88教案网

你的位置: 教案 > 高中教案 > 导航 > 高三理科数学一轮直线和圆的方程总复习教学案

高中生物一轮复习教案

发表时间:2020-11-24

高三理科数学一轮直线和圆的方程总复习教学案。

一名合格的教师要充分考虑学习的趣味性,高中教师要准备好教案,这是高中教师的任务之一。教案可以让学生们能够在上课时充分理解所教内容,使高中教师有一个简单易懂的教学思路。关于好的高中教案要怎么样去写呢?急您所急,小编为朋友们了收集和编辑了“高三理科数学一轮直线和圆的方程总复习教学案”,供大家借鉴和使用,希望大家分享!

第八章直线和圆的方程

高考导航

考试要求重难点击命题展望
1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.
2.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率的计算公式.
3.能根据两条直线的斜率判定这两条直线平行或垂直.
4.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
5.掌握用解方程组的方法求两条相交直线的交点坐标.
6.掌握两点间的距离公式、点到直线的距离公式,会求两条平行线间的距离.
7.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
8.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.
9.能用直线和圆的方程解决简单的问题.
10.初步了解用代数方法处理几何问题的思想.
11.了解空间直角坐标系,会用空间直角坐标表示点的位置,会推导空间两点间的距离公式.本章重点:1.倾斜角和斜率的概念;2.根据斜率判定两条直线平行与垂直;3.直线的点斜式方程、一般式方程;4.两条直线的交点坐标;5.点到直线的距离和两条平行直线间的距离的求法;6.圆的标准方程与一般方程;7.能根据给定直线,圆的方程,判断直线与圆的位置关系;8.运用数形结合的思想和代数方法解决几何问题.
本章难点:1.直线的斜率与它的倾斜角之间的关系;2.根据斜率判定两条直线的位置关系;3.直线方程的应用;4.点到直线的距离公式的推导;5.圆的方程的应用;6.直线与圆的方程的综合应用.本章内容常常与不等式、函数、向量、圆锥曲线等知识结合起来考查.
直线和圆的考查,一般以选择题、填空题的形式出现,属于容易题和中档题;如果和圆锥曲线一起考查,难度比较大.同时,对空间直角坐标系的考查难度不大,一般为选择题或者填空题.本章知识点的考查侧重考学生的综合分析问题、解决问题的能力,以及函数思想和数形结合的能力等.
知识网络

8.1直线与方程
典例精析
题型一直线的倾斜角
【例1】直线2xcosα-y-3=0,α∈[π6,π3]的倾斜角的变化范围是()
A.[π6,π3]B.[π4,π3]
C.[π4,π2]D.[π4,2π3]
【解析】直线2xcosα-y-3=0的斜率k=2cosα,
由于α∈[π6,π3],所以12≤cosα≤32,k=2cosα∈[1,3].
设直线的倾斜角为θ,则有tanθ∈[1,3],
由于θ∈[0,π),所以θ∈[π4,π3],即倾斜角的变化范围是[π4,π3],故选B.
【点拨】利用斜率求倾斜角时,要注意倾斜角的范围.
【变式训练1】已知M(2m+3,m),N(m-2,1),当m∈时,直线MN的倾斜角为锐角;当m=时,直线MN的倾斜角为直角;当m∈时,直线MN的倾斜角为钝角.
【解析】直线MN的倾斜角为锐角时,k=m-12m+3-m+2=m-1m+5>0m<-5或m>1;
直线MN的倾斜角为直角时,2m+3=m-2m=-5;
直线MN的倾斜角为钝角时,k=m-12m+3-m+2=m-1m+5<0-5<m<1.
题型二直线的斜率
【例2】已知A(-1,-5),B(3,-2),直线l的倾斜角是直线AB的倾斜角的2倍,求直线l的斜率.
【解析】由于A(-1,-5),B(3,-2),所以kAB=-2+53+1=34,
设直线AB的倾斜角为θ,则tanθ=34,
l的倾斜角为2θ,tan2θ=2tanθ1-tan2θ=2×341-(34)2=247.
所以直线l的斜率为247.
【点拨】直线的倾斜角和斜率是最重要的两个概念,应熟练地掌握这两个概念,扎实地记住计算公式,倾斜角往往会和三角函数的有关知识联系在一起.
【变式训练2】设α是直线l的倾斜角,且有sinα+cosα=15,则直线l的斜率为()
A.34B.43C.-43D.-34或-43
【解析】选C.sinα+cosα=15sinαcosα=-1225<0
sinα=45,cosα=-35或cosα=45,sinα=-35(舍去),
故直线l的斜率k=tanα=sinαcosα=-43.
题型三直线的方程
【例3】求满足下列条件的直线方程.
(1)直线过点(3,2),且在两坐标轴上截距相等;
(2)直线过点(2,1),且原点到直线的距离为2.
【解析】(1)当截距为0时,直线过原点,直线方程是2x-3y=0;当截距不为0时,设方程为xa+ya=1,把(3,2)代入,得a=5,直线方程为x+y-5=0.
故所求直线方程为2x-3y=0或x+y-5=0.
(2)当斜率不存在时,直线方程x-2=0合题意;
当斜率存在时,则设直线方程为y-1=k(x-2),即kx-y+1-2k=0,所以|1-2k|k2+1=2,解得k=-34,方程为3x+4y-10=0.
故所求直线方程为x-2=0或3x+4y-10=0.
【点拨】截距可以为0,斜率也可以不存在,故均需分情况讨论.
【变式训练3】求经过点P(3,-4),且横、纵截距互为相反数的直线方程.
【解析】当横、纵截距都是0时,设直线的方程为y=kx.
因为直线过点P(3,-4),所以-4=3k,得k=-43.此时直线方程为y=-43x.
当横、纵截距都不是0时,设直线的方程为xa+y-a=1,
因为直线过点P(3,-4),所以a=3+4=7.此时方程为x-y-7=0.
综上,所求直线方程为4x+3y=0或x-y-7=0.
题型四直线方程与最值问题
【例4】过点P(2,1)作直线l分别交x、y轴的正半轴于A、B两点,点O为坐标原点,当△ABO的面积最小时,求直线l的方程.
【解析】方法一:设直线方程为xa+yb=1(a>0,b>0),
由于点P在直线上,所以2a+1b=1.
2a1b≤(2a+1b2)2=14,
当2a=1b=12时,即a=4,b=2时,1a1b取最大值18,
即S△AOB=12ab取最小值4,
所求的直线方程为x4+y2=1,即x+2y-4=0.
方法二:设直线方程为y-1=k(x-2)(k<0),
直线与x轴的交点为A(2k-1k,0),直线与y轴的交点为B(0,-2k+1),
由题意知2k-1<0,k<0,1-2k>0.
S△AOB=12(1-2k)2k-1k=12[(-1k)+(-4k)+4]≥12[2(-1k)(-4k)+4]=4.
当-1k=-4k,即k=-12时,S△AOB有最小值,
所求的直线方程为y-1=-12(x-2),即x+2y-4=0.
【点拨】求直线方程,若已知直线过定点,一般考虑点斜式;若已知直线过两点,一般考虑两点式;若已知直线与两坐标轴相交,一般考虑截距式;若已知一条非具体的直线,一般考虑一般式.
【变式训练4】已知直线l:mx-(m2+1)y=4m(m∈R).求直线l的斜率的取值范围.
【解析】由直线l的方程得其斜率k=mm2+1.
若m=0,则k=0;
若m>0,则k=1m+1m≤12m1m=12,所以0<k≤12;
若m<0,则k=1m+1m=-1-m-1m≥-12(-m)(-1m)=-12,所以-12≤k<0.
综上,-12≤k≤12.
总结提高
1.求斜率一般有两种类型:其一,已知直线上两点,根据k=y2-y1x2-x1求斜率;其二,已知倾斜角α或α的三角函数值,根据k=tanα求斜率,但要注意斜率不存在时的情形.
2.求倾斜角时,要注意直线倾斜角的范围是[0,π).
3.求直线方程时,应根据题目条件,选择合适的直线方程形式,从而使求解过程简单明确.设直线方程的截距式,应注意是否漏掉过原点的直线;设直线方程的点斜式时,应注意是否漏掉斜率不存在的直线.

8.2两条直线的位置关系

典例精析
题型一两直线的交点
【例1】若三条直线l1:2x+y-3=0,l2:3x-y+2=0和l3:ax+y=0不能构成三角形,求a的值.
【解析】①l3∥l1时,-a=-2a=2;
②l3∥l2时,-a=3a=-3;
③由将(-1,-1)代入ax+y=0a=-1.
综上,a=-1或a=2或a=-3时,l1、l2、l3不能构成三角形.
【点拨】三条直线至少有两条平行时或三条直线相交于一点时不能构成三角形.
【变式训练1】已知两条直线l1:a1x+b1y+1=0和l2:a2x+b2y+1=0的交点为P(2,3),则过A(a1,b1),B(a2,b2)的直线方程是.
【解析】由P(2,3)为l1和l2的交点得
故A(a1,b1),B(a2,b2)的坐标满足方程2x+3y+1=0,
即直线2x+3y+1=0必过A(a1,b1),B(a2,b2)两点.
题型二两直线位置关系的判断
【例2】已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.
(1)l1⊥l2,且l1过点(-3,-1);
(2)l1∥l2,且坐标原点到两条直线的距离相等.
【解析】(1)由已知可得l2的斜率存在,
所以k2=1-a,若k2=0,则1-a=0,即a=1.
因为l1⊥l2,直线l1的斜率k1必不存在,即b=0,
又l1过点(-3,-1),所以-3a+b+4=0,
而a=1,b=0代入上式不成立,所以k2≠0.
因为k2≠0,即k1,k2都存在,
因为k2=1-a,k1=ab,l1⊥l2,所以k1k2=-1,即ab(1-a)=-1,
又l1过点(-3,-1),所以-3a+b+4=0,
联立上述两个方程可解得a=2,b=2.
(2)因为l2的斜率存在,又l1∥l2,所以k1=k2,即ab=(1-a),
因为坐标原点到这两条直线的距离相等,且l1∥l2,
所以l1,l2在y轴的截距互为相反数,即4b=b,
联立上述方程解得a=2,b=-2或a=23,b=2,
所以a,b的值分别为2和-2或23和2.
【点拨】运用直线的斜截式y=kx+b时,要特别注意直线斜率不存在时的特殊情况.求解两条直线平行或垂直有关问题时,主要是利用直线平行和垂直的充要条件,即“斜率相等”或“斜率互为负倒数”.
【变式训练2】如图,在平面直角坐标系xOy中,设三角形ABC的顶点分别为A(0,a),B(b,0),C(c,0).点P(0,p)是线段AO上的一点(异于端点),这里a,b,c,p均为非零实数,设直线BP,CP分别与边AC,AB交于点E,F,某同学已正确求得直线OE的方程为(1b-1c)x+(1p-1a)y=0,则直线OF的方程为.
【解析】由截距式可得直线AB:xb+ya=1,直线CP:xc+yp=1,两式相减得(1c-1b)x+(1p-1a)y=0,显然直线AB与CP的交点F满足此方程,又原点O也满足此方程,故所求直线OF的方程为(1c-1b)x+(1p-1a)y=0.
题型三点到直线的距离
【例3】已知△ABC中,A(1,1),B(4,2),C(m,m)(1<m<4),当△ABC的面积S最大时,求m的值.
【解析】因为A(1,1),B(4,2),所以|AB|=(4-1)2+(2-1)2=10,
又因为直线AB的方程为x-3y+2=0,
则点C(m,m)到直线AB的距离即为△ABC的高,
设高为h,则h=|m-3m+2|12+(-3)2,S=12|AB|h=12|m-3m+2|,
令m=t,则1<t<2,所以S=12|m-3m+2|=12|t2-3t+2|=12|(t-32)2-14|,
由图象可知,当t=32时,S有最大值18,此时m=32,所以m=94.
【点拨】运用点到直线的距离时,直线方程要化为一般形式.求最值可转化为代数问题,用处理代数问题的方法解决.
【变式训练3】若动点P1(x1,y1)与P2(x2,y2)分别在直线l1:x-y-5=0,l2:x-y-15=0上移动,求P1P2的中点P到原点的距离的最小值.
【解析】方法一:因为P1、P2分别在直线l1和l2上,
所以
(①+②)÷2,得x1+x22-y1+y22-10=0,所以P1P2的中点P(x1+x22,y1+y22)在直线x-y-10=0上,点P到原点的最小距离就是原点到直线x-y-10=0的距离d=102=52.所以,点P到原点的最小距离为52.
方法二:设l为夹在直线l1和l2之间且和l1与l2的距离相等的直线.
令l:x-y-c=0,则5<c<15,且|c-5|2=|c-15|2,
解得c=10.所以l的方程为x-y-10=0.
由题意知,P1P2的中点P在直线l上,点P到原点的最小距离就是原点到直线l的距离d=102=52,所以点P到原点的最小距离为52.
总结提高
1.求解与两直线平行或垂直有关的问题时,主要是利用两直线平行或垂直的条件,即“斜率相等”或“互为负倒数”.若出现斜率不存在的情况,可考虑用数形结合的方法去研究.
2.学会用分类讨论、数形结合、特殊值检验等基本的数学方法和思想.特别是注意数形结合思想方法,根据题意画出图形不仅易于找到解题思路,还可以避免漏解和增解,同时还可以充分利用图形的性质,挖掘出某些隐含条件,找到简捷解法.
3.运用公式d=|C1-C2|A2+B2求两平行直线之间的距离时,要注意把两直线方程中x、y的系数化成分别对应相等.
8.3圆的方程

典例精析
题型一求圆的方程
【例1】求经过两点A(-1,4),B(3,2)且圆心在y轴上的圆的方程.
【解析】方法一:设圆的方程为x2+y2+Dx+Ey+F=0,则圆心为(-D2,-E2),
由已知得即
解得D=0,E=-2,F=-9,所求圆的方程为x2+y2-2y-9=0.
方法二:经过A(-1,4),B(3,2)的圆,其圆心在线段AB的垂直平分线上,
AB的垂直平分线方程为y-3=2(x-1),即y=2x+1.
令x=0,y=1,圆心为(0,1),r=(3-0)2+(2-1)2=10,
圆的方程为x2+(y-1)2=10.
【点拨】圆的标准方程或一般方程都有三个参数,只要求出a、b、r或D、E、F,则圆的方程确定,所以确定圆的方程需要三个独立条件.
【变式训练1】已知一圆过P(4,-2)、Q(-1,3)两点,且在y轴上截得的线段长为43,求圆的方程.
【解析】设圆的方程为x2+y2+Dx+Ey+F=0,①
将P、Q两点的坐标分别代入①得
令x=0,由①得y2+Ey+F=0,④
由已知|y1-y2|=43,其中y1、y2是方程④的两根.
所以(y1-y2)2=(y1+y2)2-4y1y2=E2-4F=48,⑤
解②、③、⑤组成的方程组,得
D=-2,E=0,F=-12或D=-10,E=-8,F=4,
故所求圆的方程为x2+y2-2x-12=0或x2+y2-10x-8y+4=0.
题型二与圆有关的最值问题
【例2】若实数x,y满足(x-2)2+y2=3.求:
(1)yx的最大值和最小值;
(2)y-x的最小值;
(3)(x-4)2+(y-3)2的最大值和最小值.
【解析】(1)yx=y-0x-0,即连接圆上一点与坐标原点的直线的斜率,因此yx的最值为过原点的直线与圆相切时该直线的斜率,设yx=k,y=kx,kx-y=0.
由|2k|k2+1=3,得k=±3,所以yx的最大值为3,yx的最小值为-3.
(2)令x-2=3cosα,y=3sinα,α∈[0,2π).
所以y-x=3sinα-3cosα-2=6sin(α-π4)-2,
当sin(α-π4)=-1时,y-x的最小值为-6-2.
(3)(x-4)2+(y-3)2是圆上点与点(4,3)的距离的平方,因为圆心为A(2,0),B(4,3),
连接AB交圆于C,延长BA交圆于D.
|AB|=(4-2)2+(3-0)2=13,则|BC|=13-3,|BD|=13+3,
所以(x-4)2+(y-3)2的最大值为(13+3)2,最小值为(13-3)2.
【点拨】涉及与圆有关的最值问题,可借助图形性质,利用数形结合求解,一般地:①形如U=y-bx-a形式的最值问题,可转化为动直线斜率的最值问题;②形如(x-a)2+(y-b)2形式的最值问题,可转化为圆心已定的动圆半径的最值问题.
【变式训练2】已知实数x,y满足x2+y2=3(y≥0).试求m=y+1x+3及b=2x+y的取值范围.
【解析】如图,m可看作半圆x2+y2=3(y≥0)上的点与定点A(-3,-1)连线的斜率,b可以看作过半圆x2+y2=3(y≥0)上的点且斜率为-2的直线的纵截距.
由图易得3-36≤m≤3+216,-23≤b≤15.
题型三圆的方程的应用
【例3】在平面直角坐标系xOy中,二次函数f(x)=x2+2x+b(x∈R)与两坐标轴有三个交点,经过三个交点的圆记为C.
(1)求实数b的取值范围;
(2)求圆C的方程;
(3)问圆C是否经过定点(其坐标与b无关)?请证明你的结论.
【解析】(1)令x=0,得抛物线与y轴交点是(0,b),
由题意b≠0,且Δ>0,解得b<1且b≠0.
(2)设所求圆的一般方程为x2+y2+Dx+Ey+F=0,
令y=0,得x2+Dx+F=0,这与x2+2x+b=0是同一个方程,故D=2,F=b.
令x=0,得y2+Ey+F=0,此方程有一个根为b,代入得出E=-b-1.
所以圆C的方程为x2+y2+2x-(b+1)y+b=0.
(3)圆C必过定点,证明如下:
假设圆C过定点(x0,y0)(x0,y0不依赖于b),将该点的坐标代入圆C的方程,
并变形为x20+y20+2x0-y0+b(1-y0)=0,(*)
为使(*)式对所有满足b<1(b≠0)的b都成立,必须有1-y0=0,
结合(*)式得x20+y20+2x0-y0=0,
解得或
经检验知,点(0,1),(-2,1)均在圆C上,因此圆C过定点.
【点拨】本题(2)的解答用到了代数法求过三点的圆的方程,体现了设而不求的思想.(3)的解答同样运用了代数的恒等思想,同时问题体现了较强的探究性.
【变式训练3】(2010安徽)动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是(12,32),则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是()
A.[0,1]B.[1,7]C.[7,12]D.[0,1]和[7,12]
【解析】选D.由题意知角速度为2π12=π6,故可得y=sin(π6t+π3),0≤t≤12,
π3≤π6t+π3≤π2或32π≤π6t+π3≤52π,所以0≤t≤1或7≤t≤12.
所以单调递增区间为[0,1]和[7,12].
总结提高
1.确定圆的方程需要三个独立条件,“选标准,定参数”是解题的基本方法.一般来讲,条件涉及圆上的多个点,可选择一般方程;条件涉及圆心和半径,可选圆的标准方程.
2.解决与圆有关的问题,应充分运用圆的几何性质帮助解题.解决与圆有关的最值问题时,可根据代数式子的几何意义,借助于平面几何知识,数形结合解决.也可以利用圆的参数方程解决最值问题.

8.4直线与圆、圆与圆的位置关系

典例精析
题型一直线与圆的位置关系的判断
【例1】已知圆的方程x2+y2=2,直线y=x+b,当b为何值时,
(1)直线与圆有两个公共点;
(2)直线与圆只有一个公共点.
【解析】方法一:(几何法)
设圆心O(0,0)到直线y=x+b的距离为d,d=|b|12+12=|b|2,半径r=2.
当d<r时,直线与圆相交,|b|2<2,-2<b<2,
所以当-2<b<2时,直线与圆有两个公共点.
当d=r时,直线与圆相切,|b|2=2,b=±2,
所以当b=±2时,直线与圆只有一个公共点.
方法二:(代数法)
联立两个方程得方程组
消去y得2x2+2bx+b2-2=0,Δ=16-4b2.
当Δ>0,即-2<b<2时,有两个公共点;
当Δ=0,即b=±2时,有一个公共点.
【点拨】解决直线与圆的位置关系的问题时,要注意运用数形结合思想,既要运用平面几何中有关圆的性质,又要结合待定系数法运用直线方程中的基本关系,养成勤画图的良好习惯.
【变式训练1】圆2x2+2y2=1与直线xsinθ+y-1=0(θ∈R,θ≠kπ+π2,k∈Z)的位置关系是()
A.相离B.相切C.相交D.不能确定
【解析】选A.易知圆的半径r=22,设圆心到直线的距离为d,则d=1sin2θ+1.
因为θ≠π2+kπ,k∈Z.所以0≤sin2θ<1,
所以22<d≤1,即d>r,所以直线与圆相离.
题型二圆与圆的位置关系的应用
【例2】如果圆C:(x-a)2+(y-a)2=4上总存在两个点到原点的距离为1,求实数a的取值范围.
【解析】到原点的距离等于1的点在单位圆O:x2+y2=1上.当圆C与圆O有两个公共点时,符合题意,故应满足2-1<|OC|<2+1,
所以1<a2+a2<3,即22<|a|<322,
所以-322<a<-22或22<a<322为所求a的范围.
【变式训练2】两圆(x+1)2+(y-1)2=r2和(x-2)2+(y+2)2=R2相交于P,Q两点,若点P的坐标为(1,2),则点Q的坐标为.
【解析】由两圆的方程可知它们的圆心坐标分别为(-1,1),(2,-2),则过它们圆心的直线方程为x-(-1)2-(-1)=y-1-2-1,即y=-x.
根据圆的几何性质可知两圆的交点应关于过它们圆心的直线对称.
故由P(1,2)可得它关于直线y=-x的对称点,即点Q的坐标为(-2,-1).
题型三圆的弦长、中点弦的问题
【例3】已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.
(1)若直线l过点P且被圆C截得的线段长为43,求l的方程;
(2)求圆C内过点P的弦的中点的轨迹方程.
【解析】(1)如图,AB=43,D是AB的中点,则AD=23,AC=4,
在Rt△ADC中,可得CD=2.
设所求直线的斜率为k,则直线的方程为y-5=kx,即kx-y+5=0.由点C到直线的距离公式|-2k-6+5|k2+1=2,
得k=34,此时直线l的方程为3x-4y+20=0.
又直线l的斜率不存在时,也满足题意,此时的方程为x=0.
所以所求直线为x=0或3x-4y+20=0.(也可以用弦长公式求解)
(2)设圆C上过点P的弦的中点为D(x,y),
因为CD⊥PD,所以=0,即(x+2,y-6)(x,y-5)=0,
化简得轨迹方程x2+y2+2x-11y+30=0.
【点拨】在研究与弦的中点有关问题时,注意运用“平方差法”,即设弦AB两端点的坐标分别为A(x1,y1),B(x2,y2),中点为(x0,y0),
由得k=y1-y2x1-x2=-x1+x2y1+y2=-x0y0.
该法常用来解决与弦的中点、直线的斜率有关的问题.
【变式训练3】已知圆的方程为x2+y2-6x-8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()
A.106B.206C.306D.406
【解析】选B.圆的方程化成标准方程(x-3)2+(y-4)2=25,过点(3,5)的最长弦为AC=10,最短弦为BD=252-12=46,S=12ACBD=206.
总结提高
1.解决直线与圆、圆与圆的位置关系有代数法和几何法两种,用几何法解题时要注意抓住圆的几何特征,因此常常要比代数法简捷.例如,求圆的弦长公式比较复杂,利用l=2R2-d2(R表示圆的半径,d表示弦心距)求弦长比代数法要简便.
2.处理直线与圆,圆与圆的位置关系,要全面地考查各种位置关系,防止漏解,如设切线为点斜式,要考虑斜率不存在的情况是否合题意,两圆相切应考虑外切和内切两种情况.
3.处理直线与圆的位置关系时,特别是有关交点问题时,为避免计算量过大,常采用“设而不求”的方法.
8.5直线与圆的综合应用
典例精析
题型一直线和圆的位置关系的应用
【例1】已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4(m∈R).
(1)求证:不论m为何值,直线l恒过定点;
(2)判断直线l与圆C的位置关系;
(3)求直线l被圆截得的弦长最短时的弦长及此时直线的方程.
【解析】(1)证明:直线方程可写作x+y-4+m(2x+y-7)=0,
由方程组可得
所以不论m取何值,直线l恒过定点(3,1).
(2)由(3-1)2+(1-2)2=5<5,
故点(3,1)在圆内,即不论m取何值,直线l总与圆C相交.
(3)由平面几何知识可知,当直线与过点M(3,1)的直径垂直时,弦|AB|最短.
|AB|=2r2-|CM|2=225-[(3-1)2+(1-2)2]=45,
此时k=-1kCM,即-2m+1m+1=-1-12=2,
解得m=-34,代入原直线方程,得l的方程为2x-y-5=0.
【点拨】解决弦长问题时,可利用弦长的几何意义求解.
【变式训练1】若函数f(x)=-1beax的图象在x=0处的切线l与圆C:x2+y2=1相离,则P(a,b)与圆C的位置关系是()
A.在圆外B.在圆内C.在圆上D.不能确定
【解析】选B.f(x)=-1beaxf′(x)=-abeaxf′(0)=-ab.
又f(0)=-1b,所以切线l的方程为y+1b=-ab(x-0),即ax+by+1=0,
由l与圆C:x2+y2=1相离得1a2+b2>1a2+b2<1,即点P(a,b)在圆内,故选B.
题型二和圆有关的对称问题
【例2】设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q关于直线x+my+4=0对称,又满足=0.
(1)求m的值;
(2)求直线PQ的方程.
【解析】(1)曲线方程可化为(x+1)2+(y-3)2=9,是圆心为(-1,3),半径为3的圆.
因为点P,Q在圆上且关于直线x+my+4=0对称,
所以圆心(-1,3)在直线x+my+4=0上,代入得m=-1.
(2)因为直线PQ与直线y=x+4垂直,所以设P(x1,y1),Q(x2,y2),
则直线PQ的方程为y=-x+b.将直线y=-x+b代入圆的方程,得2x2+2(4-b)x+b2-6b+1=0,Δ=4(4-b)2-4×2(b2-6b+1)>0,解得2-32<b<2+32.
x1+x2=b-4,x1x2=b2-6b+12,
y1y2=(-x1+b)(-x2+b)=b2-b(x1+x2)+x1x2=b2+2b+12,
因为=0,所以x1x2+y1y2=0,
即b2-6b+12+b2+2b+12=0,得b=1.
故所求的直线方程为y=-x+1.
【点拨】平面向量与圆的交汇是平面解析几何的一个热点内容,解题时,一方面要能够正确地分析用向量表达式给出的题目的条件,将它们转化为图形中相应的位置关系,另一方面还要善于运用向量的运算解决问题.
【变式训练2】若曲线x2+y2+x-6y+3=0上两点P、Q满足①关于直线kx-y+4=0对称;②OP⊥OQ,则直线PQ的方程为.
【解析】由①知直线kx-y+4=0过圆心(-12,3),所以k=2,故kPQ=-12.
设直线PQ的方程为y=-12x+t,与圆的方程联立消去y,
得54x2+(4-t)x+t2-6t+3=0.(*)
设P(x1,y1),Q(x2,y2),由于OP⊥OQ,所以x1x2+y1y2=0,
即x1x2+(-12x1+t)(-12x2+t)=0,所以(x1+x2)(-12t)+54x1x2+t2=0.
由(*)知,x1+x2=4(t-4)5,x1x2=4(t2-6t+3)5,代入上式,解得t=32或t=54.
此时方程(*)的判别式Δ>0.从而直线的方程为y=-12x+32或y=-12x+54,
即x+2y-3=0或2x+4y-5=0为所求直线方程.
题型三与圆有关的最值问题
【例3】求与直线x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程.
【解析】曲线x2+y2-12x-12y+54=0可化为
(x-6)2+(y-6)2=18,它表示圆心为(6,6),半径为32的圆.
作出直线x+y-2=0与圆(x-6)2+(y-6)2=18,
由图形可知,当所求圆的圆心在直线y=x上时,半径最小.
设其半径为r,点(6,6)到直线x+y=2的距离为52,所以2r+32=52,即r=2,
点(0,0)到直线x+y=2的距离为2,
所求圆的圆心为(22cos45°,22sin45°),即(2,2),
故所求圆的标准方程为(x-2)2+(y-2)2=2.
【点拨】解决与圆有关的最值问题时,要借助图形的几何性质,利用数形结合求解.
【变式训练3】由直线y=x+1上的点向圆C:(x-3)2+(y+2)2=1引切线,则切线长的最小值为()
A.17B.32C.19D.25
【解析】选A.设M为直线y=x+1上任意一点,过点M的切线长为l,则l=|MC|2-r2,当|MC|2最小时,l最小,此时MC与直线y=x+1垂直,即|MC|2min=(3+2+12)2=18,故l的最小值为17.
总结提高
1.解决直线与圆的综合问题时,一方面,我们要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题,通过代数的计算,使问题得到解决;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,我们要勤动手,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决,即注意圆的几何性质的运用.
2.解决直线与圆的综合问题时,经常要用到距离,因此两点间的距离公式、点到直线的距离公式要熟练掌握,灵活运用.
3.综合运用直线的有关知识解决诸如中心对称、轴对称等一些常见的问题.

延伸阅读

高考数学(理科)一轮复习直线及其方程学案带答案


第九章解析几何
学案47直线及其方程

导学目标:1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线位置的几何要素,掌握直线方程的几种形式,了解斜截式与一次函数的关系.
自主梳理
1.直线的倾斜角与斜率
(1)直线的倾斜角
①定义:当直线l与x轴相交时,我们取x轴作为基准,x轴________与直线l________方向之间所成的角α叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为________.
②倾斜角的范围为______________.
(2)直线的斜率
①定义:一条直线的倾斜角α的________叫做这条直线的斜率,斜率常用小写字母k表示,即k=________,倾斜角是90°的直线斜率不存在.
②过两点的直线的斜率公式:
经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=______________________.
2.直线的方向向量
经过两点P1(x1,y1),P2(x2,y2)的直线的一个方向向量为P1P2→,其坐标为________________,当斜率k存在时,方向向量的坐标可记为(1,k).
3.直线的方程和方程的直线
已知二元一次方程Ax+By+C=0(A2+B2≠0)和坐标平面上的直线l,如果直线l上任意一点的坐标都是方程____________的解,并且以方程Ax+By+C=0的任意一个解作为点的坐标都在__________,就称直线l是方程Ax+By+C=0的直线,称方程Ax+By+C=0是直线l的方程.
4.直线方程的五种基本形式
名称方程适用范围
点斜式不含直线x=x0
斜截式不含垂直于x轴的直线
两点式不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)
截距式不含垂直于坐标轴和过原点的直线
一般式平面直角坐标系内的直线都适用
5.线段的中点坐标公式
若点P1,P2的坐标分别为(x1,y1),(x2,y2),且线段P1P2的中点M的坐标为(x,y),则x=,y=,此公式为线段P1P2的中点坐标公式.
自我检测
1.(2011银川调研)若A(-2,3),B(3,-2),C12,m三点共线,则m的值为()
A.12B.-12C.-2D.2
2.直线l与两条直线x-y-7=0,y=1分别交于P、Q两点,线段PQ的中点为(1,-1),则直线l的斜率为()
A.-32B.32C.23D.-23
3.下列四个命题中,假命题是()
A.经过定点P(x0,y0)的直线不一定都可以用方程y-y0=k(x-x0)表示
B.经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示
C.与两条坐标轴都相交的直线不一定可以用方程xa+yb=1表示
D.经过点Q(0,b)的直线都可以表示为y=kx+b
4.(2011商丘期末)如果AC0,且BC0,那么直线Ax+By+C=0不通过()
A.第一象限B.第二象限
C.第三象限D.第四象限
5.已知直线l的方向向量与向量a=(1,2)垂直,且直线l过点A(1,1),则直线l的方程为()
A.x-2y-1=0B.2x+y-3=0
C.x+2y+1=0D.x+2y-3=0
探究点一倾斜角与斜率

例1已知两点A(-1,-5)、B(3,-2),直线l的倾斜角是直线AB倾斜角的一半,求l的斜率.

变式迁移1直线xsinα-y+1=0的倾斜角的变化范围是()
A.0,π2B.(0,π)
C.-π4,π4D.0,π4∪3π4,π
探究点二直线的方程
例2(2011武汉模拟)过点M(0,1)作直线,使它被两直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M所平分,求此直线方程.

变式迁移2求适合下列条件的直线方程:
(1)经过点P(3,2)且在两坐标轴上的截距相等;
(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍.

探究点三直线方程的应用

例3过点P(2,1)的直线l交x轴、y轴正半轴于A、B两点,求使:
(1)△AOB面积最小时l的方程;
(2)|PA||PB|最小时l的方程.
变式迁移3为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪(如图),另外△EFA内部有一文物保护区不能占用,经测量|AB|=100m,|BC|=80m,|AE|=30m,|AF|=20m,应如何设计才能使草坪面积最大?
探究点四数形结合思想
例4已知实数x,y满足y=x2-2x+2(-1≤x≤1).
试求y+3x+2的最大值与最小值.

变式迁移4直线l过点M(-1,2)且与以点P(-2,-3)、Q(4,0)为端点的线段恒相交,则l的斜率范围是()
A.[-25,5]B.[-25,0)∪(0,5]
C.(-∞,-25]∪[5,+∞)D.[-25,π2)∪(π2,5]
1.要正确理解倾斜角的定义,明确倾斜角的范围为0°≤α180°,熟记斜率公式k=y2-y1x2-x1,该公式与两点顺序无关.已知两点坐标(x1≠x2),根据该公式可以求出经过两点的直线斜率,而x1=x2,y1≠y2时,直线斜率不存在,此时直线的倾斜角为90°.
2.当直线没有斜率(x1=x2)或斜率为0(y1=y2)时,不能用两点式y-y1y2-y1=x-x1x2-x1求直线方程,但都可以写成(x2-x1)(y-y1)=(y2-y1)(x-x1)的形式.直线方程的点斜式、斜截式、两点式、截距式都可以化成一般式,但是有些直线的一般式方程不能化成点斜式、斜截式、两点式或截距式.
3.使用直线方程时,一定要注意限制条件以免解题过程中丢解,如点斜式的使用条件是直线必须有斜率,截距式的使用条件是截距存在且不为零,两点式的使用条件是直线不与坐标轴垂直.
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2011临沂月考)已知直线l经过A(2,1)、B(1,m2)(m∈R)两点,那么直线l的倾斜角的取值范围是()
A.(0,π)B.0,π4∪π2,π
C.0,π4D.π4,π2∪π2,π
2.若直线l:y=kx-3与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是()
A.π6,π3B.π6,π2
C.π3,π2D.π6,π2
3.点P(x,y)在经过A(3,0),B(1,1)两点的直线上,那么2x+4y的最小值是()
A.22B.42
C.16D.不存在
4.(2011宜昌调研)点A(a+b,ab)在第一象限内,则直线bx+ay-ab=0不经过的象限是()
A.第一象限B.第二象限
C.第三象限D.第四象限
5.(2011包头期末)经过点P(2,-1),且在y轴上的截距等于它在x轴上的截距的2倍的直线l的方程为()
A.2x+y=2B.2x+y=4
C.2x+y=3D.2x+y=3或x+2y=0
二、填空题(每小题4分,共12分)
6.过两点A(m2+2,m2-3),B(3-m-m2,2m)的直线l的倾斜角为45°,则m=________.
7.直线x+(a2+1)y+1=0(a∈R)的倾斜角的取值范围是________.
8.设A、B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是________________.
三、解答题(共38分)
9.(12分)已知两点A(-1,2),B(m,3),求:
(1)直线AB的斜率k;
(2)求直线AB的方程;
(3)已知实数m∈-33-1,3-1,求直线AB的倾斜角α的范围.

10.(12分)(2011秦皇岛模拟)已知线段PQ两端点的坐标分别为(-1,1)、(2,2),若直线l:x+my+m=0与线段PQ有交点,求m的范围.
11.(14分)已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2)若直线不经过第四象限,求k的取值范围;
(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程.

学案47直线及其方程
自主梳理
1.(1)①正向向上0°②0°≤α180°(2)①正切值tanα②y2-y1x2-x12.(x2-x1,y2-y1)3.Ax+By+C=0
直线l上4.y-y0=k(x-x0)y=kx+by-y1y2-y1=x-x1x2-x1xa+yb=1(a≠0,b≠0)Ax+By+C=0(A、B不同时为0)5.x1+x22y1+y22
自我检测
1.A2.D3.D4.C5.D
课堂活动区
例1解题导引斜率与倾斜角常与三角函数联系,本题需要挖掘隐含条件,判断角的范围.关键是熟练掌握好根据三角函数值确定角的范围这一类题型.
解设直线l的倾斜角为α,则直线AB的倾斜角为2α,
由题意可知:tan2α=-2--53--1=34,∴2tanα1-tan2α=34.
整理得3tan2α+8tanα-3=0.
解得tanα=13或tanα=-3,∵tan2α=340,
∴0°2α90°,∴0°α45°,∴tanα0,
故直线l的斜率为13.
变式迁移1D[直线xsinα-y+1=0的斜率是k=sinα,
又∵-1≤sinα≤1,∴-1≤k≤1.
当0≤k≤1时,倾斜角的范围是0,π4,
当-1≤k0时,倾斜角的范围是3π4,π.]
例2解题导引(1)对直线问题,要特别注意斜率不存在的情况.
(2)求直线方程常用方法——待定系数法.
待定系数法就是根据所求的具体直线设出方程,然后按照它们满足的条件求出参数.
解过点M且与x轴垂直的直线是y轴,它和两已知直线的交点分别是0,103和(0,8),
显然不满足中点是点M(0,1)的条件.
故可设所求直线方程为y=kx+1,与两已知直线l1、l2分别交于A、B两点,联立方程组y=kx+1,x-3y+10=0,①
y=kx+1,2x+y-8=0,②
由①解得xA=73k-1,由②解得xB=7k+2.
∵点M平分线段AB,∴xA+xB=2xM,
即73k-1+7k+2=0,解得k=-14.
故所求直线方程为x+4y-4=0.
变式迁移2解(1)设直线l在x,y轴上的截距均为a,
若a=0,即l过点(0,0)和(3,2),
∴l的方程为y=23x,即2x-3y=0.
若a≠0,则设l的方程为xa+ya=1,
∵l过点(3,2),∴3a+2a=1,
∴a=5,∴l的方程为x+y-5=0,
综上可知,直线l的方程为2x-3y=0或x+y-5=0.
(2)由已知:设直线y=3x的倾斜角为α,
则所求直线的倾斜角为2α.
∵tanα=3,∴tan2α=2tanα1-tan2α=-34.
又直线经过点A(-1,-3),
因此所求直线方程为y+3=-34(x+1),
即3x+4y+15=0.
例3解题导引先设出A、B所在的直线方程,再求出A、B两点的坐标,表示出△ABO的面积,然后利用相关的数学知识求最值.
确定直线方程可分为两个类型:一是根据题目条件确定点和斜率或确定两点,进而套用直线方程的几种形式,写出方程,此法称直接法;二是利用直线在题目中具有的某些性质,先设出方程(含参数或待定系数),再确定参数值,然后写出方程,这种方法称为间接法.
解设直线的方程为xa+yb=1(a2,b1),
由已知可得2a+1b=1.
(1)∵22a1b≤2a+1b=1,∴ab≥8.
∴S△AOB=12ab≥4.
当且仅当2a=1b=12,
即a=4,b=2时,S△AOB取最小值4,
此时直线l的方程为x4+y2=1,
即x+2y-4=0.
(2)由2a+1b=1,得ab-a-2b=0,变形得(a-2)(b-1)=2,
|PA||PB|
=2-a2+1-022-02+1-b2
=[2-a2+1][1-b2+4]
≥2a-24b-1.
当且仅当a-2=1,b-1=2,
即a=3,b=3时,|PA||PB|取最小值4.
此时直线l的方程为x+y-3=0.
变式迁移3解如图所示建立直角坐标系,则E(30,0),F(0,20),
∴线段EF的方程为x30+y20=1(0≤x≤30).
在线段EF上取点P(m,n),
作PQ⊥BC于点Q,
PR⊥CD于点R,设矩形PQCR的面积为S,
则S=|PQ||PR|=(100-m)(80-n).
又m30+n20=1(0≤m≤30),
∴n=20(1-m30).
∴S=(100-m)(80-20+23m)
=-23(m-5)2+180503(0≤m≤30).
∴当m=5时,S有最大值,这时|EP||PF|=30-55=5.
所以当矩形草坪的两边在BC、CD上,一个顶点在线段EF上,且这个顶点分EF成5∶1时,草坪面积最大.
例4解题导引解决这类问题的关键是弄清楚所求代数式的几何意义,借助数形结合,将求最值问题转化为求斜率取值范围问题,简化了运算过程,收到事半功倍的效果.
解由y+3x+2的几何意义可知,它表示经过定点P(-2,-3)与曲线段AB上任一点(x,y)的直线的斜率k,由图可知:
kPA≤k≤kPB,由已知可得:
A(1,1),B(-1,5),
∴43≤k≤8,
故y+3x+2的最大值为8,最小值为43.
变式迁移4C
[如图,过点M作y轴的平行线与线段PQ相交于点N.
kMP=5,kMQ=-25.
当直线l从MP开始绕M按逆时针方向旋转到MN时,倾斜角在增大,斜率也在增大,这时,k≥5.当直线l从MN开始逆时针旋转到MQ时,
∵正切函数在(π2,π)上仍为增函数,
∴斜率从-∞开始增加,增大到kMQ=-25,
故直线l的斜率范围是(-∞,-25]∪[5,+∞).]
课后练习区
1.B2.B3.B4.C5.D
6.-27.[34π,π)8.x+y-5=0
9.解(1)当m=-1时,
直线AB的斜率不存在;(1分)
当m≠-1时,k=1m+1.(3分)
(2)当m=-1时,AB的方程为x=-1,(5分)
当m≠-1时,AB的方程为y-2=1m+1(x+1),
即y=xm+1+2m+3m+1.(7分)
∴直线AB的方程为x=-1或y=xm+1+2m+3m+1.
(8分)
(3)①当m=-1时,α=π2;
②当m≠-1时,
∵k=1m+1∈(-∞,-3]∪33,+∞,
∴α∈π6,π2∪π2,2π3.(10分)
综合①②,知直线AB的倾斜角
α∈π6,2π3.(12分)
10.
解直线x+my+m=0恒过A(0,-1)点.(2分)
kAP=-1-10+1=-2,
kAQ=-1-20-2=32,(5分)
则-1m≥32或-1m≤-2,
∴-23≤m≤12且m≠0.(9分)
又m=0时直线x+my+m=0与线段PQ有交点,
∴所求m的范围是-23≤m≤12.(12分)
11.(1)证明直线l的方程是:k(x+2)+(1-y)=0,
令x+2=01-y=0,解之得x=-2y=1,
∴无论k取何值,直线总经过定点(-2,1).(4分)
(2)解由方程知,当k≠0时直线在x轴上的截距为-1+2kk,在y轴上的截距为1+2k,要使直线不经过第四象限,则必须有-1+2kk≤-21+2k≥1,解之得k0;(7分)
当k=0时,直线为y=1,符合题意,故k≥0.(9分)
(3)解由l的方程,得A-1+2kk,0,
B(0,1+2k).依题意得-1+2kk0,1+2k0,
解得k0.(11分)
∵S=12|OA||OB|
=121+2kk|1+2k|
=121+2k2k=124k+1k+4≥12×(2×2+4)=4,
“=”成立的条件是k0且4k=1k,
即k=12,
∴Smin=4,此时l:x-2y+4=0.(14分)

高考数学(理科)一轮复习直线、圆的位置关系学案有答案


经验告诉我们,成功是留给有准备的人。作为高中教师准备好教案是必不可少的一步。教案可以让上课时的教学氛围非常活跃,有效的提高课堂的教学效率。你知道怎么写具体的高中教案内容吗?小编经过搜集和处理,为您提供高考数学(理科)一轮复习直线、圆的位置关系学案有答案,相信能对大家有所帮助。

学案50直线、圆的位置关系

导学目标:1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.在学习过程中,体会用代数方法处理几何问题的思想.
自主梳理
1.直线与圆的位置关系
位置关系有三种:________、________、________.
判断直线与圆的位置关系常见的有两种方法:
(1)代数法:利用判别式Δ,即直线方程与圆的方程联立方程组消去x或y整理成一元二次方程后,计算判别式Δ
(2)几何法:利用圆心到直线的距离d和圆半径r的大小关系:
dr________,d=r________,dr________.
2.圆的切线方程
若圆的方程为x2+y2=r2,点P(x0,y0)在圆上,则过P点且与圆x2+y2=r2相切的切线方程为____________________________.
注:点P必须在圆x2+y2=r2上.
经过圆(x-a)2+(y-b)2=r2上点P(x0,y0)的切线方程为________________________.
3.计算直线被圆截得的弦长的常用方法
(1)几何方法
运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.
(2)代数方法
运用韦达定理及弦长公式
|AB|=1+k2|xA-xB|
=1+k2[xA+xB2-4xAxB].
说明:圆的弦长、弦心距的计算常用几何方法.
4.圆与圆的位置关系
(1)圆与圆的位置关系可分为五种:________、________、________、________、________.
判断圆与圆的位置关系常用方法:
(几何法)设两圆圆心分别为O1、O2,半径为r1、r2(r1≠r2),则|O1O2|r1+r2________;|O1O2|=r1+r2______;|r1-r2||O1O2|r1+r2________;|O1O2|=|r1-r2|________;0≤|O1O2||r1-r2|??________.
(2)已知两圆x2+y2+D1x+E1y+F1=0和x2+y2+D2x+E2y+F2=0相交,则与两圆共交点的圆系方程为________________________________________________________________,其中λ为λ≠-1的任意常数,因此圆系不包括第二个圆.
当λ=-1时,为两圆公共弦所在的直线,方程为(D1-D2)x+(E1-E2)y+(F1-F2)=0.
自我检测
1.(2010江西)直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M,N两点,若|MN|≥23,则k的取值范围是()
A.-34,0
B.-∞,-34∪0,+∞
C.-33,33
D.-23,0
2.圆x2+y2-4x=0在点P(1,3)处的切线方程为()
A.x+3y-2=0B.x+3y-4=0
C.x-3y+4=0D.x-3y+2=0
3.(2011宁夏调研)圆C1:x2+y2+2x+2y-2=0与圆C2:x2+y2-4x-2y+1=0的公切线有且仅有()
A.1条B.2条
C.3条D.4条
4.过点(0,1)的直线与x2+y2=4相交于A、B两点,则|AB|的最小值为()
A.2B.23C.3D.25
5.(2011聊城月考)直线y=x+1与圆x2+y2=1的位置关系是()
A.相切B.相交但直线不过圆心
C.直线过圆心D.相离
探究点一直线与圆的位置关系
例1已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值时点P的坐标.

变式迁移1从圆C:(x-1)2+(y-1)2=1外一点P(2,3)向该圆引切线,求切线的方程及过两切点的直线方程.

探究点二圆的弦长、中点弦问题
例2(2011汉沽模拟)已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.
(1)若直线l过点P且被圆C截得的线段长为43,求l的方程;
(2)求过P点的圆C的弦的中点的轨迹方程.

变式迁移2已知圆C:x2+y2-6x-8y+21=0和直线kx-y-4k+3=0.
(1)证明:不论k取何值,直线和圆总有两个不同交点;
(2)求当k取什么值时,直线被圆截得的弦最短,并求这条最短弦的长.

探究点三圆与圆的位置关系
例3已知圆C1:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0,m为何值时,
(1)圆C1与圆C2相外切;(2)圆C1与圆C2内含.

变式迁移3已知⊙A:x2+y2+2x+2y-2=0,⊙B:x2+y2-2ax-2by+a2-1=0.当a,b变化时,若⊙B始终平分⊙A的周长,求:
(1)⊙B的圆心B的轨迹方程;
(2)⊙B的半径最小时圆的方程.

探究点四综合应用
例4已知圆C:x2+y2-2x+4y-4=0.问在圆C上是否存在两点A、B关于直线y=kx-1对称,且以AB为直径的圆经过原点?若存在,写出直线AB的方程;若不存在,说明理由.

变式迁移4已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1相交于M、N两点.
(1)求实数k的取值范围;
(2)若O为坐标原点,且OM→ON→=12,求k的值.
1.求切线方程时,若知道切点,可直接利用公式;若过圆外一点求切线,一般运用圆心到直线的距离等于半径来求,但注意有两条.
2.解决与弦长有关的问题时,注意运用由半径、弦心距、弦长的一半构成的直角三角形,也可以运用弦长公式.这就是通常所说的“几何法”和“代数法”.
3.判断两圆的位置关系,从圆心距和两圆半径的关系入手.
(满分:75分)

一、选择题(每小题5分,共25分)
1.直线l:y-1=k(x-1)和圆x2+y2-2y=0的位置关系是()
A.相离B.相切或相交
C.相交D.相切
2.(2011珠海模拟)直线3x-y+m=0与圆x2+y2-2x-2=0相切,则实数m等于()
A.3或-3B.-3或33
C.-33或3D.-33或33
3.过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为()
A.3B.2
C.6D.23
4.若圆(x-3)2+(y+5)2=r2上有且仅有两个点到直线4x-3y-2=0的距离为1,则半径r的取值范围是()
A.(4,6)B.[4,6)
C.(4,6]D.[4,6]
5.(2010全国Ⅰ)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么PA→PB→的最小值为()
A.-4+2B.-3+2
C.-4+22D.-3+22

二、填空题(每小题4分,共12分)
6.若圆x2+y2=4与圆x2+y2+2ay-6=0(a0)的公共弦的长为23,则a=________.
7.(2011三明模拟)已知点A是圆C:x2+y2+ax+4y-5=0上任意一点,A点关于直线x+2y-1=0的对称点也在圆C上,则实数a=________.
8.(2011杭州高三调研)设直线3x+4y-5=0与圆C1:x2+y2=4交于A,B两点,若圆C2的圆心在线段AB上,且圆C2与圆C1相切,切点在圆C1的劣弧上,则圆C2的半径的最大值是________.
三、解答题(共38分)
9.(12分)圆x2+y2=8内一点P(-1,2),过点P的直线l的倾斜角为α,直线l交圆于A、B两点.
(1)当α=3π4时,求AB的长;
(2)当弦AB被点P平分时,求直线l的方程.

10.(12分)(2011湛江模拟)自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在直线的方程.

11.(14分)已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.求:
(1)m取何值时两圆外切?
(2)m取何值时两圆内切?
(3)m=45时两圆的公共弦所在直线的方程和公共弦的长.

学案50直线、圆的位置关系
自主梳理
1.相切相交相离(1)相交相切相离(2)相交相切相离2.x0x+y0y=r2(x0-a)(x-a)+(y0-b)(y-b)=r24.(1)相离外切相交内切内含相离外切相交内切内含(2)(x2+y2+D1x+E1y+F1)+λ(x2+y2+D2x+E2y+F2)=0
自我检测
1.A2.D3.B4.B5.B
课堂活动区
例1解题导引(1)过点P作圆的切线有三种类型:
当P在圆外时,有2条切线;
当P在圆上时,有1条切线;
当P在圆内时,不存在.
(2)利用待定系数法设圆的切线方程时,一定要注意直线方程的存在性,有时要进行恰当分类.
(3)切线长的求法:
过圆C外一点P作圆C的切线,切点为M,半径为R,
则|PM|=|PC|2-R2.
解(1)将圆C配方得(x+1)2+(y-2)2=2.
①当直线在两坐标轴上的截距为零时,设直线方程为y=kx,
由|k+2|1+k2=2,解得k=2±6,得y=(2±6)x.
②当直线在两坐标轴上的截距不为零时,
设直线方程为x+y-a=0,
由|-1+2-a|2=2,
得|a-1|=2,即a=-1,或a=3.
∴直线方程为x+y+1=0,或x+y-3=0.
综上,圆的切线方程为y=(2+6)x,或y=(2-6)x,
或x+y+1=0,或x+y-3=0.
(2)由|PO|=|PM|,
得x21+y21=(x1+1)2+(y1-2)2-2,
整理得2x1-4y1+3=0.
即点P在直线l:2x-4y+3=0上.
当|PM|取最小值时,即OP取得最小值,直线OP⊥l,
∴直线OP的方程为2x+y=0.
解方程组2x+y=0,2x-4y+3=0,得点P的坐标为-310,35.
变式迁移1解设圆切线方程为y-3=k(x-2),
即kx-y+3-2k=0,∴1=|k+2-2k|k2+1,
∴k=34,另一条斜率不存在,方程为x=2.
∴切线方程为x=2和3x-4y+6=0.
圆心C为(1,1),∴kPC=3-12-1=2,
∴过两切点的直线斜率为-12,又x=2与圆交于(2,1),
∴过切点的直线为x+2y-4=0.
例2解题导引(1)有关圆的弦长的求法:
已知直线的斜率为k,直线与圆C相交于A(x1,y1),B(x2,y2)两点,点C到l的距离为d,圆的半径为r.
方法一代数法:弦长|AB|=1+k2|x2-x1|
=1+k2x1+x22-4x1x2;
方法二几何法:弦长|AB|=2r2-d2.
(2)有关弦的中点问题:
圆心与弦的中点连线和已知直线垂直,利用这条性质可确定某些等量关系.
解(1)方法一
如图所示,|AB|=43,取AB的中点D,连接CD,则CD⊥AB,连接AC、BC,
则|AD|=23,|AC|=4,
在Rt△ACD中,可得|CD|=2.
当直线l的斜率存在时,设所求直线的斜率为k,则直线的方程为y-5=kx,即kx-y+5=0.
由点C到直线AB的距离公式,得|-2k-6+5|k2+-12=2,
解得k=34.
当k=34时,直线l的方程为3x-4y+20=0.
又直线l的斜率不存在时,也满足题意,此时方程为x=0.
∴所求直线的方程为3x-4y+20=0或x=0.
方法二当直线l的斜率存在时,
设所求直线的斜率为k,
则直线的方程为y-5=kx,即y=kx+5.
联立直线与圆的方程y=kx+5,x2+y2+4x-12y+24=0,
消去y,得(1+k2)x2+(4-2k)x-11=0.①
设方程①的两根为x1,x2,
由根与系数的关系,得x1+x2=2k-41+k2,x1x2=-111+k2.②
由弦长公式,得1+k2|x1-x2|
=1+k2[x1+x22-4x1x2]=43.
将②式代入,解得k=34,
此时直线方程为3x-4y+20=0.
又k不存在时也满足题意,此时直线方程为x=0.
∴所求直线的方程为x=0或3x-4y+20=0.
(2)设过P点的圆C的弦的中点为D(x,y),
则CD⊥PD,即CD→PD→=0,
(x+2,y-6)(x,y-5)=0,
化简得所求轨迹方程为x2+y2+2x-11y+30=0.
变式迁移2(1)证明由kx-y-4k+3=0,
得(x-4)k-y+3=0.
∴直线kx-y-4k+3=0过定点P(4,3).
由x2+y2-6x-8y+21=0,
即(x-3)2+(y-4)2=4,
又(4-3)2+(3-4)2=24.
∴直线和圆总有两个不同的交点.
(2)解kPC=3-44-3=-1.
可以证明与PC垂直的直线被圆所截得的弦AB最短,因此过P点斜率为1的直线即为所求,其方程为y-3=x-4,即x-y-1=0.|PC|=|3-4-1|2=2,
∴|AB|=2|AC|2-|PC|2=22.
例3解题导引圆和圆的位置关系,从交点个数也就是方程组解的个数来判断,有时得不到确切的结论,通常还是从圆心距d与两圆半径和、差的关系入手.
解对于圆C1与圆C2的方程,经配方后
C1:(x-m)2+(y+2)2=9;
C2:(x+1)2+(y-m)2=4.
(1)如果C1与C2外切,
则有m+12+-2-m2=3+2.
(m+1)2+(m+2)2=25.
m2+3m-10=0,解得m=-5或m=2.
(2)如果C1与C2内含,
则有m+12+m+223-2.
(m+1)2+(m+2)21,m2+3m+20,
得-2m-1,
∴当m=-5或m=2时,圆C1与圆C2外切;
当-2m-1时,圆C1与圆C2内含.
变式迁移3解(1)两圆方程相减得公共弦方程
2(a+1)x+2(b+1)y-a2-1=0.①
依题意,公共弦应为⊙A的直径,
将(-1,-1)代入①得a2+2a+2b+5=0.②
设圆B的圆心为(x,y),∵x=ay=b,
∴其轨迹方程为x2+2x+2y+5=0.
(2)⊙B方程可化为(x-a)2+(y-b)2=1+b2.
由②得b=-12[(a+1)2+4]≤-2,
∴b2≥4,b2+1≥5.当a=-1,b=-2时,⊙B半径最小,
∴⊙B方程为(x+1)2+(y+2)2=5.
例4解题导引这是一道探索存在性问题,应先假设存在圆上两点关于直线对称,由垂径定理可知圆心应在直线上,以AB为直径的圆经过原点O,应联想直径所对的圆周角为直角利用斜率或向量来解决.因此能否将问题合理地转换是解题的关键.
解圆C的方程可化为(x-1)2+(y+2)2=9,
圆心为C(1,-2).
假设在圆C上存在两点A、B,则圆心C(1,-2)在直线y=kx-1上,即k=-1.
于是可知,kAB=1.
设lAB:y=x+b,代入圆C的方程,
整理得2x2+2(b+1)x+b2+4b-4=0,
Δ=4(b+1)2-8(b2+4b-4)0,b2+6b-90,
解得-3-32b-3+32.
设A(x1,y1),B(x2,y2),
则x1+x2=-b-1,x1x2=12b2+2b-2.
由OA⊥OB,知x1x2+y1y2=0,
也就是x1x2+(x1+b)(x2+b)=0,
∴2x1x2+b(x1+x2)+b2=0,
∴b2+4b-4-b2-b+b2=0,化简得b2+3b-4=0,
解得b=-4或b=1,均满足Δ0.
即直线AB的方程为x-y-4=0,或x-y+1=0.
变式迁移4解(1)方法一∵直线l过点A(0,1)且斜率为k,
∴直线l的方程为y=kx+1.
将其代入圆C:(x-2)2+(y-3)2=1,
得(1+k2)x2-4(1+k)x+7=0.①
由题意:Δ=[-4(1+k)]2-4×(1+k2)×70,
得4-73k4+73.
方法二同方法一得直线方程为y=kx+1,
即kx-y+1=0.
又圆心到直线距离d=|2k-3+1|k2+1=|2k-2|k2+1,
∴d=|2k-2|k2+11,解得4-73k4+73.
(2)设M(x1,y1),N(x2,y2),则由①得x1+x2=4+4k1+k2x1x2=71+k2,
∴OM→ON→=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1
=4k1+k1+k2+8=12k=1(经检验符合题意),∴k=1.
课后练习区
1.C2.C3.D4.A5.D
6.17.-108.1
9.解(1)当α=3π4时,kAB=-1,
直线AB的方程为y-2=-(x+1),即x+y-1=0.(3分)
故圆心(0,0)到AB的距离d=|0+0-1|2=22,
从而弦长|AB|=28-12=30.(6分)
(2)设A(x1,y1),B(x2,y2),
则x1+x2=-2,y1+y2=4.由x21+y21=8,x22+y22=8,
两式相减得(x1+x2)(x1-x2)+(y1+y2)(y1-y2)=0,
即-2(x1-x2)+4(y1-y2)=0,
∴kAB=y1-y2x1-x2=12.(10分)
∴直线l的方程为y-2=12(x+1),
即x-2y+5=0.(12分)
10.
解已知圆C:x2+y2-4x-4y+7=0关于x轴对称的圆为C1:(x-2)2+(y+2)2=1,其圆心C1的坐标为(2,-2),半径为1,由光的反射定律知,入射光线所在直线方程与圆C1相切.(4分)
设l的方程为y-3=k(x+3),则
|5k+2+3|12+k2=1,(8分)
即12k2+25k+12=0.∴k1=-43,k2=-34.
则l的方程为4x+3y+3=0或3x+4y-3=0.
(12分)
11.解两圆的标准方程分别为
(x-1)2+(y-3)2=11,(x-5)2+(y-6)2=61-m,
圆心分别为M(1,3),N(5,6),
半径分别为11和61-m.
(1)当两圆外切时,5-12+6-32=11+61-m.
解得m=25+1011.(4分)
(2)当两圆内切时,因定圆的半径11小于两圆圆心间距离,故只有61-m-11=5.
解得m=25-1011.(8分)
(3)两圆的公共弦所在直线的方程为
(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,
即4x+3y-23=0.(12分)
由圆的半径、弦长、弦心距间的关系,不难求得公共弦的长为
2×112-|4+3×3-23|42+322=27.(14分)

高三理科数学复数总复习教学案


一位优秀的教师不打无准备之仗,会提前做好准备,作为教师准备好教案是必不可少的一步。教案可以让学生们充分体会到学习的快乐,帮助教师缓解教学的压力,提高教学质量。优秀有创意的教案要怎样写呢?为了让您在使用时更加简单方便,下面是小编整理的“高三理科数学复数总复习教学案”,希望能为您提供更多的参考。

第十五章复数

高考导航

考试要求重难点击命题展望
1.理解复数的基本概念、复数相等的充要条件.
2.了解复数的代数表示法及其几何意义.
3.会进行复数代数形式的四则运算.了解复数的代数形式的加、减运算及其运算的几何意义.
4.了解从自然数系到复数系的关系及扩充的基本思想,体会理性思维在数系扩充中的作用.本章重点:1.复数的有关概念;2.复数代数形式的四则运算.
本章难点:运用复数的有关概念解题.近几年高考对复数的考查无论是试题的难度,还是试题在试卷中所占比例都是呈下降趋势,常以选择题、填空题形式出现,多为容易题.在复习过程中,应将复数的概念及运算放在首位.

知识网络

15.1复数的概念及其运算

典例精析
题型一复数的概念
【例1】(1)如果复数(m2+i)(1+mi)是实数,则实数m=;
(2)在复平面内,复数1+ii对应的点位于第象限;
(3)复数z=3i+1的共轭复数为z=.
【解析】(1)(m2+i)(1+mi)=m2-m+(1+m3)i是实数1+m3=0m=-1.
(2)因为1+ii=i(1+i)i2=1-i,所以在复平面内对应的点为(1,-1),位于第四象限.
(3)因为z=1+3i,所以z=1-3i.
【点拨】运算此类题目需注意复数的代数形式z=a+bi(a,b∈R),并注意复数分为实数、虚数、纯虚数,复数的几何意义,共轭复数等概念.
【变式训练1】(1)如果z=1-ai1+ai为纯虚数,则实数a等于()
A.0B.-1C.1D.-1或1
(2)在复平面内,复数z=1-ii(i是虚数单位)对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
【解析】(1)设z=xi,x≠0,则
xi=1-ai1+ai1+ax-(a+x)i=0或故选D.
(2)z=1-ii=(1-i)(-i)=-1-i,该复数对应的点位于第三象限.故选C.
题型二复数的相等
【例2】(1)已知复数z0=3+2i,复数z满足zz0=3z+z0,则复数z=;
(2)已知m1+i=1-ni,其中m,n是实数,i是虚数单位,则m+ni=;
(3)已知关于x的方程x2+(k+2i)x+2+ki=0有实根,则这个实根为,实数k的值为.
【解析】(1)设z=x+yi(x,y∈R),又z0=3+2i,
代入zz0=3z+z0得(x+yi)(3+2i)=3(x+yi)+3+2i,
整理得(2y+3)+(2-2x)i=0,
则由复数相等的条件得
解得所以z=1-.
(2)由已知得m=(1-ni)(1+i)=(1+n)+(1-n)i.
则由复数相等的条件得
所以m+ni=2+i.
(3)设x=x0是方程的实根,代入方程并整理得
由复数相等的充要条件得
解得或
所以方程的实根为x=2或x=-2,
相应的k值为k=-22或k=22.
【点拨】复数相等须先化为z=a+bi(a,b∈R)的形式,再由相等得实部与实部相等、虚部与虚部相等.
【变式训练2】(1)设i是虚数单位,若1+2i1+i=a+bi(a,b∈R),则a+b的值是()
A.-12B.-2C.2D.12
(2)若(a-2i)i=b+i,其中a,b∈R,i为虚数单位,则a+b=.
【解析】(1)C.1+2i1+i=(1+2i)(1-i)(1+i)(1-i)=3+i2,于是a+b=32+12=2.
(2)3.2+ai=b+ia=1,b=2.
题型三复数的运算
【例3】(1)若复数z=-12+32i,则1+z+z2+z3+…+z2008=;
(2)设复数z满足z+|z|=2+i,那么z=.
【解析】(1)由已知得z2=-12-32i,z3=1,z4=-12+32i=z.
所以zn具有周期性,在一个周期内的和为0,且周期为3.
所以1+z+z2+z3+…+z2008
=1+z+(z2+z3+z4)+…+(z2006+z2007+z2008)
=1+z=12+32i.
(2)设z=x+yi(x,y∈R),则x+yi+x2+y2=2+i,
所以解得所以z=+i.
【点拨】解(1)时要注意x3=1(x-1)(x2+x+1)=0的三个根为1,ω,ω-,
其中ω=-12+32i,ω-=-12-32i,则
1+ω+ω2=0,1+ω-+ω-2=0,ω3=1,ω-3=1,ωω-=1,ω2=ω-,ω-2=ω.
解(2)时要注意|z|∈R,所以须令z=x+yi.
【变式训练3】(1)复数11+i+i2等于()
A.1+i2B.1-i2C.-12D.12
(2)(2010江西鹰潭)已知复数z=23-i1+23i+(21-i)2010,则复数z等于()
A.0B.2C.-2iD.2i
【解析】(1)D.计算容易有11+i+i2=12.
(2)A.
总结提高
复数的代数运算是重点,是每年必考内容之一,复数代数形式的运算:①加减法按合并同类项法则进行;②乘法展开、除法须分母实数化.因此,一些复数问题只需设z=a+bi(a,b∈R)代入原式后,就可以将复数问题化归为实数问题来解决.

高三理科数学算法初步总复习教学案


第十一章算法初步

高考导航

考试要求重难点击命题展望
1.了解算法的含义,了解算法的思想.
2.理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.
3.理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.
4.了解几个古代的算法案例,能用辗转相除法及更相减损术求最大公约数;用秦九韶算法求多项式的值;了解进位制,会进行不同进位制之间的转化.本章重点:1.算法的三种基本逻辑结构即顺序结构、条件结构和循环结构;2.输入语句、输出语句、赋值语句、条件语句、循环语句(两种形式)的结构、作用与功能及各种语句的格式要求.
本章难点:1.用自然语言表示算法和运用程序框图表示算法;2.用算法的基本思想编写程序解决简单问题.弄清三种基本逻辑结构的区别,把握程序语言中所包含的一些基本语句结构.算法初步作为数学新增部分,在高考中一定会体现出它的重要性和实用性.
高考中将重点考查对变量赋值的理解和掌握、对条件结构和循环结构的灵活运用,学会根据要求画出程序框图;预计高考中,将考查程序框图、循环结构和算法思想,并结合函数与数列考查逻辑思维能力.因此算法知识与其他知识的结合将是高考的重点,这也恰恰体现了算法的普遍性、工具性,当然难度不会太大,重在考查算法的概念及其思想.
1.以选择题、填空题为主,重点考查算法的含义、程序框图、基本算法语句以及算法案例等内容.
2.解答题中可要求学生设计一个计算的程序并画出程序框图,能很好地考查学生分析问题、解决问题的能力.

知识网络

11.1算法的含义与程序框图
典例精析
题型一算法的含义
【例1】已知球的表面积是16π,要求球的体积,写出解决该问题的一个算法.
【解析】算法如下:
第一步,s=16π.
第二步,计算R=s4π.
第三步,计算V=4πR33.
第四步,输出V.
【点拨】给出一个问题,设计算法应该注意:
(1)认真分析问题,联系解决此问题的一般数学方法,此问题涉及到的各种情况;
(2)将此问题分成若干个步骤;
(3)用简练的语句将各步表述出来.
【变式训练1】设计一个计算1×3×5×7×9×11×13的算法.图中给出程序的一部分,则在横线①上不能填入的数是()
A.13
B.13.5
C.14
D.14.5
【解析】当I<13成立时,只能运算
1×3×5×7×9×11.故选A.

题型二程序框图
【例2】图一是某县参加2010年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数).图二是统计图一中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是()
A.i<6?B.i<7?C.i<8?D.i<9?
图一

【解析】根据题意可知,i的初始值为4,输出结果应该是A4+A5+A6+A7,因此判断框中应填写i<8?,选C.
【点拨】本题的命题角度较为新颖,信息量较大,以条形统计图为知识点进行铺垫,介绍了算法流程图中各个数据的引入来源,其考查点集中于循环结构的终止条件的判断,考查了学生合理地进行推理与迅速作出判断的解题能力,解本题的过程中不少考生误选A,实质上本题中的数据并不大,考生完全可以直接从头开始限次按流程图循环观察,依次写出每次循环后的变量的赋值,即可得解.
【变式训练2】(2009辽宁)某店一个月的收入和支出,总共记录了N个数据a1,a2,…,aN.其中收入记为正数,支出记为负数,该店用如图所示的程序框图计算月总收入S和月净盈利V,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的()
A.A>0?,V=S-T
B.A<0?,V=S-T
C.A>0?,V=S+T
D.A<0?,V=S+T
【解析】选C.
题型三算法的条件结构
【例3】某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:
f=
其中f(单位:元)为托运费,ω为托运物品的重量(单位:千克),试写出一个计算费用f的算法,并画出相应的程序框图.
【解析】算法如下:
第一步,输入物品重量ω.
第二步,如果ω≤50,那么f=0.53ω,
否则,f=50×0.53+(ω-50)×0.85.
第三步,输出托运费f.
程序框图如图所示.
【点拨】求分段函数值的算法应用到条件结构,因此在程序框图的画法中需要引入判断框,要根据题目的要求引入判断框的个数,而判断框内的条件不同,对应的框图中的内容或操作就相应地进行变化.
【变式训练3】(2010天津)阅读如图的程序框图,若输出s的值为-7,则判断框内可填写()
A.i<3?
B.i<4?
C.i<5?
D.i<6?
【解析】i=1,s=2-1=1;
i=3,s=1-3=-2;
i=5,s=-2-5=-7.所以选D.
题型四算法的循环结构
【例4】设计一个计算10个数的平均数的算法,并画出程序框图.
【解析】算法步骤如下:
第一步,令S=0.
第二步,令I=1.
第三步,输入一个数G.
第四步,令S=S+G.
第五步,令I=I+1.
第六步,若I>10,转到第七步,
若I≤10,转到第三步.
第七步,令A=S/10.
第八步,输出A.
据上述算法步骤,程序框图如图.
【点拨】(1)引入变量S作为累加变量,引入I为计数变量,对于这种多个数据的处理问题,可通过循环结构来达到;(2)计数变量用于记录循环次数,同时它的取值还用于判断循环是否终止,累加变量用于输出结果.
【变式训练4】设计一个求1×2×3×…×10的程序框图.
【解析】程序框图如下面的图一或图二.
图一图二

总结提高
1.给出一个问题,设计算法时应注意:
(1)认真分析问题,联系解决此问题的一般数学方法;
(2)综合考虑此类问题中可能涉及的各种情况;
(3)借助有关的变量或参数对算法加以表述;
(4)将解决问题的过程划分为若干个步骤;
(5)用简练的语言将各个步骤表示出来.
2.循环结构有两种形式,即当型和直到型,这两种形式的循环结构在执行流程上有所不同,当型循环是当条件满足时执行循环体,不满足时退出循环体;而直到型循环则是当条件不满足时执行循环体,满足时退出循环体.所以判断框内的条件,是由两种循环语句确定的,不得随便更改.
3.条件结构主要用在一些需要依据条件进行判断的算法中.如分段函数的求值,数据的大小关系等问题的算法设计.

11.2基本算法语句

典例精析
题型一输入、输出与赋值语句的应用
【例1】阅读程序框图(如下图),若输入m=4,n=6,则输出a=,i=.
【解析】a=12,i=3.
【点拨】赋值语句是一种重要的基本语句,也是程序必不可少的重要组成部分,使用赋值语句,要注意其格式要求.
【变式训练1】(2010陕西)如图是求样本x1,x2,…,x10的平均数的程序框图,则图中空白框中应填入的内容为()
A.S=S+xnB.S=S+xnnC.S=S+nD.S=S+1n
【解析】因为此步为求和,显然为S=S+xn,故选A.
题型二循环语句的应用
【例2】设计算法求11×2+12×3+13×4+…+199×100的值.要求画出程序框图,写出用基本语句编写的程序.
【解析】这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.程序框图如下图所示:
程序如下:
s=0
k=1
DO
s=s+1/(k*(k+1))
k=k+1
LOOPUNTILk>99
PRINTs
END
【点拨】(1)在用WHILE语句和UNTIL语句编写程序解决问题时,一定要注意格式和条件的表述方法,WHILE语句是当条件满足时执行循环体,UNTIL语句是当条件不满足时执行循环体.
(2)在解决一些需要反复执行的运算任务,如累加求和、累乘求积等问题中应注意考虑利用循环语句来实现.
(3)在循环语句中,也可以嵌套条件语句,甚至是循环语句,此时需要注意嵌套的这些语句,保证语句的完整性,否则就会造成程序无法执行.

【变式训练2】下图是输出某个有限数列各项的程序框图,则该框图所输出的最后一个数据是.

【解析】由程序框图可知,当N=1时,A=1;N=2时,A=13;N=3时,A=15,…,即输出各个A值的分母是以1为首项以2为公差的等差数列,故当N=50时,A=11+(50-1)×2=199,即为框图最后输出的一个数据.故填199.
题型三算法语句的实际应用
【例3】某电信部门规定:拨打市内电话时,如果通话时间3分钟以内,收取通话费0.2元,如果通话时间超过3分钟,则超过部分以每分钟0.1元收取通话费(通话不足1分钟时按1分钟计算).试设计一个计算通话费用的算法,要求写出算法,编写程序.
【解析】我们用c(单位:元)表示通话费,t(单位:分钟)表示通话时间,
则依题意有
算法步骤如下:
第一步,输入通话时间t.
第二步,如果t≤3,那么c=0.2;否则c=0.2+0.1×[t-2].
第三步,输出通话费用c.
程序如下:
INPUTt
IFt<3THEN
c=0.2
ELSE
c=0.2+0.1*INT(t-2)
ENDIF
PRINTc
END
【点拨】在解决实际问题时,要正确理解其中的算法思想,根据题目写出其关系式,再写出相应的算法步骤,画出程序框图,最后准确地编写出程序,同时要注意结合题意加深对算法的理解.
【变式训练3】(2010江苏)下图是一个算法流程图,则输出S的值是.
【解析】n=1时,S=3;n=2时,S=3+4=7;n=3时,S=7+8=15;n=4时,S=15+24=31;n=5时,S=31+25=63.因为63≥33,所以输出的S值为63.
总结提高
1.输入、输出语句可以设计提示信息,加引号表示出来,与变量之间用分号隔开.
2.赋值语句的赋值号左边只能是变量而不能是表达式;赋值号左右两边不能对换,不能利用赋值语句进行代数式计算,利用赋值语句可以实现两个变量值的互换,方法是引进第三个变量,用三个赋值语句完成.
3.在某些算法中,根据需要,在条件语句的THEN分支或ELSE分支中又可以包含条件语句.遇到这样的问题,要分清内外条件结构,保证结构的完整性.
4.分清WHILE语句和UNTIL语句的格式,在解决一些需要反复执行的运算任务,如累加求和,累乘求积等问题中应主要考虑利用循环语句来实现,但也要结合其他语句如条件语句.
5.编程的一般步骤:
(1)算法分析;(2)画出程序框图;(3)写出程序.

11.3算法案例

典例精析
题型一求最大公约数
【例1】(1)用辗转相除法求840与1764的最大公约数;
(2)用更相减损术求440与556的最大公约数.
【解析】(1)用辗转相除法求840与1764的最大公约数:
1764=840×2+84,
840=84×10+0.
所以840与1764的最大公约数是84.
(2)用更相减损术求440与556的最大公约数:
556-440=116,
440-116=324,
324-116=208,
208-116=92,
116-92=24,
92-24=68,
68-24=44,
44-24=20,
24-20=4,
20-4=16,
16-4=12,
12-4=8,
8-4=4.
所以440与556的最大公约数是4.
【点拨】(1)辗转相除法与更相减损术是求两个正整数的最大公约数的方法,辗转相除法用较大的数除以较小的数,直到大数被小数除尽结束运算,较小的数就是最大公约数;更相减损术是用两数中较大的数减去较小的数,直到所得的差和较小数相等为止,这个较小数就是这两个数的最大公约数.一般情况下,辗转相除法步骤较少,而更相减损术步骤较多,但运算简易,解题时要灵活运用.
(2)两个以上的数求最大公约数,先求其中两个数的最大公约数,再用所得的公约数与其他各数求最大公约数即可.
【变式训练1】求147,343,133的最大公约数.
【解析】先求147与343的最大公约数.
343-147=196,
196-147=49,
147-49=98,
98-49=49,
所以147与343的最大公约数为49.
再求49与133的最大公约数.
133-49=84,
84-49=35,
49-35=14,
35-14=21,
21-14=7,
14-7=7.
所以147,343,133的最大公约数为7.
题型二秦九韶算法的应用
【例2】用秦九韶算法写出求多项式f(x)=1+x+0.5x2+0.01667x3+0.04167x4+0.00833x5在x=-0.2时的值的过程.
【解析】先把函数整理成f(x)=((((0.00833x+0.04167)x+0.16667)x+0.5)x+1)x+1,
按照从内向外的顺序依次进行.
x=-0.2,
a5=0.00833,v0=a5=0.00833;
a4=0.04167,v1=v0x+a4=0.04;
a3=0.01667,v2=v1x+a3=0.00867;
a2=0.5,v3=v2x+a2=0.49827;
a1=1,v4=v3x+a1=0.90035;
a0=1,v5=v4x+a0=0.81993;
所以f(-0.2)=0.81993.
【点拨】秦九韶算法是多项式求值的最优算法,特点是:
(1)将高次多项式的求值化为一次多项式求值;
(2)减少运算次数,提高效率;
(3)步骤重复实施,能用计算机操作.
【变式训练2】用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1当x=2时的值为.
【解析】1397.
题型三进位制之间的转换
【例3】(1)将101111011(2)转化为十进制的数;
(2)将53(8)转化为二进制的数.
【解析】(1)101111011(2)=1×28+0×27+1×26+1×25+1×24+1×23+0×22+1×21+1=379.
(2)53(8)=5×81+3=43.

所以53(8)=101011(2).
【点拨】将k进制数转换为十进制数,关键是先写成幂的积的形式再求和,将十进制数转换为k进制数,用“除k取余法”,余数的书写是由下往上,顺序不能颠倒,k进制化为m进制(k,m≠10),可以用十进制过渡.
【变式训练3】把十进制数89化为三进制数.
【解析】具体的计算方法如下:
89=3×29+2,
29=3×9+2,
9=3×3+0,
3=3×1+0,
1=3×0+1,
所以89(10)=10022(3).
总结提高
1.辗转相除法和更相减损术都是用来求两个数的最大公约数的方法.其算法不同,但二者的原理却是相似的,主要区别是一个是除法运算,一个是减法运算,实质都是一个递推的过程.用秦九韶算法计算多项式的值,关键是正确的将多项式改写,然后由内向外,依次计算求解.
2.将k进制数转化为十进制数的算法和将十进制数转化为k进制数的算法操作性很强,要掌握算法步骤,并熟练转化;要熟练应用“除基数,倒取余,一直除到商为0”.