88教案网

你的位置: 教案 > 高中教案 > 导航 > 2012届高考数学备考复习点、直线、平面之间的位置关系教案

小学数学复习教案

发表时间:2020-11-24

2012届高考数学备考复习点、直线、平面之间的位置关系教案。

俗话说,居安思危,思则有备,有备无患。准备好一份优秀的教案往往是必不可少的。教案可以让学生更好的消化课堂内容,帮助教师能够井然有序的进行教学。所以你在写教案时要注意些什么呢?以下是小编为大家精心整理的“2012届高考数学备考复习点、直线、平面之间的位置关系教案”,希望能对您有所帮助,请收藏。

专题四:立体几何
第二讲点、直线、平面之间的位置关系

【最新考纲透析】
1.理解空间直线平面位置关系的定义。
2.了解可以作为推理依据的公理和定理。
3.认识和理解空间中线面平行、垂直的有关性质与判定定理。
4.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题。

【核心要点突破】
要点考向1:线线、线面的位置关系
考情聚焦:1.空间直线的位置关系、直线与平面的位置关系是最基本的关系,是高考中重点考查的内容,几乎年年都考。
2.题目基本上以柱体、锥体为背景,重点考查异面直线及线面关系。
3.三种题型均可出现,属较容易或中档题。
考向链接:1.解决此类问题时要特别注意线线平行与垂直、线在平行与垂直、面面平行与垂直间的相互转化。
2.证明线线平行的常用方法:(1)利用定义,证两线共面且无公共点;(2)利用公理4,证两线同时平行于第三条直线;(3)利用线面平行的性质定理把证线线平行转化为证线面平行。
3.证明线面平行常用方法:(1)利用线面平行的判定定理把证线面平行转化为证线线平行;(2)利用性质
4.证明线面垂直的方法有:
(1)定义;
(2)判定定理;
例1:(2010天津高考文科T19)
如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求异面直线CE与AF所成角的余弦值;
(Ⅱ)证明CD⊥平面ABF;
(Ⅲ)求二面角B-EF-A的正切值。
【命题立意】本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查空间想象能力,运算能力和推理论证能力。
【思路点拨】(1)∠CED即为异面直线CE与AF所成角;(2)证明CD垂直于两条相交直线AB、FA;(3)做辅助线构造二面角的平面角。
【规范解答】(I)解:因为四边形ADEF是正方形,所以FA//ED.故为异面直线CE与AF所成的角.因为FA平面ABCD,所以FACD.故EDCD.
在Rt△CDE中,CD=1,ED=,CE==3,故cos==.
所以异面直线CE和AF所成角的余弦值为.
(Ⅱ)证明:过点B作BG//CD,交AD于点G,则.由,可得BGAB,从而CDAB,又CDFA,FAAB=A,所以CD平面ABF.
(Ⅲ)解:由(Ⅱ)及已知,可得AG=,即G为AD的中点.取EF的中点N,连接GN,则GNEF,因为BC//AD,所以BC//EF.过点N作NMEF,交BC于M,则为二面角B-EF-A的平面角。
连接GM,可得AD平面GNM,故ADGM.从而BCGM.由已知,可得GM平面MAB.由NG//FA,FAGM,得NGGM.
在Rt△NGM中,tan,
所以二面角B-EF-A的正切值为.

要点考向2:面面位置关系
考情聚焦:1.在高考中,本部分内容几乎年年考查,主要考查学生分析问题、解决问题的能力。
2.题目基本上以棱柱、棱锥为背景,考查面面平行或垂直。
3.选择题、填空题、解答题均可出现,题目难度为低档或中档。
考向链接:1.证明面面平行,依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可。从而将面面平行转化为线面平行,再转化为线线平行。
2.证明面面垂直的方法:证明一个面过另一个面的垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中点、高线或添加辅助线解决。
例2:(2010辽宁高考文科T19)
如图,棱柱ABC—A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.
(Ⅰ)证明:平面AB1C⊥平面A1BC1;
(Ⅱ)设D是A1C1上的点,且A1B∥平面B1CD,求A1D:DC1的值.
【命题立意】本题考查了空间几何体的线面与面面垂直、以及几何体的计算问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。
【思路点拨】(I)先证明B1C⊥平面A1BC1.再证明平面AB1C⊥平面A1BC1;
(II)利用线面平行的性质,得到DE//A1B,判断出D点是中点,从而可解
【规范解答】(I)
(II)
【方法技巧】
1、证明面面垂直,一般通过证明一个平面经过另一个平面的垂线,为此分析题设,观察图形找到是哪条直线和哪个平面垂直。
2、证明直线和平面垂直,就是要证明这条直线平面内的两条相交直线,这一点在解题时一定要体现出来,如本题中强调了A1B∩BC1=B
要点考向3:与折叠有关的问题
考情聚焦:1.空间图形的折叠问题是近几年高考命题的一个新的亮点,它通常与其他知识相结合,能够较好地考查学生的空间想象能力、图形变换能力及识图能力。
2.选择题、填空题、解答题均可出现,尤其解答题为多,属中档题。
例3:(2010浙江高考文科T20)如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°。E为线段AB的中点,将△ADE沿直线DE翻折成△A’DE,使平面A’DE⊥平面BCD,F为线段A’C的中点。
(Ⅰ)求证:BF∥平面A’DE;
(Ⅱ)设M为线段DE的中点,求直线FM与平面A’DE所成角的余弦值。
【命题立意】本题主要考查空间线线、线面、面面位置关系,线面角等基础知识,同时考查空间想象能力和推理论证能力。
【思路点拨】(1)可以在面内找一条直线与BF平行,从而证明线面平行;(2)求线面角的关键是找到对应的平面角。
【规范解答】(Ⅰ)取A′D的中点G,连结GF,CE,由条件易知FG∥CD,FG=CD.BE∥CD,BE=CD.所以FG∥BE,FG=BE.
故四边形BEGF为平行四边形,所以BF∥EG
因为平面,BF平面,所以BF//平面
(Ⅱ)在平行四边形ABCD中,设BC=a,则AB=CD=2a,AD=AE=EB=a,连CE。
因为,在△BCE中,可得CE=a,在△ADE中,可得DE=a,
在△CDE中,因为CD2=CE2+DE2,所以CE⊥DE,
在正三角形A′DE中,M为DE中点,
所以A′M⊥DE.由平面A′DE⊥平面BCD,
可知A′M⊥平面BCD,A′M⊥CE.取A′E的中点N,
连线NM、NF,所以NF⊥DE,NF⊥A′M.因为DE交A′M于M,
所以NF⊥平面A′DE,则∠FMN为直线FM与平面A′DE所成的角.
在Rt△FMN中,NF=a,MN=a,FM=a,则cos=.
所以直线FM与平面A′DE所成角的余弦值为.
【方法技巧】找线面所成角时,可适当的作一条面的垂线,从而把线面角转化为线线夹角。
注:(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口。
(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形。

【高考真题探究】
1.(2010山东高考理科T3)在空间,下列命题正确的是()
(A)平行直线的平行投影重合
(B)平行于同一直线的两个平面平行
(C)垂直于同一平面的两个平面平行
(D)垂直于同一平面的两条直线平行
【命题立意】本题考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,考查了考生的空间想象能力、推理论证能力.
【思路点拨】可利用特殊图形进行排除.
【规范解答】选D,在正方体中,但它们在底面上的投影仍平行,故A选项不正确;平面与平面都平行于直线,但平面与平面相交,故B选项不正确;平面与平面都垂直于平面,但平面与平面相交,故C选项不正确;而由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以证明选项D正确.
2.(2010浙江高考理科T6)设,是两条不同的直线,是一个平面,则下列命题正确的是()
(A)若,,则(B)若,,则
(C)若,,则(D)若,,则
【命题立意】本题考查空间中的线线、线面位置关系,考查空间想象能力。
【思路点拨】利用线面平行、线面垂直的判定定理。
【规范解答】选B。如图(1),选项A不正确;如图(2),选项B正确;如图(3)选项C不正确;如图(4)选项D不正确。
3.(2010广东高考理科T18)如图5,是
半径为a的半圆,AC为直径,点E为的中点,点B
和点C为线段AD的三等分点。平面AEC外一点F满足
FB=FD=a,FE=a
证明:EB⊥FD;
已知点Q,R分别为线段FE,FB上的点,使得
FQ=FE,FR=FB,求平面BED与平面RQD所成二面角的正弦值。
【命题立意】本题考察空间点、线、面之间的关系以及空间几何体的相关计算.
【思路点拨】(1)点E为的中点,AC为直径是,又面EB⊥FD.
作出二面角的棱证明为所求二面角的平面角求、
【规范解答】(1)证明:连结.因为是半径为a的半圆,为直径,点E为的中点,
所以,在中,,在中,,所以是等腰三角形,且点是底边的中点,所以
在中,,所以是,所以.
由,,且,所以面
又面,所以,
所以平面,而平面,所以
(2)过点作,FQ=FE,FR=FB,,,
与共面且与共面,
为平面BED与平面RQD的棱.
由(1)知,平面,平面,而平面,平面,
,,是平面BED与平面RQD所成二面角的平面角.
在中,,
,=.
由余弦定理得:
又由正弦定理得:
,即
所以平面BED与平面RQD所成二面角的正弦值为
4.(2010北京高考理科T16)如图,正方形ABCD和四边形ACEF所在
的平面互相垂直,CE⊥AC,EF∥AC,AB=,CE=EF=1.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大小。
【命题立意】本题考查了线面平行、线面垂直及二面角的求法。一般的,运用几何法(方法一)对空间想象能力,空间运算能力要求较高,关键是寻找二面角的平面角;运用向量法(方法二)思路简单,但运算量较大,熟练掌握向量的线性运算及数量积是解决问题的关键。
【思路点拨】立体几何问题一般有两种方法:几何法与向量法。几何法:(1)证明AF与面BDE内的某条线平行;(2)证明CF垂直于面BDE内的两条相交直线;(3)由第(2)问的结论,可过A作一直线与CF平行,从而垂直于面BDE,再过A和垂足向二面角A-BE-D的菱BE作垂线,找到二面角的平面角。向量法:利用三个垂直关系CE,CD,CB,建立空间直角坐标系,利用向量的平行、垂直和数量积求二面角的大小。
【规范解答】方法一:
(I)设AC与BD交点G。因为EF//AG,且EF=1,AG=AC=1.所以四边形AGEF为平行四边形.
所以AF//EG,因为平面BDE,AF平面BDE,所以AF//平面BDE.
(II)连接FG,,为平行四边形,
又,CEFG为菱形,。
在正方形ABCD中,。
正方形ABCD和四边形ACEF所在的平面互相垂直,,
,又,。
(III)在平面ACEF内,过A作,垂足为H,连接HB。则AH//CF。
AH平面BDE,,。
又面ABCD面ACEF,CEAC,面ABCD,。
又,面BCE,。面ABH。
。为所求的二面角A-BE-D的平面角。
由得,,
为锐角,。
方法二:
(I)因为正方形ABCD和四边形ACEF所在的平面相互垂直,且CEAC,所以CE平面ABCD.如图,以C为原点,建立空间直角坐标系C-.则C(0,0,0),,B(0,,0),,,,所以,,.设为平面BDE的法向量,则,即,令,得,。
,,
又面BDE,AF//平面BDE。
(II)由(I)知,所以,
所以,.又因为,所以平面BDE.
(III)设平面ABE的法向量,由(I)知=,,则,.即所以且令则.所以.从而。所以。
因为二面角为锐角,
所以二面角的大小为.
5.(2010福建高考文科T20)如图,在长方体ABCD–A1B1C1D1中,E,H分别是棱A1B1,D1C1上的点(点E与B1不重合),且EH//A1D1。过EH的平面与棱BB1,CC1相交,交点分别为F,G。
(I)证明:AD//平面EFGH;
(II)设AB=2AA1=2a。在长方体ABCD-A1B1C1D1内随机选取一点,记该点取自于几何体A1ABFE–D1DCGH内的概率为p。当点E,F分别在棱A1B1,B1B上运动且满足EF=a时,求p的最小值。
【命题立意】本小题主要考查直线与直线、直线与平面的位置关系,以及几何体的体积、几何概型等基础知识;考查空间想象能力、推理论证能力、运算求解能力;考查函数方程思想、数形结合思想、化归与转化思想、必然与或然思想。
【思路点拨】第一步由线线平行得到线面平行;第二步求出(1)首先求出三棱柱的体积,并求解三棱柱的体积的最大值,然后求解圆柱的体积,利用体积比计算出几何概率。
【规范解答】(I)证明:在长方体ABCD-A1B1C1D1中,,又,,又平面,所以平面;
(II)设,则在长方体ABCD-A1B1C1D1的体积,几何体的体积,又,,所以当且仅当时等号成立,从而,故,当且仅当时等号成立,所以得最小值等于。
【方法技巧】立体几何中的证明问题,一定要把条件写完整了,保证逻辑合理,如:本题一定要写出。
6.(2010江苏高考T16)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。
求证:PC⊥BC;
求点A到平面PBC的距离。
【命题立意】本题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力。
【思路点拨】(1)可证明BC与PC所在的某一个平面垂直;(2)点A到平面PBC的距离是点D到平面PBC的距离的2倍。
【规范解答】(1)因为PD⊥平面ABCD,BC平面ABCD,所以PD⊥BC。
由∠BCD=900,得CD⊥BC,
又PDDC=D,PD、DC平面PCD,
所以BC⊥平面PCD。
因为PC平面PCD,故PC⊥BC。
(2)分别取AB、PC的中点E、F,连DE、DF,则:
易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等。
又点A到平面PBC的距离等于E到平面PBC的距离的2倍。
由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,
因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F。
易知DF=,故点A到平面PBC的距离等于。
【方法技巧】一个几何体无论怎样转动,其体积是不变的.如果一个几何体的底面积和高较难求解时,我们可考虑利用等体积法求解。等体积法也称等积转换或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,把底面积和高的求解转化为数量关系清晰的底面及其对应的高,减少运算量,这也是转化与化归思想在立体几何中的具体体现。本题也可利用等体积法求解:
连结AC。设点A到平面PBC的距离为h。
因为AB∥DC,∠BCD=900,所以∠ABC=900。
从而AB=2,BC=1,得的面积。
由PD⊥平面ABCD及PD=1,得三棱锥P-ABC的体积。
因为PD⊥平面ABCD,DC平面ABCD,所以PD⊥DC。
又PD=DC=1,所以。
由PC⊥BC,BC=1,得的面积。
由,,得,
故点A到平面PBC的距离等于。

【跟踪模拟训练】
一、选择题(每小题6分,共36分)
1.给出以下三个命题:
①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行;
②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;
③如果一条直线垂直于一个平面内的无数条直线,那么这条直线垂直于这个平面.
其中真命题的个数是()
(A)3(B)2(C)1(D)0
2.给定空间中的直线l及平面α,条件“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的()
(A)充要条件
(B)充分非必要条件
(C)必要非充分条件
(D)既非充分又非必要条件
3.设有直线m、n和平面α、β.下列四个命题中,正确的是()
(A)若m∥α,n∥α,则m∥n
(B)若mα,nα,m∥β,n∥β,则α∥β
(C)若α⊥β,mα,则m⊥β
(D)若α⊥β,m⊥β,mα,则m∥α
4.对于平面α和直线m、n,给出下列命题
①若m∥n,则m、n与α所成的角相等;
②若m⊥α,m⊥n,则n∥α;
③若m与n是异面直线,且m∥α,则n与α相交.
其中真命题的个数是()
(A)0(B)1(C)2(D)3
5.已知平面α外不共线的三点A、B、C到α的距离都相等,则正确的结论是()
(A)平面ABC必不垂直于α
(B)平面ABC必平行于α
(C)平面ABC必与α相交
(D)存在△ABC的一条中位线平行于α或在α内
6.(2010北京模拟)设A、B、C、D是空间四个不同的点,在下列命题中,不正确的是()
A.若AC与BD共面,则AD与BC共面
B.若AC与BD是异面直线,则AD与BC是异面直线
C.若AB=AC,DB=DC,则AD=BC
D.若AB=AC,DB=DC,则AD⊥BC

二、填空题(每小题6分,共18分)
7.如图,长方体ABCD—A1B1C1D1中,MN在平面BCC1B1内,MN⊥BC于M,则MN与平面AB1的位置关系是_______.
8.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是_______.
9.设α、β表示平面,a、b表示不在α内也不在β内的两条直线.给出下列四个论断:①a∥b;②a∥β;③α⊥β;④b⊥α.若以其中三个作为条件,余下的一个作为结论,可以构造出一些命题.写出你认为正确的一个命题________.
三、解答题(10、11题每题15分,12题16分,共46分)
10.如图,在四棱锥P-ABCD中.PD⊥平面ABCD,AD⊥CD.DB平分∠ADC,E为PC的中点,AD=CD.
(1)证明PA∥平面BDE;
(2)证明AC⊥平面PBD;
11.如图,在三棱锥P-ABC中,PA⊥底面ABC,△ABC为正三角形,D、E分别是BC、CA的中点.
(1)证明:平面PBE⊥平面PAC.
(2)在BC上是否存在一点F,使
AD∥平面PEF?说明理由.
12.(探究创新题)如图,A、B、C、D为空间四点,在△ABC中,AB=2,AC=BC=,等边三角形ADB以AB为轴转动.
(1)当平面ADB⊥平面ABC时,求CD的长;
(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.
参考答案
一、选择题
1.【解析】选B.由直线与平面平行的性质定理知①正确;
由直线与平面垂直的判定定理知②正确;
若两条直线都平行于一个平面,则这两条直线平行或相交或异面,故③不正确.
2.【解析】选C.由直线与平面垂直的定义知,当直线l与平面α内无数条直线都垂直时,直线l与平面α不一定垂直;反之成立.
3.【解析】选D.m∥α,n∥αm∥n或m与n相交或m,n异面,故A不对.mα,nα,m∥β,n∥βα,β相交或平行,故B不对.α⊥β,mαm∥β或m⊥β或m与β斜交,故C不对.α⊥β,m⊥β,mαm∥α正确.
故选D.
4.【解析】选B.①正确;对②,若m⊥α,m⊥n,则n∥α或nα;对③,若m与n异面,m∥α,则n与α相交或平行或在α内.
5.【解析】选D.如图,A、B、C三点不共线且到α的距离都相等,可得A、B、C皆错.
6.【解析】选C.A.若AC与BD共面,则A,B,C,D四点共面,则AD与BC共面;
B.若AC与BD是异面直线,则A,B,C,D四点不共面,则AD与BC是异面直线;
C.若AB=AC,DB=DC,四边形ABCD可以是空间四边形,AD不一定等于BC;
D.若AB=AC,DB=DC,可以证明AD⊥BC。

二、填空题
7.【解析】∵MN⊥BC,
∴MN∥BB1,
而BB1平面AB1,
∴MN∥平面AB1.
答案:MN∥平面AB1
8.【解析】∵AB⊥面BCC1B1,
AB⊥面ADD1A1,
∴AB与面BCC1B1,AB与面ADD1A1
各构成一个“正交线面对”.
这样的“正交线面对”共有
12×2=24个,
又A1B⊥面AB1C1D.
∴A1B与面AB1C1D构成一个“正交线面对”.
这样的“正交线面对”共有12×1=12个,
∴共有24+12=36个.
答案:36
9.【解析】由a∥b,a∥β,b⊥α可得α⊥β.
答案:①②④③

三、解答题
10.【证明】(1)设AC∩BD=H,连结EH.在△ADC中,因为AD=CD,且DB平分∠ADC,所以H为AC的中点.又由题设,E为PC的中点,故EH∥PA.又EH平面BDE且PA平面BDE,所以PA∥平面BDE.
(2)因为PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC.结合(1)易知DB⊥AC.
又PD∩DB=D.故AC⊥平面PBD.
11.【解析】(1)∵PA⊥底面ABC,
BE平面ABC,
∴PA⊥BE.
又△ABC是正三角形,E是AC的中点,
∴BE⊥AC,而PA∩AC=A.
∴BE⊥平面PAC.
又BE平面PBE,∴平面PBE⊥平面PAC.
(2)存在点F,F是CD的中点.
理由:∵E、F分别是AC、CD的中点,
∴EF∥AD.
而EF平面PEF,AD平面PEF,
∴AD∥平面PEF.
12.【解析】(1)取AB的中点E,连结DE、CE,
因为△ADB是等边三角形,
所以DE⊥AB,
当平面ADB⊥平面ABC时,
因为平面ADB∩平面ABC=AB,
所以DE⊥平面ABC,可知DE⊥CE.
又DE=,EC=1.
在Rt△DEC中,
(2)当△ADB以AB为轴转动时,总有AB⊥CD.
证明:①当D在平面ABC内时,
因为AC=BC,AD=BD,
所以C、D都在线段AB的垂直平分线上,
即AB⊥CD.
②当D不在平面ABC内时,由(1)知AB⊥DE,
又因AC=BC,所以AB⊥CE.
又DE、CE为相交直线,所以AB⊥平面CDE,
由CD平面CDE,得AB⊥CD.
综上所述得AB⊥CD.

【备课资源】
1.已知α、β是不同的平面,m、n是不同的直线,则下列命题不正确的是()
(A)若m⊥α,m∥n,n?β,则α⊥β
(B)若m∥α,α∩β=n,则m∥n
(C)若m∥n,m⊥α,则n⊥α
(D)若m⊥α,m⊥β,则α∥β
【解析】选B.对B,m和n可能平行,也可能异面,故错误.
2.设a、b是两条直线,α、β是两个平面,则a⊥b的一个充分条件是()
(A)a⊥α,b∥β,α⊥β
(B)a⊥α,b⊥β,α∥β
(C)aα,b⊥β,α∥β
(D)aα,b∥β,α⊥β
【解析】选C.aα,b⊥β,α∥β?a⊥b.
3.已知α、β、γ是三个互不重合的平面,l是一条直线,给出下列四个命题
①若α⊥β、l⊥β,则l∥α;
②若l⊥α,l∥β,则α⊥β;
③若l上有两个点到α的距离相等,则l∥α;
④若α⊥β,β∥γ,则γ⊥α;
其中正确的命题是()
(A)①③(B)②④(C)①④(D)②③
【解析】选B.α⊥β,l⊥β?l∥α或l?α,故①不正确.l⊥α,l∥β?α⊥β,②正确.
若l上有两个点到α的距离相等,则l∥α或l?α或l与α相交,③不正确.显然④正确.
4.设α、β、γ为三个不同的平面,m、n为两条不同的直线
①α⊥β,α∩β=n,m⊥n;②α∩γ=m,α⊥β,β⊥γ;
③α⊥β,α∥γ,m∥γ;④n⊥α,n⊥β,m⊥α
其中,是m⊥β的充分条件的为()
(A)①②(B)②④(C)②③(D)③④
【解析】选B.α∩γ=m,α⊥β,β⊥γ?m⊥β;

扩展阅读

空间中直线与平面、平面与平面之间的位置关系


第三课时空间中直线与平面、

平面与平面之间的位置关系

(一)教学目标

1.知识与技能

(1)了解空间中直线与平面的位置关系;

(2)了解空间中平面与平面的位置关系;

(3)培养学生的空间想象能力.

2.过程与方法

(1)学生通过观察与类比加深了对这些位置关系的理解、掌握;

(2)让学生利用已有的知识与经验归纳整理本节所学知识.

(二)教学重点、难点

重点:空间直线与平面、平面与平面之间的位置关系.

难点:用图形表达直线与平面、平面与平面的位置关系.

(三)教学方法

借助实物,让学生观察事物、思考等,讲练结合,较好地完成本节课的教学目标.

教学过程

教学内容

师生互动

设计意图

新课导入

问题1:空间中直线和直线有几种位置关系?

问题2:一支笔所在的直线和一个作业本所在平面有几种位置关系?

生1:平行、相交、异面

生2:有三种位置关系:

(1)直线在平面内

(2)直线与平面相交

(3)直线与平面平行

师肯定并板书,点出主题.

复习回顾,探索求真,激发学习兴趣.

探索新知

1.直线与平面的位置关系.

(1)直线在平面内——有无数个公共点.

(2)直线与平面相交——有且仅有一个公共点.

(3)直线在平面平行——没有公共点.

其中直线与平面相交或平行的情况,统称为直线在平面外,记作a.

直线a在面内的符号语言是a.图形语言是:

直线a与面相交的a∩=A.图形语言是符号语言是:


直线a与面平行的符号语言是a∥.图形语言是:

师:有谁能讲出这三种位置有什么特点吗?

生:直线在平面内时二者有无数个公共点.

直线与平面相交时,二者有且仅有一个公共点.

直线与平面平行时,三者没有公共点(师板书)

师:我们把直线与平面相交或直线与平面平行的情况统称为直线在平面外.

师:直线与平面的三种位置关系的图形语言、符号语言各是怎样的?谁来画图表示一个和书写一下.

学生上台画图表示.

师;好.应该注意:画直线在平面内时,要把直线画在表示平面的平行四边形内;画直线在平面外时,应把直线或它的一部分画在表示平面的平行四边形外.

加强对知识的理解培养,自觉钻研的学习习惯.数形结合,加深理解.

探索新知

2.平面与平面的位置关系

(1)问题1:拿出两本书,看作两个平面,上下、左右移动和翻转,它们之间的位置关系有几种?

(2)问题2:如图所示,围成长方体ABCD–A′B′C′D′的六个面,两两之间的位置关系有几种?

(2)平面与平面的位置关系

平面与平面平行——没有公共点.

平面与平面相交——有且只有一条公共直线.

平面与平面平行的符号语言是∥.图形语言是:

师:下面请同学们思考以下两个问题(投影)

生:平行、相交.

师:它们有什么特点?

生:两个平面平行时二者没有公共点,两个平面相交时,二者有且仅有一条公共直线(师板书)

师:下面请同学们用图形和符号把平面和平面的位置关系表示出来……

师:下面我们来看几个例子(投影例1)

通过类比探索,培养学生知识迁移能力.加强知识的系统性.

典例分析

例1下列命题中正确的个数是(B)

①若直线l上有无数个点不在平面内,则l∥.

②若直线l与平面平行,则l与平面内的任意一条直线都平行.

③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.

④若直线l与平面平行,则l与平面内的任意一条直线没有公共点.

A.0B.1C.2D.3

例2已知平面∥,直线a,求证a∥.

证明:假设a∥,则a在内或a与相交.

∴a与有公共点.

又a.

∴a与有公共点,与面∥面矛盾.

∴∥.

学生先独立完成,然后讨论、共同研究,得出答案.教师利用投影仪给出示范.

师解:如图,我们借助长方体模型,棱AA1所在直线有无数点在平面ABCD外,但棱AA1所在直线与平面ABCD相交,所以命题①不正确;A1B1所在直线平行于平面ABCD,A1B1显然不平行于BD,所以命题②不正确;A1B1∥AB,A1B1所在直线平行于平面ABCD,但直线AB平面ABCD,所以命题③不正确;l与平面平行,则l与无公共点,l与平面内所有直线都没有公共点,所以命题④正确,应选B.

师投影例2,并读题,先学生尝试证明,发现正面证明并不容易,然后教师给予引导,共同完成,并归纳反证法步骤和线面平行、面面平行的理解.

例1教师通过示范传授学生一个通过模型来研究问题的方法,同时加深对概念的理解.例2目标训练学生思维的灵活,并加深对面面平行、线面平行的理解.

随堂练习

1.如图,试根据下列条要求,把被遮挡的部分改为虚线:

(1)AB没有被平面遮挡;

(2)AB被平面遮挡.

答案:略

2.已知,,直线a,b,且∥,a,a,则直线a与直线b具有怎样的位置关系?

答案:平行或异面

3.如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论.

答案:三个平面两两相交,它们的交线有一条或三条.

4.空间的三个平面的位置关系有几种情形?请画图表示所有情形.

答案:5种图略

学生独立完成

培养识图能力,探索意识和思维的严谨性.

归纳总结

1.直线与平面、平面与平面的位置关系.

2.“正难到反”数学思想与反证法解题步骤.

3.“分类讨论”数学思想

学生归纳总结、教师给予点拨、完善并板书.

培养学生归纳整合知识能力,培养学生思维的灵活性与严谨性.

作业

2.1第一课时习案

学生独立完成

固化知识

提升能力

备用例题

例1直线与平面平行的充要条件是这条直线与平面内的()

A.一条直线不相交

B.两条直线不相交

C.任意一条直线都不相交

D.无数条直线都不相交

【解析】直线与平面平行,那么直线与平面内的任意直线都不相交,反之亦然;故应选C.

例2“平面内有无穷条直线都和直线l平行”是“”的().

A.充分而不必要条件

B.必要而不充分条件

C.充分必要条件

D.即不充分也不必要条件

【解析】如果直线在平面内,直线可能与平面内的无穷条直线都平行,但直线不与平面平行,应选B.

例3求证:如果过一个平面内一点的直线平行于与该平面平行的一条直线,则这条直线在这个平面内.已知:l∥,点P∈,P∈m,m∥l求证:.证明:设l与P确定的平面为,且=m′,则l∥m′.又知l∥m,,由平行公理可知,m与m′重合.所以.

平面与平面之间的位置关系


§1.2.3—1。2.4空间中直线与平面、平面与平面之间的位置关系
一、教学目标:
1、知识与技能
(1)了解空间中直线与平面的位置关系;
(2)了解空间中平面与平面的位置关系;
(3)培养学生的空间想象能力。
2、过程与方法
(1)学生通过观察与类比加深了对这些位置关系的理解、掌握;
(2)让学生利用已有的知识与经验归纳整理本节所学知识。
二、教学重点、难点
重点:空间直线与平面、平面与平面之间的位置关系。
难点:用图形表达直线与平面、平面与平面的位置关系。
三、学法与教学用具
1、学法:学生借助实物,通过观察、类比、思考等,较好地完成本节课的教学目标。
2、教学用具:投影仪、投影片、长方体模型
四、教学思想
(一)创设情景、导入课题
教师以生活中的实例以及课本P28的思考题为载体,提出了:空间中直线与平面有多少种位置关系?(板书课题)
(二)研探新知
1、引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系:
(1)直线在平面内——有无数个公共点
(2)直线与平面相交——有且只有一个公共点
(3)直线在平面平行——没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示
aαa∩α=Aa∥α
例4(投影)
师生共同完成例4
例4的给出加深了学生对这几种位置关系的理解。
2、引导学生对生活实例以及对长方体模型的观察、思考,准确归纳出两个平面之间有两种位置关系:
(1)两个平面平行——没有公共点
(2)两个平面相交——有且只有一条公共直线
用类比的方法,学生很快地理解与掌握了新内容,这两种位置关系用图形表示为
α∥βα∩β=L

教师指出:画两个相互平行的平面时,要注意使表示平面的两个平行四边形的对应边平行。教材P31练习
学生独立完成后教师检查、指导
(三)归纳整理、整体认识
教师引导学生归纳,整理本节课的知识脉络,提升他们掌握知识的层次。
(四)作业
1、让学生回去整理这三节课的内容,理清脉络。
2、教材P36习题1.2第1、2题

直线与直线之间的位置关系


2.1.7直线与直线之间的位置关系-两点间距离
一、三维目标
1、知识与技能:掌握直角坐标系两点间距离,用坐标法证明简单的几何问题。
2、过程和方法:通过两点间距离公式的推导,能更充分体会数形结合的优越性。
3、情态和价值:体会事物之间的内在联系,,能用代数方法解决几何问题
二、教学重点,难点:重点,两点间距离公式的推导。难点,应用两点间距离公式证明几何问题。
三、教学方式:启发引导式。
教学用具:用多媒体辅助教学。
四、教学过程
(一)、情境设置,导入新课
课堂设问一:回忆数轴上两点间的距离公式,同学们能否用以前所学的知识来解决以下问题
平面直角坐标系中两点,分别向x轴和y轴作垂线,垂足分别为,直线相交于点Q。
在直角中,,为了计算其长度,过点向x轴作垂线,垂足为过点向y轴作垂线,垂足为,于是有
所以,=。
由此得到两点间的距离公式,
在教学过程中,可以提出问题让学生自己思考,教师提示,根据勾股定理,不难得到。
(二)、例题解答,细心演算,规范表达。
例1:以知点A(-1,2),B(2,),在x轴上求一点,使,并求的值。
解:设所求点P(x,0),于是有
由得解得x=1。
所以,所求点P(1,0)且通过例题,使学生对两点间距离公式理解。应用。
解法二:由已知得,线段AB的中点为,直线AB的斜率为k=
线段AB的垂直平分线的方程是y-
在上述式子中,令y=0,解得x=1。所以所求点P的坐标为(1,0)。因此
同步练习:书本112页第1,2题
(三)、巩固反思,灵活应用。(用两点间距离公式来证明几何问题。)
例2证明平行四边行四条边的平方和等于两条对角线的平方和。
分析:首先要建立直角坐标系,用坐标表示有关量,然后用代数进行运算,最后把代数运算“翻译”成几何关系。
这一道题可以让学生讨论解决,让学生深刻体会数形之间的关系和转化,并从中归纳出应用代数问题解决几何问题的基本步骤。
证明:如图所示,以顶点A为坐标原点,AB边所在的直线为x轴,建立直角坐标系,有A(0,0)。
设B(a,0),D(b,c),由平行四边形的性质的点C的坐标为(a+b,c),因为
所以,
所以,
因此,平行四边形四条边的平方和等于两条对角线的平方和。
上述解决问题的基本步骤可以让学生归纳如下:第一步:建立直角坐标系,用坐标表示有关的量。
第二步:进行有关代数运算。第三步;把代数结果“翻译”成几何关系。
思考:同学们是否还有其它的解决办法?
还可用综合几何的方法证明这道题。
(四)、课堂小结:主要讲述了两点间距离公式的推导,以及应用,要懂得用代数的方法解决几何问题,建立直角坐标系的重要性。
(五)、课后练习1.:证明直角三角形斜边上的中点到三个顶点的距离相等。
2.在直线x-3y-2=0上求两点,使它与(-2,2)构成一个等边三角形。
3.(1994全国高考)点(0,5)到直线y=2x的距离是。
五、教后反思:

2012届高考数学备考复习平面向量教案


一名合格的教师要充分考虑学习的趣味性,教师要准备好教案,这是教师工作中的一部分。教案可以更好的帮助学生们打好基础,使教师有一个简单易懂的教学思路。那么,你知道教案要怎么写呢?下面是由小编为大家整理的“2012届高考数学备考复习平面向量教案”,希望能为您提供更多的参考。

专题二:三角函数、三角变换、解三角形、平面向量
第三讲平面向量
【最新考纲透析】
1.平面向量的实际背景及基本概念
(1)了解向量的实际背景。
(2)理解平面向量的概念,理解两个向量相等的含义。
(3)理解向量的几何意义。
2.向量的线性运算
(1)掌握向量加法、减法的运算,并理解其几何意义。
(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。
(3)了解向量线性运算的性质及其几何意义。
3.平面向量的基本定理及坐标表示
(1)了解平面向量的基本定理及其意义。
(2)掌握平面向量的正交分解及其坐标表示。
(3)会用坐标表示平面向量的加法、减法与数乘运算。
(4)理解用坐标表示的平面向量共线的条件。
4.平面向量的数量积
(1)理解平面向量数量积的含义及其物理意义。
(2)了解平面向量的数量积与向量投影的关系。
(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。
(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
5.向量的应用
(1)会用向量方法解决某些简单的平面几何问题。
(2)会用向量方法解决简单的力学问题与其他一些实际问题。
【核心要点突破】
要点考向1:向量的有关概念及运算
考情聚焦:1.向量的有关概念及运算,在近几年的高考中年年都会出现。
2.该类问题多数是单独命题,考查有关概念及其基本运算;有时作为一种数学工具,在解答题中与其他知识点交汇在一起考查。
3.多以选择、填空题的形式出现,有关会渗透在解答题中。
考向链接:向量的有关概念及运算要注意以下几点:
(1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。
(2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻
(3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。
例1:(2010山东高考理科T12)定义平面向量之间的一种运算“⊙”如下,对任意的,,令⊙,下面说法错误的是()
A.若与共线,则⊙B.⊙⊙
C.对任意的,有⊙⊙D.(⊙)2
【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力.
【思路点拨】根据所给定义逐个验证.
【规范解答】选B,若与共线,则有⊙,故A正确;因为⊙,,而⊙,所以有⊙⊙,故选项B错误,故选B.
【方法技巧】自定义型信息题
1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型.
2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性
要点考向2:与平面向量数量积有关的问题
考情聚焦:1.与平面向量数量积有关的问题(如向量共线、垂直及夹角等问题)是高考考查的重点。
2.该类问题多数是单独命题,有时与其他知识交汇命题,考查学生分析问题、解决问题的能力。
3.多以选择题、填空题的形式出现,有时会渗透在解答题中。
考向链接:与平面向量数量积有关的问题
1.解决垂直问题:均为非零向量。这一条件不能忽视。
2.求长度问题:,特别地。
3.求夹角问题:求两非零向量夹角的依据
例2:1.(2010湖南高考理科T4)在中,=90°AC=4,则等于()
A、-16B、-8C、8D、16
【命题立意】以直角三角形为依托,考查平面向量的数量积,基底的选择和平面向量基本定理.
【思路点拨】由于=90,因此选向量CA,CB为基底.
【规范解答】选D.=(CB-CA)(-CA)=-CBCA+CA2=16.
【方法技巧】平面向量的考查常常有两条路:一是考查加减法,平行四边形法则和三角形法则,平面向量共线定理.二是考查数量积,平面向量基本定理,考查垂直,夹角和距离(长度).
2.(2010广东高考文科T5)若向量=(1,1),=(2,5),=(3,x)满足条件(8—)=30,则x=()
A.6B.5C.4D.3
【命题立意】本题考察向量的坐标运算及向量的数量积运算.
【思路点拨】先算出,再由向量的数量积列出方程,从而求出
【规范解答】选.,所以
.即:,解得:,故选.
要点考向3:向量与三角函数的综合
考情聚集:1.向量与三角函数相结合是高考的重要考查内容,在近几年的高考中,年年都会出现。
2.这类问题一般比较综合,考查综合应用知识分析问题、解决问题的能力。一般向量为具,考查三角恒等变换及三角函数的性质等。
3.多以解答题的形式出现。
例3.在直角坐标系
(I)若;
(II)若向量共线,当
【解析】(1)…………2分

解得………………4分
或…………6分
(II)………………8分
…………10分
………………12分
注:向量与三角函数的综合,实质上是借助向量的工具性。(1)解决这类问题的基本思路方法是将向量转化为代数运算;(2)常用到向量的数乘、向量的代数运算,以及数形结合的思路。

【高考真题探究】
1.(2010重庆高考理科T2)已知向量,满足,则()
A.0B.C.4D.8
【命题立意】本小题考查向量的基础知识、数量积的运算及性质,考查向量运算的几何意义,考查数形结合的思想方法.
【思路点拨】根据公式进行计算,或数形结合法,根据向量的三角形法则、平行四边形法则求解.
【规范解答】选B(方法一)
;(方法二)数形结合法:由条件知,以向量
,为邻边的平行四边形为矩形,又因为,所以,
则是边长为2的正方形的一条对角线确定的向量,其长度为,如图所示.
【方法技巧】方法一:灵活应用公式,
方法二:熟记向量及向量和的三角形法则
2.(2010全国高考卷Ⅱ理科T8)△ABC中,点D在
边AB上,CD平分∠ACB,若=,
=,,则=()
(A)+(B)+(C)+(D)+
【命题立意】本题考查了平面向量基本定理及三角形法则的知识。
【思路点拨】运用平面向量三角形法则解决。由角平分线性质知DB:AD=CB:CA=1:2
这样可以用向量,表示。
【规范解答】选B,由题意得AD:DB=AC;CB=2:1,AD=AB,所以++
+
【方法技巧】角平分线性质、平面向量基本定理及三角形法则
3.(2010浙江高考文科T13)已知平面向量则的值是。
【命题立意】本题主要考察了平面向量的四则运算及其几何意义,属中档题。
【思路点拨】本题先把垂直关系转化为数量积为0,再利用向量求模公式求解。
【规范解答】由题意可知,结合,解得,
所以2=,开方可知答案为.
【答案】
【方法技巧】(1);(2)。
4.(2009江西高考)已知向量,,,若则=.
【解析】因为所以.
答案:
5.(2009广东高考)已知向量与互相垂直,其中.
(1)求和的值;
(2)若,求的值.
【解析】(1)∵与互相垂直,则,即,
代入得,
又,∴.
(2)∵,,
∴,则,
∴.
6.(2009海南宁夏高考)已知向量
(Ⅰ)若,求的值;
(Ⅱ)若求的值.
【解析】(Ⅰ)因为,所以于是,故
(Ⅱ)由知,所以
从而,即,
于是.又由知,,
所以,或.因此,或

【跟踪模拟训练】
一、选择题(本大题共6个小题,每小题6分,总分36分)
1.若,且,则向量与的夹角为()
A.30°B.60°C.120°D.150°
2.已知O,A,M,B为平面上四点,且,则()
A.点M在线段AB上B.点B在线段AM上
C.点A在线段BM上D.O、A、M、B四点一定共线
3.平行四边形ABCD中,AC为一条对角线,若=(2,4),=(1,3),则等于()
A.6B.8C.-8D.-6
4.已知为不共线的非零向量,且,则以下四个向量中模最小者为……()
(A)(B)(C)(D)
5.已知向量夹角为120°,且则等于()
(A)4(B)3(C)2(D)1
6.平面向量的集合A到A的映射f()=-(),其中为常向量.若映射f满足f()f()=对任意的,∈A恒成立,则的坐标可能是()
A.(,)B.(,-)C.(,)D.(-,)
二、填空题(本大题共3个小题,每小题6分,总分18分)
7.已知e1、e2是两个不共线的向量,a=k2e1+(k)e2和b=2e1+3e2是两个共线向量,则实数k=
8.已知向量,满足,,与的夹角为,则_________,若,则实数_________.
9.给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C在以O为圆心的圆弧上变动。若其中,则的最大值是.
三、解答题(10、11题每小题15分,12题16分,总分46分)
10.已知向量,,,且.
(Ⅰ)求的值;
(Ⅱ)求的值.

11.设函数,其中向量,.
(Ⅰ)求函数的最小正周期和最大值;
(Ⅱ)求函数的单调递增区间.

12.已知向量,,.
(Ⅰ)若,求;
(Ⅱ)设,
(1)求的单调增区间;
(2)函数经过怎样的平移才能使所得的图象对应的函数成为奇函数?
参考答案
1.D
2.B
3.B
4.A
5.A
6.B
二、填空题
7.
8.3,3
9.2
三、解答题
10.解析:(Ⅰ)由向量,,,且.
得.
即.
所以.
因为,
所以.
因为,
所以.
(Ⅱ)由(Ⅰ)可得.
则.

11.解:(I)
(II)由,

12.解:(I)若,则
(II)
(1)令得,,
又,,即(0,是的单调增区间
(2)将函数的图像向上平移1个单位,再向左平移个单位,即得函数
的图像,而为奇函数
(左、右平移的单位数不唯一,只要正确,就给分.)

【备课资源】