
答案:(1)5m/s(2)30m方向沿斜面向下
[综合应用题组]
7.(多选)将一个质量为1kg的小球竖直向上抛出,最终落回抛出点,运动过程中所受阻力大小恒定,方向与运动方向相反.该过程的v-t图象如图所示,g取10m/s2.下列说法中正确的是()
A.小球所受重力和阻力大小之比为5∶1
B.小球上升过程与下落过程所用时间之比为2∶3
C.小球落回到抛出点时的速度大小为86m/s
D.小球下落过程中,受到向上的空气阻力,处于超重状态
解析:选AC.上升过程中mg+Ff=ma1,代入a1=12m/s2,解得Ff=2N,小球所受重力和阻力之比为5∶1,选项A正确;下落过程中mg-Ff=ma2,可得a2=8m/s2,根据h=12at2可得t1t2=a2a1=23,选项B错误;根据v=a2t2,t2=6s可得v=86m/s,选项C正确;小球下落过程中,加速度方向竖直向下,小球处于失重状态,选项D错误.
8.如图甲所示,某人通过动滑轮将质量为m的货物提升到一定高处,动滑轮的质量和摩擦均不计,货物获得的加速度a与竖直向上的拉力FT之间的函数关系如图乙所示.则下列判断正确的是()
A.图线与纵轴的交点的绝对值为g
B.图线的斜率在数值上等于物体的质量m
C.图线与横轴的交点N的值FTN=mg
D.图线的斜率在数值上等于物体质量的倒数1m
解析:选A.由牛顿第二定律可得:2FT-mg=ma,则有a=2mFT-g,由a-FT图象可判断,纵轴截距的绝对值为g,图线的斜率在数值上等于2m,则A正确,B、D错误,横轴截距代表a=0时,FTN=mg2,C错误.
9.如图所示,劲度系数为k的轻弹簧竖直放置,下端固定在水平地面上.一质量为m的小球,从离弹簧上端高h处自由下落,接触弹簧后继续向下运动.观察小球从开始下落到小球第一次运动到最低点的过程,下列关于小球的速度v或加速度a随时间t变化的图象中符合实际情况的是()
解析:选A.小球先做自由落体运动,接触弹簧后小球做加速度减小的加速运动.直至重力和弹力相等,即mg=kΔx,此时a=0,小球速度达到最大值vmax,此后小球继续下降,小球重力小于弹力,加速度方向向上,小球向下做加速度增大的减速运动直至最低点,小球速度为0,加速度最大,A正确,B错误.设小球到达最低点时,弹簧的形变量为x,由能量关系得mg(h+x)=12kx2,则2mg(h+x)=kxx,由h+x>x得kx>2mg,所以在最低点kx-mg=ma>mg,即ag,C错误.弹簧形变量x与t不是线性关系.则a与t也不是线性关系,D错误.
10.如图所示,一夹子夹住木块,在力F作用下向上提升.夹子和木块的质量分别为m、M,夹子与木块两侧间的最大静摩擦力均为Ff.若木块不滑动,力F的最大值是()
A.2Ffm+MM
B.2Ffm+Mm
C.2Ffm+MM-(m+M)g
D.2Ffm+Mm+(m+M)g
解析:选A.木块恰好滑动时,对木块和夹子有F-(M+m)g=(M+m)a,对木块有2Ff-Mg=Ma,所以F=2FfM+mM,选项A正确.
11.(多选)质量为0.3kg的物体在水平面上做直线运动,图中的两条直线分别表示物体受水平拉力和不受水平拉力的图线,则下列说法正确的()
A.水平拉力可能是0.3N
B.水平拉力一定是0.1N
C.物体所受摩擦力可能是0.2N
D.物体所受摩擦力一定是0.2N
解析:选BC.若拉力方向与物体运动方向相同,则斜率较大的图象为不受拉力即只受摩擦力的速度图象,此时物体加速度大小为a1=23m/s2,由牛顿第二定律可知此时摩擦力Ff=ma1=0.2N,图象中斜率较小的图线为受拉力时的图线,加速度大小为a2=13m/s2,由牛顿第二定律可知Ff-F=ma2,代入已知条件可知,拉力F=0.1N;若拉力方向与物体运动方向相反,则斜率较小的图象为不受拉力即只受摩擦力的速度图象,此时物体加速度大小为a3=13m/s2,由牛顿第二定律可知此时摩擦力Ff′=ma3=0.1N;图象中斜率较大的图线为受拉力时的图线,加速度大小为a4=23m/s2,由牛顿第二定律可知F′+Ff′=ma4,代入已知条件可知,拉力F′=0.1N,B、C正确.
12.如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ.重力加速度为g.
(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;
(2)要使纸板相对砝码运动,求所需拉力的大小;
(3)本实验中,m1=0.5kg,m2=0.1kg,μ=0.2,砝码与纸板左端的距离d=0.1m,取g=10m/s2.若砝码移动的距离超过l=0.002m,人眼就能感知.为确保实验成功,纸板所需的拉力至少多大?
解析:(1)砝码对纸板的摩擦力Ff1=μm1g
桌面对纸板的摩擦力Ff2=μ(m1+m2)g
Ff=Ff1+Ff2,解得Ff=μ(2m1+m2)g.
(2)设砝码的加速度为a1,纸板的加速度为a2,则
Ff1=m1a1,F-Ff1-Ff2=m2a2
发生相对运动a2>a1
解得F>2μ(m1+m2)g.
(3)纸板抽出前,砝码运动的距离x1=12a1t21
纸板运动的距离d+x1=12a2t21
纸板抽出后,砝码在桌面上运动的距离x2=12a3t22,
l=x1+x2
由题意知a1=a3,a1t1=a3t2
解得F=2μm1+1+dlm2g
代入数据得F=22.4N.
答案:(1)μ(2m1+m2)g(2)F>2μ(m1+m2)g
(3)22.4N
第4节微专题1“板—块”+“传送带”问题
考点一“板—块”模型
1.模型特点
上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.
2.两种位移关系
滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.
3.解题方法
整体法、隔离法.
4.解题思路
(1)分析滑块和滑板的受力情况,根据牛顿第二定律分别求出滑块和滑板的加速度.
(2)对滑块和滑板进行运动情况分析,找出滑块和滑板之间的位移关系或速度关系,建立方程.特别注意滑块和滑板的位移都是相对地的位移.
[典例1](20xx山东德州质检)长为L=1.5m的长木板B静止放在水平冰面上,小物块A以某一初速度v0从木板B的左端滑上长木板B,直到A、B的速度达到相同,此时A、B的速度为v=0.4m/s,然后A、B又一起在水平冰面上滑行了s=8.0cm后停下.若小物块A可视为质点,它与长木板B的质量相同,A、B间的动摩擦因数μ1=0.25,取g=10m/s2.求:
(1)木板与冰面的动摩擦因数μ2;
(2)小物块A的初速度v0;
(3)为了保证小物块不从木板的右端滑落,小物块滑上木板的最大初速度v0m应为多少?
解析(1)小物块和木板一起运动时,受冰面的滑动摩擦力,做匀减速运动,则加速度
a=v22s=1.0m/s2
由牛顿第二定律得μ2mg=ma
解得μ2=0.10.
(2)小物块相对木板滑动时受木板对它的滑动摩擦力,做匀减速运动,其加速度
a1=μ1g=2.5m/s2
小物块在木板上滑动,木板受小物块的滑动摩擦力和冰面的滑动摩擦力,做匀加速运动,则有
μ1mg-μ2(2m)g=ma2
解得a2=0.50m/s2.
设小物块滑上木板经时间t后小物块、木板的速度相同为v,则
对于木板v=a2t
解得t=va2=0.8s
小物块滑上木板的初速度v0=v+a1t=2.4m/s.
(3)小物块滑上木板的初速度越大,它在木板上相对木板滑动的距离越大,当滑动距离等于木板长时,小物块到达木板B的最右端,两者的速度相等(设为v′),这种情况下小物块的初速度为保证其不从木板上滑落的最大初速度v0m,则
v0mt-12a1t2-12a2t2=L
v0m-v′=a1t
v′=a2t
由以上三式解得v0m=3.0m/s.
答案(1)0.10(2)2.4m/s(3)3.0m/s
1.(20xx安徽芜湖模拟)质量为m0=20kg、长为L=5m的木板放在水平面上,木板与水平面的动摩擦因数为μ1=0.15.将质量m=10kg的小木块(可视为质点),以v0=4m/s的速度从木板的左端被水平抛射到木板上(如图所示),小木块与木板面的动摩擦因数为μ2=0.4(最大静摩擦力等于滑动摩擦力,g=10m/s2).则下列判断中正确的是()
A.木板一定静止不动,小木块不能滑出木板
B.木板一定静止不动,小木块能滑出木板
C.木板一定向右滑动,小木块不能滑出木板
D.木板一定向右滑动,小木块能滑出木板
解析:选A.木板与地面间的摩擦力为Ff1=μ1(m0+m)g=0.15×(20+10)×10N=45N,小木块与木板之间的摩擦力为Ff2=μ2mg=0.4×10×10N=40N,Ff1Ff2,所以木板一定静止不动;设小木块在木板上滑行的距离为x,v20=2μ2gx,解得x=2mL=5m,所以小木块不能滑出木板,A正确.
2.一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图a所示.t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=1s时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s时间内小物块的v-t图线如图b所示.木板的质量是小物块质量的15倍,重力加速度大小g取10m/s2.求:
(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2;
(2)木板的最小长度;
(3)木板右端离墙壁的最终距离.
解析:(1)规定向右为正方向.木板与墙壁相碰前,小物块和木板一起向右做匀变速运动,设加速度为a1,小物块和木板的质量分别为m和M.由牛顿第二定律有
-μ1(m+M)g=(m+M)a1①
由题图b可知,木板与墙壁碰撞前瞬间的速度
v1=4m/s,
由运动学公式有
v1=v0+a1t1②
s0=v0t1+12a1t21③
式中,t1=1s,s0=4.5m是木板碰撞前的位移,v0是小物块和木板开始运动时的速度.
联立①②③式和题给条件得
μ1=0.1④
在木板与墙壁碰撞后,木板以-v1的初速度向左做匀变速运动,小物块以v1的初速度向右做匀变速运动.设小物块的加速度为a2,由牛顿第二定律有
-μ2mg=ma2⑤
由题图b可得
a2=v2-v1t2-t1⑥
式中,t2=2s,v2=0,联立⑤⑥式和题给条件得
μ2=0.4⑦
(2)设碰撞后木板的加速度为a3,经过时间Δt,木板和小物块刚好具有共同速度v3.由牛顿第二定律及运动学公式得
μ2mg+μ1(M+m)g=Ma3⑧
v3=-v1+a3Δt⑨
v3=v1+a2Δt⑩
碰撞后至木板和小物块刚好达到共同速度的过程中,木板运动的位移为
s1=-v1+v32Δt
小物块运动的位移为
s2=v1+v32Δt
小物块相对木板的位移为Δs=s2-s1
联立⑥⑧⑨⑩式,并代入数值得
Δs=6.0m
因为运动过程中小物块没有脱离木板,所以木板的最小长度应为6.0m.
(3)在小物块和木板具有共同速度后,两者向左做匀变速运动直至停止,设加速度为a4,此过程中小物块和木板运动的位移为s3.由牛顿第二定律及运动学公式得
μ1(m+M)g=(m+M)a4
0-v23=2a4s3
碰后木板运动的位移为
s=s1+s3
联立⑥⑧⑨⑩式,并代入数值得
s=-6.5m
木板右端离墙壁的最终距离为6.5m.
答案:(1)0.10.4(2)6.0m(3)6.5m
考点二水平传送带问题
滑块在水平传送带上运动常见的三个情景
项目图示滑块可能的运动情况
情景一
(1)可能一直加速
(2)可能先加速后匀速
情景二
(1)v0v时,可能一直减速,也可能先减速再匀速
(2)v0v时,可能一直加速,也可能先加速再匀速
情景三
(1)传送带较短时,滑块一直减速到达左端
(2)传送带较长时,滑块还要被传送带传回右端.其中v0v返回时速度为v,当v0v返回时速度为v0

[典例2](多选)如图所示,水平传送带以速度v1匀速运动,小物体P、Q由通过定滑轮且不可伸长的轻绳相连,t=0时刻P在传送带左端具有速度v2,P与定滑轮间的绳水平,t=t0时刻P离开传送带.不计定滑轮质量和摩擦,绳足够长.正确描述小物体P速度随时间变化的图象可能是()
解析若v1v2,且P受到的滑动摩擦力大于Q的重力,则可能先向右匀加速,加速至v1后随传送带一起向右匀速,此过程如图B所示,故B正确.若v1v2,且P受到的滑动摩擦力小于Q的重力,此时P一直向右减速,减速到零后反向加速.若v2v1,P受到的滑动摩擦力向左,开始时加速度a1=FT+μmgm,当减速至速度为v1时,摩擦力反向,若有FTμmg,此后加速度a2=FT-μmgm,故C正确,A、D错误.
答案BC
1.如图所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示.已知v2v1,则()
A.t2时刻,小物块离A处的距离达到最大
B.t2时刻,小物块相对传送带滑动的距离最大
C.0~t2时间内,小物块受到的摩擦力方向先向右后向左
D.0~t3时间内,小物块始终受到大小不变的摩擦力作用
解析:选B.物块滑上传送带后将做匀减速运动,t1时刻速度为零,此时小物块离A处的距离达到最大,选项A错误;然后在传送带滑动摩擦力的作用下向右做匀加速运动,t2时刻与传送带达到共同速度,此时小物块相对传送带滑动的距离最大,选项B正确;0~t2时间内,小物块受到的摩擦力方向始终向右,选项C错误;t2~t3时间内小物块不受摩擦力,选项D错误.
2.(20xx陕西汉中模拟)(多选)如图所示,质量为m的物体用细绳拴住放在粗糙的水平传送带上,物体距传送带左端的距离为L.当传送带分别以v1、v2的速度逆时针转动(v1<v2),稳定时绳与水平方向的夹角为θ,绳中的拉力分别为F1,F2;若剪断细绳时,物体到达左端的时间分别为t1、t2,则下列说法正确的是()
A.F1<F2B.F1=F2
C.t1一定大于t2D.t1可能等于t2
解析:选BD.绳剪断前物体的受力情况如图所示,由平衡条件得FN+Fsinθ=mg,Ff=μFN=Fcosθ,解得F=μmgμsinθ+cosθ,F的大小与传送带的速度无关,选项A错误,B正确;绳剪断后m在两速度的传送带上的加速度相同,若L≤v212μg,则两次都是匀加速到达左端,t1=t2,若L>v212μg,则物体在传送带上先加速再匀速到达左端,在速度小的传送带上需要的时间更长,t1>t2,选项C错误,D正确.
考点三倾斜传送带问题
滑块在倾斜传送带上运动常见的四个情景
项目图示滑块可能的运动情况
情景一
①可能一直加速
②可能先加速后匀速
情景二
①可能一直加速
②可能先加速后匀速
③可能先以a1加速后以a2加速
情景三
①可能一直加速
②可能先加速后匀速
③可能一直匀速
④可能先以a1加速后以a2加速
情景四
①可能一直加速
②可能一直匀速
③可能先减速后反向加速

[典例3]如图所示,倾角为37°,长为l=16m的传送带,转动速度为v=10m/s,在传送带顶端A处无初速度的释放一个质量为m=0.5kg的物体,已知物体与传送带间的动摩擦因数μ=0.5,g取10m/s2.求:(sin37°=0.6,cos37°=0.8)
(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;
(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.
解析(1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,相对传送带向下匀加速运动,根据牛顿第二定律有
mg(sin37°-μcos37°)=ma
则a=gsin37°-μgcos37°=2m/s2,
根据l=12at2得t=4s.
(2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运动,则物体所受滑动摩擦力沿传送带向下,设物体的加速度大小为a1,由牛顿第二定律得
mgsin37°+μmgcos37°=ma1
则有a1=mgsin37°+μmgcos37°m=10m/s2.
设当物体运动速度等于传送带转动速度时经历的时间为t1,位移为x1,则有t1=va1=1010s=1s,
x1=12a1t21=5m<l=16m.
当物体运动速度等于传送带速度瞬间,有mgsin37°>μmgcos37°,则下一时刻物体相对传送带向下运动,受到传送带向上的滑动摩擦力——摩擦力发生突变.设当物体下滑速度大于传送带转动速度时物体的加速度为a2,则a2=mgsin37°-μmgcos37°m=2m/s2
x2=l-x1=11m
又因为x2=vt2+12a2t22,
则有10t2+t22=11
解得t2=1s(t2=-11s舍去)
所以t总=t1+t2=2s.
答案(1)4s(2)2s
1.(20xx广东汕头模拟)如图所示,A、B两个皮带轮被紧绷的传送皮带包裹,传送皮带与水平面的夹角为θ,在电动机的带动下,可利用传送皮带传送货物.已知皮带轮与皮带之间无相对滑动,皮带轮不转动时,某物体从皮带顶端由静止开始下滑到皮带底端所用的时间是t,则()
A.当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定大于t
B.当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于t
C.当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间可能等于t
D.当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于t
解析:选D.传送带不动物体下滑时,物体受摩擦力向上,故加速度a=gsinθ-μgcosθ;当传送带向上运动时,摩擦力一定也是向上,而摩擦力的大小不变,故a不变,所以物体运动到B的时间不变,故A、B错误;当皮带向下运动时,物体受摩擦力开始是向下的,故加速度开始一定增大,位移不变,故由A滑到B的时间小于t,故C错误,D正确.
2.如图所示为上、下两端相距L=5m、倾角α=30°、始终以v=3m/s的速率顺时针转动的传送带(传送带始终绷紧).将一物体放在传送带的上端由静止释放滑下,经过t=2s到达下端,重力加速度g取10m/s2,求:
(1)传送带与物体间的动摩擦因数多大?
(2)如果将传送带逆时针转动,速率至少多大时,物体从传送带上端由静止释放能最快地到达下端?
解析:(1)物体在传送带上受力如图所示,物体沿传送带向下匀加速运动,设加速度为a.
由题意得L=12at2
解得a=2.5m/s2
由牛顿第二定律得
mgsinα-Ff=ma
又Ff=μmgcosα
故μ=0.29.
(2)如果传送带逆时针转动,要使物体从传送带上端由静止释放能最快地到达下端,则需要物体有沿传送带向下的最大加速度即所受摩擦力沿传送带向下,设此时传送带速度为vm,物体加速度为a′.
由牛顿第二定律得mgsinα+Ff=ma′
又v2m=2La′
故vm=2La′=8.66m/s.
答案:(1)0.29(2)8.66m/s
课时规范训练
[基础巩固题组]
1.(多选)如图所示是某工厂所采用的小型生产流水线示意图,机器生产出的物体源源不断地从出口处以水平速度v0滑向一粗糙的水平传送带,最后从传送带上落下装箱打包.假设传送带静止不动时,物体滑到传送带右端的速度为v,最后物体落在P处的箱包中.下列说法正确的是()
A.若传送带随皮带轮顺时针方向转动起来,且传送带速度小于v,物体仍落在P点
B.若传送带随皮带轮顺时针方向转动起来,且传送带速度大于v0,物体仍落在P点
C.若传送带随皮带轮顺时针方向转动起来,且传送带速度大于v,物体仍落在P点
D.若由于操作不慎,传送带随皮带轮逆时针方向转动起来,物体仍落在P点
解析:选AD.若传送带静止,物体滑到传送带右端的过程中,物体一直减速,其加速度a=μg,v2-v20=2aL,当传送带顺时针转且速度小于v时,物体仍一直减速,到达传送带右端速度仍为v,因而物体仍落在P点,A正确;当传送带顺时针转且速度大于v0时,物体应先加速,因而到达右端时速度一定大于v,应落在P点右侧,B错误;当传送带顺时针转且速度大于v时,物体在传送带上应先减速,当速度达到传送带速度时便和传送带一起匀速运动,到达右端时速度大于v,应落在P点右侧,C错误;当传送带逆时针转时,物体一直减速,到达右端时速度为v,仍落在P点,D正确.
2.如图所示,在水平桌面上叠放着质量均为M的A、B两块木板,在木板A的上面放着一个质量为m的物块C,木板和物块均处于静止状态.A、B、C之间以及B与地面之间的动摩擦因数都为μ.若用水平恒力F向右拉动木板A,使之从C、B之间抽出来,已知重力加速度为g,则拉力F的大小应该满足的条件是(已知最大静摩擦力的大小等于滑动摩擦力)()
A.F>μ(2m+M)gB.F>μ(m+2M)g
C.F>2μ(m+M)gD.F>2μmg
解析:选C.无论F多大,摩擦力都不能使B向右滑动,而滑动摩擦力能使C产生的最大加速度为μg,故F-μmg-μm+MgM>μg时,即F>2μ(m+M)g时A可从B、C之间抽出,选项C正确.
3.如图所示,水平桌面由粗糙程度不同的AB、BC两部分组成,且AB=BC,小物块P(可视为质点)以某一初速度从A点滑上桌面,最后恰好停在C点,已知物块经过AB与BC两部分的时间之比为1∶4,则物块P与桌面上AB、BC部分之间的动摩擦因数μ1、μ2之比为(P物块在AB、BC上所做两段运动可看做匀变速直线运动)()
A.1∶1B.1∶4
C.4∶1D.8∶1
解析:选D.设到达B点速度为v1,由于AB与BC段的位移相等,则有v0+v12t1=v1+02t2,其中t1∶t2=1∶4,故v1=v03,AB段的加速度为a1=v1-v0t1=-2v03t1,BC段的加速度为a2=0-v1t2=-v03t2,根据牛顿第二定律得,AB段-μ1mg=ma1,BC段-μ2mg=ma2,解得μ1∶μ2=a1∶a2=8∶1,故选项D正确.

20xx高考物理大一轮复习:第5章-机械能(12份打包有课件)


第1节功功率
一、功
1.做功的两个必要条件
力和物体在力的方向上发生的位移.
2.公式
W=Flcosα,适用于恒力做功,其中α为F、l方向间夹角,l为物体对地的位移.
3.功的正负判断
夹角功的正负
α90°力对物体做正功
α90°力对物体做负功,或者说物体克服这个力做了功
α=90°力对物体不做功
二、功率
1.定义:功与完成这些功所用时间的比值.
2.物理意义:描述做功的快慢.
3.公式
(1)P=Wt,P为时间t内的平均功率.
(2)P=Fvcosα(α为F与v的夹角)
①v为平均速度,则P为平均功率.
②v为瞬时速度,则P为瞬时功率.
4.额定功率与实际功率
(1)额定功率:动力机械正常工作时输出的最大功率.
(2)实际功率:动力机械实际工作时输出的功率,要求小于或等于额定功率.
[自我诊断]
1.判断正误
(1)只要物体受力的同时又发生了位移,则一定有力对物体做功.(×)
(2)一个力对物体做了负功,则说明这个力一定阻碍物体的运动.(√)
(3)作用力做正功时,反作用力一定做负功.(×)
(4)力始终垂直物体的运动方向,则该力对物体不做功.(√)
(5)摩擦力对物体一定做负功.(×)
(6)由P=Fv可知,发动机功率一定时,机车的牵引力与运行速度的大小成反比.(√)
(7)汽车上坡时换成低挡位,其目的是减小速度得到较大的牵引力.(√)
2.(多选)质量为m的物体静止在倾角为θ的斜面上,斜面沿水平方向向右匀速移动了距离s,如图所示,物体m相对斜面静止.则下列说法正确的是()
A.重力对物体m做正功
B.合力对物体m做功为零
C.摩擦力对物体m做负功
D.支持力对物体m做正功
解析:选BCD.物体的受力及位移如图所示,支持力FN与位移x的夹角α90°,故支持力做正功,D正确;重力垂直位移,故重力不做功,A错误;摩擦力Ff与x夹角β90°,故摩擦力做负功,C正确;合力为零,合力不做功,B正确.
3.如图所示,甲、乙、丙三个物体分别在大小相等、方向不同的力F的作用下,向右移动相等的位移x,关于F对甲、乙、丙做功的大小W1、W2、W3判断正确的是()
A.W1W2W3B.W1=W2W3
C.W1=W2=W3D.W1W2W3
解析:选C.由功的公式可得,这三种情况下做的功分别为W1=Fxcosα、W2=Fxcosα、W3=-Fxcosα,又因为功的正、负不表示大小,所以C正确.
4.在光滑的水平面上,用一水平拉力F使物体从静止开始移动x,平均功率为P,如果将水平拉力增加为4F,使同一物体从静止开始移动x,则平均功率为()
A.2PB.4P
C.6PD.8P
解析:选D.设第一次运动时间为t,则其平均功率表达式为P=Fxt;第二次加速度为第一次的4倍,由x=12at2可知时间为t2,其平均功率为4Fxt2=8Fxt=8P,D正确.
考点一功的正负判断和计算
考向1:功的正负的判断方法
(1)恒力做功的判断:若物体做直线运动,依据力与位移的夹角来判断.
(2)曲线运动中功的判断:若物体做曲线运动,依据F与v的方向夹角来判断.当0≤α90°时,力对物体做正功;90°α≤180°时,力对物体做负功;α=90°时,力对物体不做功.
(3)依据能量变化来判断:根据功是能量转化的量度,若有能量转化,则必有力对物体做功.此法常用于两个相联系的物体之间的相互作用力做功的判断.
1.(多选)如图所示,重物P放在一长木板OA上,将长木板绕O端转过一个小角度的过程中,重物P相对于木板始终保持静止.关于木板对重物P的摩擦力和支持力做功的情况是()
A.摩擦力对重物不做功
B.摩擦力对重物做负功
C.支持力对重物不做功
D.支持力对重物做正功
解析:选AD.由做功的条件可知:只要有力,并且物体在力的方向上通过位移,则力对物体做功.由受力分析知,支持力FN做正功,摩擦力Ff不做功,选项A、D正确.
2.(多选)如图所示,在皮带传送装置中,皮带把物体P匀速带至高处,在此过程中,下列说法中正确的是()
A.摩擦力对物体做正功
B.摩擦力对物体做负功
C.支持力对物体不做功
D.合力对物体做正功
解析:选AC.物体P匀速向上运动过程中,受静摩擦力作用,方向沿皮带向上,对物体做正功,支持力垂直于皮带,做功为零,物体所受的合力为零,做功也为零,故A、C正确,B、D错误.
考向2:恒力做功的计算
(1)单个力做的功:直接用W=Flcosα计算.
(2)合力做的功
方法一:先求合力F合,再用W合=F合lcosα求功.
方法二:先求各个力做的功W1、W2、W3、…,再应用W合=W1+W2+W3+…求合力做的功.
3.(多选)如图所示,水平路面上有一辆质量为M的汽车,车厢中有一个质量为m的人正用恒力F向前推车厢,在车以加速度a向前加速行驶距离L的过程中,下列说法正确的是()
A.人对车的推力F做的功为FL
B.人对车做的功为maL
C.车对人的作用力大小为ma
D.车对人的摩擦力做的功为(F+ma)L
解析:选AD.由做功的定义可知选项A正确;对人进行受力分析,人受重力以及车对人的力,合力的大小为ma,方向水平向左,故车对人的作用力大小应为ma2+mg2,选项C错误;上述过程重力不做功,合力对人做的功为maL,所以车对人做的功为maL,由相互作用力及人、车的位移相同可确定,人对车做的功为-maL,选项B错误;对人由牛顿第二定律知,在水平方向上有Ff-F=ma,摩擦力做的功为(F+ma)L,选项D正确.
4.(20xx湖北武汉模拟)一滑块在水平地面上沿直线滑行,t=0时其速度为1m/s,从此刻开始在滑块运动方向上再施加一水平作用力F,力F和滑块的速率v随时间的变化规律分别如图甲和乙所示,设在第1s内、第2s内、第3s内力F对滑块做的功分别为W1、W2、W3,则以下关系正确的是()
A.W1=W2=W3B.W1W2W3
C.W1W3W2D.W1=W2W3
解析:选B.力F做的功等于每段恒力F与该段滑块运动的位移数值的乘积,滑块的位移即vt图象中图象与坐标轴围成的面积,第1s内,位移大小为一个小三角形面积S;第2s内,位移大小也为一个小三角形面积S;第3s内,位移大小为两个小三角形面积2S,故W1=S,W2=3S,W3=4S,所以W1W2W3,B正确.
考点二变力功的计算
方法一利用“微元法”求变力的功
物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个无穷小的位移上的恒力所做元功的代数和.此法在中学阶段,常应用于求解大小不变、方向改变的变力做功问题.
[典例1]如图所示,在水平面上,有一弯曲的槽道弧AB,槽道由半径分别为R2和R的两个半圆构成,现用大小恒为F的拉力将一光滑小球从A点沿滑槽道拉至B点,若拉力F的方向时时刻刻均与小球运动方向一致,则此过程中拉力所做的功为()
A.0B.FR
C.32πFRD.2πFR
解析虽然拉力方向时刻改变,但力与运动方向始终一致,用微元法,在很小的一段位移内可以看成恒力,小球的路程为πR+πR2,则拉力做的功为32πFR,故C正确.
答案C
方法二化变力的功为恒力的功
若通过转换研究的对象,有时可化为恒力做功,用W=Flcosα求解.此法常常应用于轻绳通过定滑轮拉物体的问题中.
[典例2]如图所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F拉绳,使滑块从A点起由静止开始上升.若从A点上升至B点和从B点上升至C点的过程中拉力F做的功分别为W1和W2,图中AB=BC,则()
A.W1>W2
B.W1<W2
C.W1=W2
D.无法确定W1和W2的大小关系
解析绳子对滑块做的功为变力做功,可以通过转换研究对象,将变力的功转化为恒力的功;因绳子对滑块做的功等于拉力F对绳子做的功,而拉力F为恒力,W=FΔl,Δl为绳拉滑块过程中力F的作用点移动的位移,大小等于滑轮左侧绳长的缩短量,由图可知,ΔlAB>ΔlBC,故W1>W2,A正确.
答案A
方法三利用Fx图象求变力的功
在Fx图象中,图线与x轴所围“面积”的代数和就表示力F在这段位移所做的功,且位于x轴上方的“面积”为正,位于x轴下方的“面积”为负,但此方法只适用于便于求图线所围面积的情况(如三角形、矩形、圆等规则的几何图形).
[典例3]如图甲所示,静止于光滑水平面上坐标原点处的小物块,在水平拉力F作用下,沿x轴方向运动,拉力F随物块所在位置坐标x的变化关系如图乙所示,图线为半圆.则小物块运动到x0处时F做的总功为()
A.0B.12Fmx0
C.π4Fmx0D.π4x20
解析F为变力,根据Fx图象包围的面积在数值上等于F做的总功来计算.图线为半圆,由图线可知在数值上Fm=12x0,故W=12πF2m=12πFm12x0=π4Fmx0.
答案C
方法四利用平均力求变力的功
在求解变力做功时,若物体受到的力方向不变,而大小随位移呈线性变化,即力均匀变化时,则可以认为物体受到一大小为F=F1+F22的恒力作用,F1、F2分别为物体初、末态所受到的力,然后用公式W=Flcosα求此力所做的功.
[典例4]把长为l的铁钉钉入木板中,每打击一次给予的能量为E0,已知钉子在木板中遇到的阻力与钉子进入木板的深度成正比,比例系数为k.问此钉子全部进入木板需要打击几次?
解析在把钉子打入木板的过程中,钉子把得到的能量用来克服阻力做功,而阻力与钉子进入木板的深度成正比,先求出阻力的平均值,便可求得阻力做的功.
钉子在整个过程中受到的平均阻力为:
F=0+kl2=kl2
钉子克服阻力做的功为:
WF=Fl=12kl2
设全过程共打击n次,则给予钉子的总能量:
E总=nE0=12kl2,所以n=kl22E0
答案kl22E0
方法五利用动能定理求变力的功
动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力做功也适用于求变力做功.使用动能定理可根据动能的变化来求功,是求变力做功的一种方法.
[典例5]如图,一半径为R的半圆形轨道竖直固定放置,轨道两端等高;质量为m的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力为2mg,重力加速度大小为g.质点自P滑到Q的过程中,克服摩擦力所做的功为()
A.14mgRB.13mgR
C.12mgRD.π4mgR
解析在Q点质点受到竖直向下的重力和竖直向上的支持力,两力的合力充当向心力,所以有FN-mg=mv2R,FN=2mg,联立解得v=gR,下落过程中重力做正功,摩擦力做负功,根据动能定理可得mgR-Wf=12mv2,解得Wf=12mgR,所以克服摩擦力做功12mgR,C正确.
答案C
考点三功率的计算
1.平均功率的计算
(1)利用P=Wt.
(2)利用P=Fvcosα,其中v为物体运动的平均速度.
2.瞬时功率的计算
(1)利用公式P=Fvcosα,其中v为t时刻物体的瞬时速度.
(2)利用公式P=FvF,其中vF为物体的速度v在力F方向上的分速度.
(3)利用公式P=Fvv,其中Fv为物体受的外力F在速度v方向上的分力.
3.计算功率的3个注意
(1)要弄清楚是平均功率还是瞬时功率.
(2)平均功率与一段时间(或过程)相对应,计算时应明确是哪个力在哪段时间(或过程)内做功的平均功率.
(3)瞬时功率计算时应明确是哪个力在哪个时刻(或状态)的功率.求解瞬时功率时,如果F与v不同向,可用力F乘以F方向的分速度,或速度v乘以速度方向的分力求解.
1.一个质量为m的物块,在几个共点力的作用下静止在光滑水平面上.现把其中一个水平方向的力从F突然增大到3F,并保持其他力不变,则从这时开始到t秒末,该力的瞬时功率是()
A.3F2tmB.4F2tm
C.6F2tmD.9F2tm
解析:选C.物块受到的合力为2F,根据牛顿第二定律有2F=ma,在合力作用下,物块做初速度为零的匀加速直线运动,速度v=at,该力大小为3F,则该力的瞬时功率P=3Fv,解以上各式得P=6F2tm,C正确.
2.(多选)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为3.0×104kg,设起飞过程中发动机的推力恒为1.0×105N;弹射器有效作用长度为100m,推力恒定.要求舰载机在水平弹射结束时速度大小达到80m/s.弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则()
A.弹射器的推力大小为1.1×106N
B.弹射器对舰载机所做的功为1.1×108J
C.弹射器对舰载机做功的平均功率为8.8×107W
D.舰载机在弹射过程中的加速度大小为32m/s2
解析:选ABD.对舰载机应用运动学公式v2-0=2ax,代入数据得加速度a=32m/s2,D正确;设总推力为F,对舰载机应用牛顿第二定律可知:F-20%F=ma,得F=1.2×106N,而发动机的推力为1.0×105N,则弹射器的推力为F推=(1.2×106-1.0×105)N=1.1×106N,A正确;弹射器对舰载机所做的功为W=F推l=1.1×108J,B正确;弹射过程所用的时间为t=va=8032s=2.5s,平均功率P=Wt=1.1×1082.5W=4.4×107W,C错误.
3.如图所示,质量相同的两物体从同一高度由静止开始运动,A沿着固定在地面上的光滑斜面下滑,B做自由落体运动.两物体分别到达地面时,下列说法正确的是()
A.重力的平均功率PAPB
B.重力的平均功率PA=PB
C.重力的瞬时功率PA=PB
D.重力的瞬时功率PAPB
解析:选D.根据功的定义可知重力对两物体做功相同即WA=WB,自由落体时满足h=12gt2B,沿斜面下滑时满足hsinθ=12gt2Asinθ,其中θ为斜面倾角,故tAtB,由P=Wt知PAPB,A、B错;由匀变速直线运动公式可知落地时两物体的速度大小相同,方向不同,重力的瞬时功率PA=mgvsinθ,PB=mgv,显然PAPB,故C错,D对.
求解功率时应注意的“三个”问题
(1)首先要明确所求功率是平均功率还是瞬时功率;
(2)平均功率与一段时间(或过程)相对应,计算时应明确是哪个力在哪段时间(或过程)内做功的平均功率;
(3)瞬时功率计算时应明确是哪个力在哪个时刻(或状态)的功率
考点四机车启动问题
考向1:以恒定功率启动
(1)运动过程分析
(2)运动过程的速度时间图象
1.一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P随时间t的变化如图所示.假定汽车所受阻力的大小Ff恒定不变.下列描述该汽车的速度v随时间t变化的图线中,可能正确的是()
解析:选A.由Pt图象知:0~t1内汽车以恒定功率P1行驶,t1~t2内汽车以恒定功率P2行驶.设汽车所受牵引力为F,则由P=Fv得,当v增加时,F减小,由a=F-Ffm知a减小,又因速度不可能突变,所以选项B、C、D错误,A正确.
2.(20xx山东济南模拟)(多选)汽车在平直公路上以速度v0匀速行驶,发动机功率为P,牵引力为F0,t1时刻,司机减小了油门,使汽车的功率立即减小一半,并保持该功率继续行驶,到t2时刻,汽车又恢复了匀速直线运动.下列能正确表示这一过程中汽车牵引力F随时间t、速度v随时间t变化的图象是()
解析:选AD.到t1时刻功率立即减小一半,但速度减小有一个过程,不能直接变为原来的一半,所以牵引力立即变为原来的一半,根据公式P=Fv,之后保持该功率继续行驶,速度减小,牵引力增大,根据a=Ff-Fm,摩擦力恒定,所以加速度逐渐减小,即vt图象的斜率减小,当加速度为零时,做匀速直线运动,故选项A、D正确.
考向2:以恒定加速度启动
(1)运动过程分析
(2)运动过程的速度-时间图象如图所示.
3.一辆汽车从静止出发,在平直的公路上加速前进,如果发动机的牵引力保持恒定,汽车所受阻力保持不变,在此过程中()
A.汽车的速度与时间成正比
B.汽车的位移与时间成正比
C.汽车做变加速直线运动
D.汽车发动机做的功与时间成正比
解析:选A.由F-Ff=ma可知,因汽车牵引力F保持恒定,故汽车做匀加速直线运动,C错误;由v=at可知,A正确;而x=12at2,故B错误;由WF=Fx=F12at2可知,D错误.
4.(20xx浙江舟山模拟)质量为1.0×103kg的汽车,沿倾角为30°的斜坡由静止开始运动,汽车在运动过程中所受摩擦阻力大小恒为2000N,汽车发动机的额定输出功率为5.6×104W,开始时以a=1m/s2的加速度做匀加速运动(g=10m/s2).求:
(1)汽车做匀加速运动的时间t1;
(2)汽车所能达到的最大速率;
(3)若斜坡长143.5m,且认为汽车到达坡顶之前,已达到最大速率,则汽车从坡底到坡顶需多长时间?
解析:(1)由牛顿第二定律得
F-mgsin30°-Ff=ma
设匀加速过程的末速度为v,则有P=Fv
v=at1
解得t1=7s
(2)当达到最大速度vm时,a=0,则有
P=(mgsin30°+Ff)vm
解得vm=8m/s
(3)汽车匀加速运动的位移x1=12at21
在后一阶段对汽车由动能定理得
Pt2-(mgsin30°+Ff)x2=12mv2m-12mv2
又有x=x1+x2
解得t2=15s
故汽车运动的总时间为t=t1+t2=22s
答案:(1)7s(2)8m/s(3)22s
解决机车启动问题的4个注意
(1)机车启动的方式不同,运动的规律就不同,即其功率、速度、加速度、牵引力等物理量的变化规律不同,分析图象时应注意坐标轴的意义及图象变化所描述的规律.
(2)在机车功率P=Fv中,F是机车的牵引力而不是机车所受合力,正是基于此,牵引力与阻力平衡时达到最大运行速度,即P=Ffvm.
(3)恒定功率下的启动过程一定不是匀加速过程,匀变速直线运动的公式不适用了,这种加速过程发动机做的功可用W=Pt计算,不能用W=Fl计算(因为F为变力).
(4)以恒定牵引力加速时的功率一定不恒定,这种加速过程发动机做的功常用W=Fl计算,不能用W=Pt计算(因为功率P是变化的).
课时规范训练
[基础巩固题组]
1.如图所示,木块B上表面是水平的,当木块A置于B上,并与B保持相对静止,一起沿固定的光滑斜面由静止开始下滑,在下滑过程中()
A.A所受的合外力对A不做功
B.B对A的弹力做正功
C.B对A的摩擦力做正功
D.A对B做正功
解析:选C.AB一起沿固定的光滑斜面由静止开始下滑,加速度为gsinθ.由于A速度增大,由动能定理,A所受的合外力对A做功,B对A的摩擦力做正功,B对A的弹力做负功,选项A、B错误C、正确.A对B不做功,选项D错误.
2.(多选)如图所示,摆球质量为m,悬线的长为L,把悬线拉到水平位置后放手.设在摆球从A点运动到B点的过程中空气阻力F阻的大小不变,则下列说法正确的是()
A.重力做功为mgL
B.绳的拉力做功为0
C.空气阻力F阻做功为-mgL
D.空气阻力F阻做功为-12F阻πL
解析:选ABD.小球下落过程中,重力做功为mgL,A正确;绳的拉力始终与速度方向垂直,拉力做功为0,B正确;空气阻力F阻大小不变,方向始终与速度方向相反,故空气阻力F阻做功为-F阻12πL,C错误,D正确.
3.(多选)如图所示,B物体在拉力F的作用下向左运动,在运动过程中,A、B之间有相互作用的摩擦力,则这对摩擦力做功的情况,下列说法中正确的是()
A.A、B都克服摩擦力做功
B.摩擦力对A不做功
C.摩擦力对B做负功
D.摩擦力对A、B都不做功
解析:选BC.对A、B受力分析如图所示,物体A在Ff2作用下没有位移,所以摩擦力对A不做功,故B正确;对物体B,Ff1与位移夹角为180°,做负功,故C正确,A、D错误.
4.如图所示,用与水平方向成θ角的力F,拉着质量为m的物体沿水平地面匀速前进位移s,已知物体和地面间的动摩擦因数为μ.则在此过程中F做的功为()
A.mgsB.μmgs
C.μmgscosθ+μsinθD.μmgs1+μtanθ
解析:选D.物体受力平衡,有Fsinθ+FN=mg,Fcosθ-μFN=0,在此过程中F做的功W=Fscosθ=μmgs1+μtanθ,D正确.
5.如图所示,质量为m的小球用长L的细线悬挂而静止在竖直位置.现用水平拉力F将小球缓慢拉到细线与竖直方向成θ角的位置.在此过程中,拉力F做的功为()
A.FLcosθB.FLsinθ
C.FL(1-cosθ)D.mgL(1-cosθ)
解析:选D.用F缓慢地拉,则显然F为变力,只能用动能定理求解,由动能定理得WF-mgL(1-cosθ)=0,解得WF=mgL(1-cosθ),D正确.
6.如图所示,质量为m的小球以初速度v0水平抛出,恰好垂直打在倾角为θ的斜面上,则球落在斜面上时重力的瞬时功率为(不计空气阻力)()
A.mgv0tanθB.mgv0tanθ
C.mgv0sinθD.mgv0cosθ
解析:选B.小球落在斜面上时重力的瞬时功率为P=mgvy,而vytanθ=v0,所以P=mgv0tanθ,B正确.
7.如图所示,光滑斜面的顶端固定一弹簧,一小球向右滑行,并冲上固定在地面上的斜面.设小球在斜面最低点A的速度为v,压缩弹簧至C点时弹簧最短,C点距地面高度为h,则小球从A到C的过程中弹簧弹力做功是()
A.mgh-12mv2B.12mv2-mgh
C.-mghD.-(mgh+12mv2)
解析:选A.小球从A点运动到C点的过程中,重力和弹簧的弹力对小球做负功,由于支持力与位移始终垂直,则支持力对小球不做功,由动能定理,可得WG+WF=0-12mv2,重力做功为WG=-mgh,则弹簧的弹力对小球做功为WF=mgh-12mv2,所以正确选项为A.
[综合应用题组]
8.质量为m的汽车,启动后沿平直路面行驶,如果发动机的功率恒为P,且行驶过程中受到的摩擦阻力大小一定,汽车速度能够达到的最大值为v,那么当汽车的车速为v3时,汽车的瞬时加速度的大小为()
A.PmvB.2Pmv
C.3PmvD.4Pmv
解析:选B.当汽车匀速行驶时,有f=F=Pv,根据P=F′v3,得F′=3Pv,由牛顿第二定律得a=F′-fm=3Pv-Pvm=2Pmv,故B正确,A、C、D错误.
9.如图甲所示,滑轮质量、摩擦均不计,质量为2kg的物体在F作用下由静止开始向上做匀加速运动,其速度随时间的变化关系如图乙所示,由此可知()
A.物体加速度大小为2m/s2
B.F的大小为21N
C.4s末F的功率大小为42W
D.4s内F做功的平均功率为42W
解析:选C.由图乙可知,物体的加速度a=0.5m/s2,由2F-mg=ma可得:F=10.5N,A、B均错误;4s末力F的作用点的速度大小为vF=2×2m/s=4m/s,故4s末拉力F做功的功率为P=FvF=42W,C正确;4s内物体上升的高度h=4m,力F的作用点的位移l=2h=8m,拉力F所做的功W=Fl=84J,4s内拉力F做功的平均功率P=Wt=21W,D错误.
10.当前我国“高铁”事业发展迅猛.假设一辆高速列车在机车牵引力和恒定阻力作用下,在水平轨道上由静止开始启动,其vt图象如图所示,已知在0~t1时间内为过原点的倾斜直线,t1时刻达到额定功率P,此后保持功率P不变,在t3时刻达到最大速度v3,以后匀速运动.下述判断正确的是()
A.从0至t3时间内,列车一直匀加速直线运动
B.t2时刻的加速度大于t1时刻的加速度
C.在t3时刻以后,机车的牵引力为零
D.该列车所受的恒定阻力大小为Pv3
解析:选D.0~t1时间内,列车匀加速运动,t1~t3时间内,加速度变小,故A、B错;t3以后列车匀速运动,牵引力等于阻力,故C错;匀速运动时f=F牵=Pv3,故D正确.
11.有一种太阳能驱动的小车,当太阳光照射到小车上方的光电板时,光电板中产生的电流经电动机带动小车前进.若质量为m的小车在平直的水泥路上从静止开始沿直线加速行驶,经过时间t前进的距离为x,且速度达到最大值vm.设这一过程中电动机的功率恒为P,小车所受阻力恒为f,那么这段时间内()
A.小车做匀加速运动
B.小车受到的牵引力逐渐增大
C.小车受到的合外力所做的功为Pt
D.小车受到的牵引力做的功为fx+12mv2m
解析:选D.小车在运动方向上受牵引力F和阻力f,因为v增大,P不变,由P=Fv,F-f=ma,得出F逐渐减小,a也逐渐减小,当v=vm时,a=0,故A、B均错;合外力做的功W外=Pt-fx,由动能定理得Pt-fx=12mv2m,故C错误,D正确.
12.放在粗糙水平面上的物体受到水平拉力的作用,在0~6s内其速度与时间图象和该拉力的功率与时间图象分别如图所示,下列说法正确的是()
A.0~6s内物体位移大小为36m
B.0~6s内拉力做的功为30J
C.合外力在0~6s内做的功与0~2s内做的功相等
D.滑动摩擦力大小为5N
解析:选C.由P=Fv,对应vt图象和Pt图象可得30=F6,10=f6,解得:F=5N,f=53N,D错误;0~6s内物体的位移大小为(4+6)×6×12m=30m,A错误;0~6s内拉力做功W=Fx1+fx2=5×6×2×12J+53×6×4J=70J,B错误;由动能定理可知,C正确.
13.一起重机的钢绳由静止开始匀加速提起质量为m的重物,当重物的速度为v1时,起重机的功率达到最大值P,以后起重机保持该功率不变,继续提升重物,直到以最大速度v2匀速上升,物体上升的高度为h,则整个过程中,下列说法正确的是()
A.钢绳的最大拉力为Pv2
B.钢绳的最大拉力为mg
C.重物匀加速的末速度为Pmg
D.重物匀加速运动的加速度为Pmv1-g
解析:选D.加速过程物体处于超重状态,钢绳拉力较大,匀速运动阶段钢绳的拉力为Pv2,故A错误;加速过程重物处于超重状态,钢绳拉力大于重力,故B错误;重物匀加速运动的末速度不是运动的最大速度,此时钢绳对重物的拉力大于其重力,故其速度小于Pmg,故C错误;重物匀加速运动的末速度为v1,此时的拉力为F=Pv1,由牛顿第二定律得:a=F-mgm=Pmv1-g,故D正确.
14.(多选)两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量.两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.若它们下落相同的距离,则()
A.甲球用的时间比乙球长
B.甲球末速度的大小大于乙球末速度的大小
C.甲球加速度的大小小于乙球加速度的大小
D.甲球克服阻力做的功大于乙球克服阻力做的功
解析:选BD.设f=kR,则由牛顿第二定律得F合=mg-f=ma,而m=43πR3ρ,故a=g-k43πR2ρ,由m甲m乙、ρ甲=ρ乙可知a甲a乙,故C错误;因甲、乙位移相同,由v2=2ax可知,v甲v乙,B正确;由x=12at2可知,t甲t乙,A错误;由功的定义可知,W克服=fx,又f甲f乙,则W甲克服W乙克服,D正确.
第2节动能定理及其应用
一、动能
1.公式:Ek=12mv2,式中v为瞬时速度,动能是状态量.
2.矢标性:动能是标量,只有正值,动能与速度的方向无关.
3.动能的变化量:ΔEk=12mv22-12mv21.
4.动能的相对性
由于速度具有相对性,则动能也具有相对性,一般以地面为参考系.
二、动能定理
1.内容:合外力对物体所做的功等于物体动能的变化.
2.表达式:W=ΔEk=12mv22-12mv21.
3.功与动能的关系
(1)W0,物体的动能增加.
(2)W0,物体的动能减少.
(3)W=0,物体的动能不变.
4.适用条件
(1)动能定理既适用于直线运动,也适用于曲线运动.
(2)既适用于恒力做功,也适用于变力做功.
(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用.
[自我诊断]
1.判断正误
(1)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.(√)
(2)动能不变的物体一定处于平衡状态.(×)
(3)如果物体所受的合外力为零,那么合外力对物体做功一定为零.(√)
(4)物体在合外力作用下做变速运动时,动能一定变化.(×)
(5)物体的动能不变,所受的合外力必定为零.(×)
(6)做自由落体运动的物体,动能与时间的二次方成正比.(√)
2.一个质量为0.3kg的弹性小球,在光滑水平面上以6m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,则碰撞前后小球速度变化量的大小Δv和碰撞过程中小球的动能变化量ΔEk为()
A.Δv=0B.Δv=12m/s
C.ΔEk=1.8JD.ΔEk=10.8J
解析:选B.取初速度方向为正方向,则Δv=(-6-6)m/s=-12m/s,由于速度大小没变,动能不变,故动能变化量为0,故只有选项B正确.
3.A、B两物体在光滑水平面上,分别在相同的水平恒力F作用下,由静止开始通过相同的位移l.若A的质量大于B的质量,则在这一过程中()
A.A获得动能较大
B.B获得动能较大
C.A、B获得动能一样大
D.无法比较A、B获得动能大小
解析:选C.由动能定理可知恒力F做功W=Fl=12mv2-0,因为F、l相同,所以A、B的动能变化相同,C正确.
4.质量m=2kg的物体在光滑水平面上以v1=6m/s的速度匀速向西运动,若有一个F=8N、方向向北的恒力作用于物体,在t=2s内物体的动能增加了()
A.28JB.64J
C.32JD.36J
解析:选B.由于力F与速度v1垂直,物体做曲线运动,其两个分运动为向西的匀速运动和向北的匀加速直线运动,对匀加速运动有a=Fm=4m/s2,v2=at=8m/s.2s末物体的速度v=v21+v22=10m/s,2s内物体的动能增加了ΔEk=12mv2-12mv21=64J,故选项B正确.
考点一动能定理的理解和应用
1.定理中“外力”的两点理解
(1)重力、弹力、摩擦力、电场力、磁场力或其他力,它们可以同时作用,也可以不同时作用.
(2)既可以是恒力,也可以是变力.
2.公式中“=”体现的三个关系
3.应用动能定理的注意事项
(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.
(2)应用动能定理时,必须明确各力做功的正、负.
(3)应用动能定理解题,关键是对研究对象进行准确的受力分析及运动过程分析,并画出物体运动过程的草图,借助草图理解物理过程和各量关系.
1.光滑斜面上有一个小球自高为h的A处由静止开始滚下,抵达光滑水平面上的B点时速度大小为v0.光滑水平面上每隔相等的距离设置了一个与小球运动方向垂直的活动阻挡条,如图所示,小球越过n条活动阻挡条后停下来.若让小球从h高处以初速度v0滚下,则小球能越过的活动阻挡条的条数是(设小球每次越过活动阻挡条时损失的动能相等)()
A.nB.2n
C.3nD.4n
解析:选B.设每条阻挡条对小球做的功为W,当小球在水平面上滚动时,由动能定理得nW=0-12mv20,对第二次有NW=0-12mv22=0-12mv20+mgh,又因为12mv20=mgh,联立解得N=2n,选项B正确.
2.(多选)质量不等,但有相同动能的两个物体,在动摩擦因数相同的水平地面上滑行,直至停止,则()
A.质量大的物体滑行的距离大
B.质量小的物体滑行的距离大
C.它们滑行的距离一样大
D.它们克服摩擦力所做的功一样多
解析:选BD.由动能定理可知,摩擦力对物体所做的功等于物体动能的增量,因两物体具有相同的动能,故两物体滑行过程中克服摩擦力所做的功也相同,又Wf=μmgx可知,质量越大的物体,滑行的距离x越小,故B、D选项正确.
3.如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O点处于同一水平线上的P点处有一个光滑的细钉,已知OP=L2,在A点给小球一个水平向左的初速度v0,发现小球恰能到达跟P点在同一竖直线上的最高点B.求:
(1)小球到达B点时的速率;
(2)若不计空气阻力,则初速度v0为多少;
(3)若初速度v0=3gL,则小球在从A到B的过程中克服空气阻力做了多少功?
解析:(1)小球恰能到达最高点B,由牛顿第二定律得
mg=mv2BL2
解得vB=gL2
(2)若不计空气阻力,从A→B由动能定理得
-mgL+L2=12mv2B-12mv20
解得v0=7gL2
(3)当v0=3gL时,由动能定理得
-mgL+L2-WFf=12mv2B-12mv20
解得WFf=114mgL
答案:(1)gL2(2)7gL2(3)114mgL
(1)优先应用动能定理的问题
①不涉及加速度、时间的问题.
②有多个物理过程且不需要研究整个过程中的中间状态的问题.
③变力做功的问题.
④含有F、l、m、v、W、Ek等物理量的力学问题.
(2)应用动能定理的解题步骤
考点二动能定理与图象的综合问题
1.力学中图象所围“面积”的意义
(1)vt图:由公式x=vt可知,vt图线与坐标轴围成的面积表示物体的位移.
(2)at图:由公式Δv=at可知,at图线与坐标轴围成的面积表示物体速度的变化量.
(3)Fx图:由公式W=Fx可知,Fx图线与坐标轴围成的面积表示力所做的功.
(4)Pt图:由公式W=Pt可知,Pt图线与坐标轴围成的面积表示力所做的功.
2.解决物理图象问题的基本步骤
(1)观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义.
(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.
(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点,图线下的面积所对应的物理意义,分析解答问题.或者利用函数图线上的特定值代入函数关系式求物理量.
[典例1]如图甲所示,一半径R=1m、圆心角等于143°的竖直圆弧形光滑轨道,与斜面相切于B处,圆弧轨道的最高点为M,斜面倾角θ=37°,t=0时刻有一物块沿斜面上滑,其在斜面上运动的速度变化规律如图乙所示,若物块恰能到达M点,取g=10m/s2,sin37°=0.6,cos37°=0.8,求:
(1)物块经过M点的速度大小;
(2)物块经过B点的速度大小;
(3)物块与斜面间的动摩擦因数.
解析(1)物块恰能到达M点则有mg=mv2MR
解得vM=gR=10m/s
(2)物块从B点运动到M点的过程中,由动能定理得
-mgR(1+cos37°)=12mv2M-12mv2B
解得vB=46m/s
(3)由题图乙可知,物块在斜面上运动时,加速度大小为a=ΔvΔt=10m/s2,方向沿斜面向下,有
mgsin37°+μmgcos37°=ma
解得μ=0.5
答案(1)10m/s(2)46m/s(3)0.5
1.(20xx安徽合肥一模)A、B两物体分别在水平恒力F1和F2的作用下沿水平面运动,先后撤去F1、F2后,两物体最终停下,它们的vt图象如图所示.已知两物体与水平面间的滑动摩擦力大小相等.则下列说法正确的是()
A.F1、F2大小之比为1∶2
B.F1、F2对A、B做功之比为1∶2
C.A、B质量之比为2∶1
D.全过程中A、B克服摩擦力做功之比为2∶1
解析:选C.由速度与时间图象可知,两个匀减速运动的加速度之比为1∶2,由牛顿第二定律可知:A、B受摩擦力大小相等,所以A、B的质量关系是2∶1,由速度与时间图象可知,A、B两物体加速与减速的位移相等,且匀加速运动位移之比1∶2,匀减速运动的位移之比2∶1,由动能定理可得:A物体的拉力与摩擦力的关系,F1x-f13x=0-0;B物体的拉力与摩擦力的关系,F22x-f23x=0-0,因此可得:F1=3f1,F2=32f2,f1=f2,所以F1=2F2.全过程中摩擦力对A、B做功相等,F1、F2对A、B做功大小相等.故A、B、D错误,C正确.
2.(20xx江西九江质检)打桩机是利用冲击力将桩贯入地层的桩工机械.某同学对打桩机的工作原理产生了兴趣.他构建了一个打桩机的简易模型,如图甲所示.他设想,用恒定大小的拉力F拉动绳端B,使物体从A点(与钉子接触处)由静止开始运动,上升一段高度后撤去F,物体运动到最高点后自由下落并撞击钉子,将钉子打入一定深度.按此模型分析,若物体质量m=1kg,上升了1m高度时撤去拉力,撤去拉力前物体的动能Ek与上升高度h的关系图象如图乙所示.(g取10m/s2,不计空气阻力)
(1)求物体上升到0.4m高度处F的瞬时功率;
(2)若物体撞击钉子后瞬间弹起,且使其不再落下,钉子获得20J的动能向下运动.钉子总长为10cm.撞击前插入部分可以忽略,不计钉子重力.已知钉子在插入过程中所受阻力Ff与深度x的关系图象如图丙所示,求钉子能够插入的最大深度.
解析:(1)撤去F前,根据动能定理,有
(F-mg)h=Ek-0
由题图乙得,斜率为k=F-mg=20N得
F=30N
又由题图乙得,h=0.4m时,Ek=8J,则v=4m/s
P=Fv=120W
(2)碰撞后,对钉子有-Ffx′=0-Ek′
已知Ek′=20J
Ff=k′x′2
又由题图丙得k′=105N/m
解得x′=0.02m
答案:(1)120W(2)0.02m
动能定理与图象结合问题的分析方法
(1)首先看清楚所给图象的种类(如vt图象、Ft图象、Ekx图象等).
(2)挖掘图象的隐含条件——求出所需要的物理量,如由vt图象所包围的“面积”求位移,由Fx图象所包围的“面积”求功等.
(3)分析有哪些力做功,根据动能定理列方程,求出相应的物理量.
考点三用动能定理解决多过程问题
1.运用动能定理解决问题时,选择合适的研究过程能使问题得以简化.当物体的运动过程包含几个运动性质不同的子过程时,可以选择一个、几个或全部子过程作为研究过程.
2.当选择全部子过程作为研究过程,涉及重力、大小恒定的阻力或摩擦力做功时,要注意运用它们的功能特点:
(1)重力的功取决于物体的初、末位置,与路径无关.
(2)大小恒定的阻力或摩擦力做的功等于力的大小与路程的乘积.
[典例2]如图所示,用一块长L1=1.0m的木板在墙和桌面间架设斜面,桌子高H=0.8m,长L2=1.5m.斜面与水平桌面的倾角θ可在0~60°间调节后固定.将质量m=0.2kg的小物块从斜面顶端静止释放,物块与斜面间的动摩擦因数μ1=0.05,物块与桌面间的动摩擦因数为μ2,忽略物块在斜面与桌面交接处的能量损失.(重力加速度取g=10m/s2;最大静摩擦力等于滑动摩擦力)
(1)求θ角增大到多少时,物块能从斜面开始下滑;(用正切值表示)
(2)当θ角增大到37°时,物块恰能停在桌面边缘,求物块与桌面间的动摩擦因数μ2;(已知sin37°=0.6,cos37°=0.8)
(3)继续增大θ角,发现θ=53°时物块落地点与墙面的距离最大,求此最大距离xm.
解析(1)为使小物块下滑,应有
mgsinθ≥μ1mgcosθ①
θ满足的条件tanθ≥0.05②
即当θ=arctan0.05时物块恰好从斜面开始下滑.
(2)克服摩擦力做功
Wf=μ1mgL1cosθ+μ2mg(L2-L1cosθ)③
由动能定理得mgL1sinθ-Wf=0④
代入数据得μ2=0.8⑤
(3)由动能定理得mgL1sinθ-Wf=12mv2⑥
结合③式并代入数据得v=1m/s⑦
由平抛运动规律得H=12gt2,x1=vt
解得t=0.4s⑧
x1=0.4m⑨
xm=x1+L2=1.9m
答案(1)arctan0.05(2)0.8(3)1.9m
1.如图所示,相同材料制成的滑道ABC,其中AB段为曲面,BC段为水平面.现有质量为m的木块,从距离水平面h高处的A点由静止释放,滑到B点过程中克服摩擦力做功为13mgh;木块通过B点后继续滑行2h距离后,在C点停下来,则木块与曲面间的动摩擦因数应为()
A.13B.23
C.16D.112
解析:选A.物体从A点到C点根据动能定理,mgh-13mgh-μmg2h=0,解得μ=13,因为曲面和水平轨道是同种材料,所以木块与曲面间的动摩擦因数也为13,选项A正确.
2.(20xx高考天津卷)我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图所示,质量m=60kg的运动员从长直助滑道AB的A处由静止开始以加速度a=3.6m/s2匀加速滑下,到达助滑道末端B时速度vB=24m/s,A与B的竖直高度差H=48m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5m,运动员在B、C间运动时阻力做功W=-1530J,g取10m/s2.
(1)求运动员在AB段下滑时受到阻力Ff的大小;
(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大?
解析:(1)运动员在AB段做初速度为零的匀加速运动,设AB的长度为x,
则有v2B=2ax①
由牛顿第二定律有mgHx-Ff=ma②
联立①②式,代入数据解得Ff=144N③
(2)设运动员到达C点时的速度为vC,在由B到达C的过程中,由动能定理有
mgh+W=12mv2C-12mv2B④
设运动员在C点所受的支持力为FN,由牛顿第二定律有
FN-mg=mv2CR⑤
由运动员能够承受的最大压力为其所受重力的6倍,联立④⑤式,代入数据解得R=12.5m
答案:(1)144N(2)12.5m
利用动能定理求解多过程问题的基本思路
(1)弄清物体的运动由哪些过程组成.
(2)分析每个过程中物体的受力情况.
(3)各个力做功有何特点,对动能的变化有无影响.
(4)从总体上把握全过程,表达出总功,找出初、末状态的动能.
(5)对所研究的全过程运用动能定理列方程.
课时规范训练
[基础巩固题组]
1.(多选)关于动能定理的表达式W=Ek2-Ek1,下列说法正确的是()
A.公式中的W为不包含重力的其他力做的总功
B.公式中的W为包含重力在内的所有力做的功,也可通过以下两种方式计算:先求每个力的功再求功的代数和或先求合外力再求合外力的功
C.公式中的Ek2-Ek1为动能的增量,当W>0时动能增加,当W<0时,动能减少
D.动能定理适用于直线运动,但不适用于曲线运动,适用于恒力做功,但不适用于变力做功
解析:选BC.公式W=Ek2-Ek1中的“W”为所有力所做的总功,A错误,B正确;若W>0,则Ek2>Ek1,若W<0,则Ek2<Ek1,C正确;动能定理对直线运动、曲线运动、恒力做功、变力做功均适用,D错误.
2.如图所示,AB为14圆弧轨道,BC为水平直轨道,圆弧对应的圆的半径为R,BC的长度也是R,一质量为m的物体与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A从静止开始下落,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为()
A12μmgRB.12mgR
C.mgRD.(1-μ)mgR
解析:选D.由题意可知mgR=WfAB+WfBC,WfBC=μmgR,所以WfAB=(1-μ)mgR,D正确.
3.一个质量为m的物体静止放在光滑水平面上,在互成60°角的大小相等的两个水平恒力作用下,经过一段时间,物体获得的速度为v,在力的方向上获得的速度分别为v1、v2,如图所示,那么在这段时间内,其中一个力做的功为()
A.16mv2B.14mv2
C.13mv2D.12mv2
解析:选B.在合力F的方向上,由动能定理得W=Fl=12mv2,某个分力的功为W1=F1lcos30°=F2cos30°lcos30°=12Fl=14mv2,B正确.
4.如图所示,一块长木板B放在光滑的水平面上,在B上放一物体A,现以恒定的外力拉B,由于A、B间摩擦力的作用,A将在B上滑动,以地面为参考系,A、B都向前移动一段距离.在此过程中()
A.外力F做的功等于A和B动能的增量
B.B对A的摩擦力所做的功,等于A的动能增量
C.A对B的摩擦力所做的功,等于B对A的摩擦力所做的功
D.外力F对B做的功等于B的动能的增量
解析:选B.A物体所受的合外力等于B对A的摩擦力,对A物体运用动能定理,则有B对A的摩擦力所做的功等于A的动能的增量,即B对;A对B的摩擦力与B对A的摩擦力是一对作用力与反作用力,大小相等,方向相反,但是由于A在B上滑动,A、B对地的位移不等,故二者做功不相等,C错;对B应用动能定理,WF-Wf=ΔEkB,即WF=ΔEkB+Wf,就是外力F对B做的功,等于B的动能增量与B克服摩擦力所做的功之和,D错;由前述讨论知B克服摩擦力所做的功与A的动能增量(等于B对A的摩擦力所做的功)不等,故A错.
5.(多选)如图甲所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动.小环从最高点A滑到最低点B的过程中,小环线速度大小的平方v2随下落高度h的变化图象可能是图乙中的()
解析:选AB.对小球由动能定理得mgh=12mv2-12mv20,则v2=2gh+v20,当v0=0时,B正确;当v0≠0时,A正确.
6.如图所示,半径R=2.5m的光滑半圆轨道ABC与倾角θ=37°的粗糙斜面轨道DC相切于C点,半圆轨道的直径AC与斜面垂直.质量m=1kg的小球从A点左上方距A点高h=0.45m的P点以某一速度v0水平抛出,刚好与半圆轨道的A点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D点.已知当地的重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8,不计空气阻力,求:
(1)小球从P点抛出时速度v0的大小;
(2)小球从C点运动到D点过程中摩擦力做的功W;
(3)小球从D点返回经过轨道最低点B,对轨道的压力大小.
解析:(1)在A点有:v2y=2gh
vyv0=tanθ
解得v0=4m/s
(2)全过程由动能定理得
W=0-12mv20=-8J
(3)从D到B过程由动能定理得
mg(h+Rcosθ+R)+W=12mv2
在B点由牛顿第二定律得
FN-mg=mv2R
解得FN=43.2N
由牛顿第三定律得小球在B点对轨道的压力大小
FN′=FN=43.2N
答案:(1)4m/s(2)-8J(3)43.2N
[综合应用题组]
7.一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍.该质点的加速度为()
A.st2B.3s2t2
C.4st2D.8st2
解析:选A.由Ek=12mv2可知速度变为原来的3倍.设加速度为a,初速度为v,则末速度为3v.由速度公式vt=v0+at得3v=v+at,解得at=2v;由位移公式s=v0t+12at2得s=vt+12att=vt+122vt=2vt,进一步求得v=s2t;所以a=2vt=2ts2t=st2,A正确.
8.如图所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,BC是水平的,其距离d=0.50m.盆边缘的高度为h=0.30m.在A处放一个质量为m的小物块并让其从静止开始下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停的地点到B的距离为()
A.0.50mB.0.25m
C.0.10mD.0
解析:选D.设小物块在BC段通过的总路程为s,由于只有水平面上存在摩擦力,则小物块从A点开始运动到最终静止的整个过程中,摩擦力做功为-μmgs,而重力做功与路径无关,由动能定理得:mgh-μmgs=0-0,代入数据可解得s=3m.由于d=0.50m,所以,小物块在BC段经过3次往复运动后,又回到B点.
9.小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短.将两球拉起,使两绳均被水平拉直,如图所示.将两球由静止释放,在各自轨迹的最低点()
A.P球的速度一定大于Q球的速度
B.P球的动能一定小于Q球的动能
C.P球所受绳的拉力一定大于Q球所受绳的拉力
D.P球的向心加速度一定小于Q球的向心加速度
解析:选C.从释放到最低点过程中,由动能定理得mgl=12mv2-0,可得v=2gl,因lPlQ,则vPvQ,故选项A错误;由EkQ=mQglQ,EkP=mPglP,而mPmQ,故两球动能大小无法比较,选项B错误;在最低点对两球进行受力分析,根据牛顿第二定律及向心力公式可知T-mg=mv2l=man,得T=3mg,an=2g,则TPTQ,aP=aQ,C正确,D错误.
10.用水平力F拉一物体,使物体在水平地面上由静止开始做匀加速直线运动,t1时刻撤去拉力F,物体做匀减速直线运动,到t2时刻停止,其速度-时间图象如图所示,且α>β,若拉力F做的功为W1,平均功率为P1;物体克服摩擦阻力Ff做的功为W2,平均功率为P2,则下列选项正确的是()
A.W1>W2,F=2FfB.W1=W2,F>2Ff
C.P1<P2,F>2FfD.P1=P2,F=2Ff
解析:选B.由动能定理可得W1-W2=0,解得W1=W2.由图象可知,撤去拉力F后运动时间大于水平力F作用时间,所以F>2Ff,选项A、D错误B正确;由于摩擦阻力作用时间一定大于水平力F作用时间,所以P1>P2,选项C错误.
11.(多选)如图所示,一固定容器的内壁是半径为R的半球面;在半球面水平直径的一端有一质量为m的质点P.它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W.重力加速度大小为g.设质点P在最低点时,向心加速度的大小为a,容器对它的支持力大小为N,则()
A.a=2mgR-WmRB.a=2mgR-WmR
C.N=3mgR-2WRD.N=2mgR-WR
解析:选AC.质点P下滑到底端的过程,由动能定理得mgR-W=12mv2-0,可得v2=2mgR-Wm,所以a=v2R=2mgR-WmR,A正确,B错误;在最低点,由牛顿第二定律得N-mg=mv2R,故N=mg+mv2R=mg+mR2mgR-Wm=3mgR-2WR,C正确,D错误.
12.在竖直平面内固定一轨道ABCO,AB段水平放置,长为4m,BCO段弯曲且光滑;一质量为1.0kg、可视作质点的圆环套在轨道上,圆环与轨道AB段之间的动摩擦因数为0.5.建立如图所示的直角坐标系,圆环在沿x轴正方向的恒力F作用下,从A(-7,2)点由静止开始运动,到达原点O时撤去恒力F,圆环从O(0,0)点水平飞出后经过D(6,3)点.重力加速度g取10m/s2,不计空气阻力.求:
(1)圆环到达O点时的速度大小;
(2)恒力F的大小;
(3)圆环在AB段运动的时间.
解析:(1)圆环从O到D过程中做平抛运动
x=v0t
y=12gt2
读图得x=6m,y=3m
v0=60m/s=7.75m/s.
(2)圆环从A到O过程中,根据动能定理
FxAO-μmgxAB-mgy′=12mv20
代入数据得F=10N.
(3)圆环从A到B过程中,根据牛顿第二定律
F-μmg=ma
xAB=12at2
代入数据得t=85s=1.26s.
答案:(1)7.75m/s(2)10N(3)1.26s
第3节机械能守恒定律及其应用
一、重力做功与重力势能
1.重力做功的特点
(1)重力做功与路径无关,只与始末位置的高度差有关.
(2)重力做功不引起物体机械能的变化.
2.重力势能
(1)公式:Ep=mgh.
(2)特性:
①矢标性:重力势能是标量,但有正、负,其意义是表示物体的重力势能比它在参考平面上大还是小,这与功的正、负的物理意义不同.
②系统性:重力势能是物体和地球共有的.
③相对性:重力势能的大小与参考平面的选取有关.重力势能的变化是绝对的,与参考平面的选取无关.
3.重力做功与重力势能变化的关系
(1)定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加.
(2)定量关系:重力对物体做的功等于物体重力势能的减少量.即WG=-(Ep2-Ep1)=-ΔEp.
二、弹性势能
1.大小
弹簧的弹性势能的大小与弹簧的形变量及劲度系数有关.
2.弹力做功与弹性势能变化的关系
弹力做正功,弹性势能减小,弹力做负功,弹性势能增加.
三、机械能守恒定律
1.机械能
动能和势能统称为机械能,其中势能包括重力势能和弹性势能.
2.机械能守恒定律
(1)内容:在只有重力或弹力做功的物体系统内,动能和势能可以互相转化,而总的机械能保持不变.
(2)守恒的条件:只有重力或弹力做功.
(3)守恒表达式:
守恒观点E1=E2,Ek1+Ep1=Ek2+Ep2
转化观点ΔEk=-ΔEp
转移观点ΔEA减=ΔEB增
[自我诊断]
1.判断正误
(1)重力势能的变化与零势能参考面的选取无关.(√)
(2)克服重力做功,物体的重力势能一定增加.(√)
(3)发生形变的物体都具有弹性势能.(×)
(4)弹力做正功弹性势能一定增加.(×)
(5)物体所受的合力为零,物体的机械能一定守恒.(×)
(6)物体的速度增大时,其机械能可能减小.(√)
(7)物体除受重力外,还受其他力,但其他力不做功,则物体的机械能一定守恒.(√)
2.自由下落的物体在下落过程中,其重力做功和重力势能变化的情况为()
A.重力做正功,重力势能减小
B.重力做正功,重力势能增加
C.重力做负功,重力势能减小
D.重力做负功,重力势能增加
解析:选A.下落过程,物体高度降低,所以重力做正功,重力势能减小,A正确.
3.关于机械能是否守恒,下列说法正确的是()
A.做匀速直线运动的物体机械能一定守恒
B.做匀速圆周运动的物体机械能一定守恒
C.做变速运动的物体机械能可能守恒
D.合力对物体做功不为零,机械能一定不守恒
解析:选C.做匀速直线运动的物体与做匀速圆周运动的物体,如果是在竖直平面内则机械能不守恒,A、B错误;合力做功不为零,机械能可能守恒,如自由落体运动,D错误,C正确.
4.(多选)如图所示,A、B两球质量相等,A球用不能伸长的轻绳系于O点,B球用轻弹簧系于O′点,O与O′点在同一水平面上,分别将A、B球拉到与悬点等高处,使绳和轻弹簧均处于水平,弹簧处于自然状态,将两球分别由静止开始释放,当两球达到各自悬点的正下方时,两球仍处在同一水平面上,则()
A.两球到达各自悬点的正下方时,两球动能相等
B.两球到达各自悬点的正下方时,A球动能较大
C.两球到达各自悬点的正下方时,B球动能较大
D.两球到达各自悬点的正下方时,A球受到向上的拉力较大
解析:选BD.整个过程中两球减少的重力势能相等,A球减少的重力势能完全转化为A球的动能,B球减少的重力势能转化为B球的动能和弹簧的弹性势能,所以A球的动能大于B球的动能,所以B正确;在悬点正下方位置,根据牛顿第二定律知F=mg+mv2R,因为vAvB,所以A球受到的拉力较大,所以D正确.
考点一机械能守恒的理解和判断
1.对机械能守恒条件的理解
(1)只受重力作用,例如不考虑空气阻力的各种抛体运动,物体的机械能守恒.
(2)除重力外,物体还受其他力,但其他力不做功或做功代数和为零.
(3)除重力外,只有系统内的弹力做功,并且弹力做的功等于弹性势能减少量,那么系统的机械能守恒.
注意:并非物体的机械能守恒,如与弹簧相连的小球下摆的过程机械能减少.
2.机械能是否守恒的三种判断方法
(1)利用机械能的定义判断:若物体动能、势能之和不变,则机械能守恒.
(2)用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,虽受其他力,但其他力不做功,机械能守恒.
(3)利用能量转化判断:若物体或系统与外界没有能量交换,物体或系统内也没有机械能与其他形式能的转化,则机械能守恒.
1.(多选)如图所示,下列关于机械能是否守恒的判断正确的是()
A.甲图中,物体A将弹簧压缩的过程中,物体A机械能守恒
B.乙图中,物体A固定,物体B沿斜面匀速下滑,物体B的机械能守恒
C.丙图中,不计任何阻力和定滑轮质量时,A加速下落,B加速上升过程中,A、B组成的系统机械能守恒
D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒
解析:选CD.甲图中重力和弹力做功,物体A和弹簧组成的系统机械能守恒,但物体A机械能不守恒,A错.乙图中物体B除受重力外,还受到弹力和摩擦力作用,弹力不做功,但摩擦力做负功,物体B的机械能不守恒,B错.丙图中绳子张力对A做负功,对B做正功,代数和为零,A、B组成的系统机械能守恒,C对.丁图中小球的动能不变,势能不变,机械能守恒,D对.
2.(多选)如图所示,斜面置于光滑水平地面,其光滑斜面上有一物体由静止沿斜面下滑,在物体下滑过程中,下列说法正确的是()
A.物体的重力势能减少,动能增加,机械能减小
B.斜面的机械能不变
C.斜面对物体的作用力垂直于接触面,不对物体做功
D.物体和斜面组成的系统机械能守恒
解析:选AD.物体由静止开始下滑的过程其重力势能减少,动能增加,A正确;物体在下滑过程中,斜面做加速运动,其机械能增加,B错误;物体沿斜面下滑时,既沿斜面向下运动,又随斜面向右运动,其合速度方向与弹力方向不垂直,弹力方向垂直于接触面,但与速度方向之间的夹角大于90°,所以斜面对物体的作用力对物体做负功,C错误;对物体与斜面组成的系统,只有物体的重力和物体与斜面间的弹力做功,机械能守恒,D正确.
3.(多选)如图所示,用轻弹簧相连的物块A和B放在光滑的水平面上,物块A紧靠竖直墙壁,一颗子弹沿水平方向射入物块B后留在其中,由子弹、弹簧和A、B所组成的系统在下列依次进行的过程中,机械能守恒的是()
A.子弹射入物块B的过程
B.物块B带着子弹向左运动,直到弹簧压缩量最大的过程
C.弹簧推着带子弹的物块B向右运动,直到弹簧恢复原长的过程
D.带着子弹的物块B因惯性继续向右运动,直到弹簧伸长量达最大的过程
解析:选BCD.子弹射入物块B的过程中,子弹和物块B组成的系统,由于要克服子弹与物块之间的滑动摩擦力做功,一部分机械能转化成了内能,所以机械能不守恒.在子弹与物块B获得了共同速度后一起向左压缩弹簧的过程中,对于A、B、弹簧和子弹组成的系统,由于墙壁给A一个推力作用,系统的外力之和不为零,但这一过程中墙壁的弹力不做功,只有系统内的弹力做功,动能和弹性势能发生转化,系统机械能守恒,这一情形持续到弹簧恢复原长为止.当弹簧恢复原长后,整个系统将向右运动,墙壁不再有力作用在A上,这时物块的动能和弹簧的弹性势能相互转化,故系统的机械能守恒,综上所述,B、C、D正确.
(1)机械能守恒的条件绝不是合外力的功等于零,更不是合外力为零;“只有重力或弹力做功”不等于“只受重力或弹力作用”.
(2)对于一些绳子突然绷紧、物体间碰撞等情况,除非题目特别说明,否则机械能必定不守恒.
(3)对于系统机械能是否守恒,可以根据能量的转化进行判断.
考点二单个物体的机械能守恒定律的应用
应用机械能守恒定律的基本思路
(1)选取研究对象单个物体多个物体组成的系统系统内有弹簧
(2)受力分析和各力做功情况分析,确定是否符合机械能守恒条件.
(3)确定初末状态的机械能或运动过程中物体机械能的转化情况.
(4)选择合适的表达式列出方程,进行求解.
(5)对计算结果进行必要的讨论和说明.
[典例1]如图所示,将一质量为m=0.1kg的小球自水平平台右端O点以初速度v0水平抛出,小球飞离平台后由A点沿切线落入竖直光滑圆轨道ABC,并沿轨道恰好通过最高点C,圆轨道ABC的形状为半径R=2.5m的圆截去了左上角127°的圆弧,CB为其竖直直径(sin53°=0.8,cos53°=0.6,重力加速度g取10m/s2,空气阻力不计),求:
(1)小球经过C点速度vC的大小;
(2)小球运动到轨道最低点B时轨道对小球的支持力大小;
(3)平台末端O点到A点的竖直高度H.
解析(1)小球恰好运动到C点时,重力提供向心力,由牛顿第二定律知
mg=mv2CR
解得vC=gR=5m/s
(2)从B点到C点,由机械能守恒定律有
12mv2C+mg2R=12mv2B
在B点对小球进行受力分析,由牛顿第二定律有
FN-mg=mv2BR
联立解得vB=55m/s,FN=6.0N
(3)从A到B由机械能守恒定律有
12mv2A+mgR(1-cos53°)=12mv2B
所以vA=105m/s
在A点对小球进行速度的分解如图所示,
有vy=vAsin53°
所以H=v2y2g=3.36m
答案(1)5m/s(2)6.0N(3)3.36m
机械能守恒定律的应用技巧
(1)机械能守恒定律是一种“能——能转化”关系,其守恒是有条件的,因此,应用时首先要对研究对象在所研究的过程中机械能是否守恒做出判断.
(2)如果系统(除地球外)只有一个物体,用守恒式列方程较方便;对于由两个或两个以上物体组成的系统,用转化式或转移式列方程较简便.
1.(20xx甘肃兰州一模)(多选)如图所示,竖直面内光滑的34圆形导轨固定在一水平地面上,半径为R.一个质量为m的小球从距水平地面正上方h高处的P点由静止开始自由下落,恰好从N点沿切线方向进入圆轨道.不考虑空气阻力,则下列说法正确的是()
A.适当调整高度h,可使小球从轨道最高点M飞出后,恰好落在轨道右端口N处
B.若h=2R,则小球在轨道最低点对轨道的压力为5mg
C.只有h大于等于2.5R时,小球才能到达圆轨道的最高点M
D.若h=R,则小球能上升到圆轨道左侧离地高度为R的位置,该过程重力做功为mgR
解析:选BC.球到达最高点时速度至少应满足mg=mv2R,解得v=gR,小球离开最高点后做平抛运动,下落高度为R时,运动的水平距离为x=vt=gR2Rg=2R,故A错误;从P到最低点过程由机械能守恒可得2mgR=12mv2,由向心力公式得FN-mg=mv2R,解得FN=5mg,由牛顿第三定律可知小球对轨道的压力为5mg,故B正确;由机械能守恒得mg(h-2R)=12mv2,代入v=gR,解得h=2.5R,故C正确;若h=R,则小球能上升到圆轨道左侧离地高度为R的位置,该过程重力做功为0,D错误.
2.如图所示,竖直平面内的一半径R=0.50m的光滑圆弧槽BCD,B点与圆心O等高,一水平面与圆弧槽相接于D点,质量m=0.10kg的小球从B点正上方H=0.95m高处的A点自由下落,由B点进入圆弧轨道,从D点飞出后落在水平面上的Q点,DQ间的距离x=2.4m,球从D点飞出后的运动过程中相对水平面上升的最大高度h=0.80m,g取10m/s2,不计空气阻力,求:
(1)小球经过C点时轨道对它的支持力大小FN;
(2)小球经过最高点P的速度大小vP;
(3)D点与圆心O的高度差hOD.
解析:(1)设经过C点时速度为v1,由机械能守恒有
mg(H+R)=12mv21
由牛顿第二定律有FN-mg=mv21R
代入数据解得FN=6.8N
(2)P到Q做平抛运动有
h=12gt2,x2=vPt
代入数据解得vP=3.0m/s.
(3)由机械能守恒定律,有
12mv2P+mgh=mg(H+hOD),
代入数据,解得hOD=0.30m.
答案:(1)6.8N(2)3.0m/s(3)0.30m
考点三多个物体的机械能守恒定律的应用
1.对多个物体组成的系统要注意判断物体运动过程中,系统的机械能是否守恒.
2.注意寻找用绳或杆相连接的物体间的速度关系和位移关系.
3.列机械能守恒方程时,一般选用ΔEk=-ΔEp或ΔEA=-ΔEB的形式.
[典例2]如图所示,质量分别为2m、3m的小球A和小球B分别固定在由轻质杆构成的直角尺的两端,直角尺的定点O处有光滑的固定转动轴,AO、BO的长分别为2L和L,开始时直角尺的AO杆部分处于水平位置而B在O的正下方,让该系统由静止开始自由转动,求:
(1)当小球A到达最低点时,小球A的速度大小和小球A对AO杆作用力的大小;
(2)小球A由初始位置到达最低点的过程中,杆AO和杆BO分别对小球A和小球B所做的功;
(3)B球能上升的最大高度h.
解析直角尺和两个小球组成的系统机械能守恒.
(1)由机械能守恒定律得:
2mg2L=3mgL+122mv2+123mv22
解得v=8gL11
对A球由牛顿第二定律得
F-2mg=2mv22L
解得F=30mg11
由牛顿第三定律得球A对AO杆的作用力大小
F′=F=30mg11
(2)设杆AO和杆BO对小球A和小球B所做的功分别为WAO和WBO,则
2mg2L+WAO=12×2mv2
WBO-3mgL=12×3mv22
解得WAO=-36mgL11,WBO=36mgL11
(3)设B球上升到最高点时,AO与竖直方向的夹角为θ,则由机械能守恒定律得
2mg2Lcosθ=3mgL(1+sinθ)
解得sinθ=725
则B球上升的最大高度
h=L(1+sinθ)=32L25
答案(1)8gL1130mg11(2)-36mgL1136mgL11(3)32L25
1.如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中()
A.圆环的机械能守恒
B.弹簧弹性势能变化了3mgL
C.圆环下滑到最大距离时,所受合力为零
D.圆环重力势能与弹簧弹性势能之和保持不变
解析:选B.圆环沿杆下滑的过程中,圆环与弹簧组成的系统动能、弹性势能、重力势能之和守恒,选项A、D错误;弹簧长度为2L时,圆环下落的高度h=3L,根据机械能守恒定律,弹簧的弹性势能增加了ΔEp=mgh=3mgL,选项B正确;圆环释放后,圆环向下先做加速运动,后做减速运动,当速度最大时,合力为零,下滑到最大距离时,具有向上的加速度,合力不为零,选项C错误.
2.(20xx山东济南质检)如图所示,跨过同一高度处的定滑轮的细线连接着质量相同的物体A和B,A套在光滑水平杆上,定滑轮离水平杆的高度h=0.2m,开始时让连着A的细线与水平杆的夹角θ1=37°,由静止释放B,当细线与水平杆的夹角θ2=53°时,A的速度为多大?在以后的运动过程中,A所获得的最大速度为多大?(设B不会碰到水平杆,sin37°=0.6,sin53°=0.8,取g=10m/s2)
解析:A、B两物体组成的系统,只有动能和重力势能的转化,机械能守恒.设θ2=53°时,A、B两物体的速度分别为vA、vB,B下降的高度为h1,则有
mgh1=12mv2A+12mv2B
其中h1=hsinθ1-hsinθ2
vAcosθ2=vB
代入数据解得vA=1.1m/s
由于绳子的拉力对A做正功,使A加速,至左滑轮正下方时速度最大,此时B的速度为零,此过程B下降高度设为h2,则由机械能守恒定律得
mgh2=12mv2Am
其中h2=hsinθ1-h
代入数据解得vAm=1.6m/s
答案:1.1m/s1.6m/s
考点四用机械能守恒定律解决非质点问题
在应用机械能守恒定律处理实际问题时,经常遇到像“链条”“液柱”类的物体,其在运动过程中将发生形变,其重心位置相对物体也发生变化,因此这类物体不能再看成质点来处理.
物体虽然不能看成质点来处理,但因只有重力做功,物体整体机械能守恒.一般情况下,可将物体分段处理,确定质量分布均匀的规则:物体各部分的重心位置,根据初末状态物体重力势能的变化列式求解.
[典例3]如图所示,AB为光滑的水平面,BC是倾角为α的足够长的光滑斜面,斜面体固定不动.AB、BC间用一小段光滑圆弧轨道相连.一条长为L的均匀柔软链条开始时静止的放在ABC面上,其一端D至B的距离为L-a.现自由释放链条,则:
(1)链条下滑过程中,系统的机械能是否守恒?简述理由;
(2)链条的D端滑到B点时,链条的速率为多大?
解析(1)链条在下滑过程中机械能守恒,因为斜面BC和AB面均光滑,链条下滑时只有重力做功,符合机械能守恒的条件.
(2)设链条质量为m,可以认为始末状态的重力势能变化是由L-a段下降引起的,
高度减少量h=a+L-a2sinα=L+a2sinα
该部分的质量为m′=mL(L-a)
由机械能守恒定律可得:mL(L-a)gh=12mv2,
可解得:v=gLL2-a2sinα.
答案(1)见解析(2)gLL2-a2sinα
1.如图所示,粗细均匀,两端开口的U形管内装有同种液体,开始时两边液面高度差为h,管中液柱总长度为4h,后来让液体自由流动,当两液面高度相等时,右侧液面下降的速度为()
A.18ghB.16gh
C.14ghD.12gh
解析:选A.当两液面高度相等时,减少的重力势能转化为整个液体的动能,根据功能关系有18mg12h=12mv2,解得:v=18gh.
2.如图所示,长为L的均匀链条放在光滑水平桌面上,且使长度的14垂在桌边,松手后链条从静止开始沿桌边下滑,则链条滑至刚刚离开桌边时的速度大小为()
A.32gLB.gL4
C.15gL4D.4gL
解析:选C.由机械能守恒定律ΔEp减=ΔEk增,即mgL2-14mgL8=12mv2,所以v=15gL4.
课时规范训练
[基础巩固题组]
1.下列关于机械能守恒的说法中,正确的是()
A.若只有重力做功,则物体机械能一定守恒
B.若物体的机械能守恒,一定是只受重力
C.做匀变速运动的物体机械能一定守恒
D.物体所受合力不为零,机械能一定守恒
解析:选A.若只有重力做功,则物体机械能一定守恒,A正确;若物体的机械能守恒,物体不一定是只受重力,也许受其他力,但其他力不做功,B错误;做匀变速运动的物体,如果除重力外,其他力做功不为零,则机械能不守恒,C错误;物体所受合力不为零,但是如果除重力外的其他力做功不为零,则机械能不守恒,D错误.
2.不计空气阻力,下列运动的物体中机械能不守恒的是()
A.起重机吊起物体匀速上升
B.物体做平抛运动
C.圆锥摆球在水平面内做匀速圆周运动
D.一个轻质弹簧上端固定,下端系一个重物,重物在竖直方向上下振动(以物体和弹簧整体为研究对象)
解析:选A.起重机吊起物体匀速上升,物体的动能不变而势能增加,故机械能不守恒,A正确;物体做平抛运动,只有重力做功,机械能守恒,B错误;圆锥摆球在水平面内做匀速圆周运动,没有力做功,机械能守恒,C错误;一个轻质弹簧上端固定,下端系一个重物,重物在竖直方向上下振动,只有重力和弹力做功,机械能守恒,D错误.
3.在一次课外趣味游戏中,有四位同学分别将四个质量不同的光滑小球沿竖直放置的内壁光滑的半球形碗的碗口内侧同时由静止释放,碗口水平,如图所示.他们分别记下了这四个小球下滑速率为v时的位置,则这些位置应该在同一个()
A.球面B.抛物面
C.水平面D.椭圆面
解析:选C.因半球形碗的内壁光滑,所以小球下滑过程中机械能守恒,取小球速率为v时所在的平面为零势能面,则根据机械能守恒定律得mgh=12mv2,因为速率v相等,所以高度相等,与小球的质量无关,即这些位置应该在同一个水平面上,C正确.
4.如图所示,在离水平地面一定高处水平固定一内壁光滑的圆筒,筒内固定一轻质弹簧,弹簧处于自然长度.现将一小球从地面以某一初速度斜向上抛出,刚好能水平进入圆筒中,不计空气阻力.下列说法中正确的是()
A.弹簧获得的最大弹性势能小于小球抛出时的动能
B.弹簧获得的最大弹性势能等于小球抛出时的动能
C.小球从抛出到将弹簧压缩到最短的过程中机械能守恒
D.小球抛出的初速度大小仅与圆筒离地面的高度有关
解析:选A.小球从抛出到弹簧压缩到最短的过程中,只有重力和弹力做功,因此小球和弹簧组成的系统机械能守恒,即12mv20=mgh+Ep,由此得到Ep<12mv20,选项A正确,B、C错误;斜上抛运动可分解为竖直上抛运动和水平方向的匀速直线运动,在竖直方向上有2gh=v20sin2θ-0(θ为v0与水平方向的夹角),解得v0=2ghsinθ,由此可知,选项D错误.
5.有一竖直放置的“T”形架,表面光滑,滑块A、B分别套在水平杆与竖直杆上,A、B用一根不可伸长的轻细绳相连,A、B质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A、B静止.由静止释放B后,已知当细绳与竖直方向的夹角为60°时,滑块B沿着竖直杆下滑的速度为v,则连接A、B的绳长为()
A.4v2gB.3v2g
C.2v23gD.4v23g
解析:选D.由运动的合成与分解可知滑块A和B沿绳伸长方向的速度大小相等,有vAsin60°=vcos60°,解得vA=33v,滑块A、B组成的系统机械能守恒,设滑块B下滑的高度为h,有mgh=12mv2A+12mv2,解得h=2v23g,由几何关系可知绳长L=2h=4v23g,故选项D正确.
6.离心轨道是研究机械能守恒和向心力效果的一套较好的器材.如图甲所示,某课外研究小组将一个压力传感器安装在轨道圆周部分的最低点B处,他们把一个钢球从轨道上的不同高处由静止释放.得到多组压力传感器示数F和对应的释放点的高度h的数据后,作出了如图乙所示的Fh图象.不计各处摩擦,取g=10m/s2.
(1)求该研究小组用的离心轨道圆周部分的半径;
(2)当h=0.6m,小球到达圆周上最高点C点时,轨道对小球的压力多大?
解析:(1)小钢球从A点滚至B点的过程中,由机械能守恒定律得mgh=mv2B2
小钢球在B点时,由牛顿第二定律得
F-mg=mv2BR
解得F=2mghR+mg
由题图乙可知:当h=0时,F=mg=4N;当h=0.6m时,F=28N,代入上式可得R=0.2m.
(2)小钢球从A点运动至C点的过程中机械能守恒,则
mgh=2mgR+mv2C2
小钢球在C点时,由牛顿第二定律得
mg+FN=mv2CR
解得FN=4N
答案:(1)0.2m(2)4N
[综合应用题组]
7.如图所示,在倾角θ=30°的光滑固定斜面上,放有两个质量分别为1kg和2kg的可视为质点的小球A和B,两球之间用一根长L=0.2m的轻杆相连,小球B距水平面的高度h=0.1m.两球由静止开始下滑到光滑地面上,不计球与地面碰撞时的机械能损失,g取10m/s2.则下列说法中正确的是()
A.整个下滑过程中A球机械能守恒
B.整个下滑过程中B球机械能守恒
C.整个下滑过程中A球机械能的增加量为23J
D.整个下滑过程中B球机械能的增加量为23J
解析:选D.在下滑的整个过程中,只有重力对系统做功,系统的机械能守恒,但在B球沿水平面滑行而A沿斜面滑行时,杆的弹力对A、B球做功,所以A、B球各自机械能不守恒,故A、B错误;根据系统机械能守恒得:mAg(h+Lsinθ)+mBgh=12(mA+mB)v2,解得v=236m/s,系统下滑的整个过程中B球机械能的增加量为12mBv2-mBgh=23J,故D正确;A球的机械能减小,C错误.
8.(多选)如图所示,质量分别为m和2m的两个小球a和b,中间用轻质杆相连,在杆的中点O处有一固定转动轴,把杆置于水平位置后释放,在b球顺时针摆动到最低位置的过程中()
A.b球的重力势能减少,动能增加,b球机械能守恒
B.a球的重力势能增加,动能也增加,a球机械能不守恒
C.a球、b球组成的系统机械能守恒
D.a球、b球组成的系统机械能不守恒
解析:选BC.b球从水平位置下摆到最低点过程中,a球升至最高点,重力势能增加,动能也增加,机械能增加.由于a、b系统只有重力做功,则系统机械能守恒,既然a球机械能增加,b球机械能一定减少.可见,杆对a球做了正功,杆对b球做了负功.所以,本题正确答案为B、C.(认为杆对小球的力沿杆的方向,对小球不做功,故两球机械能均守恒,从而错选A.)
9.(多选)如图所示,有一光滑轨道ABC,AB部分为半径为R的14圆弧,BC部分水平,质量均为m的小球a、b固定在竖直轻杆的两端,轻杆长为R,不计小球大小.开始时a球处在圆弧上端A点,由静止释放小球和轻杆,使其沿光滑轨道下滑,下列说法正确的是()
A.a球下滑过程中机械能保持不变
B.a、b两球和轻杆组成的系统在下滑过程中机械能保持不变
C.a、b滑到水平轨道上时速度为2gR
D.从释放到a、b滑到水平轨道上,整个过程中轻杆对a球做的功为mgR2
解析:选BD.由机械能守恒的条件得,a球机械能不守恒,a、b系统机械能守恒,所以A错误,B正确.对a、b系统由机械能守恒定律得:mgR+2mgR=2×12mv2,解得v=3gR,C错误.对a由动能定理得:mgR+W=12mv2,解得W=mgR2,D正确.
10.(多选)如图所示,一根长为L不可伸长的轻绳跨过光滑的水平轴O,两端分别连接质量为2m的小球A和质量为m的物块B,由图示位置释放后,当小球转动到水平轴正下方时轻绳的中点正好在水平轴O点,且此时物块B的速度刚好为零,则下列说法中正确的是()
A.物块B一直处于静止状态
B.小球A从图示位置运动到水平轴正下方的过程中机械能守恒
C.小球A运动到水平轴正下方时的速度大于gL
D.小球A从图示位置运动到水平轴正下方的过程中,小球A与物块B组成的系统机械能守恒
解析:选CD.当小球转动到水平轴正下方时轻绳的中点正好在水平轴O点,所以小球A下降的高度为L2,物块B会上升一定的高度h,由机械能守恒得122mv2=2mgL2-mgh,所以小球A运动到水平轴正下方时的速度vgL,A错误,C正确;在整个过程中小球A与物块B组成的系统机械能守恒,B错误,D正确.
11.(多选)重10N的滑块在倾角为30°的光滑斜面上,从a点由静止下滑,到b点接触到一个轻弹簧,滑块压缩弹簧到c点开始弹回,返回b点离开弹簧,最后又回到a点,已知ab=1m,bc=0.2m,那么在整个过程中()
A.滑块动能的最大值是6J
B.弹簧弹性势能的最大值是6J
C.从c到b弹簧的弹力对滑块做的功是6J
D.整个过程系统机械能守恒
解析:选BCD.以滑块和弹簧为系统,在滑块的整个运动过程中,只发生动能、重力势能和弹性势能之间的相互转化,系统机械能守恒,D正确;滑块从a到c重力势能减小了mgacsin30°=6J,全部转化为弹簧的弹性势能,A错误,B正确;从c到b弹簧恢复原长,通过弹簧的弹力对滑块做功,将6J的弹性势能全部转化为滑块的机械能,C正确.
12.如图所示,一个半径为R的14圆周的轨道,O点为圆心,B为轨道上的一点,OB与水平方向的夹角为37°.轨道的左侧与一固定光滑平台相连,在平台上一轻质弹簧左端与竖直挡板相连,弹簧原长时右端在A点.现用一质量为m的小球(与弹簧不连接)压缩弹簧至P点后释放.已知重力加速度为g,不计空气阻力.
(1)若小球恰能击中B点,求刚释放小球时弹簧的弹性势能;
(2)试通过计算判断小球落到轨道时速度能否与圆弧垂直;
(3)改变释放点的位置,求小球落到轨道时动能的最小值.
解析:(1)小球离开O点做平抛运动,设初速度为v0,由
Rcos37°=v0t
Rsin37°=12gt2
解得:v0=815gR
由机械能守恒Ep=12mv20=415mgR.
(2)设落点与O点的连线与水平方向的夹角为θ,小球做平抛运动,
有Rcosθ=v0t,Rsinθ=12gt2
位移方向与圆弧垂直tanθ=12gt2v0t=gt2v0
设速度方向与水平方向的夹角为α
tanα=vyv0=gtv0=2tanθ
所以小球不能垂直击中圆弧.
(3)设落点与O点的连线与水平方向的夹角为θ,小球做平抛运动,
Rcosθ=v0tRsinθ=12gt2
由动能定理mgRsinθ=Ek-12mv20
解得Ek=mgR34sinθ+14sinθ
当sinθ=33时,取最小值Ek=32mgR.
答案:(1)415mgR(2)不能垂直击中圆弧(3)32mgR
第4节功能关系能量守恒定律
一、功能关系
1.内容
(1)功是能量转化的量度,即做了多少功就有多少能量发生了转化.
(2)做功的过程一定伴随着能量的转化,而且能量的转化必须通过做功来实现.
2.做功对应变化的能量形式
(1)合外力的功影响物体的动能的变化.
(2)重力的功影响物体重力势能的变化.
(3)弹簧弹力的功影响弹性势能的变化.
(4)除重力或系统内弹力以外的力做功影响物体机械能的变化.
(5)滑动摩擦力的功影响系统内能的变化.
(6)电场力的功影响电势能的变化.
(7)分子力的功影响分子势能的变化.
二、能量守恒定律
1.内容
能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,在转化和转移的过程中,能量的总量保持不变.
2.适用范围
能量守恒定律是贯穿物理学的基本规律,是各种自然现象中普遍适应的一条规律.
3.表达式
(1)E初=E末,初状态各种能量的总和等于末状态各种能量的总和.
(2)ΔE增=ΔE减,增加的那些能量的增加量等于减少的那些能量的减少量.
[自我诊断]
1.判断正误
(1)力对物体做了多少功,物体就具有多少能.(×)
(2)能量在转移或转化过程中,其总量会不断减少.(×)
(3)在物体机械能减少的过程中,动能有可能是增大的.(√)
(4)既然能量在转移或转化过程中是守恒的,故没有必要节约能源.(×)
(5)滑动摩擦力做功时,一定会引起机械能的转化.(√)
(6)一个物体的能量增加,必定有别的物体能量减少.(√)
2.自然现象中蕴藏着许多物理知识,如图所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能()
A.增大B.变小
C.不变D.不能确定
解析:选A.人推袋壁使它变形,对它做了功,由功能关系可得,水的重力势能增加,A正确.
3.上端固定的一根细线下面悬挂一摆球,摆球在空气中摆动,摆动的幅度越来越小,对此现象下列说法正确的是()
A.摆球机械能守恒
B.总能量守恒,摆球的机械能正在减少,减少的机械能转化为内能
C.能量正在消失
D.只有动能和重力势能的相互转化
解析:选B.由于空气阻力的作用,机械能减少,机械能不守恒,内能增加,机械能转化为内能,能量总和不变,B正确.
4.足够长的传送带以速度v匀速传动,一质量为m的小物体A由静止轻放于传送带上,若小物体与传送带之间的动摩擦因数为μ,如图所示,当物体与传送带相对静止时,转化为内能的能量为()
A.mv2B.2mv2
C.14mv2D.12mv2
解析:选D.物体A被放于传送带上即做匀加速直线运动,加速度a=μmgm=μg,匀加速过程前进的距离x1=v22a=v22μg,该时间内传送带前进的距离x2=vt=vvμg=v2μg,所以物体相对传送带滑动距离Δx=x2-x1=v22μg,故产生的内能Q=μmgΔx=μmgv22μg=12mv2,D正确.
考点一功能关系的理解及应用
几种常见的功能关系及其表达式
各种力做功对应能的变化定量的关系
合力的功动能变化合力对物体做功等于物体动能的增量W合=Ek2-Ek1
重力的功重力势能变化重力做正功,重力势能减少,重力做负功,重力势能增加,且WG=-ΔEp=Ep1-Ep2
弹簧弹力
的功弹性势能变化弹力做正功,弹性势能减少,弹力做负功,弹性势能增加,且W弹=-ΔEp=Ep1-Ep2
只有重力、
弹簧弹力
的功不引起机
械能变化机械能守恒ΔE=0
非重力和
弹力的功机械能变化除重力和弹力之外的其他力做正功,物体的机械能增加,做负功,机械能减少,且W其他=ΔE
电场力的
功电势能变化电场力做正功,电势能减少,电场力做负功,电势能增加,且W电=-ΔEp
滑动摩擦
力的功内能变化滑动摩擦力做功引起系统内能增加ΔE内=Ffl相对
[典例1]如图所示,在竖直平面内有一半径为R的圆弧轨道,半径OA水平、OB竖直,一个质量为m的小球自A的正上方P点由静止开始自由下落,小球沿轨道到达最高点B时对轨道压力为mg2.已知AP=2R,重力加速度为g,则小球从P到B的运动过程中()
A.重力做功2mgR
B.合力做功34mgR
C.克服摩擦力做功12mgR
D.机械能减少2mgR
解析小球能通过B点,在B点速度v满足mg+12mg=mv2R,解得v=32gR,从P到B过程,重力做功等于重力势能减小量为mgR,动能增加量为12mv2=34mgR,合力做功等于动能增加量34mgR,机械能减少量为mgR-34mgR=14mgR,克服摩擦力做功等于机械能的减少量14mgR,故只有B选项正确.
答案B
1.如图所示,木板质量为M,长度为L,小木块质量为m,水平地面光滑,一根不计质量的轻绳通过定滑轮分别与M和m连接,小木块与木板间的动摩擦因数为μ.开始时木块静止在木板左端,现用水平向右的拉力F将m拉至右端,则拉力F做功至少为()
A.12μmgLB.μmgL
C.μ(m+M)gLD.12μ(m+M)gL
解析:选B.缓慢拉动时,拉力F做功最少,根据功能关系,拉力做的功等于系统产生的内能,所以W=μmgL,B正确.
2.(多选)在倾角为θ的固定光滑斜面上有两个用轻弹簧相连接的物块A、B,它们的质量分别为m1、m2,弹簧劲度系数为k,C为一固定挡板,系统处于静止状态.现用一平行于斜面向上的恒力F拉物块A使之向上运动,当物块B刚要离开挡板C时,物块A运动的距离为d,速度为v,则()
A.物块B的质量满足m2gsinθ=kd
B.此时物块A的加速度为F-kdm1
C.此时拉力做功的瞬时功率为Fvsinθ
D.此过程中,弹簧的弹性势能变化了Fd-m1gdsinθ-12m1v2
解析:选BD.系统静止时,m1gsinθ=kx1,当物块B刚要离开挡板C时,m2gsinθ=kx2,F-m1gsinθ-kx2=m1aA,又d=x1+x2,可解得aA=F-kdm1,B正确,A错误;此时拉力做功的瞬时功率为P=Fv,C错误;设弹簧的弹性势能增量为ΔEp弹,由功能关系可得:Fd=ΔEp弹+m1gdsinθ+12m1v2,解得ΔEp弹=Fd-m1gdsinθ-12m1v2,D正确.
功能关系的选用原则
(1)在应用功能关系解决具体问题的过程中,若只涉及动能的变化用动能定理分析.
(2)只涉及重力势能的变化用重力做功与重力势能变化的关系分析.
(3)只涉及机械能变化用除重力和弹力之外的力做功与机械能变化的关系分析.
(4)只涉及电势能的变化用电场力做功与电势能变化的关系分析.
考点二摩擦力做功与能量的关系
1.静摩擦力做功的特点
(1)静摩擦力可以做正功,也可以做负功,还可以不做功.
(2)相互作用的一对静摩擦力做功的代数和总等于零.
(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.
2.滑动摩擦力做功的特点
(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.
(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:
①机械能全部转化为内能;
②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.
(3)摩擦生热的计算:Q=Ffx相对.其中x相对为相互摩擦的两个物体间的相对位移.
[典例2]如图所示,一个可视为质点的质量为m=1kg的小物块,从光滑平台上的A点以v0=2m/s的初速度水平抛出,到达C点时,恰好沿C点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D点的质量为M=3kg的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R=0.4m,C点和圆弧的圆心连线与竖直方向的夹角θ=60°,不计空气阻力,g取10m/s2.求:
(1)小物块刚要到达圆弧轨道末端D点时对轨道的压力;
(2)要使小物块不滑出长木板,木板的长度L至少多大?
解析(1)小物块在C点时的速度大小
vC=v0cos60°①
小物块由C到D的过程中,由机械能守恒定律得
mgR(1-cos60°)=12mv2D-12mv2C②
代入数据解得vD=25m/s
小球在D点时由牛顿第二定律得
FN-mg=mv2DR③
代入数据解得FN=60N④
由牛顿第三定律得FN′=FN=60N,方向竖直向下.
(2)设小物块刚好滑到木板左端且达到共同速度的大小为v,滑行过程中,小物块与长木板的加速度大小分别为
a1=μmgm=μg⑤
a2=μmgM⑥
速度分别为v=vD-a1t,v=a2t⑦
对小物块和木板组成的系统,由能量守恒定律得
μmgL=12mv2D-12(m+M)v2⑧
解得L=2.5m⑨
答案(1)60N,方向竖直向下(2)2.5m
摩擦力做功的分析方法
(1)无论是滑动摩擦力,还是静摩擦力,计算做功时都是用力与对地位移的乘积.
(2)摩擦生热的计算:公式Q=Ffx相对中x相对为两接触物体间的相对位移,若物体在传送带上做往复运动时,则x相对为总的相对路程.
1.如图所示,质量为M、长度为L的小车静止在光滑的水平面上,质量为m的小物块放在小车的最左端,现用一水平力F作用在小物块上,小物块与小车之间的摩擦力为Ff,经过一段时间小车运动的位移为x,小物块刚好滑到小车的右端,则下列说法正确的是()
A.此时小物块的动能为F(x+L)
B.此时小车的动能为Ffx
C.这一过程中,小物块和小车增加的机械能为Fx-FfL
D.这一过程中,因摩擦而产生的热量为Ff(L+x)
解析:选B.水平力对小物块做功F(x+L),此时其动能小于F(x+L),A错误;摩擦力Ff对小车做功Ffx,由动能定理可知,此时小车的动能为Ffx,B正确;这一过程中,物块和小车增加的机械能为F(x+L)-FfL,C错误;这一过程中,因摩擦而产生的热量为FfL,D错误.
2.如图所示为一种摆式动摩擦因数测量仪,其可测量轮胎与地面间的动摩擦因数,其主要部件有:底部固定有轮胎橡胶片的摆锤和连接摆锤的轻质细杆.摆锤的质量为m,细杆可绕轴O在竖直平面内自由转动,摆锤重心到O点距离为L.测量时,测量仪固定于水平地面,将摆锤从与O等高的位置处由静止释放.摆锤摆到最低点附近时,橡胶片紧压地面擦过一小段距离s(sL),之后继续摆至与竖直方向成θ角的最高位置.若摆锤对地面的压力可视为大小为F的恒力,重力加速度为g,求:
(1)摆锤在上述过程中损失的机械能;
(2)在上述过程中摩擦力对摆锤所做的功;
(3)橡胶片与地面之间的动摩擦因数.
解析:(1)选从右侧最高点到左侧最高点的过程进行研究.因为初、末状态动能为零,所以全程损失的机械能ΔE等于减少的重力势能,
即:ΔE=mgLcosθ
(2)对全程应用动能定理:WG+Wf=0①
WG=mgLcosθ②
由①②式得Wf=-WG=-mgLcosθ③
(3)由滑动摩擦力公式得Ff=μF④
摩擦力做的功Wf=-Ffs⑤
联立③④⑤式得:μ=mgLcosθFs
答案:(1)mgLcosθ(2)-mgLcosθ(3)mgLcosθFs
考点三能量守恒定律的理解及应用
1.对能量守恒定律的两点理解
(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;
(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.
2.能量转化问题的解题思路
(1)当涉及摩擦力做功,机械能不守恒时,一般应用能的转化和守恒定律.
(2)解题时,首先确定初末状态,然后分析状态变化过程中哪种形式的能量减少,哪种形式的能量增加,求出减少的能量总和ΔE减与增加的能量总和ΔE增,最后由ΔE减=ΔE增列式求解.
3.涉及弹簧的能量问题
两个或两个以上的物体与弹簧组成的系统相互作用的过程,具有以下特点:
(1)能量转化方面,如果只有重力和系统内弹簧弹力做功,系统机械能守恒.
(2)如果系统内每个物体除弹簧弹力外所受合力为零,则当弹簧伸长或压缩到最大程度时两物体速度相同.
[典例3]如图所示,光滑曲面AB与水平面BC平滑连接于B点,BC右端连接内壁光滑、半径为r的14细圆管CD,管口D端正下方直立一根劲度系数为k的轻弹簧,轻弹簧一端固定,另一端恰好与管口D端平齐.质量为m的滑块在曲面上距BC高度为2r处由静止开始下滑,滑块与BC间的动摩擦因数μ=12,进入管口C端时与圆管恰好无作用力,通过CD后压缩弹簧,在压缩弹簧过程中滑块速度最大时弹簧的弹性势能为Ep.求:
(1)滑块到达B点时的速度大小vB;
(2)水平面BC的长度s;
(3)在压缩弹簧过程中滑块的最大速度vm.
解析(1)滑块在曲面的下滑过程,由动能定理得
mg2r=12mv2B
解得vB=2gr
(2)在C点,滑块与圆管之间恰无作用力,则
mg=mv2Cr
解得vC=gr
滑块从A点运动到C点过程,由动能定理得
mg2r-μmgs=12mv2C
解得s=3r
(3)设在压缩弹簧过程中速度最大时,滑块离D端的距离为x0,
此时kx0=mg
解得x0=mgk
滑块由C运动到距离D端x0处的过程中,由能量守恒得
mg(r+x0)=12mv2m-12mv2C+Ep
联立解得vm=3gr+2mg2k-2Epm
答案(1)2gr(2)3r(3)3gr+2mg2k-2Epm
涉及弹簧的能量问题的解题方法
两个或两个以上的物体与弹簧组成的系统相互作用的过程,具有以下特点:
(1)能量变化上,如果只有重力和系统内弹簧弹力做功,系统机械能守恒.
(2)如果系统每个物体除弹簧弹力外所受合外力为零,则当弹簧伸长或压缩到最大程度时两物体速度相同.
(3)当弹簧为自然状态时系统内某一端的物体具有最大速度.
1.(多选)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连,弹簧处于自然长度时物块位于O点(图中未标出).物块的质量为m,AB=a,物块与桌面间的动摩擦因数为μ,现用水平向右的力将物块从O点拉至A点,拉力做的功为W.撤去拉力后物块由静止向左运动,经O点到达B点时速度为零,重力加速度为g.则上述过程中()
A.物块在A点时弹簧的弹性势能一定大于在B点时的弹性势能
B.物块在O点时动能最大
C.物块在B点时,弹簧的弹性势能大于W-32μmga
D.经O点时,物块的动能小于W-μmga
解析:选AD.因物块由A到B的过程中有一部分弹性势能用于克服摩擦力做功,故A正确;当物块从A向B运动过程中加速度为零时速度最大,此时kx-μmg=0,弹簧仍处于伸长状态,故B错误;由动能定理可得:W-μmg2xOA=EkO,xOA>a2,可得物块在O点的动能小于W-μmga,D正确;由能量守恒定律可得,物块在B点时,弹簧的弹性势能EpB=W-μmgxOA-μmga<W-32μmga,C错误.
2.如图甲所示,在倾角为37°足够长的粗糙斜面底端,一质量m=1kg的滑块压缩着一轻弹簧且锁定,但它们并不相连,滑块可视为质点.t=0时解除锁定,计算机通过传感器描绘出滑块的vt图象如图乙所示,其中Oab段为曲线,bc段为直线,在t1=0.1s时滑块已上滑s=0.2m的距离(g取10m/s2,sin37°=0.6,cos37°=0.8).求:
(1)滑块离开弹簧后在图中bc段对应的加速度a及动摩擦因数μ的大小;
(2)t2=0.3s和t3=0.4s时滑块的速度v1、v2的大小;
(3)弹簧锁定时具有的弹性势能Ep.
解析:(1)在bc段做匀减速运动,加速度为
a=ΔvΔt=10m/s2
根据牛顿第二定律得mgsin37°+μmgcos37°=ma
解得μ=0.5
(2)设t1=0.1s时速度大小为v0,根据速度时间公式得t2=0.3s时的速度大小
v1=v0-a(t2-t1)=0
在t2之后开始下滑,下滑时由牛顿第二定律得
mgsin37°-μmgcos37°=ma′
解得a′=2m/s2
从t2到t3做初速度为零的加速运动,t3时刻的速度大小为
v3=a′(t3-t2)=0.2m/s
(3)从0到t1时间内,由能量守恒定律得
Ep=mgssin37°+μmgscos37°+12mv2b
解得Ep=4J
答案:(1)10m/s20.5(2)00.2m/s(3)4J小,则物体将跟不上传送带的

高中生物一轮复习教案相关推荐

更多>