88教案网

你的位置: 教案 > 高中教案 > 导航 > 高一物理必修一重点知识点:匀变速直线运动速度与时间的关系

高中物理必修一力教案

发表时间:2020-03-02

高一物理必修一重点知识点:匀变速直线运动速度与时间的关系。

一名爱岗敬业的教师要充分考虑学生的理解性,高中教师要准备好教案为之后的教学做准备。教案可以让学生能够听懂教师所讲的内容,帮助高中教师提前熟悉所教学的内容。写好一份优质的高中教案要怎么做呢?为此,小编从网络上为大家精心整理了《高一物理必修一重点知识点:匀变速直线运动速度与时间的关系》,仅供参考,大家一起来看看吧。

高一物理必修一重点知识点:匀变速直线运动速度与时间的关系

一、【概念及公式】

沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动。如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。

s(t)=1/2?at^2+v(0)t=【v(t)^2-v(0)^2】/(2a)={【v(t)+v(0)】/2}*t

v(t)=v(0)+at

其中a为加速度,v(0)为初速度,v(t)为t秒时的速度s(t)为t秒时的位移

速度公式:v=v0+at

位移公式:x=v0t+1/2at2;

位移---速度公式:2ax=v2;-v02;

条件:物体作匀变速直线运动须同时符合下述两条:

受恒外力作用

合外力与初速度在同一直线上。

二、【规律】

瞬时速度与时间的关系:V1=V0+at

位移与时间的关系:s=V0t+1/2?at^2

瞬时速度与加速度、位移的关系:V^2-V0^2=2as

位移公式X=Vot+1/2?at^2=Vo?t(匀速直线运动)

位移公式推导:

⑴由于匀变速直线运动的速度是均匀变化的,故平均速度=(初速度+末速度)/2=中间时刻的瞬时速度

而匀变速直线运动的路程s=平均速度*时间,故s=[(v0+v)/2]?t

利用速度公式v=v0+at,得s=[(v0+v0+at)/2]?t=[v0+at/2]?t=v0?t+1/2?at^2

⑵利用微积分的基本定义可知,速度函数(关于时间)是位移函数的导数,而加速度函数是关于速度函数的导数,写成式子就是ds/dt=v,dv/dt=a,d2s/dt2=a

于是v=∫adt=at+v0,v0就是初速度,可以是任意的常数

进而有s=∫vdt=∫(at+v0)dt=1/2at^2+v0?t+C,(对于匀变速直线运动),显然t=0时,s=0,故这个任意常数C=0,于是有

s=1/2?at^2+v0?t

这就是位移公式。

推论V^2-Vo^2=2ax

平均速度=(初速度+末速度)/2=中间时刻的瞬时速度

△X=aT^2(△X代表相邻相等时间段内位移差,T代表相邻相等时间段的时间长度)

X为位移。

V为末速度

Vo为初速度

三、【初速度为零的匀变速直线运动的比例关系】

⑴重要比例关系

由Vt=at,得Vt∝t.

由s=(at^2)/2,得s∝t^2,或t∝2√s.

由Vt^2=2as,得s∝Vt^2,或Vt∝√s.

⑵基本比例

①第1秒末、第2秒末、……、第n秒末的速度之比

V1:V2:V3……:Vn=1:2:3:……:n。

推导:aT1:aT2:aT3:.....:aTn

②前1秒内、前2秒内、……、前n秒内的位移之比

s1:s2:s3:……sn=1:4:9……:n^2。

推导:1/2?a(T1)^2:1/2?a(T2)^2:1/2?a(T3)^2:......:1/2?a(Tn)^2

③第1个t内、第2个t内、……、第n个t内(相同时间内)的位移之比

xⅠ:xⅡ:xⅢ……:xn=1:3:5:……:(2n-1)。

推导:1/2?a(t)^2:1/2?a(2t)^2-1/2?a(t)^2:1/2?a(3t)^2-1/2?a(2t)^2

④通过前1s、前2s、前3s……、前ns的位移所需时间之比

t1:t2:……:tn=1:√2:√3……:√n。

推导:由s=1/2a(t)^2t1=√2s/at2=√4s/at3=√6s/a

⑤通过第1个s、第2个s、第3个s、……、第n个s(通过连续相等的位移)所需时间之比

tⅠ:tⅡ:tⅢ……tN=1:(√2-1):(√3-√2)……:(√n-√n-1)

推导:t1=√(2s/a)t2=√(2×2s/a)-√(2s/a)=√(2s/a)×(√2-1)t3=√(2×3s/a)-√(2×2s/a)=√(2s/a)×(√3-√2)……注⑵2=4⑶2=9

四、【分类】

在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动;如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。

若速度方向与加速度方向同向(即同号),则是加速运动;若速度方向与加速度方向相反(即异号),则是减速运动

速度无变化(a=0时),若初速度等于瞬时速度,且速度不改变,不增加也不减少,则运动状态为,匀速直线运动;若速度为0,则运动状态为静止。

相关知识

高一物理匀变速直线运动的位移与速度的关系


4匀变速直线运动的位移与速度的关系
整体设计
本节的教学目标是让学生熟练运用匀变速直线运动的位移与速度的关系来解决实际问题.教材先是通过一个例题的求解,利用公式x=v0t+at2和v=v0+at推导出了位移与速度的关系:v2-v02=2ax.到本节为止匀变速直线运动的速度—时间关系、位移—时间关系、位移—速度关系就都学习了.解题过程中应注意对学生思维的引导,分析物理情景并画出运动示意图,选择合适的公式进行求解,并培养学生规范书写的习惯,解答后注意解题规律.学生解题能力的培养有一个循序渐进的过程,注意选取的题目应由浅入深,不宜太急.对于涉及几段直线运动的问题,比较复杂,引导学生把复杂问题变成两段简单问题来解.
教学重点
1.匀变速直线运动的位移—速度关系的推导.
2.灵活应用匀变速直线运动的速度公式、位移公式以及速度—位移公式解决实际问题.
教学难点
1.运用匀变速直线运动的速度公式、位移公式推导出有用的结论.
2.灵活运用所学运动学公式解决实际问题.
课时安排
1课时
三维目标
知识与技能
1.掌握匀变速直线运动的速度—位移公式.
2.会推导公式vt2-v02=2ax.
3.灵活选择合适的公式解决实际问题.
过程与方法
通过解决实际问题,培养学生灵活运用物理规律合理分析、解决问题和实际分析结果的能力.
情感态度与价值观
通过教学活动使学生获得成功的喜悦,培养学生参与物理学习活动的兴趣,提高学习的自信心.
教学过程
导入新课
问题导入
发射枪弹时,枪弹在枪筒中的运动可以看作是匀加速运动.如图2-4-1.如果枪弹的加速度大小是5×105m/s2,枪筒长0.64m,枪弹射出枪口的速度是多大?
图2-4-1子弹加速运动
学生思考得出:由x=at2求出t.再由v=at求出速度.
同学们回答得很好,我们今天可以学习一个新的公式,利用它直接就可求解此问题了.
情境导入
为研究跳高问题,课题研究组的同学小李、小王、小华,在望江楼图书馆的多媒体阅读室里上多媒体宽带网的“世界体坛”网站,点播了当年朱建华破世界纪录的精彩的视频实况录像,如图2-4-2,并展开了相关讨论.
图2-4-2
解说员:“……各位观众你们瞧,中国著名跳高选手朱建华正伸臂、扩胸、压腿做准备活动,他身高1.83米.注意了:他开始助跑、踏跳,只见他身轻如燕,好一个漂亮的背跃式,将身体与杆拉成水平,跃过了2.38米高度,成功了!打破了世界纪录.全场响起雷鸣般的掌声……”
我们能否运用运动学知识求出朱建华离地瞬间的速度?
复习导入
在前面两节我们分别学习了匀变速直线运动的位移与时间的关系、速度与时间的关系.其公式为:v=v0+atx=v0t+at2
若把两式中消去t,可直接得到位移与速度的关系.
这就是今天我们要学习的内容.
推进新课
一、匀变速直线运动的位移与速度关系
问题:(多媒体展示)上两节学习了匀变速直线运动速度—时间关系与位移—时间关系,把两式中的t消去,可得出什么表达式?
学生运用两个公式推导,v=v0+att=①
x=v0t+at2②
把①式代入②式得:
x===v2-v02=2ax
点评:通过学生推导公式可加深学生对公式的理解和运用,培养学生逻辑思维能力.
注意:
1.在v-t关系、xt关系、xv关系式中,除t外,所有物理量皆为矢量,在解题时要确定一个正方向,常选初速度的方向为正方向,其余矢量依据其与v0方向的相同或相反,分别代入“+”“-”号,如果某个量是待求的,可先假定为“+”,最后根据结果的“+”“-”确定实际方向.
2.末速度为零的匀减速直线运动可看成初速度为零,加速度相等的反向匀加速直线运动.
例1某飞机着陆时的速度是216km/h,随后匀减速滑行,加速度的大小是2m/s2.机场的跑道至少要多长才能使飞机安全地停下来?
解析:这是一个匀变速直线运动的问题.以飞机着陆点为原点,沿飞机滑行的方向建立坐标轴(如图2-4-3).
图2-4-3以飞机的着陆点为原点,沿飞机滑行方向建立坐标轴
飞机的初速度与坐标轴的方向一致,取正号,v0=216km/h=60m/s;末速度v应该是0.由于飞机在减速,加速度方向与速度方向相反,即与坐标轴的方向相反,所以加速度取负号,a=-2m/s2.
由v2-v02=2ax解出
x=
把数值代入x==900m
即跑道的长度至少应为900m.
另一种解法:飞机着陆后做匀减速直线运动,并且末速度为零.因此可以看成初速度为零,加速度相等的反向匀加速直线运动.
即v0=0,v=216km/h=60m/s,a=2m/s2
由v2-v02=2at得v2=2ax
解出x==m=900m.
答案:900m
课堂训练
做匀减速直线运动的物体经4s后停止,若在第1s内的位移是14m,则最后1s的位移与4s内的位移各是多少?
不给学生提示,让学生自由发挥,引导学生用多种解法求解此题.学生完成后让学生回答此题的答案及思路.充分调动学生利用物理知识解决实际问题的思维意识.
参考答案:解法一(常规解法)
设初速度为v0,加速度大小为a,由已知条件及公式:
v=v0+at,x=v0t+at2可列方程
解得
最后1s的位移为前4s的位移减前3s的位移.
x1=v0t4-at42-(v0t3-at32)
代入数值x1=[16×4-×4×42-(16×3-×4×32)]m=2m
4s内的位移为:x=v0t+at2=(16×4-×4×16)m=32m.
解法二(逆向思维法)
思路点拨:将时间反演,则上述运动就是一初速度为零的匀加速直线运动.
则14=at42-at32
其中t4=4s,t3=3s,解得a=4m/s2
最后1s内的位移为x1=at12=×4×12m=2m
4s内的位移为x2=at42=×4×42m=32m.
解法三(平均速度求解)
思路点拨:匀变速直线运动中间时刻的瞬时速度等于这段时间内的平均速度.
由第1秒内位移为14m解出v0.5=m/s=14m/s,v4=0
由v4=v0.5+a×3.5得出a=-4m/s2
再由v=v0+at得:v0=16m/s,v3=4m/s
故最后1秒内的位移为:x1=t=×1m=2m
4s内的位移为:x2=t=×4m=32m.
点评:通过用多种方法解决同一问题,可以加深学生对公式的理解,提高学生灵活应用公式解决实际问题的能力.发散学生思维,培养多角度看问题的意识.
小结1:匀变速直线运动问题的解题思路
(1)首先是选择研究对象.分析题意,判断运动性质.是匀速运动还是匀变速运动,加速度方向、位移方向如何等.
(2)建立直角坐标系,通常取v0方向为坐标正方向.并根据题意画草图.
(3)根据已知条件及待求量,选定有关规律列方程.要抓住加速度a这个关键量,因为它是联系各个公式的“桥梁”.为了使解法简便,应尽量避免引入中间变量.
(4)统一单位,求解方程(或方程组).
(5)验证结果,并注意对结果进行有关讨论,验证结果时,可以另辟思路,运用其他解法.
以上各点,弄清运动性质是关键.
小结2:匀变速直线运动问题解题的注意点
注意物理量的矢量性:对运动过程中a、v、x赋值时,应注意它们的正、负号.
(1)匀减速运动:①匀减速运动的位移、速度大小,可以看成反向的匀加速运动来求得;②求匀减速运动的位移,应注意先求出物体到停止运动的时间.
(2)用平均速度解匀变速运动问题:如果问题给出一段位移及对应的时间,就可求出该段的平均速度.因为有关平均速度的方程中,时间t都是一次函数,用平均速度解题一般要方便些.
(3)应用v-t图象作为解题辅助工具
从匀变速直线运动的v-t图象可以得出,物体在任一时刻的速度大小、速度方向、位移大小,可以比较两个物体在同一时刻的速度大小、位移大小.无论选择题、非选择题,v-t图象都可以直观地提供解题的有用信息.
小结3:解题常用的方法
1.应用平均速度.匀变速运动的平均速度=,在时间t内的位移x=t,相当于把一个变速运动转化为一个匀速运动.
2.利用时间等分、位移等分的比例关系.对物体运动的时间和位移进行合理的分割,应用匀变速直线运动及初速度为零的匀变速运动的特殊关系,是研究匀变速运动的重要方法,比用常规方法简捷得多.
3.巧选参考系.物体的运动都是相对一定的参考系而言的.研究地面上物体的运动,常以地面为参考系,有时为了研究的方便,也可以巧妙地选用其他物体作参考系,从而简化求解过程.
4.逆向转换.即逆着原来的运动过程考虑,如火车进站刹车滑行;逆看车行方向考虑时就把原来的一个匀减速运动转化为一个初速为零的匀加速运动.
5.充分利用v-t图象.利用图象斜率、截距、图线与t轴间面积所对应的物理意义,结合几何关系,提取出形象的思维信息,从而帮助解题.
二、追及相遇问题
现实生活中经常会发生追及(如警察抓匪徒)、相遇或避免碰撞(如两车在同一直线上相向或同向运动时)的问题.我们现在就利用物理学知识探究警察能否抓住匪徒、两车能否相遇或避免相撞.
讨论交流:1.解追及、相遇问题的思路
(1)根据对两物体运动过程的分析,画出两物体运动的示意图.
(2)根据两物体的运动性质,分别列出两个物体的位移方程,注意要将两物体运动时间的关系反映在方程中.
(3)由运动示意图找出两物体位移间的关联方程,这是关键.
(4)联立方程求解,并对结果进行简单分析.
2.分析追及、相遇问题时应注意的问题
(1)分析问题时,一定要注意抓住一个条件两个关系,一个条件是两物体速度相等时满足的临界条件,如两物体的距离是最大还是最小,是否恰好追上等.两个关系是时间关系和位移关系,时间关系是指两物体运动时间是否相等,两物体是同时运动还是一先一后等;而位移关系是指两物体同地运动还是一前一后运动等,其中通过画运动示意图找到两物体间的位移关系是解题的突破口,因此在学习中一定要养成画草图分析问题的良好习惯,对帮助我们理解题意,启迪思维大有裨益.
(2)若被追赶的物体做匀减速运动,一定要注意,追上前该物体是否停止运动.
(3)仔细审题,注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”“恰巧”“最多”“至少”等,往往对应一个临界状态,满足相应的临界条件.
3.解决追及相遇问题的方法
大致分为两种方法:一是物理分析法,即通过对物理情景和物理过程的分析,找到临界状态和临界条件,然后列出方程求解;二是数学方法,因为在匀变速运动的位移表达式中有时间的二次方我们可列出位移方程,利用二次函数求极值的方法求解,有时也可借助v-t图象进行分析.
点评:通过该交流讨论,学生可在教师的引导下寻找解决实际问题的思路与方法,以及解决问题时的注意事项,这样可加快学生对理论知识的掌握,为自主地解决问题打下坚实的基础.
例2一辆汽车以3m/s2的加速度开始启动的瞬间,一辆以6m/s的速度做匀速直线运动的自行车恰好从汽车的旁边通过.求:
(1)汽车在追上自行车前多长时间与自行车相距最远?此时的距离是多少?汽车的瞬时速度是多大?
(2)汽车经多长时间追上自行车?追上自行车时汽车的瞬时速度是多大?
(3)作出此过程汽车和自行车的速度—时间图象.
解法一:(物理分析法)
分析:解决追及问题的关键是找出两物体运动中物理量之间的关系.当汽车速度与自行车速度相等时,两者之间的距离最大;当汽车追上自行车时,两者的位移相等.
(1)令v汽=v自,即at=v自,代入数值3t=6得t=2s
Δx=x自-x汽=v首t-at2=(6×2-×3×4)m=6m.
(2)x汽=x自,即at2=v自t,得t=s=s=4s
v汽=at=3×4m/s=12m/s.
(3)见解法二.
解法二:(1)如图2-4-4所示,设汽车在追赶自行车的过程中与自行车的距离为Δx,根据题意:
图2-4-4
Δx=x2-x1=v-t-at2=6t-×3t2=(t-2)2+6
可见Δx是时间的一元二次函数,根据相关的数学知识作出的函数图象如图2-4-5所示.显然当t=2s时汽车与自行车相距最远,最大距离Δxm=6m.此时汽车的速度为:
图2-4-5
v2=at=3×2m/s=6m/s.
(2)汽车追上自行车,即Δx=0
∴(t-2)2+6=0
解得:t=4s
此时汽车的速度为v4=at=3×4m/s=12m/s.
(3)图象如图2-4-6所示.
图2-4-6
点评:通过利用两种方法求解此题,可使学生体会两种方法的优、缺点.法一逻辑思维性强,需要研究运动过程的细节,虽比较麻烦,但可提高学生分析问题的能力;法二是把数学方程与物理过程相结合,把数学结果与物理意义相结合,充分体现了数学方法在解决物理问题中的意义和作用.但数学方法解出的答案需要检验其结果是否符合实际情况.
课堂训练
1.在平直公路上,一辆自行车与同方向行驶的汽车同时经过某点,它们的位移随时间的变化关系是自行车:s1=6t,汽车:s2=10tt2,由此可知:
(1)经过_________时间,自行车追上汽车.
(2)自行车追上汽车时,汽车的速度为_________.
(3)自行车追上汽车的过程中,两者间的最大距离为_________.
解析:(1)由方程可知,自行车以6m/s的速度做匀速直线运动,汽车做初速度为10m/s,加速度为0.5m/s2的匀减速直线运动,自行车若要追上汽车,则位移相同,即
6t=10tt2
t=16s.
(2)vt=v0+at=(10-×16)m/s=2m/s.
(3)当自行车与汽车速度相等时,两者相距最远.
vt=v0+at′=6m/s
10-t′=6m/s
t′=8s
Δs=10t′-t′2-6t′=16m
此题也可用数学方法解决.
Δs=10t-t2-6t=-t2+4t.
将二次函数配方,可得
Δs=-(t-8)2+16.
可见当t=8s时,Δs有最大值为16m.
当Δs=0,即-t2+4t=0时,
t=16s
此时两者相遇,vt=v0-at=2m/s.
答案:(1)16s(2)2m/s(3)16m
2.如图2-4-7所示,处于平直轨道上的甲、乙两物体相距x,同时同向开始运动,甲以初速度v1,加速度a1做匀加速直线运动,乙以初速度为零,加速度a2做匀加速直线运动,下述情况可能发生的是(假定甲能从乙旁边通过互不影响)()
A.a1=a2能相遇一次B.a1>a2能相遇二次
C.a1<a2可能相遇一次D.a1<a2可能相遇二次
图2-4-7
分析:本题属相遇问题,求解方法可以用公式(代数法),分别列出甲、乙的位移方程及相遇时的位移关系方程,再联立求解、讨论.也可以用图象法(几何法),结合v-t图象分析,这种方法很直观,尤其是本题只需进行定性判断,用图象法能迅速求解.
解法一:公式法
设经时间t,甲、乙相遇,时间t内甲、乙位移分别为:
x1=v1t+a1t2①
x2=a2t2②
相遇时位移满足x1=x2+x③
由①②③解得(a1-a2)t2+2v1t-2x=0④
①当a1=a2时,④变为一元一次方程,t有一解t=,即表示甲、乙只相遇一次.
②当a1≠a2时,④为关于时间t的一元二次方程,由求根公式得
t=
当a1>a2时,t的两个根中一正一负,合理解为t>0,故只有一个解,即只能相遇一次.
当a1<a2时,t=
这时解的情况比较复杂.若Δ=4v12+8(a2-a1)x<0,方程无解,即表示不可能相遇.若Δ=0,t有唯一解且t>0,表示相遇一次;若Δ>0,方程有两解,可能两根一正一负,取合理解t>0,故只能相遇一次;也可能两根均为正,表示相遇两次.
根据以上分析,本题选A、C、D.
解法二:图象法
图2-4-8
我们画出满足题给条件的v-t图象.如图2-4-8所示图a对应a1=a2的情况,两条图线平行,两物体仅在t=t1时相遇一次.图中阴影部分面积为x.
图b对应a1>a2的情况,两物体仅在t=t2时相遇一次.
图c对应a1<a2的情况,若在两条图线的交点对应的时刻t3两物体相遇,则仅相遇一次,图中阴影部分面积为x,若图中阴影面积小于x,则甲、乙不可能相遇.若图中阴影部分面积大于x,则可能相遇两次.
如图d,在t4和t4″两个时刻相遇.图中四边形ABCD的面积等于x,在0——t4时间内,甲在后,乙在前,v甲>v乙,甲追赶乙,距离逐渐减小,在t4时刻甲、乙相遇,在t4——t4′时间内,甲在前,乙在后,甲将乙拉得越来越远.t4′——t4″时间内,甲在前,乙在后,v乙>v甲,乙追甲,距离逐渐减小.到t4″时刻甲、乙再次相遇.当t>t4″后,乙在前,甲在后,v乙>v甲,两者距离一直变大,不可能再相遇.图中S△BCE为从第一次相遇后,甲把乙拉开的距离,S△FCD为从t4′起乙追上甲的距离.显然,S△BCE=S△FCD.
答案:ACD
课堂小结
本节课我们利用前两节速度时间关系,位移时间关系推导出了匀变速直线运动的位移与速度的关系.要求同学们能熟练运用此公式求解问题.之后共同总结了如何应用运动学知识求解实际问题,这是本节课的重点,接着探究了追及、相遇问题.重点介绍了处理追及相遇问题的两种方法:物理分析法、数学方法.
布置作业
1.教材第40页“问题与练习”第1、2题.
2.利用两个基本公式进行有关推导,体会各个公式解决问题的优、缺点.
板书设计
4匀变速直线运动的位移与速度的关系
一、位移与速度关系的推导:
二、位移与速度的关系:v2-v02=2ax
三、追及相遇问题
活动与探究
课题:将一个物体以某一初速度v0竖直向上抛出,抛出的物体只受重力作用,这个物体的运动就是竖直上抛运动.竖直上抛运动的加速度大小为g,方向竖直向下,竖直上抛运动是匀变速直线运动.
根据所学匀变速直线运动的有关知识,探究竖直上抛运动的基本规律,以及竖直上抛运动的处理方法.
探究结论:1.竖直上抛运动的基本规律
速度公式:vt=v0-gt
位移公式:h=v0t-gt2
速度位移关系:vt2-v02=-2gh.
2.竖直上抛运动的处理方法
整个竖直上抛运动分为上升和下降两个阶段,但其本质是加速度恒为g的完整的匀变速运动,所以处理时可采用两种方法:
(1)分段法:上升过程是a=-g,vt=0的匀变速直线运动,下落阶段是自由落体运动.
(2)整体法:将全过程看作是初速为v0、加速度是-g的匀变速直线运动,上述三个基本规律直接用于全过程.但必须注意方程的矢量性.习惯上取v0的方向为正方向,则vt>0时正在上升,vt<0时正在下降,h为正时物体在抛出点的上方,h为负时物体在抛出点的下方.
习题详解
1.解答:设初速度为v0,且其方向为正方向.已知:a=-5m/s2,x=22.5m,vt=0
由公式v2-v02=2ax,代入数值0-v02=2×(-5)×22.5
得v0=15m/s=54km/h.
2.解答:此题信息较多,关键是分清物体参与了哪个过程,从而提取解题的有用信息.
在最后匀减速阶段,v0=10m/s,x=1.2m,v=0,求a.
由公式v2-v02=2ax,得a==m/s2=m/s2.
3.解答:设靠自身的发动机起飞需要跑道的长度为x.
由v2-v02=2ax得x==m=500m>100m
故不能靠自身的发动机从舰上起飞.
由v2-v02=2ax得v02=v2-2ax
代入数值v02=(2500-2×5×100)m2/s2=1500m2/s2
得v0=m/s.
设计点评
由于反映匀变速直线运动的规律很多,因此对同一个具体问题往往有许多解法,但不同的解法繁简程度不一样,那么怎样才能恰当地、灵活地选用有关公式,比较简捷地解题呢?本教学设计就是围绕这一问题展开探究的.
先推导出了位移—速度关系.然后与同学们合作探究出解决匀变速直线运动问题的思路、注意点、常用的方法等.接着又通过追及、相遇问题对这些思路、方法进一步加强.引导学生对一道题不妨多用几种解法,并比较各种解法的优劣,多做这种训练,灵活应用公式解决实际问题的能力必定会提高.

匀变速直线运动的速度与时间的关系


作为优秀的教学工作者,在教学时能够胸有成竹,高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生们能够在上课时充分理解所教内容,帮助高中教师缓解教学的压力,提高教学质量。你知道怎么写具体的高中教案内容吗?小编特地为大家精心收集和整理了“匀变速直线运动的速度与时间的关系”,相信您能找到对自己有用的内容。

§2.2匀变速直线运动的速度与时间的关系

【学习目标细解考纲】
1.理解匀变速直线运动的概念。
2.理解匀变速直线运动速度随时间的变化规律。
3.会用公式解决有关问题。
【知识梳理双基再现】
1.如果物体运动的v-t图象是一条平行于时间轴的直线,则该物体的______不随时间变化,该物体所做的运动就是_____________。
2.如图1所示,如果物体运动的v-t图线是一条倾斜直线,表示物体所做的运动是__________。由图象可以看出,对于图线上任一个速度v的变化量Δv,与对应时间内的时间变化量Δt的比值是_____________,即物体的__________保持不变。所以该物体所做的运动是____________的运动。
3.对匀变速直线运动来说,速度v随时间t的变化关系式为___________,其中,若v0=0,则公式变为_____________,若a=0,则公式变为_____________,表示的是_______________运动。
4.在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做______________。其v-t图象应为图2中的__________图,如果物体的速度随着时间均匀减小,这个运动叫做____________,图象应为图2的_____________图。
【小试身手轻松过关】
1.关于直线运动,下述说法中正确的是()
A.匀速直线运动的速度是恒定的,不随时间而改变
B.匀变速直线运动的瞬时速度随时间而改变
C.速度随时间不断增加的运动,叫匀加速直线运动
D.速度随着时间均匀减小的运动,通常叫做匀减速直线运动
2.已知一运动物体的初速度,它表示()
A.物体的加速度方向与速度方向相同,且物体的速度在减小
B.物体的加速度方向与速度方向相同,且物体的速度在增加
C.物体的加速度方向与速度方向相反,且物体的速度在减小
D.物体的加速度方向与速度方向相反,且物体的速度在增加
3.关于图象的下列说法中正确的是()
A.匀速直线运动的速度一时间图象是一条与时间轴平行的直线
B.匀速直线运动的速度一时间图象是一条倾斜的直线
C.匀变速直线运动的速度一时间图象是一条与时间轴平行的直线
D.非匀变速直线运动的速度一时间图象是一条倾斜的直线
4.在公式中,涉及到四个物理量,除时间t是标量外,其余三个v、v0、a都是矢量。在直线运动中这三个矢量的方向都在同一条直线上,当取其中一个量的方向为正方向时,其他两个量的方向与其相同的取正值,与其相反的取负值,若取初速度方向为正方向,则下列说法正确的是()
A.匀加速直线运动中,加速度a取负值
B.匀加速直线运动中,加速度a取正值
C.匀减速直线运动中,加速度a取负值
D.无论匀加速直线运动还是匀减速直线运动,加速度a均取正值
【基础训练锋芒初显】
5.物体做匀加速直线运动,初速度v0=2m/s,加速度a=0.1m/s2,则第3s末的速度是_____m/s,5s末的速度是_________m/s。
6.汽车在平直公路上以10m/s的速度做匀速直线运动,发现前面有情况而刹车,获得的加速度大小是2m/s2,则
(1)汽车在3s末的速度大小是________________m/s;
(2)在5s末的速度大小是________________m/s;
(3)在10s末的速度大小是________________m/s。
7.如图所示是四个做直线运动的物体的速度一时间图象,则做匀加速直线运动的是__________,做匀减速直线运动的是___________,初速度为零的是_____________,做匀速直线运动的是__________。(填图线代号)

8.若汽车加速度方向与速度方向一致,当加速度减小时,则()
A.汽车的速度也减小
B.汽车的速度仍在增大
C.当加速度减小到零时,汽车静止
D.当加速度减小到零时,汽车的速度达到最大
【举一反三能力拓展】
9.升降机从静止开始上升,先做匀加速运动,经过4s速度达到4m/s,然后匀速上升2s,最后3s做匀减速运动,恰好停止下来。试作出v-t图象。

10.如图所示为一物体做匀变速直线运动的v-t图象,试分析物体的速度与加速度的变化特点。
【名师小结感悟反思】
匀变速直线
(1)加速度恒定,即a大小方向均不变。
(2)速度时间图象v-t是倾斜直线,斜率表示加速度。
(3)速度公式
(4)对于已知初速度和加速度的匀减速运动,如果求若干秒时速度,应先判断减速时间。

《匀变速直线运动的速度与时间的关系》教学设计


《匀变速直线运动的速度与时间的关系》教学设计

一、设计思想

本节课从上一节课研究小车的速度随时间变化的v-t图像入手,让学生通过分组讨论,探究图像的形状特点、速度如何变化,加速度如何计算、不同时间段的加速度分别是多少,教师引导得出匀变速直线运动的概念和特点,这一探究过程,增进学生领会v-t图像的物理意义。紧接着通过学生分组讨论探究匀变速直线运动速度时间关系是什么?充分发挥学生自主学习,合作学习的主动性,分组讨论得出匀变速直线运动的速度时间关系v=v0+at.这部分教学,不但使学生认识掌握匀变速直线运动的规律,而且通过对这问题的研究,使学生了解和体会物理学研究问题的方法,图象、公式、以及利用数学方法处理物理问题等。这一点可能对学生更为重要,通过学习过程使学生有所体会。随后通过对两个v-t图像的研究讨论得出匀加速直线运动,若规定初速度的方向为正方向,则a0,匀减速直线运动,若规定初速度的方向为正方向,则a0.从而有利于学生运用v=v0+at解决后面的三道问题。本节在内容的安排顺序上,既注意了科学系统,又注意学生的认识规律。讲解问题从实际出发,尽量用上一节的实验测量数据。运用图象这种数学工具,相对强调了图象的作用和要求。这是与以前教材不同的。在现代生产、生活中,图象的运用随处可见,无论学生将来从事何种工作,掌握最基本的应用图象的知识,都是必须的。学生在初学时往往将数学和物理分割开来,不习惯或不会将已学过的数学工具用于物理当中。在教学中应多在这方面引导学生。本节就是一个较好的机会,将图象及其物理意义联系起来。

二、教学目标

1、知识与技能

(1)掌握匀变速直线运动的概念、运动规律及特点。

(2)掌握匀变速直线运动的速度与时间的关系式,会推导,能进行有关计算。

(3)知道v-t图象的意义,会根据图象分析解决问题。

2、过程与方法

(1)培养学生识别、分析图象和用物理语言表达相关过程的能力。

(2)引导学生研究图象,寻找规律得出匀变速直线运动的概念.

(3)引导学生用数学公式表达物理规律并给出各符号的具体含义.

3、情感态度与价值观

(1)、培养学生用物理语言表达物理规律的意识,激发探索与创新欲望.

(2)体验同一物理规律的不同描述方法,培养科学价值观。

(3)将所学知识与实际生活相联系,增加学生学习的动力和欲望。

三、教学重点

1、理解匀变速直线运动的v-t图象的物理意义。

2、匀变速直线运动的速度与时间的关系式及应用。

教学难点

1、学会用v-t图象分析和解决实际问题。

2、掌握匀变速直线运动的速度与时间的关系式并会运用。

四、教学准备三角板,多媒体课件,编写讲义。

五、教学过程

教学过程

教师活动

学生活动

设计意图

一、创设物理情景,引入新课

2013年6月11日17时38分,神舟十号载人宇宙飞船在酒泉卫星发射中心顺利点火发射升空,经十分钟,速度增加到7.9km/h,生活中想发射火箭这样的变速运动很多,比如火车进站,出站,汽车启动,刹车,物体的下落运动,还有我们上一节课研究的小车在钩码带动下的运动,这些变速运动速度随时间变化有什么样的规律呢?

学生了解生活中的变速运动,思考这些变速运动速度随时间变化有什么规律

让学生了解生活中的变速直线运动,引发学生探究欲望。

二、进行

新课

1.匀变速直线运动的定义

合作探究一

出示上节小车在重物牵引下运动v-t图象

v/ms-1

t/s

0

5

10

15

10

20

30

40

50

组织学生总结图象特点,引导学生继续思考加速度与直线的倾斜程度的关系。

教师引导学生概括小车运动的特点,明确运动的性质

学生分组讨论:

⑴图象的形状特点

⑵速度如何变化的

⑶加速度如何计算(4)0-5s,5s-10s,5s-15s的加速度分别是多少?

(5)小车做的是什么样的运动?

学生观察,分组讨论图象特点

学生总结汇报,思考问题

学生在教师指导下得到匀变速直线运动的概念。沿着一条直线运动,且加速度保持不变的运动,叫做匀变速直线运动

引导学生思考图象特点,激发学生求知欲

通过学生讨论探究小车运动的V-t图像得出匀变速直线运动的定义

2.匀变速直线运动的特点

请同学们从刚才的学习中总结匀变速直线的特点

学生回顾总结匀变速直线运动的特点:

1.加速度不变

2.速度时间图像是一条倾斜直线

3.速度均匀变化

明确匀变速直线运动的特点

3.速度与时间的关系

合作探究二

教师提出问题:既然匀变速直线运动速度随时间均匀变化,那速度随时间有什么样的变化规律?

学生分组讨论,每组讨论过程中推荐一名同学作总结发言,展示本组讨论结果,比比那组方法多,发言最精彩。

有的组从加速度的定义得出

有的组利用观察V-t图像得出

有的组类比一次函数得出

v=v0+at

充分发挥学生自主学习,合作学习,体现团队精神,形成激烈竞争。

4、匀变速直线运动的分类

问题:匀变速直线运动速度时间关系式v=v0+at

矢量式使用时需注意哪些问题?

合作探究三

下图是一物体做匀变速直线运动的V—t图像,通过图像所给信息求解

(1)物体运动的加速度是多少?

(2)物体做什么样的运动?

v/ms-1

t/s

o

2

2

4

6

4

下图是一物体做匀变速直线运动的V—t图像,通过图像所给信息求解

(1)物体运动的加速度是多少?

(2)物体做什么样的运动?

v/ms-1

t/s

o

4

2

学生分组讨论得出

a=1m/s2

物体做匀加速运动

通过教师引导与学生一起得出:物体做匀加速直线运动,若规定初速度v0的方向为正方向,则,a0,取正值

学生分组讨论得出

a=-2m/s2

物体做减速运动

通过教师引导与学生一起得出:物体做匀减速直线运动,若规定初速度v0的方向为正方向,则,a0,取负值

明确匀变速直线运动速度时间关系v=v0+at

应用时需注意方向问题

教学过程

教师活动

学生活动

设计意图

三、巩固练习

例一:汽车以36km/h的速度匀速行驶,现以0.6m/s2的加速度加速,10s后速度能达到多少?

教师引导学生明确已知量、待求量,确定研究对象和研究过程

解:初速度vo=36km/h=10m/s,加速度a=0.6m/s2,时间t=10s,10s后的速度为

v=v0+at

=10m/s+0.6m/s2×10s

=16m/s

=57.6km/h

例二:某汽车在某路面紧急刹车时,加速度的大小是6m/s2,如果必须在2s内停下来,汽车的行驶速度最高不能超过多少km/h?

解:以汽车初速度v0方向为正方向

由题知:加速度a=-6m/s2,时间t=2s,

2s末的速度v=0

则由v=v0+at得

v0=v-at=0-(-6m/s2)×2s=12m/s=43km/h

答:汽车的速度不能超过43km/h

通过这道题,我们大家知道了汽车遇到紧急情况时,虽然踩了刹车,但汽车不会马上停下来,还会向前滑行一段距离。因此,汽车在运行时,要被限定最大速度,超过这一速度,就可能发生交通事故。请同学们结合实际想一想:当发生交通事故时,交警是如何判断司机是否超速行驶的?

例三:某汽车正以12m/s的速度在路面上匀速行驶,前方出现紧急情况需刹车,加速度大小是3m/s2,求汽车5s末的速度。

解:以初速方向为正方向

则v=v0+at=12+(-3)×5m/s=-3m/s

正确解法:以初速方向为正方向

当车速减为零时,v=v0+at=12-3t=0

解得t=4s

即4s末汽车已刹车完毕,所以5末时汽车处于静止状态,即速度为零。

学生自主解题

板演并讲解

学生自主解题

并板演讲解

学生思考:汽车刹车时会留下痕迹,交警可以通过测量痕迹的长度,计算出司机刹车时的速度。以此来判断司机是否超速行驶。

学生自主解题

并板演讲解

可能有学生会根据公式解得v=-3m/s

有学生会提出根据实际情况汽车刹车后不可能反向运动,要先判断刹车时间,再计算所求量。

明确规定初速度v0

的方向为正方向,匀减速直线运动,则a取负值。

明确规定初速度v0

的方向为正方向,匀减速直线运动,则a取负值。

引导学生“从生活走向物理,从物理走向社会”

锻炼了学生的胆量和表达能力

让学生明确计算刹车问题时,需先判断停车时间。

教学过程

教师活动

学生活动

设计意图

四、知识小结

提问:这节课你知道了什么?

小结所学知识

与教师一起总结:

1.本节从对小车运动的V-t图像的研究得出匀变速直线运动的定义:沿着一条直线运动且加速度不变

2.通过小组讨论得出匀变速直线运动的公式v=v0+at

3.公式中v、v0、a都是矢量,必须注意其方向。

让学生整理、回忆本节课的收获,构建整体的知识体系

五、作业

布置作业:教材中的“问题与练习2题和3题”

认真思考,独立完成作业

让学生巩固了上课所学知识,在解答问题的过程中发现不足,及时补救。

六、板书设计:

匀变速直线运动速度与时间的关系

一.匀速直线运动定义:沿着一条直线运动,且加速度保持不变的运动,叫做匀变速直线运动

二.匀变速直线运动的特点:1.v-t图像是一条倾斜的直线

2.加速度不变的运动。

3.速度随时间均匀改变,

三.速度与时间关系:速度与时间关系式

四.分类:匀加速直线运动,若规定初速度v0的方向为正方向,则a0

匀减速直线运动,若规定初速度v0的方向为正方向,则a0

高一物理必修一重点知识点:时间和位移


高一物理必修一重点知识点:时间和位移

时间和时刻:

①时刻的定义:时刻是指某一瞬时,是时间轴上的一点,相对于位置、瞬时速度、等状态量,一般说的“2秒末”,“速度2m/s”都是指时刻。

②时间的定义:时间是指两个时刻之间的间隔,是时间轴上的一段,通常说的“几秒内”,“第几秒”都是指的时间。

位移和路程:

①位移的定义:位移表示质点在空间的位置变化,是矢量。位移用又向线段表示,位移的大小等于又向线段的长度,位移的方向由初始位置指向末位置。

②路程的定义:路程是物体在空间运动轨迹的长度,是一个标量。在确定的两点间路程不是确定的,它与物体的具体运动过程有关。

位移与路程的关系:

位移和路程是在一段时间内发生的,是过程量,两者都和参考系的选取有关系。一般情况下位移的大小并不等于路程的大小。只有当物体做单方向的直线运动是两者才相等。

【同步练习题】

1.以下的计时数据指时间的是()

A.天津开往广州的625次列车于13时35分从天津发车

B.某人用15s跑完100m

C.中央电视台新闻联播节目19时开播

D.1997年7月1月零时,中国对香港恢复行使主权

E.某场足球赛15min时甲队攻入一球

解析:A、C、D、E中的数据都是指时刻,而B中的15s是与跑完100m这一过程相对应的,是指时间.

答案:B

2.如右图所示,一物体沿三条不同的路径由A运动到B,下列关于它们位移大小的比较正确的是()

A.沿Ⅰ较大B.沿Ⅱ较大

C.沿Ⅲ较大D.一样大

解析:该物体沿三条不同的路径由A运动到B,其路程不等,但初位置、末位置相同,即位置的变化相同,故位移一样大.

答案:D

3.下列关于矢量(位移)和标量(温度)的说法中,正确的是()

A.两个运动物体的位移大小均为30m,则这两个位移可能相同

B.做直线运动的两物体的位移x甲=3m,x乙=-5m,则x甲x乙

C.温度计读数有正、有负,其正、负号表示方向

D.温度计读数的正、负号表示温度的高低,不能说表示方向

解析:当两个矢量大小相等、方向相同时,才能说这两个矢量相同;直线运动的位移的“+”“-”号表示方向;温度是标量,标量的正、负表示大小(即温度的高低).

答案:AD

4.关于矢量和标量,下列说法中正确的是()

A.矢量是既有大小又有方向的物理量

B.标量是既有大小又有方向的物理量

C.位移-10m比5m小

D.-10℃比5℃的温度低

解析:由矢量的定义可知,A正确,B错;关于位移的正、负号只表示方向,不表示大小,其大小由数值和单位决定,所以-10m的位移比5m的位移大,故C错;温度的正、负是相对温度为0℃时高出和低于的温度,所以-10℃比5℃的温度低,故D正确.

答案:AD

5.某质点沿半径为r的半圆弧由a点运动到b点,则它通过的位移和路程分别是()

A.0;πrB.2r,向东;πrC.r,向东;πrD.2r,向东;2r

解析:位移是指从初位置指向末位置的有向线段,只与初末位置有关,与运动径迹无关;而路程是指实际经过的径迹的长度,不仅与初末位置有关,还与运动径迹有关.

答案:B