88教案网

你的位置: 教案 > 高中教案 > 导航 > 集合与函数的概念

高中函数与方程教案

发表时间:2020-02-19

集合与函数的概念。

一名合格的教师要充分考虑学习的趣味性,教师要准备好教案,这是每个教师都不可缺少的。教案可以让学生们充分体会到学习的快乐,帮助教师提高自己的教学质量。那么怎么才能写出优秀的教案呢?以下是小编为大家收集的“集合与函数的概念”希望对您的工作和生活有所帮助。

第一章集合与函数的概念(复习)

学习目标
1.理解集合有关概念和性质,掌握集合的交、并、补等三种运算的,会利用几何直观性研究问题,如数轴分析、Venn图;
2.深刻理解函数的有关概念,理解对应法则、图象等有关性质,掌握函数的单调性和奇偶性的判定方法和步骤,并会运用解决实际问题.

学习过程
一、课前准备
(复习教材P2~P45,找出疑惑之处)
复习1:集合部分.
①概念:一组对象的全体形成一个集合
②特征:确定性、互异性、无序性
③表示:列举法{1,2,3,…}、描述法{x|P}
④关系:∈、、、、=
⑤运算:A∩B、A∪B、
⑥性质:AA;A,….
⑦方法:数轴分析、Venn图示.

复习2:函数部分.
①三要素:定义域、值域、对应法则;
②单调性:定义域内某区间D,,
时,,则的D上递增;
时,,则的D上递减.
③最大(小)值求法:配方法、图象法、单调法.
④奇偶性:对定义域内任意x,
奇函数;
偶函数.
特点:定义域关于原点对称,图象关于y轴对称.

二、新课导学
※典型例题
例1设集合,
,.
(1)若=,求a的值;
(2)若,且=,求a的值;
(3)若=,求a的值.

例2已知函数是偶函数,且时,.
(1)求的值;(2)求时的值;
(3)当0时,求的解析式.

例3设函数.
(1)求它的定义域;(2)判断它的奇偶性;
(3)求证:;
(4)求证:在上递增.

※动手试试
练1.判断下列函数的奇偶性:
(1);(2);
(3)(R);(4)

练2.将长度为20cm的铁丝分成两段,分别围成一个正方形和一个圆,要使正方形与圆的面积之和最小,正方形的周长应为多少?

三、总结提升
※学习小结
1.集合的三种运算:交、并、补;
2.集合的两种研究方法:数轴分析、Venn图示;
3.函数的三要素:定义域、解析式、值域;
4.函数的单调性、最大(小)值、奇偶性的研究.

※知识拓展
要作函数的图象,只需将函数的图象向左或向右平移个单位即可.称之为函数图象的左、右平移变换.
要作函数的图象,只需将函数的图象向上或向下平移个单位即可.称之为函数图象的上、下平移变换.
学习评价
※自我评价你完成本节导学案的情况为().
A.很好B.较好C.一般D.较差
※当堂检测(时量:5分钟满分:10分)计分:
1.若,则下列结论中正确的是().
A.B.0A
C.D.A
2.函数,是().
A.偶函数B.奇函数
C.不具有奇偶函数D.与有关
3.在区间上为增函数的是().
A.B.
C.D.
4.某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.
5.函数在R上为奇函数,且时,,则当,.
课后作业
1.数集A满足条件:若,则.
(1)若2,则在A中还有两个元素是什么;
(2)若A为单元集,求出A和.

2.已知是定义在R上的函数,设
,.
(1)试判断的奇偶性;
(2)试判断的关系;
(3)由此你猜想得出什么样的结论,并说明理由?

相关阅读

集合的概念与运算


俗话说,凡事预则立,不预则废。作为高中教师就需要提前准备好适合自己的教案。教案可以保证学生们在上课时能够更好的听课,帮助高中教师在教学期间更好的掌握节奏。所以你在写高中教案时要注意些什么呢?下面是小编精心收集整理,为您带来的《集合的概念与运算》,欢迎大家阅读,希望对大家有所帮助。

题目第一章集合与简易逻辑集合的概念与运算
高考要求
1.理解集合、子集、补集、交集、并集的概念;了解属于、包含、相等关系的意义.
2.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.
3.理解逻辑联结词“或”“且”“非”的含义;理解四种命题及其相互关系;掌握充要条件的意义.
4.学会运用数形结合、分类讨论的思想方法分析和解决有关集合的问题,形成良好的思维品质
知识点归纳
定义:一组对象的全体形成一个集合.
特征:确定性、互异性、无序性.
表示法:列举法{1,2,3,…}、描述法{x|P}.韦恩图
分类:有限集、无限集.
数集:自然数集N、整数集Z、有理数集Q、实数集R、正整数集N、空集φ.
关系:属于∈、不属于、包含于(或)、真包含于、集合相等=.
运算:交运算A∩B={x|x∈A且x∈B};
并运算A∪B={x|x∈A或x∈B};
补运算={x|xA且x∈U},U为全集
性质:AA;φA;若AB,BC,则AC;
A∩A=A∪A=A;A∩φ=φ;A∪φ=A;
A∩B=AA∪B=BAB;
A∩CA=φ;A∪CA=I;C(CA)=A;
C(AB)=(CA)∩(CB).
方法:韦恩示意图,数轴分析.
注意:①区别∈与、与、a与{a}、φ与{φ}、{(1,2)}与{1,2};
②AB时,A有两种情况:A=φ与A≠φ.
③若集合A中有n个元素,则集合A的所有不同的子集个数为,所有真子集的个数是-1,所有非空真子集的个数是。
④区分集合中元素的形式:如;;;;;;。
⑤空集是指不含任何元素的集合。、和的区别;0与三者间的关系。空集是任何集合的子集,是任何非空集合的真子集。条件为,在讨论的时候不要遗忘了的情况。
⑥符号“”是表示元素与集合之间关系的,立体几何中的体现点与直线(面)的关系;符号“”是表示集合与集合之间关系的,立体几何中的体现面与直线(面)的关系。
题型讲解
例1已知A={x|x3+3x2+2x>0},B={x|x2+ax+b≤0}且A∩B={x|0<x≤2},A∪B={x|x>-2},求a、b的值.
解:A={x|-2<x<-1或x>0},
设B=[x1,x2],由A∩B=(0,2]知x2=2,
且-1≤x1≤0,①
由A∪B=(-2,+∞)知-2≤x1≤-1.②
由①②知x1=-1,x2=2,
∴a=-(x1+x2)=-1,b=x1x2=-2.
评述:本题应熟悉集合的交与并的涵义,熟练掌握在数轴上表示区间(集合)的交与并的方法.
例2设集合P={m|-1<m≤0},Q={m∈R|mx2+4mx-4<0对任意实数x恒成立},则下列关系中成立的是
A.PQB.QPC.P=QD.P∩Q=Q
剖析:Q={m∈R|mx2+4mx-4<0对任意实数x恒成立},
对m分类:①m=0时,-4<0恒成立;
②m<0时,需Δ=(4m)2-4×m×(-4)<0,解得-1m<0.
综合①②知-1m≤0,∴Q={m∈R|-1m≤0}.
答案:C
评述:本题容易忽略对m=0的讨论,应引起大家足够的重视.
例3已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,0≤x≤2},如果A∩B≠,求实数m的取值范围.
剖析:如果目光总是停留在集合这一狭窄的知识范围内,此题的思维方法是很难找到的.事实上,集合符号在本题中只起了一种“化妆品”的作用,它的实际背景是“抛物线x2+mx-y+2=0与线段x-y+1=0(0≤x≤2)有公共点,求实数m的取值范围”.这种数学符号与数学语言的互译,是考生必须具备的一种数学素质.
解:由得
x2+(m-1)x+1=0.①
∵A∩B≠,∴方程①在区间[0,2]上至少有一个实数解.
首先,由Δ=(m-1)2-4≥0,得m≥3或m≤-1.
当m≥3时,由x1+x2=-(m-1)<0及x1x2=1知,方程①只有负根,不符合要求;
当m≤-1时,由x1+x2=-(m-1)>0及x1x2=1>0知,方程①有两个互为倒数的正根.故必有一根在区间(0,1]内,从而方程①至少有一个根在区间[0,2]内.
综上所述,所求m的取值范围是(-∞,-1].
评述:上述解法应用了数形结合的思想.如果注意到抛物线x2+mx-y+2=0与线段x-y+1=0(0≤x≤2)的公共点在线段上,本题也可以利用公共点内分线段的比λ的取值范围建立关于m的不等式来解.
例4设,求实数的取值范围。
分析:若满足,则集合B需分两种情况求解。
①集合A中的元素x是集合B中的元素;②集合B为空集。
解:由.
∵,∴
当,即无实根,由,
即,解得;
当时,由根与系数的关系:
当时,由根与系数的关系:
当时,由根与系数的关系:
综上所得。
例5求1到200这200个数中既不是2的倍数,又不是3的倍数,也不是5的倍数的自然数共有多少个?
分析:分析200个数分为两类,即满足题设条件的和不满足题设条件的两大类,而不满足条件的这一类标准明确而简单,可考虑用扣除法。
解:如图先画出文氏图,不难看出不符合条件
的数共有
(200÷2)+(200÷3)+(200÷5)
-(200÷10)-(200÷6)-(200÷15)
+(200÷30)=146
所以,符合条件的数共有200-146=54(个)
例6已知全集,A={1,}如果,则这样的实数是否存在?若存在,求出,若不存在,说明理由。
分析:此题的关键是理解符号是两层含义:
解:∵∴,即=0,
解得
当时,,为A中元素
当时,
当时,
∴这样的实数x存在,是或。
另法:∵∴,
∴=0且
∴或。
变式思考题:
同时满足条件:①②若,这样的集合M有多少个,举出这些集合来。
答案:这样的集合M有8个:
.
例7某学校艺术班有100名学生,其中学舞蹈的学生67人,学唱歌的学生45人,而学乐器的学生既不能学舞蹈,又不能学唱歌,人数是21人,那么同时学舞蹈和唱歌的学生有多少人?
解:设学舞蹈的学生有x人,学唱歌的人有y人,
既学舞蹈又学唱歌的人又z人,
由题意可列方程:
解得
所以,同时学舞蹈和唱歌的有33人。
例8对于集合,是否存在实数?若存在,求出的取值,若不存在,试说明理由。
解:∴,即二次方程:

,解之得
故存在实数.
例9已知集合,,
,求的值。
解:由可知,
(1),或(2)
解(1)得,
解(2)得
又因为当时,与题意不符
所以,.
例10已知为全集,,.
解:由
所以

例11已知集合,求的值.
解:
(1)当含有两个元素时:;
(2)当含有一个元素时:


综上可知:。
小结:
1.正确理解集合中元素的特征:确定性,互异性,无序性;
2.用列举法或描述法给出集合,考察元素与集合之间的元素;或不给出集合中的元素,但只给出若干个抽象的集合及某些关系,运用文氏图解决有关问题。
3.熟练运用集合的并、交、补的运算并进行有关集合的运算。
4.注意符号的理解,相互之间的转化:例如等等.
学生练习
题组一:
1.已知集合M={x|x2<4},N={x|x2-2x-3<0},则集合M∩N等于
A.{x|x<-2}B.{x|x>3}C.{x|-1<x<2}D.{x|2<x<3}
解析:M={x|x2<4}={x|-2<x<2},
N={x|x2-2x-3<0}={x|-1<x<3},结合数轴,
∴M∩N={x|-1<x<2}.
答案:C
2.已知集合A={x∈R|x<5-},B={1,2,3,4},则(A)∩B等于
A.{1,2,3,4}B.{2,3,4}C.{3,4}D.{4}
解析:A={x∈R|x≥5-},而5-∈(3,4),
∴(A)∩B={4}.
答案:D
3.设集合P={1,2,3,4,5,6},Q={x∈R|2≤x≤6},那么下列结论正确的是
A.P∩Q=PB.P∩QQC.P∪Q=QD.P∩QP
解析:P∩Q={2,3,4,5,6},∴P∩QP.
答案:D
4.设U是全集,非空集合P、Q满足PQU,若求含P、Q的一个集合运算表达式,使运算结果为空集,则这个运算表达式可以是______.
解析:构造满足条件的集合,实例论证.
U={1,2,3},P={1},Q={1,2},
则(Q)={3},(P)={2,3},易见(Q)∩P=.
答案:(Q)∩P
5.已知集合A={0,1},B={x|x∈A,x∈N*},C={x|xA},则A、B、C之间的关系是________.
解析:用列举法表示出B={1},C={,{1},{0},A},易见其关系.这里A、B、C是不同层次的集合,C以A的子集为元素,同一层次的集合可有包含关系,不同层次的集合之间只能是从属关系.
答案:BA,A∈C,B∈C
题组二:
1.设全集为实数集R,集合M={x|x21999x20000},P={x||x1999|a}(a为常数),且1P,则M与P满足()
(A)(B)
(C)(D)
2.若非空集合A={x|2a+1x3a5},B={x|3x22},则能使AB
成立的所有a的集合是()
(A){a|1a9}(B){a|6a9}(C){a|a9}(D)
3.设集合A={x|x2a},B={x|x2},若A∩B=A,则实数a的取值范围是()
(A)a4(B)a4(C)0a4(D)0a4
4.若{1,2}A{1,2,3,4,5},则满足这一关系的集合A的个数为。
5.设集合A={x|x2+x1=0},B={x|ax+1=0},若BA,则实数a的不同取值个数为。
6.设全集I=R,集合A={x|x2x2=y2,yR,y≠0},B={y|y=x+1,xA},则
=.
7.若集合A={32x,1,3},B={1,x2},且AB=A,求实数x.
8.设全集I=R,A={x|0},B={x|lg(x22)=lgx},求A∩.
9.已知集合A={y|y2(a2+a+1)y+a(a2+1)0},B={y|y=x2/2x+5/2,0x3},若A∩B=,求实数a的取值范围。
10.已知集合A={x|6/(x+1)1},B={x|x22x+2m0,xR},若AB=A,求实数m的取值范围。
11.已知A={x|x2ax+a219=0},B={x|log3(x2+x3)=1},C={x|=1},且A∩B,A∩C=,求实数a的值。
参考答案:
1.D2.B.3.B.
4.75.36.(,0][2,+).7.x=3或x=.
8.{1}.9.a或a210.m3/211.a=5
课前后备注

高三化学教案:《集合与函数的概念》教学设计


学习目标

1. 理解集合有关概念和性质,掌握集合的交、并、补等三种运算的,会利用几何直观性研究问题,如数轴分析、Venn图;

2. 深刻理解函数的有关概念,理解对应法则、图象等有关性质,掌握函数的单调性和奇偶性的判定方法和步骤,并会运用解决实际问题.

学习过程

一、课前准备

(复习教材P2~ P45,找出疑惑之处)

复习1:集合部分.

① 概念:一组对象的全体形成一个集合

② 特征:确定性、互异性、无序性

③ 表示:列举法{1,2,3,…}、描述法{x|P}

④ 关系:∈、 、 、 、=

⑤ 运算:A∩B、A∪B、

⑥ 性质:A A; A,….

⑦ 方法:数轴分析、Venn图示.

复习2:函数部分.

① 三要素:定义域、值域、对应法则;

② 单调性: 定义域内某区间D, ,

时, ,则 的D上递增;

时, ,则 的D上递减.

③ 最大(小)值求法:配方法、图象法、单调法.

④ 奇偶性:对 定义域内任意x,

奇函数;

偶函数.

特点:定义域关于原点对称,图象关于y轴对称.

二、新课导学

※ 典型例题

例1设集合 ,

, .

(1)若 = ,求a的值;

(2)若 ,且 = ,求a的值;

(3)若 = ,求a的值.

例2 已知函数 是偶函数,且 时, .

(1)求 的值; (2)求 时 的值;

(3)当 >0时,求 的解析式.

例3 设函数 .

(1)求它的定义域; (2)判断它的奇偶性;

(3)求证: ;

(4)求证: 在 上递增.

※ 动手试试

练1. 判断下列函数的奇偶性:

(1) ; (2) ;

(3) ( R); (4)

练2. 将长度为20 cm的铁丝分成两段,分别围成一个正方形和一个圆,要使正方形与圆的面积之和最小,正方形的周长应为多少?

三、总结提升

※ 学习小结

1. 集合的三种运算:交、并、补;

2. 集合的两种研究方法:数轴分析、Venn图示;

3. 函数的三要素:定义域、解析式、值域;

4. 函数的单调性、最大(小)值、奇偶性的研究.

※ 知识拓展

要作函数 的图象,只需将函数 的图象向左 或向右 平移 个单位即可. 称之为函数图象的左、右平移变换.

要作函数 的图象,只需将函数 的图象向上 或向下 平移 个单位即可. 称之为函数图象的上、下平移变换.

学习评价

※ 自我评价 你完成本节导学案的情况为( ).

A. 很好 B. 较好 C. 一般 D. 较差

※ 当堂检测(时量:5分钟 满分:10分)计分:

1. 若 ,则下列结论中正确的是( ).

A. B. 0 A

C. D. A

2. 函数 , 是( ).

A.偶函数 B.奇函数

C.不具有奇偶函数 D.与 有关

3. 在区间 上为增函数的是( ).

A. B.

C. D.

4. 某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有 人.

5. 函数 在R上为奇函数,且 时, ,则当 , .

课后作业

1. 数集A满足条件:若 ,则 .

(1)若2 ,则在A中还有两个元素是什么;

(2)若A为单元集,求出A和 .

2. 已知 是定义在R上的函数,设

, .

(1)试判断 的奇偶性;

(2)试判断 的关系;

(3)由此你猜想得出什么样的结论,并说明理由?

集合的概念与运算技巧


【命题趋向】
1.高考试题通过选择题和填空题,以及大题的解集,全面考查集合与简易逻辑的知识,题型新,分值稳定.一般占5---10分.
2.简易逻辑一部分的内容在近两年的高考试题有所出现,应引起注意.
【考点透视】
1.理解集合、子集、补集、交集、并集的概念.
2.了解空集和全集的意义.
3.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.
4.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x∈P},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题.
5.注意空集的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如AB,则有A=或A≠两种可能,此时应分类讨论.
【例题解析】
题型1.正确理解和运用集合概念
理解集合的概念,正确应用集合的性质是解此类题目的关键.
例1.已知集合M={y|y=x21,x∈R},N={y|y=x1,x∈R},则M∩N=()
A.(0,1),(1,2)B.{(0,1),(1,2)}C.{y|y=1,或y=2}D.{y|y≥1}
思路启迪:集合M、N是用描述法表示的,元素是实数y而不是实数对(x,y),因此M、N分别表示函数y=x21(x∈R),y=x1(x∈R)的值域,求M∩N即求两函数值域的交集.
解:M={y|y=x21,x∈R}={y|y≥1},N={y|y=x1,x∈R}={y|y∈R}.
∴M∩N={y|y≥1}∩{y|y∈R}={y|y≥1},∴应选D.
点评:①本题求M∩N,经常发生解方程组
从而选B的错误,这是由于在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M、N的元素是数而不是点,因此M、N是数集而不是点集.②集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x21}、{y|y=x21,x∈R}、{(x,y)|y=x21,x∈R},这三个集合是不同的.
例2.若P={y|y=x2,x∈R},Q={y|y=x21,x∈R},则P∩Q等于()
A.PB.QC.D.不知道
思路启迪:类似上题知P集合是y=x2(x∈R)的值域集合,同样Q集合是y=x21(x∈R)的值域集合,这样P∩Q意义就明确了.
解:事实上,P、Q中的代表元素都是y,它们分别表示函数y=x2,y=x21的值域,由P={y|y≥0},Q={y|y≥1},知QP,即P∩Q=Q.∴应选B.
例3.若P={y|y=x2,x∈R},Q={(x,y)|y=x2,x∈R},则必有()
A.P∩Q=B.PQC.P=QD.PQ
思路启迪:有的同学一接触此题马上得到结论P=Q,这是由于他们仅仅看到两集合中的y=x2,x∈R相同,而没有注意到构成两个集合的元素是不同的,P集合是函数值域集合,Q集合是y=x2,x∈R上的点的集合,代表元素根本不是同一类事物.
解:正确解法应为:P表示函数y=x2的值域,Q表示抛物线y=x2上的点组成的点集,因此P∩Q=.∴应选A.
例4(2007年安徽卷文)若,则=()
A.{3}B.{1}C.D.{-1}
思路启迪:
解:应选D.
点评:解此类题应先确定已知集合.
题型2.集合元素的互异性
集合元素的互异性,是集合的重要属性,教学实践告诉我们,集合中元素的互异性常常被学生在解题中忽略,从而导致解题的失败,下面再结合例题进一步讲解以期强化对集合元素互异性的认识.

函数的概念与性质


函数的概念与性质
一、学习要求
①了解映射的概念,理解函数的概念;
②了解函数的单调性和奇偶性的概念,掌握判断一些简单函数单调性奇偶性的方法;
③了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数;
④理解分数指数幂的概念,掌握有理数幂的运算性质,掌握指数函数的概念、图像和性质;
⑤理解对数函数的概念、图象和性质;⑥能够应用函数的性质、指数函数和对数函数性质解决某些简单实际问题.

二、两点解读
重点:①求函数定义域;②求函数的值域或最值;③求函数表达式或函数值;④二次函数与二次方程、二次不等式相结合的有关问题;⑤指数函数与对数函数;⑥求反函数;⑦利用原函数和反函数的定义域值域互换关系解题.
难点:①抽象函数性质的研究;②二次方程根的分布.

三、课前训练
1.函数的定义域是(D)
(A)(B)(C)(D)
2.函数的反函数为(B)
(A)(B)
(C)(D)
3.设则.
4.设,函数是增函数,则不等式的解集为(2,3)

四、典型例题
例1设,则的定义域为()
(A)(B)
(C)(D)
解:∵在中,由,得,∴,
∴在中,.
故选B
例2已知是上的减函数,那么a的取值范围是()
(A)(B)(C)(D)
解:∵是上的减函数,当时,,∴;又当时,,∴,∴,且,解得:.∴综上,,故选C
例3函数对于任意实数满足条件,若,则
解:∵函数对于任意实数满足条件,
∴,即的周期为4,
∴,

例4设的反函数为,若×
,则2
解:
∴m+n=3,f(m+n)=log3(3+6)=log39=2
(另解∵,
∴)
例5已知是关于的方程的两个实根,则实数为何值时,大于3且小于3?
解:令,则方程
的两个实根可以看成是抛物线与轴的两个交点(如图所示),
故有:,所以:,
解之得:
例6已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.如果函数的值域为,求b的值;
解:函数的最小值是,则=6,∴;