88教案网

你的位置: 教案 > 高中教案 > 导航 > 高一物理机械振动重点难点分析

高中物理必修一力教案

发表时间:2020-09-28

高一物理机械振动重点难点分析。

俗话说,凡事预则立,不预则废。准备好一份优秀的教案往往是必不可少的。教案可以让学生们能够在上课时充分理解所教内容,帮助教师更好的完成实现教学目标。关于好的教案要怎么样去写呢?下面是小编帮大家编辑的《高一物理机械振动重点难点分析》,但愿对您的学习工作带来帮助。

高一物理机械振动重点难点分析
第九章机械振动
知识结构
重点难点
一、机械振动的产生条件
1.物体受回复力的作用
2.阻力足够小
二、回复力的概念
1.把物体受到的指向平衡位置的力叫回复力,所以回复力是以力的效果而命名的
2.回复力可能是某个力;可能是几个力的合力;可能是某个力的分力.
三、简谐振动的定义
平衡位置:物体停止振动后所在的位置,即物体所受回复力为零的位置.
受力情况:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐振动.
若用F表示物体所受的回复力,x表示物体离开平衡位置的位移,则F与x的关系为F=-kx
四、描述简谐振动的物理量:振幅、周期(频率)、相位
1.振幅:描述振动强弱的物理量,振幅等于物体离开平衡位置的最大距离.
2.周期:描述振动快慢的物理量,周期等于物体完成一次全振动所用的时间.
频率:描述振动快慢的物理量,频率等于单位时间内完成全振动的次数.
周期与频率的关系为T=
3.相位:描述振动状态的物理量,即描述简谐振动在一个全振动中所处的不同阶段.例如,两个振幅和周期完全相同的振动,它们的振动状态不一定相同,甲振动在平衡位置时,乙振动可能在最大位移,即它们不同步,这样它们在各个时刻的加速度、速度、位移都不相同,因而运动状态也不同,两个振动之间的相位之差叫相位差.相位是描述振动的一个重要的物理量.
相位是教材中画*号的选学内容,是难点,但如果突破这一难点,对振动的理解可以达到一个新的高度,希望有能力的同学翻过这一高峰去攀登新的高峰.在突破这一难点的过程中,我们的有力武器是数学工具,三角函数图象以及它的表达式.
五、简谐振动的三角函数表达式
其中A为物体做简谐振动的振幅,为振动的圆频率且为振动的相位,为振动的初相位.x为振动物体在t时刻的位移,这样我们知道简谐振动位移随时间变化的函数关系x(t)为三角函数,描述简谐振动的几个物理量(A、f、)是这一函数表达式中的几个常数,这几个常数决定了振动的情况.
六、简谐振动的图象
知道简谐振动位移随时间变化的函数关系,就可以画出它的图象(图1)
图中实线和虚线分别表示两个简谐振动的图象,纵坐标的最大值是振动的振幅,横坐标轴上方标出时间,下方标出相位,相位的数值就是角度,与三角函数相同.由图可知两个振动的振幅相同,周期相同,但初相位不同.初相位是t=0时刻的相位,虚线是正弦函数曲线,t=0时刻的相位为0.实线与虚线在横坐标上相差一段距离,t=0时刻的相位为-实线所表示的振动比虚线所表示的振动落后T/4,相位上落后
图象是可以形象记忆的知识,把物理量、函数表达式和图象有机结合起来可以帮助我们把握规律,并有效记忆知识.
七、弹簧振子和单摆的受力情况
弹簧振子是理想化的模型,弹簧振子:一个轻弹簧一端拴一小球,组成一个弹簧振子.如图2所示为一水平弹簧振子,图3为一竖直弹簧振子.
回复力:水平的弹簧振子在光滑水平面上振动时所受回复力是弹簧的弹力.
竖直吊挂的弹簧振子在竖直平面内振动时回复力是重力与弹力的合力.
固有周期:弹簧振子做自由振动时的周期由弹簧的劲度系数和振子的质量决定,与振幅无关,
单摆也是实际摆的一种物理模型,由一根上端固定不能伸长的细线和在下端悬挂的一个可看成是质点的小球组成.
回复力:单摆的回复力是重力沿切向的分力,当摆角很小时,这个力为
固有周期:单摆做简谐振动时的周期由摆线的长度和摆所在的位置决定,与振幅和摆球的质量无关,
八、振动的能量与振幅有关,振动能量随振幅的增大而增大.在振动系统中动能和势能相互转化.在简谐振动中机械能守恒.
九、简谐运动的图像是一条正弦(或余弦)曲线,表示一个质点在不同时刻的位移.它的意义好比用一台摄像机拍摄的录像带,能记录下一个人在不同时刻的活动情况.但必须注意:振动图象不是质点的运动轨迹,它只是反映了质点的位移随时间的变化规律.简谐振动的图象能直观地表示质点的运动情况
(1)从图上可以直接读出振幅
(2)从图上可以直接读出周期
(3)可以确定任一时刻物体的位移,或由位移确定对应的时刻
(4)可以判断任一时刻物体加速度的方向(总是指向平衡位置)和速度方向(斜率的正负即代表速度的正负)
(5)可以通过图象判断一段时间内物体运动的速度,加速度,动能和势能的变wWw.jab88.CoM

相关知识

高一物理牛顿运动定律重点难点分析


高一物理牛顿运动定律重点难点分析
第三章牛顿运动定律
知识结构
重点难点
一、正确理解牛顿第一定律的意义以及惯性的概念
牛顿第一定律包含了三层意思:
1.牛顿第一定律说明了物体不受外力时的运动状态是匀速直线运动或静止(所以说力不是维持物体运动状态
的原因);
2.一切物体都有保持直线运动或静止的特性(即一切物体都有惯性);
3.外力是迫使物体改变运动状态的原因.
惯性是中学物理中一个重要的概念.惯性是物体固有的属性,与物体的运动状态以及受力情况无关.惯性的大小表现在外力使物体的运动状态改变时的难易程度.例如要让运动速度大小相同的一辆汽车和一列火车停下来,若它们受到的阻力大小相同,则让火车停下来要比汽车困难得多,是因为火车的质量比汽车要大得多,惯性也就比汽车大得多.
二、正确理解牛顿第二定律的瞬时性与矢量性
对于一个质量一定的物体来说,它在某一时刻加速度的大小和方向,只由它在这一时刻所受到的合外力的大小和方向来决定.当它受到的合外力发生变化时,它的加速度随即也要发生变化,这便是牛顿第二定律的瞬时性的含义.例如,物体在力F1和力F2的共同作用下保持静止,这说明物体受到的合外力为零.若突然撤去力F2,而力F1保持不变,则物体将沿力F1的方向加速运动.这说明,在撤去力F2后的瞬时,物体获得了沿力F1方向的加速度a1.撤去力F2的作用是使物体所受的合外力由零变为F1,而同时发生的是物体的加速度由零变为a1.所以,物体运动的加速度和合外力是瞬时对应的.
在理解牛顿第二定律时,必须明确加速度的方向是由合外力的方向决定的.也就是说加速度的方向总是与合外力的方向一致的,而物体的速度方向与合外力的方向并不存在这样的关系.当物体做匀加速直线运动时,其速度方向与合外力的方向一致;当物体做匀减速直线运动时,其速度方向便与合外力的方向相反.
例如:如图1所示.一物体以一定的初速度沿斜面向上滑动,滑到顶点后又返回斜面底端.在物体向上滑动的过程中,物体运动受到重力和斜面的摩擦力作用,其沿斜面的合力平行于斜面向下,所以物体运动的加速度方向是平行斜面向下的,与物体运动的速度方向相反,物体做减速运动,直至速度减为零.在物体向下滑动的过程中,物体运动也是受到重力和斜面的摩擦力作用,但摩擦力的方向平行斜面向上,其沿斜面的合力仍然是平行于斜面向下,但合力的大小比上滑时小,所以物体将平行斜面向下做加速运动,加速度的大小要比上滑时小.由此可以看出,物体运动的加速度是由物体受到的外力决定的,而物体的运动速度不仅与受到的外力有关,而且还与物体开始运动时所处的状态有关.
三、深刻理解运动和力的关系
牛顿运动定律揭示了物体运动和物体受到的外力的关系,运动和力的关系是自然界中反映物体机械运动的普遍规律之一,也是中学物理内容中重要的规律之一.它是整个中学物理内容的基础.
牛顿运动定律指明了物体运动的加速度与物体所受外力的合力的关系,即物体运动的加速度是由合外力决定的但是物体究竟做什么运动,不仅与物体的加速度有关还与物体的初始运动状态有关.比如一个正在向东运动的物体,若受到向西方向的外力,物体即具有向西方向的加速度,则物体向东做减速运动,直至速度减为零后,物体在向西方向的力的作用下,将向西做加速运动.由此说明,物体受到的外力决定了物体运动的加速度,而不是决定了物体运动的速度,物体的运动情况是由所受的合外力以及物体的初始运动状态共同决定的.
四、注意掌握运用牛顿运动定律解决问题的方法
有关运用牛顿运动定律解决的问题常常可以分为两种类型:
1.已知物体的受力情况,要求物体的运动情况.如物体运动的位移、速度及时间等.
2.已知物体的运动情况,要求物体的受力情况(求力的大小和方向).但不管哪种类型,一般总是先根据已知条件求出物体运动的加速度,然后再由此得出问题的答案.
运用牛顿第二定律解决问题的一般步骤是:
1.确定研究对象;
2.分析物体的受力情况和运动情况,画出被研究对象的受力分析图;
3.国际单位制统一各个物理量的单位;
4.根据牛顿运动定律和运动学规律建立方程并求解.

高一物理万有引力定律重点难点分析


作为杰出的教学工作者,能够保证教课的顺利开展,作为教师就要好好准备好一份教案课件。教案可以让学生能够听懂教师所讲的内容,帮助教师能够井然有序的进行教学。优秀有创意的教案要怎样写呢?以下是小编收集整理的“高一物理万有引力定律重点难点分析”,希望对您的工作和生活有所帮助。

高一物理万有引力定律重点难点分析
第六章万有引力定律
知识结构
重点难点
一、万有引力和万有引力定律
万有引力普遍存在于任意两个有质量的物体之间.自然界中一般物体间的万有引力很小(远小于地球与物体间
的万有引力和物体间的其它作用力),因而可以忽略不计.但考虑天体运动和人造卫星运动问题时必须计算万有引
力,不仅因为这个力非常大,而且万有引力提供了天体和卫星做匀速圆周运动所需的向心力.
万有引力定律给出了物体间万有引力的定量关系.需要注意的是万有引力定律公式只适用于计算两个质点间或
两个均匀球体间的万有引力.
二、天体运动和人造卫星运动模型
一般情况下,我们认为天体A绕天体B的运动和人造卫星绕地球的运动均为匀速圆周运动,其运动所需向心力由它们间的万有引力提供,进而利用万有引力定律、牛顿第二定律及向心加速度公式求出各类问题.
三、地球上的重力和重力加速度
在质量为M、半径为R的天体表面上,如果忽略天体自转的影响,质量为m的物体的重力加速度g,可以认为是由天体对它的万有引力产生的.由万有引力定律和牛顿第二定律有:
由此式可知,天体表面的重力加速度是由天体的质量和半径决定的.
因为地球是一个极半径比赤道半径略小的椭球体,因而物体位于赤道上时,地球对它的引力最小,重力也最小.地球表面的重力加速度值由赤道到两极逐渐增大,随距地表高度的增大,重力加速度值在减小.

机械振动


第八章机械振动

第一课时知识梳理
一、考点内容与要求
内容要求说明
弹簧振子,简谐运动,简谐运动的振幅、周期和频率,简谐运动的位移—时间图象
单摆,在小振幅条件下单摆做简谐运动,周期公式
振动中的能量转化
自由振动和受迫振动,受迫振动的振动频率,共振及其常见的应用Ⅱ



二、知识结构定义:生产振动的两个必要条件
描述振动的物理量:振幅A,频率f,周期T。
特征:F回=-kx或a=
周期:T=2π
图象:正弦(或余弦)曲线
能量转化:机械能守恒
弹簧振子:T=2π
单摆:T=2π
振动频率=策动力频率
共振条件:
分组实验:用单摆测定重力加速度

三、本章知识考查特点及高考命题趋势从近五年来的高考试题来看,直接考查本考点的题目不多,尤其是在综合能力测试中,由于题目的数量和类型的限制,涉及的更小,更多的是在物理单科的测试中,出现了考查振动图像和振动模型的题目。题型多以选择题,填空题等形式出现。
预计单独考查振动图像和振动模型的可能性不大,更多的会与波的图像结合在一起出题,或以振动的物体为物理情景对综合能力的知识进行考查。但也不排除高考中可能出现再次对单摆的周期公式的应用,对振动图像的理解类的题目。
总之,振动问题要求虽不是很高,但题目内容比较琐碎,复习中要强调细致全面,力求做到切实理解,取得实效。
四、课后练习
1、物体在附近所做的运动,叫做机械振动,通常简称为振动。力的方向跟振子偏离的位移方向相反,总指向,它的作用是使振子能返回,所以叫做回复力。
2、胡克定律:在弹簧发生弹性形变时,弹簧振子的跟振子偏离的位移成正比,这个关系在物理学中叫做胡克定律,通常用公式表示为,式中的常数叫做系数,简称。
3、简谐运动:物体在跟偏离平衡位置的成正比,并且总指向平衡位置的作用下的振动,叫做简谐运动。
4、振幅:振动物体离开平衡位置的距离,叫做振动的振幅。做简谐运动的物体完成一次
所需要的时间,叫做振动的周期,在国际单位制中,周期的单位是。单位时间内完成的全振动的,叫做振动的频率,在国际单位制中,频率的单位是,简称,符号是。
5、简谐运动的周期和频率由振动系统的性质所决定,与振动的无关,因此又称为振动系统的固有周期和固有频率。
6、简谐运动的图象通常称为振动图象,也叫振动曲线。理论和实验都证明,所有简谐运动的振动图象都是或曲线。
7、如果悬挂小球的细线的和可以忽略,线长又比球的大得多,这样的装置叫做单摆,单摆是实际单摆的的物理模型。在很小的情况下,单摆所受的与偏离平衡位置的成正比而相反,单摆做简谐运动。
8、荷兰物理学家研究了单摆的振动,发现单摆做简谐运动的周期跟的二次方根成正式,跟二次方根成反比,跟、摆球的无关,并且确定了如下的单摆周期公。
9、简谐运动的能量:对简谐运动来说,一旦供给振动系统一定的能量,使它开始振动,由于守恒,它就以一定的永不停息的振动下去,简谐运动是一种理想化的振动,实际的振动系统不可避免地要受到摩擦和其他阻力,即受到的作用,系统克服的作用做功,系统的机械能就要振动的振幅也逐渐,直到最后振动就停下来了,这种逐渐减小的振动,叫做阻尼振动。
10、用周期性的外力作用于实际的振动系统,使系统持续的振动下去,这种周期性的外力叫做,物体在外界作用下的振动叫做受迫振动,物体做受迫振动时,振动稳定后的频率等于的频率,跟物体的频率没有关系。的频率接近物体的频率时,受迫振动的增大,这种现象叫做共振,声音在共振现象通常叫做

11、弹簧振子和单摆的周期:
弹簧振子和单摆的运动都属于,但它们的周期关系式有很大的区别,弹簧振子的周期公式为即其周期只取决于弹簧的
和振子的与其振动的,放置的无关;单摆的周期公式为,即其周期只取决于单摆的和当地的,与摆球的、摆动的无关,另外需要特别注意的是公式中g值应为,与单摆所处的
有关。

第二课时机械振动及其图象
一、考点理解
(一)机械振动
1、械振动
(1)定义:物体(或物体的一部分)在平衡位置附近所做的往复运动,叫做机械振动。
(2)产生振动的必要条件:①有回复力存在;②阻力足够小。
(3)回复力的特点
回复力是使物体回到平衡位置的力,它是按力的作用效果命名的,回复力可能是一个力,也可能是一个力的分力,还可能是几个力的合力。回复力的方向始终指向平衡位置,回复力是周期性变化的力。
2、描述振动的物理量
(1)全振动
振动物体的运动状态由振动物体的速度来表征。确定的速度大小和速度方向表征确定的运动状态。振动质点经过一次全振动后其振动状态又恢复到原来的状态。实际上,经过一次全振动后不但振动物体的速度大小和方向回复到原来的状态,振动物体的加速度大小和方向、振动物体的位移大小和方向也恢复到原来的状态。
(2)位称:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。
(3)振幅
即振动质点离开平衡位置的最大距离,常用符号A表示。振幅是标量,是表示质点振动强弱的物理量。
(4)周期
即振动质点经过一次全振动所需的时间,常用符号T表示。周期是表示质点振动快慢的物理量。简谐运动的周期与振幅无关。
(5)频率
即一秒钟内振动质点完成全振动的次数,常用符号f来表示。周期和频率的关系是:f=,因此,频率同样是描述质点振动快慢的物理量。
3、简谐运动
(1)物体在跟位移大小成正比,并且总是指向平衡位置的力作用下的振动叫简谐运动。
(2)回复力F和加速度a与位移x的关系:
F=-,a=
注意:①“—”号表示回复力的方向与位移方向相反,即总是指向平衡位置。
②k是比例系数,不能理解成一定是弹簧的劲度系数,只有弹簧振子,才等于劲度系数。
③判断一个振动是否为简谐运动,可从两方向考虑;a.回复力大小与位移大小成正比。
b.回复力方向与位移方向相反
④机械振动不一定是简谐运动,简谐运动是最简单、最基本的振动。
(3)简谐运动的位移、回复力F、加速度a、速度υ都随时间做正弦(或余弦)式周期性变化,变化周期为T;振子的动能Ek、系统的势能Ep也做周期性变化,周期为,但总机械能守恒。
(4)简谐运动的过程特点
物体
位置位移
回复力F加速度a
方向大小方向大小方向大小
平衡位置O零零零
最大位移处M由O指向MA由M指向OkA由M指向O

O→M由O指向M零→A由M指向O零→kA由M指向O零→

M→O由O指向MA→零由M指向OkA→零由M指向O→零

物体
位置速度υ势能
动能

方向大小
平衡位置O

最大位移处M零

O→M由O
向M→零
零→
→零

M→O由M
指向O零→
→零
零→

(5)简谐运动的对称性、多解性
①简谐运动的多解性:做简谐运动的质点,在
运动上是一个变加速度的运动,质点运动相同的路程所需的时间不一定相同;它是一个周期性的运动,若运动的时间与周期的关系存在整数倍的关系,则质点运动的路程就不会是唯一的。若是运动时间为周期的一半,运动的路程具有唯一性,若不是具备以上条件,质点运动的路程也是多解的,这是必须要注意的。
②简谐运动的对称性:做简运动的质点,在距平
衡位置等距离的两点上时,具有大小相等的速度和加速度,在O点左右相等的距离上的运动时间也是相同的。
(二)简谐运动的图象
(1)简谐运动的图象的物理意义
简谐运动的图象表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹。
(2)简谐运动的图象的特点所有简谐运动的振动图象都是正弦(或余弦)曲线。
(3)简谐运动的图象的
作图法
用横轴表示时间,纵轴
表示位移,根据实际数据定
出坐标单位及单位长度,根据振动质点各个时刻的位移
大小和方向画出一系列的点,
再用平滑的曲线连接这些点,得到周期性变化的正弦(或余弦)曲线。如右上图所示。
(4)简谐运动的图象的应用
①从振动图象可直接读出振幅A、周期T及某时刻t对应的位移。
②判定质点在某时刻t的、a、F的方向。
③判定某段时间内振动物体的、a、F的大小变化及动能、势能的变化情况。
二、方法讲解1、计算简谐运动路程的4倍振幅法
做简谐运动的质点在振动时间为△t=(n=1、2、3……)内,质点振动通过的路程为S为:
S=4.A(A为振幅)
2、根据简谐运动图象分析简谐运动的情况的基本方法。
简谐运动图象能够反映简谐运动的规律,因此将简谐运动图象跟具体的运动过程联系起来是讨论简谐运动的一种好方法。
(1)从简谐运动图象可以直接读出不同
时刻t的位移值,从而知道位移随时间t的变化情况。
(2)在简谐运动图象中,用做曲线上某点切线的办法可确定各时刻质点的速度大小和方向,切线与轴正方向夹角小于90时,速度与选定的正方向相同,且夹角越大表明此时速度越大。当切线与x轴正方向的夹角大于90时,速度方向与选定的正方向相反,且夹角越大,表明此时的速度越小。
(3)由于a=-x,故可根据图象上各个时刻的位移变化情况确定质点加速度的变化情况,同样,只要知道了位移和速度的变化情况,也就不难判断出质点在不同时刻的动能和势能的变化情况。
三、考点应用例1:一弹簧振子做简谐运动,周期为T,则下
列说法正确的是()
A、若t时刻和(t+t)时刻振子运动位移的大小相等,方向相同,则一定等于T的整倍数
B、若t时刻和(t+t)时刻振子运动速度的大小相等,方向相反,则t一定等于的整倍数
C、若t=T,则在t时刻和(t+)时刻振子运动的加速度一定相等
D、若t=,则在t时刻和(t+)时刻弹簧的长度一定相等
分析:根据题意,画出示意图,如下图对选项A,只能说明这两个时刻振子位于同一位置,设为P,并不能说明这两个时刻振子的运动方向一定相同,t可以是振子由P向B再回到P的时间,故认为t一定等于T的整数倍是错误的。
对选项B,振子两次到P的位置时可以速度大小相等,方向相反,但并不能肯定t等于的整数倍,选项B也是错误的。
在相隔一个周期T的两个时刻,振子只能位于同一位置,其位移相同,合外力相同,加速度必相等,选项C是正桷的。
相隔的两个时刻,振子的位移大小相等,方向相反,其位置可位于处,如上图所示,在P处弹簧处于伸长状态,在处弹簧处于压缩状态,弹簧长度并不相等,选项D是错误的。
答案:C
点评:做简谐运动的弹簧振子的运动具有往复性、对称性和周期性,正确理解弹簧振子做简谐运动过程的特点,是判断此类问题的关键。
例2:如右图所示,质量为m的物体放在弹簧上,弹簧在竖直方向做简谐运动,当振幅为A时,物体对弹簧的压力最大值是物重的1.5倍,则物体对弹簧的最小压力是,欲使物体在弹簧的振动中不离开弹簧,其振幅不能超过。
分析:本题中弹簧的弹力与重力的合力充当回复力,注意应用简谐运动的对称性进行分析求解。
解答:弹簧的弹力与重力的合力充当物体做简谐运动的回复力F。在振动的最低点处,物体对弹簧压力最大为=1.5mg,设向下为正方向,对物体有:F1=mg-=-A;在振动的最高点处,物体对弹簧压力最小为,有=mg-=A则=mg-A=2mg-=0.5mg。
物体振动到最高点处,若刚好不脱离弹簧,则对弹簧压力为零,重力成为回复力,有F=mg=,又F=mg-=A,即F=0.5mg=A,得=2A。
答案:0.5mg;2A。
点评:在振动的最低点处向上的合力最大,加速度向上,物体处于超重状态,且加速度最大,所以物体对弹簧的压力最大。同理,在最高点时合力向下,加速度向下最大,且失重,所以压力最小。
振动到最高处刚好不脱离,则弹簧为原长。
例3:把弹簧振子的小球拉离平衡位置后轻轻释放,小球便在其平衡位置两侧做简谐运动,若以表示小球被拉平衡位置的距离,则()。
A、小球回到平衡位置所需的时间随的增大而增大
B、小球回到平衡位置所需的时间与无关
C、小球经过平衡位置时的速度随的增大而增大
D、小球经过平衡位置时的加速度随的增大而增大
分析:弹簧振子做简谐运动的周期T等于该装置的固有周期,只由振子的质量和回复力系数决定,与其他因素无关,从最大位移处回到平衡位置需要时间,不随而改变,选项A错误,B正确。弹簧振子做简谐运动时机械能守恒,越大,系统弹性势能越大,到达平衡位置时动能也越大,速度也越大,选项C正确,在平衡位置时回复力为零,加速度为零,选项D错误。
答案:BC
点评:小球拉离平衡位置的距离等于振幅的大小,本题振幅A=,弹簧振子的固有周期与振幅无关。
例4:某质点做简谐运动的图象如右图所示,那么在t、t、t、t时刻,质点动量相同的时刻是,动能相同的时刻是,加速度相同的时是。
分析:利用简谐运动图象的物理意义分析求解。
解答:由于四个时刻位移大小均为a,则四个位置关于平衡位置对称,质点在四个时刻速度大小相同,四个时刻的动能相同;t与t时刻质点都沿x轴正方向运动,则t1与t4时刻动量相同;t2和t3时刻质点都沿x轴负方向运动,则t与t时刻动量也相同;和t时刻及t和t时刻的位移都分别相同,则和t时刻加速度相同,t与t时刻加速度相同,但和时刻的加速度与t和t时刻加速度大小相等,方向相反。
所以,动量相同的时刻为t与t或t与t;动能相同的时刻为t、t、t和t;加速度相同的时刻为t、t(或t、t)。
点评:简谐运动图象上偏离平衡位置位移大小相同的点,振动物体具有相同的动能和势能,所受回复力和加速度的大小也相同。对于简谐运动图象题,要注意利用图象的特点进行分析。
四、课后练习
1、(2003临汾)如右图所示,是一弹簧振子,设向右方向为正,O为平衡位置,则()
A、A→O时,位移为负值,加
速度为负值
B、O→B时,位移为正值,加
速度为负值
C、B→O时,位移为负值,速度为负值
D、O→A时,位移为负值,加速度为正值
2、(2004天律)如右图所示,一轻弹簧与质量为m的物体组成弹簧振子,物体在同一条竖直线上的A、B间做简谐运动,O为平衡位置,C为AO的中点,已知OC=h,振子的周期为T,某时刻物体恰经过C点并向上运动,则从此时刻开始的半个周期时间内()
A、重力做功2mgh
B、重力的冲量大小为
C、回复力做功为零
D、回复力的冲量为零
3、(2004天津)公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板。一段时间内货物在竖直方向的振动可视为简谐运动,周期为T,取竖直向上为正方向,以某时刻作为计时起点,即t=0,其振动图象如右图所示。则()
A、t=T时,货物对车厢底板的压力最大
B、t=T时,货物对车厢底板的压力最小
C、t=T时,货物对车厢底板的压力最大
D、t=T时,货物对车厢底板的压力最小
4、(2004江苏)如下图①中,
波源S从平衡位置y=0开始振动,运动方向竖直向上(y轴的正方向),振动周期T=0.01s,产生的简谐波向左、右两个方向传播,波速均为=80m/s,经过一段时间后,P、Q两点开始振动,已知距离SP=1.2m,SQ=2.6m,若以Q点开始振动的时刻作为计时零点,则在下图②的振动图象中,能正确描述P、Q两点振动情况的是()
A、甲为Q点的振动图象B、乙为Q点的振动图象
C、丙为P点的振动图象D、丁为P点的振动图象

5、(2004湖北)如右图所示,在光滑的水平桌面上有一弹簧振子,弹簧劲度系数为k,开始时,振子被拉到平衡位置O的右侧A处,此时拉力大小为F,然后释放
振子从静止开始向左运动,经过时间t后第一次到达平衡位置O处,此时振子的速度为,在这个过程中振子的平均速度为()
A、0B、C、
D、不为零的某值,但由题设计条件无法求出

第三课时单摆受迫振动共振
考点理解(一)两种简谐运动类型
1、水平弹簧振子
(1)回复力的来源:弹簧的弹力充当回
复力,表达式为F=-kx,其中K为弹簧的劲度系数。
(2)能量转化关系:不计
阻力的情况下,振子的动能和弹簧的弹性势能相
互转化,总能量保持不变。
2、单摆
(1)单摆(理想化模型)
如右下图所示悬挂小球的细线的伸缩量和质量可以忽略。线长又比球的直径大得多,这样的装置叫单摆。
(2)当单摆的最大摆角小
于10时,单摆的振动近似为简谐运动。
(3)单摆的振动过程中,回复力由重力沿速度方向的分力提供。
如右上图所示当摆球运动到
任一点P时重力沿速度方向分力G=mgsinθ,在θ<10时,sinθ≈,所以回复力F=-。
故单摆在θ<10时振动近似为简谐运动。
(4)单摆的周期T=2
①上式中只适用于小摆角(θ<10)的情况下。
②式中的单位为m,T的单位为s。
③单摆的振动周期在振幅较小的条件下,与单摆的振幅无关,与摆球的质量也无关。(单摆的等时性)
④摆长是悬点到摆球球心之间的距离,公式中的L应理解为等效摆长。
⑤g与单摆所处物理环境有关,g为等效重力加速度。
(i)不同星球表面,g=GM/r,式中r为星球表面半径。
(ii)单摆处于超重或失重状态等效重力加速度为=±a,如在轨道上运动的卫星a=,完全失重,等效重力速度g=0.
无论悬点如何运动或还是受别的作用,等效g的取值总是单摆不振动时,摆线的拉力F与摆球质量的比例,即等效重力加速度g=F/m。
(5)应用:①测重力加速度g=4
②计时器

高考物理机械振动与机械波复习


第十四章机械振动与机械波

1.本章主要描述的是机械振动的公式和图象,波的图象,波长,频率,波速关系。
2.高考中以选择题形式考查为主,考查对基础知识的掌握与理解。复习时要真正搞懂振动与波的关系及两个图象的物理意义,明确振动与波的关系,注意其空间和时间上的周期性。

第一课时简谐振动和图象

【教学要求】
1.会用简谐运动的公式和图象描述简谐运动
2.掌握简谐运动各物理量的变化规律
【知识再现】
一.机械振动
1.定义:物体(或物体的一部分)在某一中心位置附近所做的往复运动.
2.回复力:使振动物体返回平衡位置的力.
①.回复力是以命名的力,时刻指向.
②.回复力可能是几个力的合力,可能是某一个力,还可能是某一个力的分力.因而回复力不一定等于物体的合外力.
3.平衡位置:振动过程中回复力为零的位置.
二.简谐运动
1.定义:物体在跟成正比,并且总是指向的回复力作用下的振动.
2.简谐运动的特征
①受力特征:回复力满足F=
②运动特征:加速度工能力
3.表达式:x=Asin(ωt+φ),其中表示初相,表示相位。
4.描述简谐运动的物理.
①位移:由指向振动质点所在位置的有向线段,它是量.
②振幅:振动物体离开平衡位置的,它是量.
③周期T和频率f:物体完成所需的时间叫周期,单位时间内完成的次数叫频率,二者的关系。
知识点一简谐振动的平衡位置
平衡位置的特点:
(1)平衡位置的回复力为零;
(2)平衡位置不一定是合力为零的位置,如单摆当摆球运动到平衡位置时受力是不平衡;
(3)同一振子在不同振动系统中平衡位置不一定相同:如弹簧振子水平放在光滑静止地面上的平衡位置,弹簧的平衡位置处于原长,在竖直方向的弹簧振子,平衡位置是其弹力等于重力的位置.
【应用1】简谐运动的平衡位置是指()
A.速度为零的位置B.回复力为零的位置
C.加速度为零的位置D.位移最大的位置

知识点二简谐运动的周期性和对称性
简谐运动的特点
1.动力学特点:F=-kx,负号表示回复力方向跟位移方向相反,k表示回复力系数。
2.运动学特征:简谐运动是变加速运动,运动物体的位移、速度、加速度的变化具有周期性和对称性.
(1)位移:振动物体的位移是物体相对平衡位置的位移;它总是由平衡位置指向物体所在位置的有向线段。
注意:区分振动物体的某时刻的位移跟某段时间内的位移,两者“起始点”的意义不同.
(2)速度:简谐运动是变加速运动.物体经平衡位置时速度最大,物体在最大位移处时速度为零,且物体的速度在最大位移处改变方向.
(3)加速度:由力与加速度的瞬时对应关系可知,加速度与回复力的变化步调相同,即物体处在最大位移处时加速度最大,物体处于平衡位里时加速度最小(为零).物体经平衡位里时,加速度方向发生变化.
【应用2】一弹簧振子做简谐运动.周期为T,下列说法正确的有()
A.若t时刻和(t+△t)时刻振子运动速度的大小相等、方向相反,则Δt一定等于T/2的整数倍
B.若t时刻和(t+△t)时刻振子运动位移的大小相等、方向相同,则△t一定等于T的整数倍
C.若△t=T/2,则在t时刻和(t-△t)时刻弹簧的长度一定相等
D.若△t=T,则在t时刻和(t+△t)时刻振子运动的加速度一定相同
导示:若△t=T/2或△t=nT-T/2,(n=1,2,3....),则在t和(t+△t)两时刻振子必在关于干衡位置对称的两位置(包括平衡位置),这两时刻振子的位移、回复力、加速度、速度等均大小相等,方向相反。但在这两时刻弹簧的长度并不一定相等(只有当振子在这两时刻均在平衡位置时,弹簧长度才相等).反过来.若在t和(t+△t),两时刻振子的位移(回复力、加速度)和速度(动量)均大小相等,方向相反,则△t一定等于△t=T/2的奇数倍。如果仅仅是振子的速度在t和(t+△t),两时刻大小相等方向相反,那么不能得出△t与T/2的关系,根据以上分析.A、C选项均错.
若t和(t+△t)时刻,振子的位移(回复力、加速度)、速度(动量)等均相同,则△t=nT(n=1,2,,3…),但仅仅根据两时刻振子的位移相同,不能得出△t=nT.所以B这项错,D选项正确。
(1)简谐运动的物体经过1个或n个周期后,能回复到原来的状态,各物理量均又相同.因此,在解题时要注意到多解的可能性或需要写出解答结果的通式.
(2)在关于平衡位置对称的两个位置,动能、势能对应相等,回复力、加速度大小相等,方向相反;速度大小相等,方向可相同,也可相反,以及运动时间的对称性。

知识点三简谐运动的图象
1.物理意义
表示振动物体偏离平衡位置的位移x随时间t的变化规律.
注意:振动图象不是质点的运动轨迹.
2.图象的特点
简谐运动的图象是正弦(或余弦)曲线.
3.振动图象的应用
(1)可直观地读取振幅A、周期T及各时刻的位移x及各时刻振动速度方向.
(2)判定回复力、加速度方向(总指向时间轴)
(3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.
(4)某段时间内振子的路程.

类型一简谐振动的证明问题
【例1】证明竖直方向的弹簧振子所做的运动是简谐振动。
导示:设物体的重为G,弹簧的劲度系数为k,物体处于平衡位置时弹簧的伸长量为l1,则G=kl1
当物体偏离平衡位置的位移为l时,弹簧的伸长量为l2,则l=l2-l1
取竖直向下为正,此时弹簧振子的回复力为
F回=G-kl2=kl1-kl2=-kl
所以,竖直方向的弹簧振子所做的运动是简谐振动。
判断某振动是否属于简谐运动,关键在于受力分析.先找出回复力的来源,然后取平衡位置为坐标原点,并规定正方向,得出回复力的表达式;再对照判别式F=一kx作出判断.在判断时要注意,回复力是指振动物体在振动方向上的合外力。
类型二振动的表达式及相位考查
【例2】物体沿x轴做简谐运动,振幅为8cm,频率为0.5Hz,在t=0时,位移是4cm,且向x轴负方向运动,试写出用正弦函数表示的振动方程。
导示:A=0.08m,ω=2πf=πHz,所以x=0.08sin(πt+φ)(m),将t=0时x=0.04m代入得0.04=0.08sinφ,初相φ=π/6或5π/6,因为t=0时速度方向沿x轴负方向,即位移在减小,所以取φ=5π/6。
所以振动方程x=0.08sin(πt+5π/6)(m)
同一振动用不同函数表示时,相位不同,而且相位ωt+φ是随时间t变化的一个变量。
类型三简谐振动的图象问题
【例3】(山东省沂源一中08高三物理检测试题)劲度系数为20N/cm的弹簧振子,它的振动图象如图所示,在
A.图中A点对应的时刻,振子所受的弹力大小为0.5N,方向指向x轴的负方向
B.图中A点对应的时刻,振子的速度方向指向x轴的正方向
C.在0~4s内振子作了1.75次全振动
D.在0~4s内振子通过的路程为3cm,位移为0
导示:由图可知A在t轴上方,位移x=0.25cm,所以弹力F=-kx=-5N,即弹力大小为5N,方向指向x轴负方向,选项A不正确;由图可知过A点作图线的切线,切线斜率为正值,即振子的速度方向指向x轴的正方向,选项B正确.由图可看出,振子振动T=2s,在0~4s内完成两次全振动,选项C错误.同理在0~4s内振子的位移为零,又A=0.5cm,所以在这段时间内振子通过的路程为2×4×0.50cm=4cm,故选项D错误.
综上所述,该题的正确选项为B.
1.一质点做简谐运动的图象如图所示,该质点在t=3.5s时刻()
A.速度为正、加速度为正
B.速度为负、加速度为负
C.速度为负、加速度为正
D.速度为正、加速度为负
2.(2007年苏锡常镇四市一模)一个作简谐运动的物体,位移随时间的变化规律x=Asinωt,在1/4周期内通过的路程可能是()
A.小于AB.等于A
C.等于2AD.等于1.5A
3.一个做简谐运动的物体连续通过某一位置的时间间隔为1s,紧接着再经过0.4s到达平衡位置,则简谐运动的周期为()
A.1.2sB.2.4sC.3.6sD.4.8s

4.如下图所示的简谐运动图象中,在t1和t2时刻,运动质点相同的量为()
A.加速度
B.位移
C.速度
D.回复力

5.水平放置作简谐运动的弹簧振子,质量为m,振动过程中的最大速率为v,下列正确的有(BC)
A.任半个周期内,弹力做的功可能是0~mv2/2之间的某个值
B.任半个周期内,弹力做的功一定为零
C.任半个周期内,速度的变化量大小可能为0~2v间的某个值
D.任半个周期内,速度变化量大小一定为零

5.如图所示,一个劲度系数为k的轻弹簧竖直立在桌面上,下端固定在桌面上,上端与质量为M的金属盘固定连接,金属盘内放一个质量为m的砝码。先让砝码随金属盘一起在竖直方向做简谐运动。⑴为使砝码不脱离金属盘,振幅最大不能超过多少?
⑵振动过程中砝码对金属盘的最大压力是多少?

参考答案1.D2.ABC3.AC4.C
5.BC6.;2mg