88教案网

你的位置: 教案 > 高中教案 > 导航 > 高一物理上册第一、二章知识点归纳

牛顿第一定律教案高中

发表时间:2020-05-20

高一物理上册第一、二章知识点归纳。

学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,是认真规划好自己教案课件的时候了。认真做好教案课件的工作计划,才能更好的在接下来的工作轻装上阵!你们清楚有哪些教案课件范文呢?以下是小编为大家收集的“高一物理上册第一、二章知识点归纳”希望能为您提供更多的参考。

高一物理上册第一、二章知识点归纳

运动学(第一、二章)

(一)基本概念

1.质点——用来代替物体的有质量的点。(当物体的大小、形状对所研究的问题的影响可以忽略时,物体可作为质点。)

2.速度——描述运动快慢的物理量,是位移对时间的变化率。

3.加速度——描述速度变化快慢的物理量,是速度对时间的变化率。

4.速率——速度的大小,是标量。只有大小,没有方向。

5.注意时刻与时间、位移与路程,匀加速直线运动、匀减速直线运动、匀变速直线运动的区别。WwW.jAb88.COm

(二)、匀变速直线运动公式

1.常用公式有以下四个:,,

⑴以上四个公式中共有五个物理量:x、t、a、v0、vt,这五个物理量中只有三个是独立的,可以任意选定。只要其中三个物理量确定之后,另外两个就唯一确定了。每个公式中只有其中的四个物理量,当已知某三个而要求另一个时,往往选定一个公式就可以了。如果两个匀变速直线运动有三个物理量对应相等,那么另外的两个物理量也一定对应相等。

⑵以上五个物理量中,除时间t外,x、v0、vt、a均为矢量。一般以V0的方向为正方向,以t=0时刻的位移为零,这时x、Vt和a的正负就都有了确定的物理意义。

2.匀变速直线运动中几个常用的结论

①Δx=aT2,即任意相邻相等时间内的位移之差相等。可以推广到xm-xn=(m-n)aT2

②,某段时间的中间时刻的即时速度等于该段时间内的平均速度。

,某段位移的中间位置的即时速度公式(不等于该段位移内的平均速度)。

可以证明,无论匀加速还是匀减速,都有。

3.初速度为零(或末速度为零)的匀变速直线运动

做匀变速直线运动的物体,如果初速度为零,或者末速度为零,那么公式都可简化为:

,,,

以上各式都是单项式,因此可以方便地找到各物理量间的比例关系。

4.初速为零的匀变速直线运动

①前1s、前2s、前3s……内的位移之比为1∶4∶9∶……

②第1s、第2s、第3s……内的位移之比为1∶3∶5∶……

③前1m、前2m、前3m……所用的时间之比为1∶∶∶……

④第1m、第2m、第3m……所用的时间之比为1∶∶()∶……

5、自由落体运动是初速度为零的匀加速直线运动,加速度为g,g为重力加速度,随纬度的升高而增大,随高度的升高而减小。

6.竖直上抛运动是匀变速直线运动,其上升阶段为匀减速运动,下落阶段为自由落体运动。它有如下特点:

1.上升和下降(至落回原处)的两个过程互为逆运动,具有对称性。有下列结论:

(1)速度对称:上升和下降过程中质点经过同一位置的速度大小相等、方向相反。

(2)时间对称:上升和下降经历的时间相等。

2.竖直上抛运动的特征量:(1)上升最大高度:Hm=v02/2g

.(2)上升最大高度和从最大高度点下落到抛出点两过程所经历的时间:v0/g,总时间t=2v0/g

精选阅读

高一物理上册《牛顿运动定律》知识点归纳


做好教案课件是老师上好课的前提,大家应该开始写教案课件了。我们要写好教案课件计划,就可以在接下来的工作有一个明确目标!那么到底适合教案课件的范文有哪些?小编为此仔细地整理了以下内容《高一物理上册《牛顿运动定律》知识点归纳》,欢迎大家与身边的朋友分享吧!

高一物理上册《牛顿运动定律》知识点归纳

牛顿运动定律(第四章)

1、牛顿第一定律:

一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。

2、牛顿第二定律:

物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma.

对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,Fx=max,Fy=may,(4)牛顿第二定律F=ma定义了力的基本单位——牛顿(定义使质量为1kg的物体产生1m/s2的加速度的作用力为1N,即1N=1kg.m/s2.

3、牛顿第三定律:

两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。

对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。

4.物体受力分析的基本程序:

(1)确定研究对象;

(2)采用隔离法分析其他物体对研究对象的作用力;

(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;

(4)画物体受力图,没有特别要求,则画示意图即可。

5.超重和失重:

(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F(或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;

(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg,即FN=mg-ma,当a=g时,FN=0,即物体处于完全失重。

6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子

高一物理(上册)第一章知识点汇总


高一物理(上册)第一章知识点汇总
第一节认识运动

机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。机械运动运动的特性:普遍性,永恒性,多样性运动的特性参考系
1.任何运动都是相对于某个参照物而言的,这个参照物称为参考系。2.参考系的选取是自由的。(1)比较两个物体的运动必须选用同一参考系。
(2)参照物不一定静止,但被认为是静止的。质点1.在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简
化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。2.质点条件:(1)物体中各点的运动情况完全相同(物体做平动)
(2)物体的大小它通过的距离3.质点具有相对性,而不具有绝对性。
4.理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。
(为便于研究而建立的一种高度抽象的理想客体)

第二节时间位移

时间与时刻1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段。

t=t2t1

2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h。3.通常以问题中的初始时刻为零点。路程和位移
1.路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。2.从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。
3.物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。4.只有在质点做单向直线运动是,位移的大小等于路程。两者运算法则不同。

第三节记录物体的运动信息

打点记时器:通过在纸带上打出一系列的点来记录物体运动信息的仪器。(电火花打点记打点记时器时器——火花打点,电磁打点记时器——电磁打点)
;一般打出两个相邻的点的时间间隔是0.02s。

第四节物体运动的速度

物体通过的路程与所用的时间之比叫做速度速度。速度平均速度(与位移、时间间隔相对应)平均速度物体运动的平均速度v是物体的位移s
与发生这段位移所用时间t的比值。其方向与物体的位移方向相同。单位是m/s。

v=st

瞬时速度(与位置时刻相对应)瞬时速度瞬时速度是物体在某时刻前后无穷短时间内的平均速度。其方向是物体在运动轨迹上过该点
的切线方向。瞬时速率(简称速率)即瞬时速度的大小。速率≥速度

第五节速度变化的快慢加速度

1.物体的加速度等于物体速度变化(vtv0)与完成这一变化所用时间的比值

a=(vtv0)t

2.a不由△v、t决定,而是由F、m决定(牛顿第二定律)。3.变化量=末态量值—初态量值……表示变化的大小或多少
4.变化率=变化量/时间……表示变化快慢5.如果物体沿直线运动且其速度均匀变化,该物体的运动就是匀变速直线运动(加速度不随时间改变)。
6.速度是状态量,加速度是性质量,速度改变量(速度改变大小程度)是过程量。

第六节用图象描述直线运动

匀变速直线运动的位移图象1.s-t图象是描述做匀变速直线运动的物体的位移随时间的变化关系的曲线。(不反映物体运动的轨迹)2.物理中,斜率
k≠tanα(2坐标轴单位、物理意义不同)3.图象中两图线的交点表示两物体在这一时刻相遇。匀变速直线运动的速度图象1.v-t
图象是描述匀变速直线运动的物体岁时间变化关系的图线。(不反映物体运动轨迹)2.图象与时间轴的面积表示物体运动的位移,在t
轴上方位移为正,下方为负,整个过程中位移为各段位移之和,即各面积的代数和。

高一物理上学期运动知识点总结


作为杰出的教学工作者,能够保证教课的顺利开展,教师要准备好教案,这是每个教师都不可缺少的。教案可以让上课时的教学氛围非常活跃,帮助教师在教学期间更好的掌握节奏。怎么才能让教案写的更加全面呢?下面是小编为大家整理的“高一物理上学期运动知识点总结”,仅供参考,欢迎大家阅读。

高一物理上学期运动知识点总结

1、质点:(1)没有形状、大小且有质量的点
(2)质点是一个理想化模型,实际并不存在
(3)一个物体是否能看成质点并不取决于这个物体的大小,而是看所研究的问题中物体的形状大小和物体上各部分运动情况的差异是否为可以忽略的次要因素,要具体问其具体分析。
2、路程和位移
位移
路程
表示物体位置变化的物理量
质点运动轨迹的长度
矢量,可以用初位置指向末位置的有向线段来表示,既有大小又有方向
标量,只有大小,没有方向
大小等于初位置到末位置的直线距离
大小与运动路径有关
4、速度、平均速度和瞬时速度(A)

(1)表示物体运动快慢的物理量,它等于位移s跟发生这段位移所用时间t的比值。即v=s/t。速度是矢量,既有大小也有方向,其方向就是物体运动的方向。在国际单位制中,速度的单位是(m/s)米/秒。

(2)平均速度是描述作变速运动物体运动快慢的物理量。一个作变速运动的物体,如果在一段时间t内的位移为s,则我们定义v=s/t为物体在这段时间(或这段位移)上的平均速度。平均速度也是矢量,其方向就是物体在这段时间内的位移的方向。

(3)瞬时速度是指运动物体在某一时刻(或某一位置)的速度。从物理含义上看,瞬时速度指某一时刻附近极短时间内的平均速度。瞬时速度的大小叫瞬时速率,简称速率.

5、匀速直线运动(A)

(1)定义:物体在一条直线上运动,如果在相等的时间内位移相等,这种运动叫做匀速直线运动。

根据匀速直线运动的特点,质点在相等时间内通过的位移相等,质点在相等时间内通过的路程相等,质点的运动方向相同,质点在相等时间内的位移大小和路程相等。

6、加速度(A)

(1)加速度的定义:加速度是表示速度改变快慢的物理量,它等于速度的改变量跟发生这一改变量所用时间的比值,定义式:

(2)加速度是矢量,它的方向是速度变化的方向

(3)在变速直线运动中,若加速度的方向与速度方向相同,则质点做加速运动;若加速度的方向与速度方向相反,则则质点做减速运动。

高一物理(上册)第三章知识点汇总


高一物理(上册)第三章知识点汇总
第三章研究物体间的相互作用

第一节探究形变与弹力的关系

认识形变1.物体形状回体积发生变化简称形变。2.分类:按形式分:压缩形变、拉伸形变、弯曲形变、扭曲形变。按效果分:弹性形变、塑性形变
3.弹力有无的判断:(1)定义法(产生条件)(2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。
(3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。弹性与弹性限度1.物体具有恢复原状的性质称为弹性。
2.撤去外力后,物体能完全恢复原状的形变,称为弹性形变。3.如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限
度,发生了塑性形变。探究弹力弹力1.产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。
2.弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。
弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。3.在弹性限度内,弹簧弹力F的大小与弹簧的伸长或缩短量x成正比,即胡克定律。

F=kx

4.上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。

5.弹簧的串、并联:串联:

111=+并联:k=k1+k2kk1k2

第二节研究摩擦力

滑动摩擦力1.两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。
2.在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。3.滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=N()4.
称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。01。
5.滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。6.条件:直接接触、相互挤压(弹力),相对运动/趋势。
7.摩擦力的大小与接触面积无关,与相对运动速度无关。8.摩擦力可以是阻力,也可以是动力。9.计算:公式法/二力平衡法。研究静摩擦力静摩擦力
1.当物体具有相对滑动趋势时,物体间产生的摩擦叫做静摩擦,这时产生的摩擦力叫静摩擦力。2.物体所受到的静摩擦力有一个最大限度,这个最大值叫最大静摩擦力。
3.静摩擦力的方向总与接触面相切,与物体相对运动趋势的方向相反。4.静摩擦力的大小由物体的运动状态以及外部受力情况决定,与正压力无关,平衡时总与切
面外力平衡。0≤F=f0≤fm5.最大静摩擦力的大小与正压力接触面的粗糙程度有关。fm=0N;(≤0)

6.静摩擦有无的判断:概念法(相对运动趋势);二力平衡法;牛顿运动定律法;假设法(假设没有静摩擦)。

第三节力的等效和替代

力的图示1.力的图示是用一根带箭头的线段(定量)表示力的三要素的方法。2.图示画法:选定标度(同一物体上标度应当统一)
,沿力的方向从力的作用点开始按比例画一线段,在线段末端标上箭头。3.力的示意图:突出方向,不定量。力的等效/替代力的等效替代
1.如果一个力的作用效果与另外几个力的共同效果作用相同,那么这个力与另外几个力可以相互替代,这个力称为另外几个力的合力,另外几个力称为这个力的分力。
2.根据具体情况进行力的替代,称为力的合成与分解。求几个力的合力叫力的合成,求一个力的分力叫力的分解。合力和分力具有等效替代的关系。
3.实验:平行四边形定则:

第四节力的合成与分解

力的平行四边形定则1.力的平行四边形定则:如果用表示两个共点力的线段为邻边作一个平行四边形,则这两个邻边的对角线表示合力的大小和方向。
2.一切矢量的运算都遵循平行四边形定则。合力的计算1.方法:公式法,图解法(平行四边形/多边形/△)
2.三角形定则:将两个分力首尾相接,连接始末端的有向线段即表示它们的合力。3.设F为F1、F2的合力,θ为F1、F2的夹角,则:

F=F1+F2+2F1F2cosθ

22

tanθ=F2sinθF1+F2cosθ

θ22F1+F2,当两分力大小相等时,F=2F1cos2

当两分力垂直时,F=4.

(1)F1F2≤F≤F1+F2(2)随F1、F2夹角的增大,合力F逐渐减小。(3)当两个分力同向时θ=0,合力最大:
F=F1+F2(4)当两个分力反向时θ=180°,合力最小:F=F1F2(5)当两个分力垂直时θ=90°,F2=F1+
F2

22

分力的计算1.分解原则:力的实际效果/解题方便(正交分解)2.受力分析顺序:G→N→F→电磁力

第五节共点力的平衡条件

共点力如果几个力作用在物体的同一点,或者它们的作用线相交于同一点(该点不一定在物体上),这几个力叫做共点力。寻找共点力的平衡条件
共点力的平衡条件1.物体保持静止或者保持匀速直线运动的状态叫平衡状态。2.物体如果受到共点力的作用且处于平衡状态,就叫做共点力的平衡。
3.二力平衡是指物体在两个共点力的作用下处于平衡状态,其平衡条件是这两个离的大小相等、方向相反。多力亦是如此。
4.正交分解法:把一个矢量分解在两个相互垂直的坐标轴上,利于处理多个不在同一直线上的矢量(力)作用分解。

第六节作用力与反作用力

探究作用力与反作用力的关系作用力与反作用力的关系1.一个物体对另一个物体有作用力时,同时也受到另一物体对它的作用力,这种相互作用力
称为作用力和反作用力。2.力的性质:物质性(必有施/手力物体),相互性(力的作用是相互的)3.平衡力与相互作用力:同:等大,反向,共线
异:相互作用力具有同时性(产生、变化、小时),异体性(作用效果不同,不可抵消),二力同性质。平衡力不具备同时性,可相互抵消,二力性质可不同。牛顿第三定律
1.牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等、方向相反。2.牛顿第三定律适用于任何两个相互作用的物体,与物体的质量、运动状态无关。二力的产
生和消失同时,无先后之分。二力分别作用在两个物体上,各自分别产生作用效果。