88教案网

你的位置: 教案 > 高中教案 > 导航 > 统计案例

小学统计教案

发表时间:2020-04-07

统计案例。

学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,大家在认真写教案课件了。将教案课件的工作计划制定好,就可以在接下来的工作有一个明确目标!适合教案课件的范文有多少呢?请您阅读小编辑为您编辑整理的《统计案例》,欢迎阅读,希望您能够喜欢并分享!

《实习作业》教学设计
一、教学内容分析
《普通高中课程标准实验教科书数学(选修1-2)》(人教A版)第19页。统计是高中重要的知识模块,在解决概率、统计的问题中经常涉及到,也是近几年高考的一个热点,本节内容主要包含了两部分,一是回归分析,另一部分是独立检验。特别是回归分析从近几年的高考题来看屡屡出现。本章安排这节实习作业有两个.1、我们学校学生的体重与身高之间的关系可以用什么模型来刻画?2、中学生喜欢文科还是理科与性别有关吗?是否喜欢看足球比赛与性别有关吗?是否喜欢音乐与性别有关吗?我们的目的就是让学生进一步巩固所学的知识,提高学生分析问题解决问题的能力,动手操作的能力以及用数学语言表达实习过程和实习结果的能力。学生在通过自己设计统计方案,亲自抽取样本数据,整理数据完成实习报告的这些过程中,不仅增强了应用数学的意识和数学实践能力,更重要的感受到新课程下新的学习方式带来的学习数学的乐趣。
二、学生学习情况分析
学生在学习完本单元中的两个案例后,对统计问题中如何进行数据分析已经有了一定的认识,但在本节实习设计中,由于样本数据的差异,抽样方案设置等条件的限制,学生在自己所抽取到的数据怎么处理的具体流程尚不清楚,教师应在这些方面多注意,并加强指导。学生对实习作业这种学习形式积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好辅导工作。特别在分组时注意学生的合理搭配,让所有的学生在合作过程中树立自信培养学习数学的兴趣。
三、设计思想及理论依据
《普通高中数学课程标准(实验)》强调高中数学课程有助于学生认识数学的应用价值,增强应用意识,形成解决简单实际问题的能力。高中数学课程要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,并在高中阶段至少安排较为完整的一次数学探究、一次数学建模活动。本节创设的数学情境联系生活,体现数学的社会意义,也是对学生产生积极的影响的诱因。心理学研究表明:“需要是产生兴趣的基础,学生的学习兴趣既可以由学生的知识本身的需要而产生,也可以由知识的社会意义诱发去产生。”通过数学联系于生活,学生对知识的社会意义的理解形成了需要,在明确了学习的社会意义的基础上,就会把当前的学习与将来的理想联想起来,从而产生学习需要,形成长远的动机,提高学习的主动性和积极性
四、教学目标
1.使学生回归分析的知识,学会正确正确设计抽样方案;
2.渗透简单的建模思想,增强了学生数学应用意识,培养其分析和解决实际问题的能力;
3.通过完成实习报告,培养学生用数学语言交流的能力;
4.在实践活动中,培养了学生一丝不苟、实事求是、团结协作的精神。
五、教学重点和难点
重点:回归分析在实际问题中的应用
难点:培养学生合作交流的能力以及收集和处理信息的能力。
六、教学过程设计
【第一课时】
1.布置实习任务:抽取学校学生的身高和体重的数据(由于不同年级的学生发育情况不同,样本数据存在明显差异)
【设计意图】以学生身边的实际生活问题为实习任务,激发学生探究的兴趣。
2.分组:教师应根据学生的知识掌握情况,动手能力,组织能力精心分组,不然会影响到实习作业的顺利完成,每组人数不宜过多,4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加,而且有事可做。
【学情预设】平时对数学学习不感兴趣,学习成绩不理想的同学,对实习可能积极性不高,所以老师要协调好组内分工,发挥每个同学的特点,使每位同学都有时可做。
【设计意图】培养了学生团结协作的精神。平时对数学学习不感兴趣,学习成绩不理想,但动手实践能力强的同学,通过在分组实习中,展示自己的能力,树立学习的信心,培养学习数学的兴趣。
3.每组上交一份实习方案,主要包括任务分配,抽样方案、回归分析。这里难点是让学生自己动脑动手设计抽样方案。可以专门利用一节课组织学生设计,也可以利用课余时间指导学生完成。样子数据存在明显差异,如何抽样是本次实验的重难点,老师可以简要分析实际情况后,发动学生自己想办法.
【学情预设】学生对抽样感觉困难,老师可以详细分析实际情况,介绍一些分层抽样的方法。
【设计意图】实习前上交实习方案,有助于老师适当指导,控制学生的实习进度。如何设计抽样方案是个难点,通过这个问题的解决,才能真正发挥学生的主观能动性,培养其分析和解决实际问题的能力;在教学中,只要调动起学生的积极性,就一定可以发现意想不到的效果。
4.完成实习报告
实习报告年月日
抽样方法负责人
样子数据
分析数据
预报数据
误差情况
实习感想
指导教师
审核意见
【设计意图】通过完成实习报告,培养学生用数学语言总结和交流的能力。
5.把各组的实习报告,贴在班级的学习栏内,让学生学习交流。
【设计意图】通过对比,让同学们取长补短,体会到在学习中交流的重要性。

扩展阅读

第三章统计案例导单


一位优秀的教师不打无准备之仗,会提前做好准备,作为教师准备好教案是必不可少的一步。教案可以让学生更好地进入课堂环境中来,帮助教师能够井然有序的进行教学。那么如何写好我们的教案呢?为此,小编从网络上为大家精心整理了《第三章统计案例导单》,相信您能找到对自己有用的内容。

3.1.1回归分析的基本思想及其初步应用课前预习学案

一、预习目标
通过截距与斜率分别是使取最小值时,求的值。
二、预习内容:
1.对于一组具有线性相关关系的数据其回归直线方程的截距和斜率的最小二乘法估计公式:
=,=
2.=,=
3.样本点的中心
三、提出问题
如何使值最小,通过观察分析式子进行试探推到
课内探究学案
一、学习目标
1.了解回归分析的基本思想和方法,培养学生观察分析计算的能力
二、学习重难点
学习重点:回归方程
学习难点:公式的推到
三、学习过程
1.使值最小时,值的推到
2.结论
3.中的含义是什么
4.一定通过回归方程吗?
四、典型例题
例1.研究某灌溉倒水的流速y与水深x之间的关系,测得一组数据如下:
水深x(m)1.401.501.601.701.801.902.002.10
流速y(m/s)1.701.791.881.952.032.102.162.21
(1)求y与x的回归直线方程;(2)预测水深为1.95m时水的流速是多少?
分析:(1)y与x的回归直线方程为
(2)当水深为1.95m时,可以预测水的流速约为2.12m/s
五、当堂练习
1.对两个变量y和x进行回归分析,得到一组样本数据:则下列说法不正确的是()
A.由样本数据得到的回归方程必过样本中心B.残差平方和越小的模型,拟合的效果越好
C.用相关指数来刻画回归效果,越小,说明模型的拟合效果越好
D.若变量y与x之间的相关系数,则变量y与x之间具有线性相关关系
2.已知某地每单位面积菜地年平均使用氮肥量xkg与每单位面积蔬菜年平均产量yt之间的关系有如下数据:
年份19851986198719881989199019911992
x(kg)7074807885929095
y(t)5.16.06.87.89.010.210.012.0

年份1993199419951996199719981999
x(kg)92108115123130138145
y(t)11.511.011.812.212.512.813.0
若x与y之间线性相关,求蔬菜年平均产量y与使用氮肥量x之间的回归直线方程,并估计每单位面积蔬菜的年平均产量.(已知)
六课后练习与提高
1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:
x3456
y2.5344.5
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:)
解:(1)由题设所给数据,可得散点图如下图

2.某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元)4235
销售额y(万元)492639[54
根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为[((9(((((A)63.6万元(B)65.5万元(C)67.7万元(D)72.0万元

3.1.2回归分析的基本思想及其初步应用回归分析的基本思想及其初步应用
课前预习学案
一、预习目标
1了解相关系数r和相关指数R2
二、预习内容
1相关系数r

②r0表明两个变量;r0表明两个变量;r的绝对值越接近1,表明两个变量相关性,r的绝对值越接近0,表示两个变量之间当r的绝对值大于认为两个变量具有很强的相关性关系。
课内探究学习
一、学习目标
1了解相关系数和相关指数的关系.
2理解随机误差产生的原因.3
3会进行简单的残差分析

二、学习重难点
学习重点1相关系数r2相关指数R23随机误差
学习难点残差分析的应用
三、学习过程
1.相关系数r=

2.r的性质:

四、典型例题
例随着我国经济的快速发展,城乡居民的审核水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查10个家庭,得数据如下:
家庭编号12345678910
x收入(千元)0.81.11.31.51.51.82.02.22.42.8
y支出千元0.71.01.21.01.31.51.31.72.02.5
(1)判断家庭平均收入与月平均生活支出是否相关?
(2)若二者线性相关,求回归直线方程。
思路点拨:利用散点图观察收入x和支出y是否线性相关,若呈现线性相关关系,可利用公式来求出回归系数,然后获得回归直线方程。
解:作散点图
观察发现各个数据对应的点都在一条直线附近,所以二者呈现线性相关关系。
(2)
所以回归方程
五、当堂练习
1山东鲁洁棉业公式的可按人员在7块并排形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg)

施化肥量x15202530354045
产量y330345365405445450455
(1)画出散点图;
(2)判断是否具有相关关系
思路点拨(1)散点图如图所示
(2)由散点图可知,各组数据对应点大致都在一条直线附近,所以施化肥量x与产量y具有线性相关关系.
六、课后练习与提高
1在对两个变量x、y进行线性回归分析时有下列步骤:
①对所求出的回归方程作出解释;②收集数据;③求线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图。如果根据可靠性要求能够作出变量x、y具有线性相关结论,则在下列操作顺序中正确的是()
A①②⑤③④B③②④⑤①C②④③①⑤D②⑤④③①
2三点(3,10),(7,20),(11,24)的线性回归方程为()
ABCD
3对有线性相关关系的两个变量建立的回归直线方程中,回归系数b()
A.可以大于0B大于0C能等于0D只能小于0
4废品率和每吨生铁成本y(元)之间的回归直线方程为,表明()
A废品率每增加,生铁成本增加258元;B废品率每增加,生铁成本增加2元;
C废品率每增加,生铁成本每吨增加2元;D废品率不变,生铁成本增加256元;
3.2.1独立性检验的基本思想及其初步应用
金台高中高二数学组编制:卢军科审核:何小荣
课前预习
阅读教材P91-P95,了解相关概念,如:分类变量、列联表、独立性检验。
学习目标
(1)通过对典型案例的探究,了解独立性检验(只要求列联表)的基本思想、方法及初步应用;
(2)经历由实际问题建立数学模型的过程,体会其基本方法。
学习重点:独立性检验的基本方法
学习难点:基本思想的领会
学习过程
一、情境引入
5月31日是世界无烟日。有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、慢性阻塞性肺病等都与吸烟有关,吸烟已成为继高血压之后的第二号全球杀手。这些疾病与吸烟有关的结论是怎样得出的呢?我们看一下问题:
某医疗机构为了了解肺癌与吸烟是否有关,进行了一次抽样调查,共调查了9965个人,其中吸烟者2148人,不吸烟者7817人。调查结果是:吸烟的2148人中有49人患肺癌,2099人未患肺癌;不吸烟的7817人中有42人患肺癌,7775人未患肺癌。
问题:根据这些数据能否断定“患肺癌与吸烟有关”?
二、学生活动
【自主学习】
(1)将上述数据用下表(一)来表示:
不患肺癌患肺癌总计
不吸烟
吸烟
总计
(2)估计吸烟者与不吸烟者患肺癌的可能性差异:
在不吸烟者中患肺癌的人约占多大比例?;
在吸烟的人中患肺癌的人约占多大比例?。
问题:由上述结论能否得出患肺癌与吸烟有关?把握有多大?
【合作探究】
1、观察、分析样本数据的列联表和柱形图、条形图,你能得出什么结论?
2、该结论能否推广到总体呢?
3、假设:患肺癌与吸烟没有关系。则两事件发生的概率有何关系?
不患肺癌患肺癌总计
不吸烟aba+b
吸烟cdc+d
总计a+cb+da+b+c+d
试用上表(二)中字母表示两概率及其关系,并化简该式。你能得到何结论?
4、构造随机变量(其中),结合3中结论,若成立,则K2应该很(大、小)
根据表(一)中的数据,利用4中公式,计算出K2的观测值,该值说明什么?(统计学中有明确的结论,在成立的情况下,P(K2≥6.635)≈0.01。)
5、结合表(二)和三维柱形图、二维条形图如何判断两个分类变量是否有关系?利用独立性检验呢?二者谁更精确?
【当堂检测】
在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶.分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?
三、课后练习
【课后练习与提高】
1.电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图.将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷体育迷合计

女1055

P(χ2≥k)0.050.01
k3.8416.635
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中.采用随机抽样方法每次抽取1名观众,抽取3次.记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).
附:χ2=nn11n22-n12n212n1+n2+n+1n+2,

3.2.2独立性检验的基本思想及其初步应用
学习目标
通过对典型案例的探究,进一步巩固独立性检验的基本思想、方法,并能运用K2进行独立性检验.
学习重点:独立性检验的应用
学习过程
一.前置测评
(1)某大学在研究性别与职称(分正教授、副教授)之间是否有关系,你认为应该收集哪些数据?。
(2)某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:
专业
性别非统计专业统计专业
男1310
女720

为了判断主修统计专业是否与性别有关系,根据表中的数据,得到
K2,∵K2≥3.841,
所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为。
附:临界值表(部分):

(K2≥k0)
0.100.050.0250.010
k02.7063.8415.0246.635
二.典型例题
例1为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:
喜欢数学课程不喜欢数学课程总计
男3785122
女35143178
总计72228300
由表中数据计算得到的观察值k≈4.514.在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么?
例2、为研究不同的给药方式(口服或注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查结果如表所示。根据所选择的193个病人的数据,能否作出药的效果与给药方式有关的结论?
有效无效合计
口服584098
注射643195
合计12271193

谈一谈:结合例1和例2你如何理解独立性检验。
三、巩固练习:
1.某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为“高中生学习状况与生理健康有关”?
不健康健康总计
不优秀41626667
优秀37296333
总计789221000

2.电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图.将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷体育迷合计

女1055
合计

P(χ2≥k)0.050.01
k3.8416.635
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中.采用随机抽样方法每次抽取1名观众,抽取3次.记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).
附:χ2=nn11n22-n12n212n1+n2+n+1n+2,

3.通过随即询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男女总计
爱好402060
不爱好203050
总计6050110
由算得,.
附表:
0.0500.0100.001
3.8416.63510.828
参照附表,得到的正确结论是
A.在犯错的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”

高三数学理科统计案例总复习教学案


第十三章统计案例

高考导航

考试要求重难点击命题展望
1.理解随机抽样的必要性和重要性,会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法.
2.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、茎叶图,理解它们各自的特点,理解样本数据标准差的意义和作用,会计算数据标准差,能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想,会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.
3.会作两个有关联变量的散点图,会利用散点图认识变量间的相关关系,了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程,了解回归的基本思想、方法及其简单应用.
4.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.本章重点:1.三种抽样方法的区别、联系及操作步骤.2.样本频率分布直方图和茎叶图.3.用样本估计总体的思想.
本章难点:回归直线方程与独立性检验.统计多数以选择题和填空题形式考查,大题只在个别省的考题中出现过.难度属于基础题和中档题.考点往往集中体现在抽样方法、频率分布图表这两个方面.另外,应注意统计题反映出来的综合性与应用性,如与数列、概率等的综合,用统计方法提供决策、制定方案等,以此考查学生搜集处理信息及分析解决问题的能力.
知识网络
13.1抽样方法与用样本估计总体

典例精析
题型一抽样方法
【例1】某校有教师200人,男学生1200人,女学生1000人,用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知女学生抽取的人数为80人,则n的值为.
【解析】根据分层抽样的意义,
n200+1200+1000=801000,解得n=192.
【点拨】现实中正确的分层抽样一般有三个步骤:首先,辨明突出的统计特征和分类.其次,确定每个分层在总体上的比例.利用这个比例,可计算出样本中每组(层)应抽取的人数.最后,必须从每层中抽取独立简单随机样本.
【变式训练1】从某厂生产的802辆轿车中随机抽取80辆测试某项性能.请合理选择抽样方法进行抽样,并写出抽样过程.
【解析】第一步,将802辆轿车用随机方式编号.
第二步,从总体中剔除2辆(剔除方法可用随机数表法),将剩余的800辆轿车重新编号(分别为001,002,003,…,800),并分成80段.
第三步,在第一段001,002,…,010这十个编号中用简单随机抽样抽出一个(如005)作为起始号码.
第四步,将编号为005,015,025,…,795的个体抽出,组成样本.
题型二频率分布直方图
【例2】(2010湖南)如图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.
(1)求直方图中x的值;
(2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望.
【解析】(1)依题意及频率分布直方图知0.02+0.1+x+0.37+0.39=1,解得x=0.12.
(2)由题意知X~B(3,0.1),因此
P(X=0)=C03×0.93=0.729,
P(X=1)=C13×0.1×0.92=0.243,
P(X=2)=C23×0.12×0.9=0.027,
P(X=3)=C33×0.13=0.001,
故随机变量X的分布列为
X0123
P0.7290.2430.0270.001
X的数学期望为E(X)=3×0.1=0.3.
(或E(X)=1×0.243+2×0.027+3×0.001=0.3)
【点拨】从频率分布直方图读取数据时,要特别重视组距,纵坐标是频率除以组距,故长方形的面积之和为1.
【变式训练2】如图是容量为100的样本的频率分布直方图,试根据数据填空:
(1)样本数据落在[10,14)内的频数为;
(2)样本数据落在[6,10)内的频率为;
(3)总体落在[2,6)内的频率为.
【解析】(1)样本落在[10,14)内的频数为0.09×4×100=36.
(2)样本落在[6,10)内的频率为0.08×4=0.32.
(3)样本落在[2,6)内的频率为0.02×4=0.08,所以总体落在[2,6)内的频率约为0.08.
题型三平均数、方差的计算
【例3】甲、乙两人在相同条件下各射靶10次,每次命中环数如下:
甲47109568688
乙7868678759
试问谁10次射靶的情况较稳定?
【解析】本题要计算两样本的方差,当样本平均数不是整数,且样本数据不大时,可用简化公式计算方差.
=110(4+7+…+8)=7.1,
=110(7+8+…+9)=7.1,
s2甲=110(42+72+…+82-10×7.12)=3.09,
s2乙=110(72+82+…+92-10×7.12)=1.29,
因为s2甲>s2乙,所以乙10次射靶比甲10次射靶情况稳定.
【点拨】平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小,标准差、方差越大,数据的离散程度就越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.
【变式训练3】(2010北京市东城区)在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如右图.
(1)计算此样本的平均成绩及方差;
(2)现从此样本中随机抽出2名学生的成绩,设抽出分数为90分以上的人数为X,求随机变量X的分布列和均值.
【解析】(1)样本的平均成绩=80;
方差为s2=110[(92-80)2+(98-80)2+(98-80)2+(85-80)2+(85-80)2+(74-80)2+(74-80)2+(74-80)2+(60-80)2+(60-80)2]=175.
(2)由题意,随机变量X=0,1,2.
P(X=0)=C27C210=715,P(X=1)=C13C17C210=715,P(X=2)=115.
随机变量X的分布列为
X012
P
E(X)=0×715+1×715+2×115=35.
总结提高
1.统计的基本思想是用样本估计总体.这就要求样本具有很好的代表性,而样本良好客观的代表性,则完全依赖抽样方法.
2.三种抽样方法中简单随机抽样是最基本的抽样方法,是其他两种方法的基础,它们的共同点都是等概率抽样.适用范围不同,要根据总体的具体情况选用不同的方法.
3.对于总体分布,总是用样本的频率分布对它进行估计.
4.用样本估计总体,一般分成以下几个步骤:
先求样本数据中的最大值和最小值(称为极值),再确定合适的组数和组距,确定分点(每个分点只属于一组,故一般采用半开半闭区间),然后列出频率分布表(准确,查数据容易),画频率分布直方图.

13.2两变量间的相关性、回归分析和独立性检验

典例精析
题型一求回归直线方程
【例1】下表是关于某设备的使用年限(年)和所需要的维修费用(万元)的几组统计数据:
x23456
y2.23.85.56.57.0
(1)若y对x呈线性相关关系,求出y关于x的线性回归方程y=x+;
(2)估计使用年限为10年时,维修费用为多少?
【解析】(1)因为xiyi=112.3,x2i=4+9+16+25+36=90,且=4,=5,n=5,
所以=112.3-5×4×590-5×16=12.310=1.23,=5-1.23×4=0.08,
所以回归直线方程为y=1.23x+0.08.
(2)当x=10时,y=1.23×10+0.08=12.38,
所以估计当使用10年时,维修费用约为12.38万元.
【点拨】当x与y呈线性相关关系时,可直接求出回归直线方程,再利用回归直线方程进行计算和预测.
【变式训练1】某工厂经过技术改造后,生产某种产品的产量(吨)与相应的生产能耗(吨标准煤)有如下几组样本数据.
x3456
y2.5344.5
据相关性检验,y与x具有线性相关关系,通过线性回归分析,求得回归直线的斜率为0.7,那么y关于x的回归直线方程是.
【解析】先求得=4.5,=3.5,由=0.7x+a过点(,),则a=0.35,所以回归直线方程是=0.7x+0.35.
题型二独立性检验
【例2】研究小麦种子经灭菌与否跟发生黑穗病的关系,经试验观察,得到数据如下表所示:
种子灭菌种子未灭菌合计
黑穗病26184210
无黑穗病50200250
合计76384460
试按照原试验目的作统计分析推断.
【解析】由列联表得:
a=26,b=184,c=50,d=200,a+b=210,c+d=250,a+c=76,b+d=384,n=460.
所以K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=460×(26×200-184×50)2210×250×76×384≈4.804,
由于K2≈4.804>3.841,
所以有95%的把握认为种子灭菌与否与小麦发生黑穗病是有关系的.
【变式训练2】(2010东北三省三校模拟)某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2的列联表,根据列联表的数据,可以有%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.
超重不超重合计
偏高415
不偏高31215
合计71320
附:独立性检验临界值表
P(K2≥k0)0.0250.0100.0050.001
k05.0246.6357.87910.828
(独立性检验随机变量K2值的计算公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d))
【解析】由表可得a+b=5,c+d=15,a+c=7,b+d=13,ad=48,bc=3,n=20,运用独立性检验随机变量K2值的计算公式得K2=20×(48-3)25×15×7×13=54091≈5.934,
由于K2≈5.934>5.024,所以有97.5%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.
总结提高
1.在研究两个变量之间是否存在某种关系时,必须从散点图入手.
2.样本的随机性导致由线性回归方程所作出的预报也具有随机性.

2020学年选修1-2数学第1章-统计案例-单元全套学案(苏教版3份)


一名优秀的教师在教学方面无论做什么事都有计划和准备,作为教师就要根据教学内容制定合适的教案。教案可以让学生更容易听懂所讲的内容,帮助教师更好的完成实现教学目标。那么怎么才能写出优秀的教案呢?小编收集并整理了“2020学年选修1-2数学第1章-统计案例-单元全套学案(苏教版3份)”,欢迎大家阅读,希望对大家有所帮助。

1.1独立性检验
在从烟台大连的某次航运中,海上出现恶劣气候,随机调查男、女乘客在船上晕船的情况如下表:
晕船不晕船合计
男人325183
女人82432
合计4075115
问题1:上述表格在数学中是如何定义的?
提示:此表格为22列联表.
问题2:据此资料,你是否认为在恶劣气候中航行,男人比女人更容易晕船?
提示:不能认为.
问题3:判断上述问题应运用什么方法?
提示:独立性检验.
1.22列联表的定义
对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值类A和类B,Ⅱ也有两类取值类1和类2,可以得到如下列联表所示的抽样数据:

类1类2合计
Ⅰ类Aaba+b
类Bcdc+d
合计a+cb+da+b+c+d
将形如此表的表格称为22列联表.
2.卡方统计量
为了消除样本量对|ad-bc|的影响,统计学中引入下面的量(称为卡方统计量):
2=.①
其中n=a+b+c+d为样本量.
3.独立性检验
利用2统计量来研究两类对象是否有关系的方法称为独立性检验.
4.要推断Ⅰ与Ⅱ有关系,可按下面的步骤进行
(1)提出假设H0:Ⅰ与Ⅱ没有关系;
(2)根据22列联表与公式①计算2的值;
(3)查对临界值(如表),作出判断.
P(2x0)0.500.400.250.150.100.050.0250.0100.0050.001
x00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
例如:
①若210.828,则有99.9%的把握认为Ⅰ与Ⅱ有关系;
②若26.635,则有99%的把握认为Ⅰ与Ⅱ有关系;
③若22.706,则有90%的把握认为Ⅰ与Ⅱ有关系;
④若22.706,则认为没有充分的证据显示Ⅰ与Ⅱ有关系,但也不能作出结论H0成立,即不能认为Ⅰ与Ⅱ没有关系.
1.在列联表中,如果两个变量没有关系,则应满足ad-bc0.因此|ad-bc|越小,说明两个变量之间关系越弱;|ad-bc|越大,说明两个变量之间关系越强.
2.独立性检验的基本思想类似于反证法,我们可以利用独立性检验来考察两个对象是否有关,并且能较精确地给出这种判断的把握程度.
[例1]在一项有关性别与喜欢吃甜食的关系的社会调查中,发现调查的男性为530人,女性为670人,其中男性中喜欢吃甜食的为117人,女性中喜欢吃甜食的为492人,请作出性别与喜欢吃甜食的列联表.
[思路点拨]在22列联表中,共有两类变量,每一类变量都有两个不同的取值,然后找出相应的数据,列表即可.
[精解详析]作列联表如下:
喜欢吃甜食不喜欢吃甜食合计
男117413530
女492178670
合计6095911200
[一点通](1)分清类别是作列联表的关键;
(2)表中排成两行两列的数据是调查得来的结果;
(3)选取数据时,要求表中的四个数据a,b,c,d都要不小于5,以保证检验结果的可信度.
1.下面是一个22列联表:
y1y2合计
x1a2173
x282533
合计b46
则表中a=________,b=________.
解析:∵a+21=73,a=73-21=52.
又∵a+8=b,b=52+8=60.
答案:5260
2.某学校对高三学生作一项调查后发现:在平时的模拟考试中,性格内向的426名学生中有332名在考前心情紧张;性格外向的594名学生中在考前心情紧张的有213人,作出22列联表.
解:作列联表如下:
性格内向性格外向合计
考前心情紧张332213545
考前心情不紧张94381475
合计4265941020
[例2]某矿石粉厂当生产一种矿石粉时,在数天内即有部分工人患职业性皮肤炎,在生产季节开始,随机抽取75名车间工人穿上新防护服,其余仍穿原用的防护服,生产进行一个月后,检查两组工人的皮肤炎患病人数如下:
阳性例数阴性例数合计
新防护服57075
旧防护服101828
合计1588103
问这种新防护服对预防工人患职业性皮肤炎是否有效?并说明你的理由.
[思路点拨]通过有关数据的计算,作出相应的判断.
[精解详析]提出假设H0:新防护服对预防皮肤炎没有明显效果.
根据列联表中的数据可求得
2=13.826.
因为H0成立时,210.828的概率约为0.001,而这里213.82610.828,所以我们有99.9%的把握说新防护服比旧防护服对预防工人患职业性皮肤炎有效.
[一点通]根据22列联表,利用公式
计算2的值,再与临界值比较,作出判断.
3.有300人按性别和是否色弱分类如下表:
男女
正常132151
色弱125
色弱与性别是否有关?
解:提出假设H0:色弱与性别无关.
通过计算2知,
2=

3.6839.
因为H0成立时,22.706的概率约为0.10,
而这里23.68392.706,故有90%的把握说色弱与性别有关.
4.有甲、乙两个班级进行一门课的考试,按照学生的考试成绩优秀和不优秀统计后,得到如下列联表:
优秀不优秀合计
甲班103545
乙班73845
合计177390
利用列联表的独立性检验估计成绩与班级是否有关系.
解:提出假设H0:成绩与班级没有关系.由列联表中所给数据,可得2=0.653<0.708.
因为当H0成立时,20.653的概率大于40%,这概率比较大,所以根据目前的调查数据,不能否定假设H0,即不能作出成绩与班级有关的结论.
[例3]为了调查某生产线上质量监督员甲是否在生产现场对产品质量好坏有无影响,现统计数据如下:甲在生产现场时,990件产品中有合格品982件,次品8件;甲不在生产现场时,510件产品中有合格品493件,次品17件.试用独立性检验的方法分析监督员甲是否在生产现场对产品质量好坏有无影响.
[思路点拨]正确地写出两个分类变量的四个取值,画出22列联表是解决问题的关键,利用2公式,计算2的值,进而与临界值比较大小,作出结论.
[精解详析]22列联表如下
合格品数次品数合计
甲在生产现场9828990
甲不在生产现场49317510
合计1475251500
提出假设
H0:质量监督员甲是否在生产现场与产品质量的好坏无明显关系.
根据2公式得
2=13.097.
因为H0成立时,210.828的概率约为0.001,而这里213.09710.828,所以有99.9%的把握认为质量监督员甲是否在生产现场与产品质量的好坏有关系.
[一点通](1)通过分析题可以画出列联表,然后求得2值.
(2)进行独立性检验时和反证法的思想一样,都是先假设与预定的结论相反,然后推出矛盾,在实际做题中成了程序化的步骤,只需求出2值,与临界值相比较即可.
5.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
性别
是否需要志愿者男女合计
需要403070
不需要160270430
合计200300500
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)有多大的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.
附:
P(2x0)0.0500.0100.001
x03.8416.63510.828
2=.
解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要志愿者提供帮助的老年人的比例的估计值为=14%.
(2)提出假设H0:该地区的老年人是否需要志愿者帮助与性别无关,由列联表中所给数据,可得
2=9.967.
因为H0成立时,29.967>6.635,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.
(3)由(2)的结论知,该地区老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层,并采用分层抽样方法,比采用简单随机抽样方法更好.
6.电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为体育迷,已知体育迷中有10名女性.
根据已知条件完成下面的22列联表,并据此资料你是否有95%的把握认为体育迷与性别有关?
非体育迷体育迷合计


合计
解:由频率分布直方图可知,在抽取的100人中,体育迷有25人,从而22列联表如下:
非体育迷体育迷合计
男301545
女451055
合计7525100
将22列联表中的数据代入公式计算,
得2==3.030.
因为3.0303.841,所以没有95%的把握认为体育迷与性别有关.
1.独立性检验与反证法的区别和联系
(1)联系
可以用反证法的思想解释独立性检验原理,它们的对应关系为:
反证法思想独立性检验
要证明结论A提出假设H0
在A不成立的前提下进行推理在H0成立的条件下推理
推出矛盾,意味着结论A成立推出有利于H0成立的小概率事件发生,意味着H0的反面成立的可能性很大
没有找到矛盾,不能对A下任何结论,即反证法不成功推出有利于H0成立的小概率事件不发生,接受原假设
(2)区别
一是独立性检验中用有利于H0的小概率事件的发生代替了反证法思想中的矛盾;二是独立性检验中接受原假设的结论相当于反证法中没有找到矛盾.
2.利用22列联表进行独立性检验的一般步骤
一、填空题
1.在一项打鼾与患心脏病的调查中,共调查了1671人,经过计算2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(有关、无关)
解析:∵2=27.63,2>10.828
有理由认为打鼾与患心脏病是有关的.
答案:有关
2.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的序号是________.
①若2的观测值为6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;
②从独立性检验可知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能性患有肺病;
③若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误;
④以上三种说法均不正确.
解析:若有95%的把握认为两个变量有关系,则说明判断出错的可能性是5%.
答案:③
3.为了判断高中三年级学生选修文科是否与性别有关,现随机抽取50名学生,得到如下22列联表:
理科文科合计
男131023
女72027
合计203050
已知P(23.841)0.05,P(25.024)0.025,
根据表中数据得到2=4.844.
则有________的把握认为选修文科与性别有关.
答案:95%
4.考察棉花种子是否经过处理跟得病之间的关系,得如下表所示的数据:
种子处理种子未处理合计
得病32101133
不得病61213274
合计93314407
根据以上数据得2的值是________.
解析:由2=,得2=0.164.
答案:0.164
5.为大力提倡厉行节约,反对浪费,某市通过随机询问100名性别不同的居民是否能做到光盘行动,得到如下的列联表:
做不到光盘能做到光盘
男4510
女3015
附:
P(2x0)0.100.050.025
x02.7063.8415.024
2=
参照附表,得到的正确结论的序号是________.
①在犯错误的概率不超过1%的前提下,认为该市居民能否做到光盘与性别有关;
②在犯错误的概率不超过1%的前提下,认为该市居民能否做到光盘与性别无关;
③有90%以上的把握认为该市居民能否做到光盘与性别有关;
④有90%以上的把握认为该市居民能否做到光盘与性别无关.
解析:2=3.03>2.706,
有90%以上把握认为该市居民能否做到光盘与性别有关,即犯错不超过10%.
答案:③
二、解答题
6.为研究学生的数学成绩与对学习数学的兴趣是否有关,对某年级学生作调查,得到如下数据:
成绩优秀成绩较差合计
兴趣浓厚的643094
兴趣不深厚的227395
合计86103189
学生的数学成绩好坏与对学习数学的兴趣是否有关?
解:提出假设H0:学生数学成绩的好坏与对学习数学的兴趣无关.
由公式得2的值
2=38.459.
∵当H0成立时,210.828的概率约为0.001,
而这里238.45910.828,
有99.9%的把握认为学生数学成绩的好坏与对学习数学的兴趣是有关的.
7.有两个变量x,y,其一组观测值如下面的22列联表所示:
y1y2
x1a20-a
x215-a30+a
其中a,15-a均为大于5的整数,则a取何值时,有90%的把握认为x与y之间有关系?
解:查表可知,要使x与y之间有90%的把握认为有关系,则22.706,
由题意,得2==
=,
由22.706,解得a7.19或a2.04.
又a5,且15-a5,aZ,a=8,9.
当a等于8或9时,有90%的把握认为x与y之间有关系.
8.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在25周岁以上(含25周岁)和25周岁以下分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.
规定日平均生产件数不少于80件者为生产能手,请你根据已知条件完成22列联表,并判断是否有90%的把握认为生产能手与工人所在的年龄组有关?
解:由已知得样本中有25周岁以上组工人100=60人,25周岁以下组工人,100=40人.由频率分布直方图可知,在抽取的100名工人中,25周岁以上组中的生产能手有60(0.0050+0.0200)10=15(人),25周岁以下组中的生产能手有40(0.0325+0.0050)10=15(人),据此可得22列联表如下:
生产能手非生产能手合计
25周岁以上组154560
25周岁以下组152540
合计3070100
所以得2=

=1.786.
因为1.786<2.706,
所以没有90%的把握认为生产能手与工人所在的年龄组有关.

案例研究


案例研究:

目的:

让学生了解生态农业与可持续发展的关系,以及我国不同的地区的生态模式.

生态农业基础知识

中国生态农业的基本内涵是:

按照生态学原理和生态经济规律,因地制宜地设计、组装、调整和管理农业生产和农村经济的系统工程体系。它要求把发展粮食与多种经济作物生产,发展大田种植与林、牧、副、渔业,发展大农业与第二、三产业结合起来,利用传统农业精华和现代科技成果,通过人工设计生态工程、协调发展与环境之间、资源利用与保护之间的矛盾,形成生态上与经济上两个良性循环,经济、生态、社会三大效益的统一。

综合性。生态农业强调发挥农业生态系统的整体功能,以大农业为出发点,按"整体、协调、循环、再生"的原则,全面规划,调整和优化农业结构,使农、林、牧、副、渔各业和农村一、二、三产业综合发展,并使各业之间互相支持,相得益彰,提高综合生产能力。